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Abstract
Aims/hypothesis  Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported 
to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer’s disease. As aggregation of human 
islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system 
can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes.
Methods  The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone 
hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cul-
tured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated 
primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet 
cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively 
monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta 
cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was 
measured in freshly isolated islets from donors with and without type 2 diabetes.
Results  In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of 
amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo 
Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells 
(p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free 
system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, 
inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1–11 and 12–37 fragments. hIAPP 
12–37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly 
increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05).
Conclusions/interpretation  The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades 
hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing 
islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.
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Introduction

Type 2 diabetes is characterised by islet amyloid deposi-
tion, which is associated with beta cell loss and dysfunc-
tion [1–3]. Amyloid deposits contain the normal beta cell 
secretory product human islet amyloid polypeptide (hIAPP; 
also known as amylin) [4]. Since the process of hIAPP 
aggregation is toxic to beta cells [3, 5], the development of 
approaches to limit hIAPP aggregation could be beneficial 
for slowing or preventing beta cell loss in type 2 diabetes.

hIAPP is a 37 amino acid peptide, wherein the region 
comprising amino acids 20–29 plays an important role in 
dictating amyloidogenicity [6–8]. In contrast, due to sev-
eral critical amino acid differences in this sequence and 
an H18R substitution, mouse islet amyloid polypeptide 
(mIAPP) is neither amyloidogenic nor cytotoxic [6]. Thus, 
transgenic mice expressing amyloidogenic hIAPP specifi-
cally in their beta cells have been produced to study islet 
amyloid formation. These mice develop amyloid depos-
its that are morphologically indistinguishable from those 
observed in human type 2 diabetes [9, 10] and have been 
used for both in vitro and in vivo studies of hIAPP aggre-
gation and islet-amyloid-induced beta cell loss [9–12].

Based on bulk transcriptome analysis of amyloid-laden 
hIAPP mouse islets [13], we identified Plat as a gene spe-
cifically upregulated in islets under amyloid-forming con-
ditions. Plat encodes tissue plasminogen activator (tPA), a 
secreted serine protease that initiates fibrinolysis by cleav-
ing the circulating proenzyme plasminogen into the active 
protease plasmin, which, in turn, degrades fibrin blood 
clots [14]. In this process, fibrin is required for efficient 
tPA-mediated plasminogen activation [15]. Interestingly, 
both the amyloidogenic peptides hIAPP and amyloid beta 
(Aβ; the unique constituent of brain amyloid in Alzhei-
mer’s disease) can bind to tPA and substitute for fibrin 
in the tPA activation of plasminogen [16, 17]. Since the 
tPA/plasmin system has been reported to attenuate brain 
amyloid deposition by cleaving Aβ [18–20], we hypothe-
sised that it may also be effective in reducing islet amyloid 
deposition and its cytotoxic effects in type 2 diabetes. In 
this study, we examined: (1) whether the tPA/plasmin sys-
tem is upregulated in vitro in amyloid-laden mouse islets 
and in islets isolated from donors with type 2 diabetes; 
(2) the islet cell types expressing tPA; and (3) whether 
plasmin can limit hIAPP aggregation in a cell-free system 
and reduce hIAPP-induced beta cell toxicity.
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Methods

Isolation and culture of mouse islets  Transgenic mice 
with hemizygous expression of hIAPP under the rat insu-
lin promotor (B6D2-Tg(RIP-hIAPP)CStka; generated as 
described in [21]) were bred on an F1 C57BL/6 × DBA/2J 
background [10, 12]. Non-transgenic littermates were used 
as controls. Mice were housed and bred in a specific-path-
ogen-free vivarium at VA Puget Sound Health Care Sys-
tem, with ad libitum access to food and water. All animal 
studies described below were approved by the Institutional 
Animal Care and Use Committee at VA Puget Sound Health 
Care System, performed in an AAALAC-accredited ani-
mal research facility, and adhered to the Animal Research: 
Reporting of In Vivo Experiments guidelines.

Islets from 8–12 week-old male and female mice were 
isolated by collagenase digestion, as previously described 
[12]. Islets were handpicked and cultured overnight in com-
plete RPMI-1640 medium containing 10% (vol./vol.) FBS, 
1 mmol/l sodium pyruvate, 100 U/ml penicillin, 100 μg/ml 
streptomycin and 11.1 mmol/l glucose (complete medium). 
Thereafter, islets were distributed via a block randomisa-
tion method into islet pools and cultured for up to 144 h in 
complete RPMI medium containing either 11.1 mmol/l or 
16.7 mmol/l glucose, the latter to induce amyloid deposition 
in hIAPP islets. The culture medium was renewed every 48 
h. Subsets of islets were cultured for 48 h in the presence 
of Congo Red (200 μmol/l) or its vehicle control (DMSO), 
as done previously [22]. At the end of each experimental 
culture period, islets were collected for RNA extraction, 
plasmin activity measurement and/or histology, as described 
below.

For islet macrophage depletion, freshly isolated islets 
were cultured for 48 h in complete RPMI medium with 
1 mg/ml clodronate-containing liposomes (Liposoma, 
Amsterdam, the Netherlands), or 1 mg/ml PBS-containing 
liposomes (Liposoma) or PBS alone as controls. Thereafter, 
they were transferred into complete RPMI medium contain-
ing 16.7 mmol/l glucose and cultured for 48 h, with the goal 
of inducing amyloid deposition in hIAPP transgenic islets. 
Subsequently, islets were collected for RNA extraction.

