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Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with
hysteresis. If the lamination is large with respect to its thickness, field and current distributions are accurately resolved by solving a
one-dimensional finite element magnetodynamic problem across half the lamination thickness. This 1D model is then able to deliver
mesoscocpic information to be used, after appropriate homogenization, in the macroscopic modelling of an electrical machine or
transformer. As each evaluation of such a homogenised model implies a finite element simulation at the mesoscale, a monolithic
implementation of this method can become very time-consuming. This paper proposes an alternative methodology, assuming a periodic
excitation of the system, where the homogenized material law is implemented with techniques of machine learning. The identified
law is then used as a conventional constitutive relationship in the 2D or 3D modelling of an electrical machine or a transformer.

Index Terms—Magnetic hysteresis, Magnetic losses, Neural Networks, Nonhomogeneous media,

I. INTRODUCTION

DESPITE an urgent need in industry, there does not yet
exist a practical and accurate simulation method able

to account for magnetic losses in ferromagnetic laminated
cores in 2D or 3D electrical machine simulations. The de-
tailed efficiency analysis of electrical machines is thus still
an open problem. The complexity of this question is due to
the fact that magnetic losses are the macroscopic outcome
of an intricate combination of micro- or mesoscopic level
physical phenomena: eddy currents, skin effect, saturation and
hysteresis. Those phenomena are strongly influenced by the
microstructure of the ferromagnetic material, but also by the
laminated structure of the cores. The magnetic losses are thus
actually determined at geometrical scales much smaller than
that of the electrical machine applications, thus advocating
strongly for a homogenization approach.

II. ONE-DIMENSIONAL LAMINATION PROBLEM

The complex interplay between magnetic fields and eddy
currents in ferromagnetic laminated cores can be resolved by
solving the laws of magnetodynamics with hysteresis inside
individual laminations. The hysteresis model used in these nu-
merical simulations is the one described in [1]. The geometrical
one-dimensional (1D) approximation is reasonable if the lateral
dimension of the laminations is large with respect to their
thickness, which is in general the case in the laminated cores
of electrical machines or transformers, and in measurement
devices such as Epstein frames or single sheet testers. Eddy
currents and losses in a ferromagnetic lamination under an
arbitrary excitation can therefore be calculated accurately by
means of a transient 1D magnetodynamic finite element (FE)
simulation, solved across half the lamination thickness [2].

III. LEAST-SQUARE PARAMETER IDENTIFICATION

Once the 1D lamination problem is solved, the results in
terms of the mesoscale fields, h and b, can be expressed in

Fig. 1. Macroscale and mesoscale quantities in the homogenization problem.
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Fig. 2. Outcome of the 1D lamination model in the case of a unidirectional
sinusoidal H field of amplitude H0 = 1500 (A/m) at frequency 50 Hz,
superimposed with a fifth harmonic of amplitude H0/5.

terms of the macroscale fields, H and B, by using the the local-
isation and homogenisation relationships that are respectively
[3]

H = h(d) , B =
1

d

∫ d

0

b(z) dz (1)

where d is the half-lamination thickness, see Fig. 1. The
computed homogenized fields H and B in the case of a



unidirectional sinusoidal H field of amplitude H0 = 1500
(A/m) at frequency 50 Hz, superimposed with a fifth harmonic
of amplitude H0/5 are shown in Fig. 2. One sees the ho-
mogenized B field lagging behind the H field because of the
hysteresis effect, as well as the damping of the fifth harmonic
in the B field.

The next step consists in identifying the parameters {pk, k =
0, . . . , 5} of a generic macroscale consitutive relationship, e.g.,

H(B, Ḃ, pk) =
(
p0 + p1|B|2p2

)
B+

p3 +
p4√

p25 + |Ḃ|2

 Ḃ

(2)
so that the difference between the homogenized response of
the 1D mesoscale model and that of the algebric law (2) is
minimum in the least-square sense. The first three parameters
stand for the reversible saturation of the material, whereas the
last three represent the irreversibility of the material, due to
both hysteresis and eddy currents in the laminations.

Due to the rather simple and arbitrary choice (2), the match
is not be perfect, Fig. 3, but the reconstructed macroscale B−H
loop is close enough to the mesoscale model to account with
a good accuracy for the magnetic losses in the ferromagnetic
laminated core. Note that the conventional modelling approach,
which consists in assuming the ferromagnetic laminated core
saturable and lossless, would correspond with the reversible
material law labeled “conventional” in the picture.

Fig. 3. Comparison between the homogenized response of the 1D model, the
algebric law (2), and the conventional lossless approach.

IV. A MACHINE LEARNING APPROACH

The identified pk parameters depend on the h(t) field
excitation imposed to the 1D lamination model. The above
described identification procedure can thus be regarded as a
mapping

h(t)→ {pk, k = 1, . . . ,M}. (3)

This mapping is rather abstract and involves quite a lot of input
data (the sampling over at least one period of the excitation

Fig. 4. Comparison of B − H loop obtained with the NN identified pk
parameters with the loop obtained with the full homogenization procedure.

h(t)). Its evaluation is expensive as it implies solving and post-
processing the 1D FE mesoscale problem. The mapping (IV)
is however expected to be smooth and stable because it cor-
responds to a parabolic dissipative smooth physical problem.
These are characteristics for which a machine learning ap-
proach based on neural networks (NN) represents an appealing
solution [6], [7].

A NN implementation of the mapping (IV) has been realised
with the pytorch library using rectified linear unit (ReLu)
functions as activation functions. The neural network contained
2 internal layers with 60 and 30 neurons, respectively. It
was trained with 85% of a set of 9000 simulations done
with sinusoidal h(t) excitations with various amplitudes and
frequencies. Training was conducted over 15000 epochs with
a learning rate of 10−4. The remaining 15% was reserved as a
test set. Fig 4 compares the B−H loop obtained with the NN
identified pk parameters with the loop obtained with the full
homogenization procedure. A good match is obtained with an
evaluation time reduced by several orders of magnitude.
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