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Additive Manufacturing 
a process family

LPBF DED

WAAMDED
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DED advantages

From Ostolaza, Materials, 2023

Functionally graded materials German 
Aerospace Center (DLR) 

Titanium blisk repairing
Nowotny J. Therm. Spray Technol.,2007
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M4 material - High speed steel 
• Fe-Cr-C-X alloys with X: carbide-forming element (i.e. V, Nb, Mo or W)

• Hard carbides ⇒ High hardness and wear resistance

→Cylinders 
for hot rolling mills

→High speed machining cutting tools

From Hashemi, Surface & Coatings Technology, 2017

M4 powder composition
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Motivation: Understand –Predict - Optimize
Near surface, Continuous M2C network at grain boundaries

Middle height, Discontinuous network of M2C

Process model to predict 
microstructure features 

CastDED

CoreSurface
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DED Model ? 
AM Simulations : Priorities
1 Select your scale for your target 
2 Predict an accurate thermal field

Goal = Homogeneous properties
→ Thermal 2D model enough 

40 x 40 x 27.5 mm (874 tracks)

+ microstructure
+ layer height

4 Thermocouples Tp(time)
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Mean height (H) of last layer : 2.3 mm 
8

Layer height - Case of constant Laser Power 

Bulk Sample
Laser beam speed (mm/s) 6.67

Laser power (W) 1100

Pre-heating (°C) 300

Mass flow (mg/s) 76

Number of tracks per layer 27

Total number of layers 36



Heat transfer by conduction

Heat transfer per convection and radiation

Melting latent Heat

Enthalpic formulation
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Convection Coef. Stefan-Boltzmann Constant Emissivity

Enthalpy

Conductivity

Thermal equations in FE home made code Lagamine

http://www.lagamine.uliege.be/
dokuwiki/doku.php

Software developed since 1984 
in Uliege - Metals - Soil 

Solid FE Software
Many laws
Interfaces with Abaqus

with Metafor
In Fr, CL, NL, VTNM…
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Active 

element
Newly active 

element

Inactive element

Convection and 

radiation element

Convection-radiation elem. on vertical planes of the clad not drawn

For a thin wall 3D 
Bulk Sample 2D 

Element birth technique 

Element birth technique 

Variable number of elements, node, DOF 
Heat flow and new material simulated by 2 to 9 elements 
Boundary conditions = interface elements 

adapted to solid element 

Element size defined by laser 
beam size !
→ Direct mesh convergence 
→ Mesh variable density by 

GMSH 
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Element size 0.75 mm
Laser beam radius

FE thermal mesh of Bulk sample
End of simulation

mm
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Measured Thermo-physical parameters k cp Lf ρ

Hashemi PhD Thesis Uliege 2017 measurements from bulk samples 
Jardin Metals 2020 Thin wall samples (tables of data sets)

Conductivity for the substrate
Three powder compositions
LC B = M4 

Experimental errors

2% for density ρ
5 % enthalpy Lf

5% heat capacity cp

2% on thermal diffusivity

7 % for conductivity k

Differential Scanning Calorimetry
Analysis, Laser Flash, Dilatometry,
Pycnometer, Scale

FE predicted Tp at the substrate 
level 
→Δ 44°C if reference data set or 

error affected ones

M4
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a) b) c) 

 Fig. 3: SEM-BSE micrographs of a) POI1 with star-like MC and lamellar eutectic M2C intercellular carbides; b) POI2 

with coral-shaped intracellular MC, intercellular eutectic M2C and refined cells due to multiple melting; c) POI3 with 

coarse angular MC and eutectic M2C within intercellular zones. 

 

Angular MC 

 

Rod-like MC 

M2C 

Angular MC 

Rod-like MC 

 
Coral-shaped MC 

M2C 

 

8 µm 8 µm 8 µm 

POI1 POI3POI2

coral-shaped intracellular 
MC, 
intercellular eutectic M2C 
and refined cells due
to multiple melting

coarse angular MC 
eutectic M2C within 
intercellular zones
larger cell

star-like MC 
lamellar eutectic M2C 
intercellular carbides

Jardin Materials Letters 2019 

-Number of full partial 
remelting
-Tp° Level between solidus 
and liquidus 
- Superheating temperature

POI1 POI2 POI3

Solidus 

FE Tp field
& history
in the clad

1677 K
1503 K

Within DED process
substrate pre-heated in a furnace



Laser power optimization 
( microstructure homogeneity)

Netwton Raphson algorithm to adjust Laser Power
To reach constant melt pool size (LPF1 LPF2 ) 

LPF 1 → 1.4 mm depth, 4.4 mm length
LPF 2 → 1.8 mm  5.7 mm

Jardin Optic & Laser technology 2023
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Hardness 
measurements 
→ Homogeneity ?