Islet plasmin activity assay  Plasmin enzymatic activity in 
islet protein lysates was assayed by measuring the release 
of para-nitroaniline from the chromogenic substrate of plas-
min S-2251 (Molecular Innovation, MI, USA). Briefly, Glu-
plasminogen (0.5 μmol/l in 50 mmol/l Tris-HCl+100 mmol/l 
NaCl, pH 7.4; Molecular Innovation) and then S-2251 (0.4 
mmol/l) were added to islet lysate samples (10 μg protein/
sample, in duplicate) and mixed. The subsequent colour 
change was quantified at 405 nm after 120 min of incubation 

at 37°C on a Beckman Coulter DTX880 plate reader (Beck-
man Coulter, CA, USA).

Histology and quantitative microscopy  Islets were formalin-
fixed, paraffin-embedded and sectioned (10 µm). Sections 
were labelled with anti-insulin antibody (1:2000; Sigma-
Aldrich, USA; catalogue no. I2018; RRID:AB_260137), 
followed by Cy3-conjugated goat anti-mouse IgG (1:250; 
Jackson ImmunoResearch Labs, West Grove, PA, USA; 
catalogue no. 115-165-146; RRID:AB_2338690, USA) and 
counterstaining with thioflavin-S (0.5% [wt/vol.] in aqueous 
solution; Sigma-Aldrich) to visualise beta cells and amyloid 
deposits [12]. The anti-insulin antibody was selected based 
on extensive validation in house. Sections were blocked for 
1 h in buffer containing 0.05 mol/l PBS, 0.2% (wt/vol.) Tri-
ton X-100 (Sigma-Aldrich), 0.01% (wt/vol.) sodium azide 
(Sigma-Aldrich), 1% (wt/vol.) BSA (Sigma-Aldrich) and 2% 
normal goat serum (Vector Laboratories, USA). Antibod-
ies were diluted in buffer containing 0.05 mol/l PBS, 0.2% 
(wt/vol.) Triton X-100, 0.01% (wt/vol.) sodium azide and 
1% (wt/vol.) BSA. Islet images were acquired and analysed 
using a custom semi-automated workflow (Nikon TiE wide 
field microscope and Nikon NIS Elements AR v5.02.01 soft-
ware; Nikon, USA). Briefly, islets were identified based on 
insulin immunofluorescence from a large area (×2) scan, 
and multichannel images were acquired at ×20. From these 
images, thioflavin-S-positive areas were computed based on 
pre-set pixel-density thresholds, using an automated method 
based on our previous manual approach [12] and image post-
processing to compute islet cross-sectional areas. Amyloid 
prevalence was defined as the number of amyloid-positive 
islets/total number of islets×100, and amyloid severity as 
amyloid area/islet area×100 [3, 9, 13]. A mean of 18.5±1.8 
islets per condition were analysed. The observer was blinded 
to genotype and culture conditions.

Peptide synthesis and purification  Full-length hIAPP, 
hIAPP 1–11 and hIAPP 12–37 were synthesised using 9-flu-
orenylmethylcarbonyl (Fmoc) chemistry on a 0.10 mmol 
scale with a CEM Liberty Blue peptide synthesiser (CEM, 
USA) [23]. Fmoc-PAL-PEG-PS resin (Agilent; 0.19 mmol/
eq) was used for C-terminal amidation of full-length hIAPP 
and hIAPP 12–37. Peptides were cleaved from the resin 
using a trifluoroacetic acid (TFA)-based cleavage cocktail 
(92.5% [vol./vol.] TFA, 2.5% [vol./vol.] triisopropylsilane, 
2.5% [vol./vol.] 3,6-dioxa-1,8-octanedithiol and 2.5% [vol./
vol.] water). Crude peptides were dried and then dissolved 
in 20% acetic acid (4 mg/ml) followed by lyophilisation to 
improve their solubility. The Cys2 and Cys7 disulfide bridge 
was assembled by oxidising the crude peptide in 100% 
DMSO (10 mg/ml). Reverse-phase HPLC was used to purify 
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the peptides. A Higgins Analytical C18 preparative column 
(Higgins Analytical, USA), 25 mm×250 mm, was employed 
with a binary A-B gradient of water and acetonitrile with 
0.1% (vol./vol.) TFA. The purified peptides were lyophilised 
and redissolved in 1,1,1,3,3,3-hexafluoroisopropanol and 
subjected to a second round of reverse-phase HPLC purifi-
cation. Analytical HPLC was used to confirm peptide purity 
and matrix-assisted laser desorption ionisation time-of-flight 
MS was used to verify the expected mass. mIAPP was pur-
chased from Amyloid Peptide LLC (Danbury, CT, USA).

For cell treatment, islet amyloid polypeptide (IAPP) pep-
tides were resuspended in Tris-HCl buffer (20 mmol/l, pH 
7.4) to a final concentration of 250 μmol/l and then, imme-
diately prior to use, diluted into complete media at final con-
centrations of 0–60 μmol/l.

