Neural-Network-Based Identification of Material Law Parameters for Fast and Accurate Simulations of Electrical Machines in Periodic Regime

Florent PURNODE, François HENROTTE, Gilles LOUPPE & Christophe GEUZAINE Department of Electrical Engineering and Computer Science, University of Liège, Belgium

Abstract

 $\tilde{\mathbf{H}}$ *eddy →* Irreversible dynamic eddy current (viscosity-like) term

Ferromagnetic lamination stacks are ubiquitous in electrical engineering applications. An accurate knowledge of iron losses in such stacks is highly valuable in a design phase, but their explicit modelling is computationally prohibitive. Hence, iron losses are usually neglected in R&D and lossless material laws are used. Here, a lossy homogenized parametric law $\tilde{\bf H}(\tilde{\bf B},\tilde{\bf B},p_k)$ is used as material law. The parameters pk are identified elementwise, thanks to a neural network, on basis of the local knowledge of the magnetic field. This approach provides designers with a fast and robust model to account for iron losses, with a controlled accuracy and only little overhead compared to a conventional formulation.

 $\tilde{\mathbf{H}}$ *hsyt. →* Irreversible hysteresis (dry friction-like) term

New irreversible parametric material law: the *p^k* law

$$
\tilde{\mathbf{H}}(\mathbf{B}, \dot{\mathbf{B}}, p_k) = \left(p_0 + (p_1 \|\mathbf{B}\|^2)^{p_2} \right) \mathbf{B} + \left(p_3 + \frac{p_4}{\sqrt{p_5^2 + \|\dot{\mathbf{B}}\|^2}} \right) \mathbf{\underline{\dot{B}}}
$$

 $\tilde{\mathbf{H}}$ $_{an}\,\rightarrow {\sf Reversible}$ (anhysteretic) saturation curve

Results

Specific approach: Training on the sequences of a specific machine. NN used for that specific machine only

p^k Identification with a Neural Network: Architecture and Learning

Assuming periodicity, the parameters *p^k* can be determined using a neural network:

• **Auto-encoder-like learning** [1], the *p^k* law is the decoder

Sequences image of each other by a phase

• shift and/or a rotation are equivalent *→* **Rotation & phase invariance module**

Material exhibits saturation

• *→* **Saturation-like input scaling**

• Parameters vary on different scales *→* **k-wise output scaling**

Input **H** sequences Rotation & phase invariance module

> is plotted in the range $0 \rightarrow 1$. The mean error is about 8*.*3%.

H^x H^y Input **H Sequences** H \hat{y} inv **Output Invariance** Module

Error distribution and Input $\mathbf H$ Sequences vs. $\tilde{\mathbf H}(\mathbf B,\dot{\mathbf B},p_k)$ curves:

- [1] Purnode, F., Henrotte, F., Caire, F., Da Silva, J., Louppe, G., & Geuzaine, C. (2022). A Material Law Based on Neural Networks and Homogenization for the Accurate Finite Element Simulation of Laminated Ferromagnetic Cores in the Periodic Regime. IEEE Transactions on Magnetics. doi:10.1109/TMAG.2022.3160651
- [2] Henrotte, F., Steentjes, S., Hameyer, K., & Geuzaine, C. (2015). Pragmatic two-step homogenisation technique for ferromagnetic laminated cores. IET Science, Measurement and Technology, 9 (2), 152-159. doi:10.1049/iet-smt.2014.0201

Synthetic approach: Training on a dataset of artificially created **H** sequences. NN used for machines with simple harmonic content

NN computed distribution of the *p^k* parameters in a switched reluctance motor:

EMF 2023

MARSEILLE

 H_x [A/m]

1000

 -6000

 -1000

 $[A/m]$

 $-1000\,$

 -16000

For the above distribution of *pk*'s, the distribution of the error

A NN trained in an auto-encoder fashion, with appropriate pre-and-post processing modules, is a fast and accurate way to evaluate the parameters of the *p^k* law. The obtained *p^k* law is a realistic lossy material law for steel lamination stacks.

 \bullet 1 training, many identifications \bullet Accuracy depends on dataset