How extensions impact the factor complexity of morphic images

France Gheeraert

February 28, 2024

The protagonists

Definition

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

$$p_{x}(n) \colon \mathbb{N} \to \mathbb{N}, \quad n \mapsto \#\mathcal{L}(x) \cap \mathcal{A}^{n}.$$

Definition

A *morphism* is a monoid morphism $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, i.e., for any $u, v \in \mathcal{A}^*$,

$$\sigma(uv) = \sigma(u)\sigma(v).$$

Every morphism is assumed to be non-erasing.

A classical result

How do the properties of x and σ impact the factor complexity of $\sigma(x)$?

A classical result

How do the properties of x and σ impact the factor complexity of $\sigma(x)$?

Proposition (Allouche & Shallit '03, Cassaigne & Nicolas '10)

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$. For all $n \geq 0$, we have

$$p_{\sigma(x)}(n) \leq \|\sigma\| \cdot p_x(n),$$

where $\|\sigma\| := \max_{a \in \mathcal{A}} |\sigma(a)|$ is the width of σ .

Sketch of proof on the blackboard.

Coverings

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u = \sigma(w)_{[k+1, k+n]}$ and w is minimal, i.e.

$$k+1 \leq |\sigma(w_1)|$$
 and $k+n \geq \left|\sigma(w_{[1,|w|[})\right|+1$

The set of coverings of words of length n is denoted $C_{x,\sigma}(n)$.

Coverings

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{Z}_{\geq 0}$ where $u = \sigma(w)_{[k+1, k+n]}$ and w is minimal, i.e.

$$k+1 \leq |\sigma(w_1)|$$
 and $k+n \geq \left|\sigma(w_{[1,|w|[})\right|+1$

The set of coverings of words of length n is denoted $C_{x,\sigma}(n)$.

Proposition

We have

$$p_{\sigma(x)}(n) \leq \# C_{x,\sigma}(n).$$

If (w, k) is a covering of a letter, then

If (w, k) is a covering of a letter, then

w is a letter,

If (w, k) is a covering of a letter, then

- w is a letter,
- $0 \le k < |\sigma(w)|$

If (w, k) is a covering of a letter, then

- w is a letter,
- $0 \le k < |\sigma(w)|$

So

$$\#C_{x,\sigma}(1) = \sum_{a \in \mathcal{A}} |\sigma(a)|$$

$$\sigma \colon \begin{cases} 0 \mapsto 001 & x : \dots 2001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0 \ 001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

$$\sigma : \begin{cases} 0 \mapsto 001 & x : \dots 2001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0 \ 001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

• (00,0) is a covering of 0010

$$\sigma : \begin{cases} 0 \mapsto 001 & x : \dots 2001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0 \ 001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

• (00,0) is a covering of 0010 and of 00100

$$\sigma \colon \begin{cases} 0 \mapsto 001 & x : \dots 2001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0 \ 001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

- (00,0) is a covering of 0010 and of 00100
- (121,1) is a covering of 0010 but (121,1) $\not\in C_{x,\sigma}(5)$

$$\sigma \colon \begin{cases} 0 \mapsto 001 & x : \dots 2001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0 \ 001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

- (00,0) is a covering of 0010 and of 00100
- (121, 1) is a covering of 0010 but (121, 1) $\notin C_{x,\sigma}(5)$
- (1210,1) is a covering of 00100 but (1210,1) $\not\in C_{x,\sigma}(4)$

We have

$$\#C(n+1) - \#C(n) = \sum_{(w,k) \in C(n) \setminus C(n+1)} (\#\{a : wa \in \mathcal{L}(x)\} - 1)$$

We have

$$\#C(n+1) - \#C(n) = \sum_{(w,k)\in C(n)\setminus C(n+1)} (\#\{a: wa \in \mathcal{L}(x)\} - 1)$$

If
$$(w, k) \in C(n) \setminus C(n+1)$$
, then $k + n = |\sigma(w)|$.

We have

$$\#C(n+1) - \#C(n) = \sum_{(w,k)\in C(n)\setminus C(n+1)} (\#\{a: wa \in \mathcal{L}(x)\} - 1)$$

If
$$(w, k) \in C(n) \setminus C(n+1)$$
, then $k + n = |\sigma(w)|$.

So

$$\#C(n+1) - \#C(n) = \sum_{w \in W_n} (\#\{a : wa \in \mathcal{L}(x)\} - 1)$$

$$W_n = \{ w \in \mathcal{L}(x) : \exists k \text{ s.t } (w, k) \in C(n) \setminus C(n+1) \}$$

We have

$$\#C(n+1) - \#C(n) = \sum_{(w,k)\in C(n)\setminus C(n+1)} (\#\{a: wa \in \mathcal{L}(x)\} - 1)$$

If
$$(w, k) \in C(n) \setminus C(n+1)$$
, then $k + n = |\sigma(w)|$.