Thioflavin‑T fluorescence assays  Kinetics of amyloid forma-
tion were determined using solutions containing hIAPP 1–37 
and/or hIAPP 1–11 and/or hIAPP 12–37, and thioflavin-T 
(32 μmol/l; catalogue no. T3516; Sigma), and Tris-HCl (20 
mmol/l, pH 7.4) in the presence or absence of plasmin (0–4 
μmol/l; Molecular Innovation) or tPA (8 nmol/l; Molecular 
Innovation). Samples were incubated in triplicate at 25°C or 
37°C, with plate shaking every 10 min, for up to 72 h. Fluo-
rescence was recorded every 10 min on a Beckman Coulter 
DTX880 plate reader using an excitation wavelength of 450 
nm and an emission wavelength of 485 nm. Control reac-
tions were carried out in the absence of hIAPP peptides.

Negative stain transmission electron microscopy  Samples 
(15 μl) of material collected at the end of the thioflavin-T 
assays were blotted onto carbon-coated formvar 300 mesh 
copper grids (Electron Microscopy Sciences, USA). The 
same volume of 1% (wt/vol.) depleted uranyl acetate was 
used to stain each sample. Images were recorded at the Cen-
tral Microscopy Imaging Center facility at Stony Brook Uni-
versity (Stony Brook, NY, USA).

MS  Full-length hIAPP (20 μmol/l) was incubated with 
or without human recombinant plasmin (0.4 μmol/l and 4 
μmol/l; Molecular Innovation) at 37°C for up to 8 h. Samples 
were analysed by LC/MS after the indicated incubation time 
on an LTQ-Orbitrap XL mass spectrometer (ThermoFisher, 
USA).

Beta cell line experiments  The beta cell line INS-1 832/13 
(RRID: CVCL_7226), originally provided by C. Wollheim 
(University of Geneva, Geneva, Switzerland) [24], which 
was negative for mycoplasma, was cultured in complete 
RPMI medium. In total, 15×103 cells/well were plated in 
triplicate into a gelatin-coated 96-well plate and incubated 
until confluency, after which the medium was replaced with 
complete RPMI medium containing freshly dissolved hIAPP 

peptides (0–60 μmol/l) or Tris-HCl buffer (20 mmol/l, pH 
7.4), as a control. After a 24 h incubation, cell viability 
was assessed using the fluorescent CellTiter-Fluor viability 
assay (Promega, Madison, WI, USA). Absorbance of a blank 
sample (no cells) was used to determine assay background, 
which was subtracted from every experimental sample. Each 
sample was normalised to buffer-treated cells. In a subset of 
experiments, cells were collected for RNA extraction at the 
end of the 24 h incubation with hIAPP (20 μmol/l) or Tris-
HCl buffer (20 mmol/l, pH 7.4), as control.

Bone marrow‑derived macrophage experiments  Femur 
marrow from 6 month-old male Sprague Dawley rats 
(Charles River Laboratories, USA; www.​criver.​com/​produ​
cts-​servi​ces/​find-​model/​cd-​sd-​igs-​rat?​region=​3611) was 
differentiated for 6 days in RPMI+10% (vol./vol.) FBS 
and 25 ng/ml recombinant human macrophage colony-
stimulating factor (M-CSF; ThermoFisher) to make bone 
marrow-derived macrophages (BMDM). BMDM were then 
lifted from tissue culture plates using ice-cold PBS with 2 
mmol/l EDTA, washed, plated and cultured overnight in 
RPMI+10% (vol./vol.) FBS and 25 ng/ml M-CSF. Subse-
quently, the medium was replaced with RPMI+10% (vol./
vol.) FBS. After 48 h, the medium was replaced with com-
plete RPMI containing freshly dissolved IAPP peptide (10 
μmol/l) or Tris-HCl buffer (20 mmol/l, pH 7.4), as control. 
BMDM were incubated for 24 h and then collected for RNA 
extraction.

Human islets  Human islets from male and female donors 
with or without type 2 diabetes were obtained from the 
Integrated Islet Distribution Program. Characteristics of the 
donors are listed in the electronic supplementary material 
(ESM) Table 1 (human islets checklist). Sex of the donors 
was determined based on the medical history from the organ 
procurement organisation via the isolation centre. Freshly 
isolated shipped islets (25–50 per donor) were collected for 
RNA extraction. As the human islets were anonymised, their 
use was not considered human research by the institutional 
review board.

Gene expression analysis  Total RNA was extracted from 
islets or cells using the High Pure RNA Isolation Kit (Roche, 
Basel, Switzerland), reverse-transcribed using the High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher) 
and then subjected to quantitative RT-PCR (qRT-PCR).

cDNA samples from primary islet endothelial cells iso-
lated from Sprague Dawley rats (Charles River Laborato-
ries, USA; www.​criver.​com/​produ​cts-​servi​ces/​find-​model/​
cd-​sd-​igs-​rat?​region=​3611) and treated for 24 h with IAPP 
peptides (20 μmol/l) or Tris-HCl buffer (20 mmol/l, pH 7.4) 
were made available from a previous study [25]. All cDNA 
samples were analysed in triplicate using pre-validated 

http://www.criver.com/products-services/find-model/cd-sd-igs-rat?region=3611
http://www.criver.com/products-services/find-model/cd-sd-igs-rat?region=3611
http://www.criver.com/products-services/find-model/cd-sd-igs-rat?region=3611
http://www.criver.com/products-services/find-model/cd-sd-igs-rat?region=3611
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Taqman gene expression assays (Life Technology, Foster 
City, CA, USA), with specific probes listed in ESM Table 2. 
Expression of each gene was calculated using the ΔΔCt 
method, with Ppib or 18S as housekeeping genes.

