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Abstract
Ferromagnetic lamination stacks are ubiquitous in electrical engineering applications. An accurate knowledge of iron losses in such stacks is
highly valuable in a design phase, but their explicit modelling is computationally prohibitive. Hence, iron losses are usually neglected in R&D and
lossless material laws are used. Here, a lossy homogenized parametric law H̃(B, Ḃ, pk) is used as material law. The parameters pk are identified
elementwise, thanks to a neural network, on basis of the local knowledge of the magnetic field. This approach provides designers with a fast and
robust model to account for iron losses, with a controlled accuracy and only little overhead compared to a conventional formulation.

New irreversible parametric material law: the pk law
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H̃an → Reversible (anhysteretic) saturation curve

H̃eddy → Irreversible dynamic eddy current (viscosity-like) term

H̃hsyt. → Irreversible hysteresis (dry friction-like) term

pk Identification with a Neural Network: Architecture and Learning

Assuming periodicity, the parameters pk can be determined using a neural network:
• Auto-encoder-like learning [1], the pk law is the decoder

•
Sequences image of each other by a phase
shift and/or a rotation are equivalent
→ Rotation & phase invariance module

• Material exhibits saturation
→ Saturation-like input scaling

• Parameters vary on different scales
→ k-wise output scaling
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pk Identification on a 2D Model: Synthetic vs. Specific Approaches

Synthetic approach: Training on a dataset of artificially created H sequences. NN used for machines with simple harmonic content
Specific approach: Training on the sequences of a specific machine.

NN used for that specific machine only
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Results
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NN computed distribution of the pk parameters in a switched reluctance motor:

Error distribution and Input H Sequences vs. H̃(B, Ḃ, pk) curves:
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H̃(B, Ḃ, pk)

For the above
distribution of pk’s,
the distribution
of the error√∫

T (Hx−H̃x)2+(Hy−H̃y)2∫
T H

2
x+H

2
y

is plotted in the range 0 → 1.
The mean error is about 8.3%.

A NN trained in an auto-encoder fashion, with appropriate pre-and-post processing
modules, is a fast and accurate way to evaluate the parameters of the pk law.
The obtained pk law is a realistic lossy material law for steel lamination stacks.
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