So

$$\#C(n+1) - \#C(n) = \sum_{w \in W_n} (\#\{a : wa \in \mathcal{L}(x)\} - 1)$$

$$W_n = \{ w \in \mathcal{L}(x) : \exists k \text{ s.t } (w,k) \in C(n) \setminus C(n+1) \}$$

= \{ w \in \mathcal{L}(x) : \exists 0 \le k < |\sigma(w_1)| \text{ s.t } k + n = |\sigma(w)| \}

We have

$$\#C(n+1) - \#C(n) = \sum_{(w,k)\in C(n)\setminus C(n+1)} (\#\{a: wa \in \mathcal{L}(x)\} - 1)$$

If
$$(w, k) \in C(n) \setminus C(n+1)$$
, then $k + n = |\sigma(w)|$.

So

$$\#C(n+1) - \#C(n) = \sum_{w \in W_n} (\#\{a : wa \in \mathcal{L}(x)\} - 1)$$

$$W_{n} = \{ w \in \mathcal{L}(x) : \exists k \text{ s.t } (w, k) \in C(n) \setminus C(n+1) \}$$

$$= \{ w \in \mathcal{L}(x) : \exists 0 \le k < |\sigma(w_{1})| \text{ s.t } k + n = |\sigma(w)| \}$$

$$= \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}$$

Extensions and complexities

The number of right, left and bi-extensions of w are respectively

$$r_x(w) = \#\{a \in \mathcal{A} : wa \in \mathcal{L}(x)\} \quad \ell_x(w) = \#\{b \in \mathcal{A} : bw \in \mathcal{L}(x)\}$$
$$b_x(w) = \#\{(a, b) \in \mathcal{A}^2 : awb \in \mathcal{L}(x)\}$$

Proposition (G. '23)

$$\#C(n+1) - \#C(n) = \sum_{w \in W_n} (r_x(w) - 1)$$

where
$$W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}.$$

Extensions and complexities

The number of right, left and bi-extensions of w are respectively

$$r_x(w) = \#\{a \in \mathcal{A} : wa \in \mathcal{L}(x)\} \quad \ell_x(w) = \#\{b \in \mathcal{A} : bw \in \mathcal{L}(x)\}$$
$$b_x(w) = \#\{(a, b) \in \mathcal{A}^2 : awb \in \mathcal{L}(x)\}$$

Proposition (G. '23)

$$\#C(n+1) - \#C(n) = \sum_{w \in W_n} (r_x(w) - 1)$$

where $W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}.$

Proposition (Cassaigne '96)

$$p_{\scriptscriptstyle X}(n+1) - p_{\scriptscriptstyle X}(n) = \sum_{w \in \mathcal{L}_n(x)} (r_{\scriptscriptstyle X}(w) - 1) = \sum_{w \in \mathcal{L}_n(x)} (\ell_{\scriptscriptstyle X}(w) - 1)$$

$$W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}$$

$$W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}$$

• $W_n \subseteq \mathcal{L}_{\leq n}(x)$,

$$W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}$$

- $W_n \subseteq \mathcal{L}_{\leq n}(x)$,
- W_n is a maximal suffix code, i.e., any $u \in \mathcal{L}(x)$ either has a suffix in W_n or is a proper suffix of an element in W_n .

$$W_n = \{ w \in \mathcal{L}(x) : |\sigma(w_{[2,|w|]})| < n \le |\sigma(w)| \}$$

- $W_n \subseteq \mathcal{L}_{\leq n}(x)$,
- W_n is a maximal suffix code, i.e., any $u \in \mathcal{L}(x)$ either has a suffix in W_n or is a proper suffix of an element in W_n .

Proposition (G. '23)

If $W \subseteq \mathcal{L}_{\leq n}(x)$ is a maximal suffix code, then

$$\sum_{w \in W} (r_{\scriptscriptstyle X}(w) - 1) = p_{\scriptscriptstyle X}(n+1) - p_{\scriptscriptstyle X}(n) - \sum_{\substack{w \in \mathcal{L}_{< n}(x) \ {
m Suff}(w) \cap W
eq \emptyset}} m_{\scriptscriptstyle X}(w)$$

where
$$m_{x}(w) = b_{x}(w) - r_{x}(w) - \ell_{x}(w) + 1$$
.