Statistical analyses  Data are presented as mean±SEM. 
Numbers of experimental replications are represented by 
individual data points in figures. Mean data were compared 
among treatment groups by one-way ANOVA followed by 
Holm–Šidák’s multiple comparisons tests. A two-tailed Stu-
dent t test was used when two groups were compared. A 
p value ≤0.05 was considered statistically significant. All 
statistical analyses were performed using Prism 9 (GraphPad 
Software, San Diego, CA, USA).

Results

Islet Plat expression and plasmin activity increase under 
amyloid‑forming conditions  To validate the RNA-seq data 
identifying Plat as a gene specifically upregulated within 
islets upon amyloid deposition (2.7 log2-fold; p=6.76−56) 
[13], we measured its expression in islets from hIAPP trans-
genic and non-transgenic mice cultured for up to 144 h in 
16.7 mmol/l glucose (amyloid-forming conditions) or 11.1 
mmol/l glucose (control). As expected, amyloid deposi-
tion increased in a time-dependent manner only in hIAPP 
transgenic islets cultured at 16.7 mmol/l glucose (Fig. 1a,b; 
data not shown for the 11.1 mmol/l glucose culture condi-
tion). Islet Plat mRNA levels increased over time in hIAPP 
transgenic islets under amyloid-forming conditions, whereas 
this increase was not observed in hIAPP transgenic islets 
cultured under non-amyloidogenic conditions (11.1 mmol/l 

glucose) or mIAPP islets cultured in 11.1 mmol/l or 16.7 
mmol/l glucose (Fig. 1c). Further, during this 144 h time-
course period, Plat expression in amyloid-laden hIAPP 
transgenic islets cultured in 16.7 mmol/l glucose was signifi-
cantly upregulated by 2.8±0.3-fold (p≤0.001), 7.5±2.4-fold 
(p≤0.001) and 4.5±0.6-fold (p≤0.001) at 48 h, 96 h and 144 
h, respectively, when compared with non-transgenic control 
islets cultured in 16.7 mmol/l glucose (Fig. 1c).

To determine whether islet expression and activity of 
other components of the fibrinolytic system were impacted 
by the process of amyloid deposition, hIAPP transgenic and 
non-transgenic islets were cultured for 48 h in 11.1 mmol/l 
or 16.7 mmol/l glucose. Plat was upregulated in transgenic 
islets cultured in 16.7 mmol/l glucose vs transgenic islets 
cultured in 11.1 mmol/l glucose and non-transgenic islets 
cultured in 16.7 mmol/l glucose (Fig. 2a). However, there 
was no change in islet expression of the other fibrinolysis 
activator, urokinase plasminogen activator (uPA; encoded by 
Plau; Fig. 2b), or plasminogen activator inhibitor-1 (PAI-1; 
encoded by Serpine1; an endogenous inhibitor of tPA and 
uPA; Fig. 2c). Plasmin activity was significantly increased in 
transgenic islets under amyloidogenic conditions (Fig. 2d). 
In hIAPP transgenic islets, plasmin activity was signifi-
cantly correlated with mRNA levels of Plat (Fig. 2e) but 
not Plau (Fig.  2f), suggesting the hIAPP aggregation-
induced increase in islet Plat expression was associated with 
increased activity of the fibrinolytic system. Of note, no sig-
nificant correlation was observed between Plat mRNA levels 
and plasmin activity in non-transgenic islets cultured in 11.1 
mmol/l and 16.7 mmol/l glucose (r2=0.0073, p=0.8145), 
indicating that this was not an effect of glucose per se.
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Fig. 1   Islet Plat expression increases with amyloid formation. (a, b) 
Time course of amyloid prevalence (% islets with amyloid; a) and 
severity (% amyloid/islet area; b) in hIAPP islets cultured at 16.7 
mmol/l glucose. n=3–4; *p≤0.05, **p≤0.01. (c) Time course of Plat 
mRNA levels in hIAPP transgenic (green circles) and non-transgenic 
(NT; blue squares) islets cultured for up to 144 h in 11.1 mmol/l 

(open symbols) or 16.7 mmol/l (closed symbols) glucose condi-
tions. Data are presented as fold expression relative to Plat expres-
sion in NT islets cultured in 11.1 mmol/l glucose at time 0. n=4; 
***p≤0.001 for hIAPP islets cultured in 16.7 mmol/l glucose vs 
hIAPP islets cultured in 11.1 mmol/l glucose, or NT islets cultured in 
16.7 mmol/l glucose or 11.1 mmol/l glucose, at the same time point
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Islet Plat expression and plasmin activity are dependent on 
amyloid formation  To evaluate whether the increase in islet 
Plat expression and plasmin activity depended on amyloid 
formation, hIAPP transgenic and non-transgenic islets were 
cultured for 48 h in 16.7 mmol/l glucose in the presence or 
absence of the amyloid inhibitor Congo Red. As expected, 
amyloid deposition was prevented in hIAPP islets in the 
presence of Congo Red (Fig. 3a). In parallel, increases in 
Plat expression (Fig. 3b) and plasmin activity (Fig. 3c) in 
hIAPP transgenic islets were abrogated with Congo Red, 
while Congo Red had no effect in non-transgenic islets. 
These findings imply that the increase in Plat expression 
and plasmin activity was downstream of amyloid formation.

hIAPP increases Plat expression in macrophages and beta 
cells but not endothelial cells  We next sought to investigate 
the islet cell type(s) in which tPA is increased in response to 
hIAPP aggregation. As endothelial cells are characterised 
as the major tPA-producing cell type [26] and have been 
described to be targets of toxic and/or inflammatory effects 

of amyloid formation [25], we first determined whether 
hIAPP treatment stimulates Plat expression in these cells. 
Primary rat islet endothelial cells were treated for 24 h with 
hIAPP, non-amyloidogenic mIAPP, or vehicle, as control. 
Treatment with 20 μmol/l hIAPP (which we have previously 
shown to decrease cell viability and increase expression of 
endothelial cell activation markers [25]) did not increase 
Plat expression in these cells (Fig. 4a).

