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Ferromagnetic lamination stacks are ubiquitous in electrical engineering applica-
tions. Despite thin laminating, significant losses develop in the ferromagnetic ma-
terial that are detrimental to the overall efficiency of the machine. An accurate
knowledge of those iron losses is highly valuable in a design phase, but their explicit
modelling is computationally prohibitive as it requires a hysteresis vector model and
homogenization techniques.

Building upon (F. Henrotte, S. Steentjes, K. Hameyer and C. Geuzaine, “Pragmatic
two-step homogenisation technique for ferromagnetic laminated cores”, in IET Sci.
Meas. Technol., pp. 1-8, July 2014), this paper presents an efficient alternative sim-
ulation approach with little overheads with respect to a conventional 2D magnetic
vector potential formulation. Based on mild simplifying assumptions (periodicity
in time, large aspect ratio of the laminations), the technique is able to reliably feed
the effects of the complex inhomogeneous fields inside the laminations, back into
the macroscopic finite element model by means of a lossy homogenized parametric
material law I:I(B, B, Dk)-

For the sake of accuracy, the parameters pj, of this law (p, to ps) are identified ele-
mentwise (rather than domainwise) on basis of the local knowledge of the magnetic
field H(¢) in each finite element and, for the sake of fast evaluation, the mapping
H(t) — py is realized with a specifically trained neural network (NN).

The training data consists of pairs of sequences (H(¢), B(¢)) over one period, where
B(t) is the homogenized dynamic response, accounting for hysteresis and eddy
currents, of a ferromagnetic lamination model subjected to a boundary field H(t).
For the learning of the NN, the error [H(t)—H(B(t), B(t), py,)|, with the parameters
pi obtained from the NN evaluation, is evaluated and back-propagated.

Once the training is completed, the NN is able to provide with a very small com-
putational time (about 17 seconds for the evaluation of 10° sequences), fitted el-
ementwise py parameter values accounting for arbitrary local field waveforms, in
particular waveforms with higher field harmonics due to switched power electron-
ics. Designers eventually dispose with this technique of a fast and robust model with
a controlled accuracy, and properly taking into account the irreversible phenomena
in play in ferromagnetic laminations.



