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Abstract
Eddy currents in ferromagnetic laminated cores are usually outright disregarded in conventional simulations and magnetic losses are only evaluated a posteriori,
by means of a Steinmetz like empirical formula. The conventional approach yields however seriously inaccurate computed fields and losses whenever the operating
frequency increases, or in the presence of higher harmonics, which is an issue in industrial R&D. A much more accurate approach based on homogenization and
neural networks is here presented. The H−B relationship is approximated by a macroscopic H(B, Ḃ, pk) material law where the local values of the pk parameters
at a point P in the macroscopic model depend on the local time evolution of the H(P, t) field over one period. The mapping H(P, t) 7→ pk, required to assemble the
macroscopic FE system, is efficiently handled by a specifically trained neural network. The method can be rather easily implemented in a standard FE package.

Problem statement
When solving 2D magnetodynamic simulations, the H − B relationship has to be approximated. In order to be accurate, eddy currents and hysteresis inside
individual laminations must be modelled explicitly:
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• Conventional approaches disregard the magnetic core conductivity and
simply use the anhysteretic curve (red curve).

• If the lamination is large enough with respect to its thickness, the mesoscopic
field distribution is accurately resolved by solving a 1D FE magnetody-
namic problem. After homogenization, mesoscopic information (blue
curve) can be retrieved and given to the macroscopic modelling. This ap-
proach is however highly time consuming. Indeed, a 1D FEM problem
has to be solved for every element in the macroscopic mesh, since different
elements undergo different excitations (Compare H(A, t), H(B, t) & H(C, t)).

• The use of a parametric homogenized material law, with parameters
evaluated with a neural network, provides efficient and accurate ap-
proximations (orange curve).

Homogenized law and neural network
The parametric homogenized law is used in the macro model:

H(B, Ḃ, pk) = B(p0 + p1B2p2) + Ḃ(p3 + p4√
p2

5+Ḃ2
)

The values of the pk parameters at point P depend on the H(P, t) field evaluated
at the previous period, and a neural network is specifically trained to represent
the mapping H(P, t) 7→ pk.The training of the neural network then proceeds as
follows:

First, a set of 150 000 sequences of sinusoidal H(t) with harmonics is gener-
ated with a 100 points per period sampling. The corresponding B sequences
are obtained by solving the 1D FE problem, and the Ḃ sequences are
finally obtained by a second order accurate finite difference derivation. Each
H sequence is then given as input to the neural network which provides a set
of pk values. This set pk, together with the B and Ḃ sequences correspond-
ing to the input H sequence, are injected into the law H(B, Ḃ, pk), which
returns Ĥ. The error between H and Ĥ is then computed according to the
mean-square-error formula:

MSE =
∑N=99

i=0 (Ĥi − Hi)2/
∑N=99

i=0 H2
i .

The error is then back-propagated, enabling the neural network to learn.
This kind of neural network is said "physics-informed" since the training of
the neural network also explicitly relies on the physics-based material law.
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The gain in accuracy is best assessed in the
H − B plane. The true homogenized re-
sponse of the ferromagnetic lamination un-
der an imposed H(P, t) field is given by the
blue curves. This accurate modelling is the
reference. The response with a simple an-
hysteretic H − B law is represented by the
red curves, whereas the response with the
homogenized H(B, Ḃ, pk) law is represented
by the orange curves. the latter is clearly
much closer to the reality, provided that the
values of the pk parameters are adapted to
the H(P, t) excitation, which is the role of
the neural network. The error can be es-
timated using the same formula as during
the neural network training. Doing so, the
mean homogenization error is below
6%.

On the other hand, the neural network rep-
resentation of the mapping H(P, t) 7→ pk

yields a impressive gain in computation
time. It is indeed 30 000 times faster com-
pared to a direct coupling with 1D FE prob-
lem resolution.

The results however show decreased accu-
racy in the saturation regime (Compari-
son between the third and fourth plots).
Changes in the H(B, Ḃ, pk) law can be made
to handle it. Notably, by increasing the
number of parameters, identifying satura-
tion regions and adding a saturation-term
contribution when saturation is exhibited,
improvements are obtained with some pre-
liminary results showing a mean error of 2%.

Conclusions
The physics-informed neural network, combined with the homogenized material
law, allows simulating eddy currents and hysteresis in ferromagnetic laminated
cores at a low computation price. Magnetic losses can so be truly modelled,
with actual field waveforms, and not simply evaluated a posteriori on basis of
standardized analytic formulas. The homogenization error is below 6%, and
the neural network representation is 30 000 time faster than a direct coupling
with the lamination model.