Since macrophages also produce tPA [27] and can be acti-
vated by hIAPP (10 μmol/l) [28, 29], we determined whether 
hIAPP increases Plat expression in these cells. Plat mRNA 
levels were quantified in rat BMDM treated for 24 h with 
hIAPP, mIAPP or vehicle. Plat expression significantly 
increased by fourfold solely with hIAPP treatment (Fig. 4b). 
Interestingly, hIAPP was also effective at increasing Plat 
expression in INS-1 beta cells (Fig. 4c), suggesting mac-
rophages may not be the sole source of the hIAPP-induced 
increase in tPA in the islet.

To further determine the contribution of islet mac-
rophages to tPA upregulation by hIAPP aggregation, 
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Fig. 4   Islet cell types producing tPA in response to hIAPP aggrega-
tion. (a–c) Quantification of Plat mRNA levels in primary rat islet 
endothelial cells (a), rat BMDM (b) and INS-1 cells (an immortal-
ised beta cell line) (c) treated for 24 h with hIAPP (20 µmol/l), or the 
non-amyloidogenic mIAPP (20 µmol/l) or vehicle (Tris-HCl buffer) 
as controls. Data are presented as fold expression relative to expres-
sion in cells treated with vehicle. n=4 independent experiments for 
each cell type. (d–f) Quantification of Adgre1 (d), Itgam (e) and Plat 

(f) mRNA levels in hIAPP transgenic (TG) and non-transgenic (NT) 
islets treated for 48 h with clodronate-containing liposomes (CLOD-
LIPO), PBS-containing liposomes (PBS-LIPO) or PBS alone (CTL), 
and then cultured for 48 h in 16.7 mmol/l glucose conditions. Data 
are presented as fold expression relative to expression in NT islets 
treated with PBS-LIPO and then cultured in 16.7 mmol/l glucose. 
n=5. *p≤0.05
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isolated hIAPP transgenic and non-transgenic islets were 
treated with clodronate-containing liposomes to deplete 
macrophages, or PBS-containing liposomes or PBS alone 
as controls. Islets were then cultured for 48 h in 16.7 mmol/l 
glucose to induce amyloid deposition in hIAPP islets, after 
which islet macrophage markers (Adgre1 and Itgam) and 
Plat mRNA levels were quantified. In both hIAPP trans-
genic and non-transgenic islets, clodronate treatment sig-
nificantly abrogated Adgre1 (Fig. 4d) and Itgam (Fig. 4e) 
expression compared with controls treated with PBS-con-
taining liposome, confirming islet macrophage depletion 
in both genotypes. As expected, Plat expression signifi-
cantly increased by 2.1-fold in hIAPP islets treated with 
PBS-containing liposomes vs non-transgenic islets treated 
the same (Fig. 4f). Clodronate treatment also significantly 
reduced Plat expression (vs islets treated with PBS-con-
taining liposomes) in both hIAPP and non-transgenic islets; 
however, Plat expression was still increased by 2.3-fold in 

clodronate-containing-liposome-treated hIAPP islets vs 
non-transgenic islets treated the same (Fig. 4f). These data 
suggest that, in addition to macrophages, other islet cell 
types (e.g. beta cells) produce tPA in response to hIAPP 
aggregation.

Plasmin protects beta cells from hIAPP‑induced cytotoxic‑
ity by cleaving hIAPP and inhibiting fibril formation  Given 
that plasmin degrades the amyloidogenic peptide Aβ [18], 
we next sought to determine whether plasmin also cleaves 
hIAPP and could, thereby, prevent its aggregation. Using 
thioflavin-T assays, we found that plasmin decreases hIAPP 
fibril formation in a dose-dependent manner (ESM Fig. 1), 
with 0.4 µmol/l plasmin abrogating fibril formation by 
95.6% (Fig. 5a,b). In contrast, tPA alone had no measur-
able effect on hIAPP fibril formation (ESM Fig. 1). Fur-
thermore, treatment of the beta cell line INS-1 for 24 h with 
hIAPP in the presence or absence of plasmin showed that 
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plasmin prevented hIAPP-induced decreases in cell viability 
(Fig. 5c).

