

Neural-Network-Based Identification of Material Law Parameters for Fast and Accurate Simulations of Electrical Machines in Periodic Regime

<u>Florent PURNODE</u>, François HENROTTE, Gilles LOUPPE & Christophe GEUZAINE Department of Electrical Engineering and Computer Science, University of Liège, Belgium

Abstract

Ferromagnetic lamination stacks are ubiquitous in electrical engineering applications. An accurate knowledge of iron losses in such stacks is highly valuable in a design phase, but their explicit modelling is computationally prohibitive. Hence, iron losses are usually neglected in R&D and lossless material laws are used. Here, a lossy homogenized parametric law $\tilde{\mathbf{H}}(\mathbf{B}, \dot{\mathbf{B}}, p_k)$ is used as material law. The parameters pk are identified elementwise, thanks to a neural network, on basis of the local knowledge of the magnetic field. This approach provides designers with a fast and robust model to account for iron losses, with a controlled accuracy and only little overhead compared to a conventional formulation.

New irreversible parametric material law: the p_k law

$$\tilde{\mathbf{H}}(\mathbf{B}, \dot{\mathbf{B}}, p_k) = \left(p_0 + \left(p_1 \| \mathbf{B} \|^2 \right)^{p_2} \right) \mathbf{B} + \left(\underline{p_3} + \frac{p_4}{\sqrt{p_5^2 + \| \dot{\mathbf{B}} \|^2}} \right) \dot{\mathbf{B}}$$

 $\tilde{\mathbf{H}}_{an} \rightarrow \mathsf{Reversible}$ (anhysteretic) saturation curve

Results

NN computed distribution of the p_k parameters in a switched reluctance motor:

- $ilde{\mathbf{H}}_{eddy}
 ightarrow \mathsf{Irreversible}$ dynamic eddy current (viscosity-like) term
- $\widetilde{\mathbf{H}}_{hsyt.}
 ightarrow \mathsf{Irreversible}$ hysteresis (dry friction-like) term

p_k Identification with a Neural Network: Architecture and Learning

Assuming periodicity, the parameters p_k can be determined using a neural network:

- Auto-encoder-like learning [1], the p_k law is the decoder
 - Sequences image of each other by a phase
- shift and/or a rotation are equivalent
 \rightarrow Rotation & phase invariance module
 Seque

Material exhibits saturation

ightarrow Saturation-like input scaling

Parameters vary on different scales $ightarrow {f k}$ -wise output scaling

Input H sequences

A is the decoder H^{y} H^{y} H^{x} H^{x} H^{x} H^{y} $H^$

Error distribution and Input H Sequences vs. $\tilde{H}(B, \dot{B}, p_k)$ curves:

 $H_x \left[A/m \right]$

 $H_x \left[A/m \right]$

1000

-6000

-1000

[A/m]

-1000

-16000

For the above distribution of p_k 's, the distribution of the error

is plotted in the range $0 \rightarrow 1$. The mean error is about 8.3%.

A NN trained in an auto-encoder fashion, with appropriate pre-and-post processing modules, is a fast and accurate way to evaluate the parameters of the p_k law. The obtained p_k law is a realistic lossy material law for steel lamination stacks.

1 training, many identifications — Accuracy depends on dataset

Synthetic approach: Training on a dataset of artificially created H sequences. NN used for machines with simple harmonic content

Specific approach: Training on the sequences of a specific machine. NN used for that specific machine only

63

- [1] Purnode, F., Henrotte, F., Caire, F., Da Silva, J., Louppe, G., & Geuzaine, C. (2022). A Material Law Based on Neural Networks and Homogenization for the Accurate Finite Element Simulation of Laminated Ferromagnetic Cores in the Periodic Regime. IEEE Transactions on Magnetics. doi:10.1109/TMAG.2022.3160651
- [2] Henrotte, F., Steentjes, S., Hameyer, K., & Geuzaine, C. (2015). Pragmatic two-step homogenisation technique for ferromagnetic laminated cores. IET Science, Measurement and Technology, 9 (2), 152-159. doi:10.1049/iet-smt.2014.0201