Contribution of groundwater to greenhouse gases emissions

Lessons learned from case studies in the Walloon region of Belgium

<u>Serge Brouyère¹</u>, Olha Nikolenko¹, Alberto Borges², Anna Jurado^{1*}

1 : Hydrogeology & Environmental Geology, Urban & Environmental Engineering, University of Liège, Belgium (serge.brouyere@ulg.ac.be)

2 Chemical Oceanography Unit, University of Liège, Liège, Belgium

* Now at Faculty of Environmental Sciences, Technische Universität Dresden, Germany

University of Stockholm, Sweden September 03, 2018

Context of the study : Greenhouse gases emissions and climate change

Agricultural landscapes : 1/3 of total anthropogenic emissions (Gilbert 2012)

Context of the study : Greenhouse gases emissions and climate change

LIÈGE université

iences Appliquées

CARBON DIOXIDE (CO₂)

- ✓ Fossil fuel burning
- ✓ Changes in land use
- ✓ Industrial activities

NITROUS OXIDE (N₂O)

- ✓ Agricultural activities
- Fossil fuel combustion and industrial processes
- ✓ Natural processes (i.e soils)

METHANE (CH₄)

- ✓ Fossil fuel production, distribution and use
- ✓ Livestock farming
- ✓ Landfills and waste
- ✓ Wetlands

Direct vs Indirect emissions : Groundwater as a source of GHGs

Groundwater has been proposed as a potential indirect source of GHGs to the atmosphere, particularly in agricultural areas (Anderson et al., 2014: Jahangir et al., 2012, Minamikawa et al., 2011)

Groundwater as a source of GHGs : Production – Consumption mechanisms

Carbon dioxide CO₂

Carbonate speciation

 $CO_2(g) + H_2O <-> H_2CO_3^*$ $H_2CO_3^* <-> HCO_3^- + H^+$ $CO_3^{2-} + H^+ <-> HCO_3^-$

$K_{H,CO2} = [H_2CO_3^*]/P(CO_2) = 10^{-1.5}$ $K_{a1} = [H+][HCO_3^-]/[H_2CO_3^*] = 10^{-6.3}$ $K_{a2} = [H+][CO_3^{2-}]/[HCO_3^-] = 10^{10.3}$

Dissolution of carbonate minerals

 $CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$ $K_{calcite} = [Ca^{2+}] [CO_3^{2-}] = 10^{-8.48}$

CO₂ production in soils

Groundwater as a source of GHGs : Production – Consumption mechanisms

Methane CH₄ Concentration -Berner (1981) Oxic 02 Characteristic phases Environment NO₂ 1. Oxic $(m_{0_2} \ge 10^{-6})$ Hematite, goethite, MnO,-type minerals: no organic matter II. Anoxic $(m_{O_2} < 10^{-6})$ A. Sulfidic $(m_{H_2S} \ge 10^{-6})$ Pyrite, marcasite, rhodochrosite, Mn2+ Post-oxic alabandite: organic matter B. Nonsulfidic ($m_{H_s} < 10^{-6}$) 1. Post-oxic Glauconite and other Fe2+-Fe3+ Fe²⁺ silicates (also siderite, vivianite, rhodochrosite): no sulfide Anoxic minerals: minor organic matter Depth SO42-2. Methanic Siderite, vivianite, modochrosite: earlier formed sulfide minerals; organic matter Sulfidic H₂S 4 Fe²⁺ Methanic CH4

Source : Appelo & Postma, Chap. 9, p.440

Groundwater as a source of GHGs : Production – Consumption mechanisms

In this context, several questions arise:

- 1.What are the mechanisms effectively driving the production and consumption of GHGs in groundwater?
- 2.To which extent does groundwater contributes to GHGs emissions in the atmosphere?

Case studies in the Walloon Region of Belgium

SPW-DGO3 (2015). Etat des nappes d'eau souterraine de Wallonie. Edition : Service public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2015/11802/64 - ISBN 978-2-8056-0190-3

Land use: agricultural (51,8%) >forests (29,4%)>urban (14,3%)

Case studies in the Walloon Region of Belgium

Case studies in the Walloon Region of Belgium

GHGs

✓ CO₂, N₂O, CH₄

General chemical analyses

- ✓ Minor and major elements
- ✓ Metals (Fe/Mn)

Environmental isotopes

- ✓ δ^{34} S and δ^{18} O from sulphate
- ✓ δ^{15} N and δ^{18} O from nitrate
- ✓ δ^{18} O and D from water

In situ parameters

✓ O₂/EC/pH/T°

Occurrence of GHGs in groundwater : Observed concentrations

Range \rightarrow 0.05 – 1631µg/L Average \rightarrow 55.8 µg/L 2000 Concentration N₂O 200 N2O (µg/L) (µg/L) 0.05-25 0 Median=18 20 >25-150 0 >150-1635 2 **Main aquifers** 0.2 Quaternary deposits Tertiary sands Cretaceous chalks (Secondary) 0.02 N₂O atmospheric equilibration Jurassic formations (Secondary) Primary Limestones concentration = 0,55 µg/L Cambro-Silurian basement and Devonian schistous-sandstone massifs (Primary)

Concentrations of Nitrous Oxide (N₂O)

Occurrence of GHGs in groundwater : Observed concentrations

LIÈGE université Sciences Appliquées

Occurrence of GHGs in groundwater : Observed concentrations

Occurrence of GHGs in groundwater : Controlling factors

Self-Organizing Maps – SOMs (non parametric multivariate statistics)