Using MS, we found that plasmin cleaves monomeric 
hIAPP generating hIAPP 1–11 and 12–37 fragments. Incu-
bation of hIAPP with plasmin followed by LC/MS analysis 
of these cleavage products as a function of time showed that 
plasmin induces a rapid decrease in the abundance of full-
length hIAPP and the appearance of the 1–11 and 12–37 
fragments (Fig. 6a), confirming that plasmin cleaves mono-
meric hIAPP between amino acid 11 and 12 (Fig. 6b).

hIAPP 12–37 forms amyloid more rapidly than full‑length 
hIAPP, but is not cytotoxic  We next assessed the amyloido-
genicity and cytotoxicity of hIAPP 1–11 and 12–37. Using 
thioflavin-T assays, we found that hIAPP 1–11 did not aggre-
gate (Fig. 7a) whereas hIAPP 12–37 aggregated faster than 
full-length hIAPP (Fig. 7b). While the kinetics of full-length 
hIAPP aggregation showed a typical initial lag phase fol-
lowed by a sigmoidal transition to a steady state [30], there 
was no visible lag phase during aggregation of hIAPP 12–37 
(Fig. 7b). Maximal thioflavin-T fluorescence of the frag-
ment was lower than the same concentration of full-length 
hIAPP (p≤0.001; n=4). By treating INS-1 cells for 24 h with 
increasing doses of hIAPP 12–37 or full-length hIAPP, we 
found that full-length hIAPP reduces cell viability in a dose-
dependent manner, while, in contrast, hIAPP 12–37 was not 
cytotoxic to INS-1 cells, even at 60 µmol/l (Fig. 7c).

Some hIAPP-derived fragments have been shown to 
inhibit or enhance the aggregation kinetics of full-length 

hIAPP [11, 31]. Thus, mixtures of full-length hIAPP and 
1–11 or 12–37 fragments were analysed to determine 
whether the fragments modulate amyloid formation by the 
full-length peptide. The addition of hIAPP 1–11 to hIAPP 
1–37 did not alter the aggregation kinetics of full-length 
hIAPP (Fig. 7d). In concentration ratios of 0.5:1 to 2:1 of 
12–37:full-length hIAPP, the mixture aggregated rapidly, 
indicating that hIAPP 12–37 accelerates aggregation of full-
length hIAPP (Fig. 7e). By treating INS-1 cells for 24 h 
with mixtures of hIAPP 1–37 and the hIAPP fragments, we 
found that the addition of 1–11 and/or 12–37 fragments to 
full-length hIAPP did not reverse the 50% reduction in cell 
viability induced by full-length hIAPP (Fig. 7f). Further, 
addition of a high concentration (40 μmol/l) of the 12–37 
fragment or mixtures of 1–11 and 12–37 fragments to hIAPP 
1–37 led to mixtures that were more toxic to INS-1 cells than 
hIAPP 1–37 alone (Fig. 7f).

Thioflavin-T assays accurately report amyloid formation 
by wild-type hIAPP and a wide range of IAPP mutants; how-
ever, since the dye is an extrinsic probe, it was important 
to assess amyloid formation with an independent method 
[32]. Transmission electron microscopy imaging revealed 
that hIAPP 12–37 fibrils were similar in appearance to those 
formed by full-length hIAPP (Fig. 7g).

Taken together these data indicate that, by generating 
hIAPP fragments that alone or when combined with each 
other are not cytotoxic, plasmin-mediated cleavage of hIAPP 
may protect beta cells from hIAPP aggregation-induced 
cytotoxicity.

Islet PLAT and SERPINE1 mRNA levels are increased in 
human type 2 diabetes  To determine whether islet tPA is 
increased in type 2 diabetes, PLAT mRNA levels were meas-
ured in islets isolated from donors with and without type 2 
diabetes. PLAT mRNA levels were increased by 2.4-fold 
in islets from donors with type 2 diabetes compared with 
control islets (Fig. 8a). Further, SERPINE1 mRNA levels 
were also increased by 2.6-fold in islets from donors with 
type 2 diabetes compared with control islets (Fig. 8b). Both 
PLAT and SERPINE1 genes were detectable in islets from 
male and female donors. Given the sex/gender distribution 
of human islets received from the organ procurement organi-
sation, it was not possible to do formal analyses of any gen-
der-/sex-based effect.

Discussion

Islet amyloid deposition, which occurs in the vast major-
ity of people with type 2 diabetes, is associated with beta 
cell loss and secretory dysfunction, both of which critically 
contribute to the development of the disease [1–3]. In this 
study, we delineated a new intra-islet role for the fibrinolytic 
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system in modulating amyloidogenesis. We found islet Plat 
expression and plasmin activity to be specifically upregu-
lated with the aggregation of hIAPP. Further, plasmin 
cleaved hIAPP, abrogated its aggregation and protected beta 
cells from hIAPP-induced toxicity. Our data also demon-
strated that hIAPP aggregation increases Plat expression in 
islet macrophages and beta cells. Finally, PLAT expression 
was increased in islets from donors with type 2 diabetes.

Apart from its fibrinolytic activity, several studies have 
reported that the tPA/plasmin system may be involved in 
amyloidogenesis. Specifically, it has been demonstrated 
that the tPA/plasmin system is induced by Aβ aggrega-
tion in Alzheimer’s disease and can reduce brain amyloid 
deposition [18–20]. In addition, it has been shown that tPA 
is able to bind to IAPP fibrils [16]. Moreover, aggregated 
hIAPP and Aβ can mediate tPA activation of plasminogen 
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Fig. 7   hIAPP 12–37 is not cytotoxic, aggregates faster than hIAPP 
1–37 and accelerates amyloid formation by hIAPP 1–37. (a, b) 
Thioflavin-T fluorescence profiles of amyloid formation kinetics for 
full-length hIAPP and the hIAPP 1–11 fragment (a), and full-length 
hIAPP, the hIAPP 12–37 fragment and buffer (Tris-HCl 20 mmol/l, 
pH 7.4) (b), monitored for 36 h at 37°C. In (a) and (b), one repre-
sentative experiment is shown with technical triplicates.  (c) Cell 
viability (CellTiter-Fluor [CTF] assay) of INS-1 cells treated for 24 
h with vehicle or increasing concentrations of hIAPP 1–37 or hIAPP 
12–37. n=3. **p≤0.01, ***p≤0.001. (d, e) Thioflavin-T fluorescence 
profiles of amyloid formation kinetics for full-length hIAPP alone 