Final result

Theorem (G. '23)

Let $x \in A^{\mathbb{Z}}$ and $\sigma \colon A^* \to B^*$. For all $n \ge 0$, we have

$$p_{\sigma(x)}(n) \leq \# C_{x,\sigma}(n)$$

$$\#\mathcal{C}_{\mathsf{X},\sigma}(n+1) - \#\mathcal{C}_{\mathsf{X},\sigma}(n) = p_{\mathsf{X}}(n+1) - p_{\mathsf{X}}(n) - \sum_{\substack{w \in \mathcal{L}_{< n}(\mathsf{X}) \\ |\sigma(w)| \geq n}} m_{\mathsf{X}}(w).$$

Final result

Theorem (G. '23)

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$. For all $n \geq 0$, we have

$$p_{\sigma(x)}(n) \leq \# C_{x,\sigma}(n)$$

where

$$\# C_{x,\sigma}(n+1) - \# C_{x,\sigma}(n) = p_x(n+1) - p_x(n) - \sum_{\substack{w \in \mathcal{L}_{< n}(x) \\ |\sigma(w)| \geq n}} m_x(w).$$

Some observations:

• $C_{x,\sigma}(n)$ only depends on x and on the lengths $|\sigma(a)|$, $a\in\mathcal{A}$

Final result

Theorem (G. '23)

Let $x \in \mathcal{A}^{\mathbb{Z}}$ and $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$. For all $n \geq 0$, we have

$$p_{\sigma(x)}(n) \leq \# C_{x,\sigma}(n)$$

where

$$\# C_{x,\sigma}(n+1) - \# C_{x,\sigma}(n) = p_x(n+1) - p_x(n) - \sum_{\substack{w \in \mathcal{L}_{< n}(x) \\ |\sigma(w)| \geq n}} m_x(w).$$

Some observations:

- $C_{x,\sigma}(n)$ only depends on x and on the lengths $|\sigma(a)|$, $a \in \mathcal{A}$
- for any $x \in \mathcal{A}^{\mathbb{Z}}$ and any values of $|\sigma(a)|$, $a \in \mathcal{A}$, we can find a corresponding morphism σ such that $p_{\sigma(x)}(n) = \#C_{x,\sigma}(n)$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

• Sturmian or quasi-Sturmian,

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

- Sturmian or quasi-Sturmian,
- Arnoux-Rauzy or episturmian,

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

- Sturmian or quasi-Sturmian,
- Arnoux-Rauzy or episturmian,
- the coding of an interval exchange transformation,

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

- Sturmian or quasi-Sturmian,
- Arnoux-Rauzy or episturmian,
- the coding of an interval exchange transformation,
- dendric or eventually dendric,

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

- Sturmian or quasi-Sturmian,
- Arnoux-Rauzy or episturmian,
- the coding of an interval exchange transformation,
- · dendric or eventually dendric,
- eventually weak (resp., strong) or neutral, i.e., for all long enough w, $m_x(w)$ is ≤ 0 (resp., ≥ 0),

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

For any $\sigma \colon \mathcal{A}^* \to \mathcal{B}^*$, if $x \in \mathcal{A}^{\mathbb{Z}}$ is one of the following

- Sturmian or quasi-Sturmian,
- Arnoux-Rauzy or episturmian,
- the coding of an interval exchange transformation,
- dendric or eventually dendric,
- eventually weak (resp., strong) or neutral, i.e., for all long enough w, $m_x(w)$ is ≤ 0 (resp., ≥ 0),
- ternary Chacon word, or more generally, if for every long enough weak word, there is a strong enough word with the same Parikh vector

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

What about the Thue-Morse word?

Proposition (G. '23)

If x is the Thue-Morse word, then for all $\sigma \colon \{0,1\}^* \to \mathcal{B}^*$ and all large enough n,

$$\#C_{x,\sigma}(n+1) - \#C_{x,\sigma}(n) \in p_x(n+1) - p_x(n) + \{2, -2, 0\},$$

and the choice of 2, -2 or 0 only depends on n and $|\sigma(0)| + |\sigma(1)|$.

What about the Thue-Morse word?

Proposition (G. '23)

If x is the Thue-Morse word, then for all $\sigma \colon \{0,1\}^* \to \mathcal{B}^*$ and all large enough n,

$$\#C_{x,\sigma}(n+1) - \#C_{x,\sigma}(n) \in p_x(n+1) - p_x(n) + \{2, -2, 0\},\$$

and the choice of 2, -2 or 0 only depends on n and $|\sigma(0)| + |\sigma(1)|$.

If $|\sigma(0)| + |\sigma(1)|$ is a power of 2, there exists C such that, for all n,

$$p_{\sigma(x)}(n) \leq p_x(n) + C.$$

Thank you for your attention!