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Abstract

Ferromagnetic lamination stacks are ubiquitous in electrical engineering applications. An accurate knowledge of iron losses in such stacks is
highly valuable in a design phase, but their explicit modelling is computationally prohibitive. Hence, iron losses are usually neglected in R&D anc

lossless material laws are used. Here, a lossy homogenized parametric law H(B, B, pi.) is used as material law. The parameters pk are identifiec
elementwise, thanks to a neural network, on basis of the local knowledge of the magnetic field. This approach provides designers with a fast and
robust model to account for iron losses, with a controlled accuracy and only little overhead compared to a conventional formulation.

New irreversible parametric material law: the p;. law Results
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pi. ldentification with a Neural Network: Architecture and Learning

Assuming periodicity, the parameters p;. can be determined using a neural network:

= Auto-encoder-like learning [1], the p; law is the decoder
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A NN trained in an auto-encoder fashion, with appropriate pre-and-post processing

L _ . e modules, is a fast and accurate way to evaluate the parameters of the p; law.
Pk ldentification on a 2D Model: Synthet|c VS. SpECIfIC Approaches The obtained p;. law is a realistic lossy material law for steel lamination stacks.

Synthetic approach: Training on a dataset of artificially created H sequences. NN used for machines with simple harmonic content

Training on the sequences of a specific machine. €» 1 training, many identifications Accuracy depends on dataset
NN used for that specific machine only
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