(16 μmol/l) or with the addition of hIAPP 1–11 in ratios of 1:1 and 
1:5 (d), and full-length hIAPP alone (16 μmol/l) or with the addi-
tion of hIAPP 12–37 in ratios of 1:0.5, 1:1 and 1:2, or hIAPP 12–37 
alone (e), monitored for 36 h at 25°C. In (d) and (e), one representa-
tive experiment is shown with technical triplicates. (f) Cell viability 
(CTF assay) of INS-1 cells treated for 24 h with vehicle (Tris-HCl, 20 
mmol/l, pH 7.4), or hIAPP 1–37, 1–11 or 12–37 alone or combined 
in different ratios. n=3. ***p≤0.001 vs vehicle; †p≤0.05, †††p≤0.001 
vs hIAPP 1–37 alone. (g) Transmission electron microscopy-derived 
representative images of full-length hIAPP and hIAPP 12–37. Images 
were taken at the end of the kinetic reactions. Scale bar, 100 nm



1907Diabetologia (2024) 67:1897–1911	

in the absence of fibrin [17]. Importantly, our study rein-
forces a role for the fibrinolytic system in amyloidogenesis 
by showing that the tPA/plasmin system is upregulated 
in amyloid-laden islets, and that plasmin reduces hIAPP 
aggregation and protects beta cells from hIAPP aggrega-
tion-induced toxicity. Since plasmin can also be gener-
ated from plasminogen through the proteolytic activities of 
uPA, we measured islet Plau expression and found it was 
not increased in amyloid-laden islets. Further, treatment of 
hIAPP islets with Congo Red blocked amyloid fibril for-
mation and Plat upregulation, suggesting that modulation 
of Plat expression is downstream of amyloid formation. 
Future work determining the mechanism(s) by which this 
effect occurs in amyloid-laden islets will be of interest. For 
example, a potential area for future research may involve 
the interleukin-1 beta pathway since interleukin-1 beta 
has been shown to upregulate the tPA/plasmin system in 
mesangial cells [33], and we and others have demonstrated 
that hIAPP aggregation increases interleukin-1 beta pro-
duction in islets [28, 29].

Importantly, we confirmed our findings in human islets, 
showing that PLAT expression is increased with type 2 dia-
betes. As aforementioned, given the sex/gender distribu-
tion of human islets received from the organ procurement 
organisation, we were unable to formally analyse gender-/
sex-based effect. However, gender-/sex-based effects would 
not be expected given that islet amyloid occurs in both male 
and female individuals with type 2 diabetes [3]. Further, 
even though the expression of islet Serpine1 (encoding PAI-
1, the endogenous inhibitor of tPA and uPA) was not affected 
by amyloid deposition in rodent islets in vitro, we found its 
expression to be increased in islets from donors with type 2 
diabetes. Of note, a previous study has identified PAI-1 as a 
novel glucose-regulated protein, elevated under high glucose 
conditions in cultured human islets [34]. These data suggest 
the tPA/plasmin system could act to reduce islet amyloid 
accumulation, and the increase in PAI-1 in type 2 diabetes 
could inhibit a physiological protective effect of the fibrino-
lytic system in the islet. We also cannot exclude the possibil-
ity that the increase in systemic PAI-1 levels and activity in 

obesity and the metabolic syndrome may have a role in type 
2 diabetes development [35–38].

Previous studies have shown that plasmin can degrade 
peptides other than fibrin, including the amyloidogenic pep-
tide Aβ [18]. In this study we have identified plasmin as 
an hIAPP-degrading enzyme. Typically, plasmin-targeting 
cleavage sites are located after the basic amino acids lysine 
or arginine, but rare cleavages have also been described after 
histidine or glutamine [39]. Using MS, we found plasmin 
predominantly cleaves hIAPP at one of the predicted sites, 
the Arg-11-Leu-12 peptide bond, producing hIAPP 1–11 and 
12–37 fragments. This is of importance since we and oth-
ers have previously reported that several hIAPP-degrading 
enzymes, such as neprilysin [40, 41], matrix metallopepti-
dase-9 [11] and insulin-degrading enzyme [42, 43], could 
be exploited to limit deleterious consequences of amyloid 
deposition in islets. Of note, toxicity of exogenously added 
hIAPP or Aβ has been shown to be mediated by toxic oli-
gomers rather than preformed fibrils [30, 44, 45]. While our 
experimental design did not allow us to separate the effects 
of the different forms of misfolded hIAPP, the toxic effect 
of added hIAPP on INS-1 cells was blocked by plasmin, 
suggesting that the cleavage of monomeric hIAPP by plas-
min not only inhibited amyloid formation but, most likely, 
also inhibited toxic oligomer/protofibril formation. Finally, 
although we feel this is unlikely, we cannot exclude the pos-
sibility that prevention of hIAPP fibril formation by plasmin 
could be due to binding of hIAPP to plasmin rather than via 
hIAPP cleavage by plasmin.