Average concentrations

	O2 mg/l	N2O µg/L	NO3 mg/L	Fe mg/L	CH4 µg/L
G1	2.82	6.10	12.37	0.57	2.07
G2	8.48	21.30	32.11	0.05	0.12
G3	5.33	126.98	47.18	0.11	0.30

Occurrence of GHGs in groundwater : Controlling factors

Occurrence of GHGs in groundwater : stable isotopes of NO₃ & SO₄

Occurrence of GHGs in groundwater : Calculated N₂O emissions

Occurrence of GHGs in groundwater : Triffoy river catchment

Occurrence of GHGs in groundwater : Triffoy river catchment

- Agricultural catchment
- River flows through
 Carboniferous limestone syncline
 between two Frasnian Famennian sandstone crests
- Monitored river stretch = 2 km gaining stream with average discharge of 5870±1310 m³ d⁻¹.
- River and groundwater samples collected from October 2016 to May 2017 for the analysis of GHGs, major and minor ions and stable isotopes of nitrate

20

Occurrence of GHGs in groundwater : GW & SW hydrogeochemistry

Occurrence of GHGs in groundwater : N₂O production – consumption mechanisms : Nitrification

Groundwater emissions of GHGs : mass balance over river stretch / catchement

...vs local scale

$$E_{GHG-Riv} = k \times \left[C_{GHG-Riv} - C_{GHG-Eq}\right]$$

k: gas transfer velocity

Occurrence of GHGs in groundwater : calculated emissions

	N₂O (kg x ha⁻¹ x year⁻¹)	CO ₂ (kg x ha ⁻¹ x year ⁻¹)	CH₄ (kg x ha⁻¹ x year⁻¹)
Mean local E _{GHG-Gw}	207	1,5 x 10 ⁵	1,6
Mean local E _{GHG-Riv}	126,9	9,7 x 10 ⁴	105
Mean catchement E _{GHG-catch}	0,040	29,8	3 x 10 ⁻⁴
IPCC Mean catchement $E_{GHG-catch}$ (for N_2O only)	0,037		

Rem : Local estimate of EFG5 coefficient 3 times higher than the default value proposed by IPCC ($0,0069 \pm 0,0018 \text{ vs. } 0,0025$)

Occurrence of GHGs in groundwater : Conclusions

- Groundwaters of Walloon Region are oversaturated in CO₂ and N₂O relative to the atmospheric concentrations.
- Results show that N₂O is essentially produced by nitrification, but also, to a less extent during denitrification which in turn can contribute to N₂O consumption
- Most favourable conditions for the accumulation of N₂O in groundwater seems to occur when NO₃⁻ is available, with medium oxygen concentrations
- Methane is promoted in reducing groundwater conditions (null and low oxygen, NO₃ and N₂O and presence of Fe) but most often, CH4 is essentially produced in surface waters
- Indirect emissions from aquifers of the Walloon Region is a minor pathway of N₂O atmospheric emissions but their quantification help to better constrain the N₂O budget

Acknowledgements – Further reading

A. Jurado beneficiated from the financial support from ULiège and EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme FP7-MSCA-COFUND 600405

This project has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675120 (PhD grant O.Nikolenko)

Related papers:

Jurado Elices, A., Borges, A., Pujades, E., Hakoun, V., Otten, J., Knoeller, K., & Brouyère, S. (2018, January). Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium). Science of the Total Environment. <u>http://hdl.handle.net/2268/215313</u>

Jurado, A., Borges, A., Pujades, A., Briers, P., Nikolenko, O., Dassargues, A., & Brouyère, S. (2018). Dynamics of greenhouse gases in the river-groundwater interface in gaining river stretch (Triffoy catchment, Belgium). Hydrogeology Journal. <u>http://hdl.handle.net/2268/226422</u>

Nikolenko, O., Jurado Elices, A., Borges, A., Knöller, K., & Brouyère, S. (2017, October). Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of the Total Environment. <u>http://hdl.handle.net/2268/215300</u>

Jurado Elices, A., Borges, A., & Brouyère, S. (2017). Dynamics and emissions of N2O in groundwater: A review. Science of the Total Environment, 584-585C, 207-218. <u>http://hdl.handle.net/2268/207095</u>

Acknowledgements – Further reading

Other papers +/- related to climate change issues:

Brouyère, S., Carabin, G., & Dassargues, A. (2004). Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeology Journal, 12(2), 123-134. <u>http://hdl.handle.net/2268/2332</u>

Goderniaux, P., Brouyère, S., Wildemeersch, S., Therrien, R., & Dassargues, A. (2015). Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer. Journal of Hydrology, 528, 108-121. <u>http://hdl.handle.net/2268/183447</u>

Blenkinsop, S., Harpham, C., Burton, A., Goderniaux, P., Brouyère, S., & Fowler, H. J. (2013). Downscaling transient climate change with a stochastic weather generator for the Geer catchment, Belgium. Climate Research. <u>http://hdl.handle.net/2268/147930</u>

Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H. J., Orban, P., & Dassargues, A. (2011). Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resources Research, 47, 12516. <u>http://hdl.handle.net/2268/111262</u>

Goderniaux, P., Brouyère, S., Fowler, H. J., Blenkinsop, S., Therrien, R., Orban, P., & Dassargues, A. (2009). Large scale surface – subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology, 373, 122-138. <u>http://hdl.handle.net/2268/12082</u>

