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& e Ferromagnetic stacks are multi-scale

- Ferromagnetic
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Eddy current
and Magnetic
hysteresis

 Ferromagnetic materials exhibit eddy currents and hysteresis

 Both phenomena induce losses

[1] Testamatic Labs (©) 2023 (Unico Graphix), [2] Photomicrograph of NdFeB (Wikipedia — Magnetic domain)
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*LIEGE \What happens inside a ferro lamination
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Time-domain, nonlinear
magneto-quasistatic 1D vectorial
finite element model accounting
for hysteresis and Eddy currents
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The response of a lamination accounting for hysteresis and Eddy currents is very complex
(Magnetodynamics, skin effect, vector hysteresis coupled together)

3D simulation is way to expensive = Homogenization is required

Invoking the homogenized lamination model in each element of a 2D model is also too slow

Hence, 2D conventional approaches often disregard hysteresis and Eddy currents



3,’ LIEGE p (t) excitation varies from place to place
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Local magnetic fields H(t) are very different from place to place

To account for hysteresis and Eddy currents, one has to compute the lamination response to
every local H(t)

We introduce a new parametric homogenized irreversible H(B) material law extended to account
for the ferromagnetic behaviour




& HESE Parametric homogenized material law (p law)

~ . . p4 .
H(B,B,p) = B(po+ (. |BI>)?) + p3B + B
=12
\/p?, +|B|
Reversible (anhysteretic) Irreversible hysteresis

saturation curve Irreversible dynamic eddy

R (dry friction-like) term
current (viscosity-like) term

* Local p; parameters to adapt to the local fields

 How to identify the right p,’s? Identification per region or per element?



& RSk py identification with Least Squares Min.

Local H Homogenized Local B and B
sequence lamination model sequences

Least Squares
Minimization
(LSM) of

v

2D an.hyster‘Flc Local py
FEM simulation parameters

* One has to first perform a 2D anhystertic macro simulation to generate local H(t) sequences

 Homogenized lamination model: Any efficient code that solves Magnetodynamics, skin effect and vector
hysteresis coupled together to obtain the corresponding B(t)

* Least Squares Minimization (LSM) of the error |H —H (B, B, pk)| > D} (e.g. python scipy.optimize.leastsq)



& UESE py, identification, per element or region?

LSM of |H — H(B, B, p;)| — py
H(B,B,p,)— H

After LSM identification of
the p, for one local element,
the H (B, B, pk) law captures
the essential features of the
corresponding local fields

—40 H, [ A /m] g | e— I:I from P:EM s.imulation
=== H from H(B, B, Pt) evaluation
4001
= S But, using the same
< “\ pr in other elements
= NN leads to significant
T N\ errors
—400 ~
H - H(B,B,p)| 0 H [Afm]

(Root relative mean square error)

|| —— » Better to identify p;’s per element
1

0 (saturated) « We need an efficient mapping H(t) — py



ﬂ; LIEGE 1,5M p; 1dentification vs. NN p, identification

Local H
sequence
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Neural
network

T'oo expensive if to

* oe performed per *
element!

Local pﬁs M Local pkNN
parameters parameters

* Neural networks (NN) can efficiently perform regressions
 The dataset generation and the NN training is costly but done only once
 The NN evaluation is much faster

* Considering periodic sequences, the mapping H(t) — py can be efficiently handled by a neural network



W HESE Dedicated NN architecture
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O HESE Artificial training dataset

Artificially generated 2D H(¢)

H
sequence: random frequency,
amplitude and harmonics l

Pair of sequences (H, B)
for training and
validation datasets

Homogenized lamination model: |
magnetodynamics, skin effect and

hysteresis B

x40 000

* Training datasets should be populated by a sufficient number of pairs of sequences (H, B) similar to
those encountered in electrical machine simulations

 le., 40 000 artificial sequences are generated for the training and validation datasets .
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 Run anhysteretic FEM to

generate local Hrgy
sequences and evaluate the
NN:

NN
Hppy — pi

* The identified pY"’s are
coherent with the physics
of the machine

» Despite pp" are evaluated
elementwise, the spatial
distributions are smooth
= The H — p}'"V mapping
is well-conditioned
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& 5% Mean rel. error |Hpgy — Hppy| is ~15%

Solve lamination model: Hggy +— B, evaluate p, law: FI(B, B, p{CVN) — H, evaluate error: |HFEM — 17|
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The p;, law captures the essential features of the local fields (compared to the lamination model),

with an average error of 15% for the sequences Hpgy(t) issued from the FEM simulation 12



L"—'EGF Fields B & B & iron loss distribution

B [T] (linear scale) B [T'/s] (linear scale) Magnetic losses [W/m?] (log. scale)
0 0.5 1 1.5 2 2.5 0 400 800 1200 1600 102 103 104 10° 10°

 The p, law is differentiable =» exact Jacobian can be computed =» non-linear convergence is
ensured

* The identified p, law is used as material law in the FEM model

 Instantaneous iron losses in laminated cores are simulated and can be visualized
13



& HESE Computational time breakdown

time
[min) B q ey
Total time p;/°™" NN
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12+ minimization Training of
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4
Create train and
validation datasets number of
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&S HEGE Conclusions

* We introduced a new method to include Eddy currents and hysteresis in 2D FEM
simulations of electrical machines at a cost similar to a conventional 2D
anhysteretic simulation

 The homogenized lamination model, the p, law and the NN all introduce
approximations, but the trade-offs are worth it:

* The p, law has an exact Jacobian, it is easily included in a classical Newton-
Raphson scheme

» The cost i1s very low compared to the direct inclusion of a homogenized
lamination model in macro simulations

 The method is currently designed for periodic regime, the extension to fully
transient is coming

(Don’t hesitate to get in touch if you have questions: florent.purnode@uliege.be) 15