We tested the amyloidogenicity and cytotoxicity of plasmin-
derived hIAPP fragments. As expected, hIAPP 1–11 did not 
aggregate and was not toxic to INS-1 cells. When compared 
with full-length hIAPP, hIAPP 12–37, which contains the pro-
posed critical amyloidogenic region for hIAPP aggregation and 
cytotoxicity [6], displayed accelerated aggregation kinetics. 
Further, we also found that the 12–37 fragment accelerates the 
aggregation of the full-length hIAPP, whereas the 1–11 frag-
ment does not. The more rapid aggregation of hIAPP 12–37 
likely results from multiple factors; first, we previously showed 
that removal of the disulfide accelerates fibril formation in the 

Fig. 8   PLAT and SERPINE1 
genes are expressed in human 
islets and increased with type 2 
diabetes. (a, b) Quantification 
of (a) PLAT and (b) SERPINE1 
mRNA levels in islets from 
male (M) and female (F) donors 
with (n=4; 1M/3F) or without 
(n=7; 6M/1F) type 2 diabetes. 
Data are normalised to 18S 
ribosomal RNA (rRNA) and 
expressed as fold relative to 
control. *p≤0.05
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full-length molecule [46]. Second, absence of the first 11 resi-
dues removes two of the charged residues in hIAPP, Lys-1 and 
Arg-11. The reduction in net charge is expected to accelerate 
fibril formation [47]. Third, recent cryogenic electron micros-
copy (cryo-EM)-based models of full-length hIAPP-derived 
fibrils did not define the first 10–11 residues of the polypeptide 
within their model(s), suggesting that these residues are not 
required to form the beta-sheet-rich core of the hIAPP fibrils 
[48–50]. Caution should be used when interpreting the lower 
steady-state intensity of hIAPP 12–37 in the thioflavin-T assay. 
The final thioflavin-T intensities in a set of kinetic assays can-
not always be directly related to the amount of amyloid fibrils 
since they could also be due to weaker binding of the dye, 
the presence of fewer binding sites or a slight change in the 
conformation of the bound dye that reduces its fluorescence 
quantum yield [51]. Importantly and interestingly, irrespective 
of its biophysical properties, hIAPP 12–37 was not cytotoxic. 
Our results are in accordance with recent work that studied 
the effect of plasmin conjugated to quantum dots on hIAPP 
and reported that the resulting cleavage products are not toxic 
[52]. The apparent disconnect between the amyloidogenic 
and cytotoxic effects of hIAPP 12–37 may be explained by 
the fact that early aggregates of hIAPP are believed to be the 
major cytotoxic species, whereas fully aggregated hIAPP is 
inert [30]. During the amyloid fibril formation kinetics, it is 
well established that the lag phase represents the thermody-
namically unfavourable nucleation process whereby individual 
monomers assemble into oligomeric species [30]. The faster 
aggregation of hIAPP 12–37, with no evident lag phase when 
aggregation was monitored using thioflavin-T, likely reduces 
the duration that beta cells are exposed to oligomeric species 
and may also lower the steady-state population of oligomers 
and, therefore, their cytotoxic effects. In contrast, hIAPP 12–37 
accelerated aggregation of full-length hIAPP, but this did not 
protect INS-1 cells from hIAPP toxicity, and even appeared to 
increase it. In line with this observation, previous studies have 
reported that the serine-to-glycine substitution at position 20 
(S20G) in hIAPP leads to faster aggregation than wild-type 
hIAPP and renders hIAPP more toxic [53, 54]. The molecu-
lar basis of these effects is not understood and these results 
indicate that there is still a great deal to be learned about the 
mechanisms by which hIAPP induces toxicity.

The cell type(s) that produce tPA within the islet under 
amyloid fibril-forming conditions has not been elucidated. 
This is of particular interest for identifying potential cellular 
therapeutic targets within the islet that may limit amyloid-
induced beta cell toxicity. In the blood, tPA mainly derives 
from vascular endothelial cells [26]. Studies that have per-
formed single-cell transcriptome profiling of human pan-
creatic islets have shown that tPA is expressed in human 
islets, predominantly in endothelial cells [55, 56]. As we 
recently reported that hIAPP aggregation exerts a cytotoxic 
and proinflammatory effect on islet endothelial cells [25], we 

tested whether it could also increase tPA expression in this 
cell type. Surprisingly, we did not find this to be the case, 
suggesting endothelial cells do not produce tPA in response 
to islet amyloid deposition. Other cell types are known to 
produce tPA, including immune cells [27], neurons [57] 
and neuroendocrine cells [58, 59]. Of note, tPA has been 
reported to be in rat islet delta cells [59]. hIAPP aggregation 
has been shown to stimulate the production of proinflamma-
tory cytokines and chemokines from macrophages [28] and 
we found that it also increased tPA expression in primary 
BMDM. However, islet macrophage depletion did not com-
pletely prevent hIAPP aggregation-induced tPA upregula-
tion, indicating that macrophages may not be the only cell 
type in the islet producing tPA under amyloidogenic condi-
tions in vitro. Although our preliminary data suggest that 
an immortalised beta cell line can produce tPA in response 
to amyloid formation, more studies are required to confirm 
these findings.

In summary, we identified for the first time that the 
fibrinolytic system can be upregulated with hIAPP aggrega-
tion in islets and can protect beta cells from hIAPP-induced 
cytotoxicity. Thus, interventions aimed at increasing islet 
plasmin activity may reduce or limit hIAPP aggregation and, 
thereby, improve beta cell survival in type 2 diabetes.
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