……. Vickers measurements 

Jardin Optic & Laser technology 2023 15

Constant target 
depth

Predicted melt pool depth  & length



Constant Power

LPF1 LPF2

LPF2 
Higher homogeneity 
Higher in situ annealing Tp°

Average max peak Tp°
LPF2 : 2569 K
LPF1: 2505 K 
CP : 2469 K

Higher accumulation of heat 
→ slower cooling process 
→more homogenous microstructure
→ lower residual stresses

→No crack in LPF2 sample at cutting. 

Result analysis

Jardin Optic & Laser technology 2023 16



Nano indentation maps

Melt pool size 
→ CFD needed 

Homogeneity of 
LPF2 confirmed
+ high level of 
hardness
= optimum

average 9.5 Gpa

→ Target as good 
wear properties

Jardin Optic & Laser 
technology 2023
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Manufacturing process
Set of process

parameters
Quality?

No

Yes
Structure, Properties of 

products
END

Adjustment of 
parameters

Process robust optimization 
(it takes into account uncertainty) 

Trials and 
Errors
Without 
any FE or 
DL 
predictions

Set of process
parameters

Quality
?

No

Yes

Structure, Properties 
of products

END
Physics-Informed
Machine Learning

based Model

Computer based
robust optimization
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FE + DL 
predictions
speed up 
the 



Uncertainty 
Quantification

Develop physics 
computational 

model

Dataset & Machine
Learning model

Optimization under 
uncertainty, sensitivity 

analysis

1st paper 2nd paper 3rd paper

Uncertainties, Optimisation, Robustness in DED? 

For large amount of simulations interest of surrogate models DL

1. FFNN able to predict Tp° field

2. Uncertainty effects 

3. Robust optimization (constant melt pool & energy minimum)
T.Q.D Pham Journal of Manufacturing Processes 2023

Ongoing T.Q.D. Pham Phd

T.Q.D Pham Journal of Intelligent Manufacturing 2022

T.Q.D Pham Probabilistic-Engineering-Mechanics 2022
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Feed Forward Neural Network (FFNN) replaces FE 

Input q

Output T

T.Q.D Pham Journal of Intelligent Manufacturing 2022 20

Position, 
Time

Material 
properties

Process 
parameters



Feature selection q

Using only the (𝑥, 𝑦, 𝑡, 𝑄laser)

Integrate 
physics

T.Q.D Pham Journal of Intelligent Manufacturing 2022 21



Integrating physics to the ML model to capture cycles and peaks

FFNN Result analysis Tp° at Point 2

Base model (4) Intermediate model (6) 

Full model (9) 

T.Q.D Pham Journal of Intelligent Manufacturing 2022 22



N

P1

P2 P3

P4

P5

Melting pool

FFNN Result analysis Tp° + Melt pool size

For each layer

Tp° history T(t)
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FFNN FE

FFNN // FE Result analysis Tp°

T.Q.D Pham Journal of Intelligent Manufacturing 2022 24



SHAP method to understand feature effects

Motivation

y vertical position
dy vertical laser 
distance
𝑙𝑥 and 𝑙𝑦

laser position

= 4 most important 
features

Points closed to the 
laser head

T.Q.D Pham Journal of 

Intelligent Manufacturing 2022
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FFNN Result analysis 

Computational cost

Extreme sensitivity of the melt pool to the uncertainty of 𝑸𝐥𝐚𝐬𝐞𝐫

T.Q.D Pham Journal of Intelligent Manufacturing 2022 26

35→25 min



𝑃𝑚: process parameter
ℳ𝑚: material properties
𝐵𝑚: boundary conditions

DED simu

Temperature field,
Cooling rate,
Melting pool sizes

The 
uncertainty 
study

T.Q.D Pham Probabilistic-Engineering-Mechanics 2022 27



Parameter uncertainty based on literature review 
& domain knowledge

T.Q.D Pham Probabilistic-

Engineering-Mechanics 2022
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Propagation of uncertainty on Tp°
N P1 

P2 
P4

Montecarlo simulations to explore the space

→ see details in: Characterization, propagation, 
and sensitivity analysis of uncertainties in the 
directed energy deposition process using a deep 
learning-based surrogate model 

Thinh Quy Duc Pham, Truong Vinh Hoang, 

Xuan Van Tran, Seifallah Fetni, Laurent 

Duchêne, Hoang Son Tran, Anne-Marie 

Habraken

Probabilistic-Engineering-Mechanics, 2022
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→Steady melting pool during 
DED process… a challenge !

Need optimal laser power and 
minimum uncertainty

Prop. of uncertainty on melt pool size + CPU time

Area

Width Depth

T.Q.D Pham Probabilistic-Engineering-Mechanics 2022 30



Conclusions about uncertainty study 

Melt pool size Md Mw Ma

→Microstructure
→Product properties
Mostly modified due to Uncertainties on
-Convection h
-Laser power P
-Thermal conductivity

Need of stable input material properties and boundary 
conditions in industry
Material values input in model have a high impact 

LayerT.Q.D Pham Probabilistic-Engineering-Mechanics 2022
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conductivity

capacity

convection

Laser
velocity

Laser 
power

Substrate 
Tp°

radiation



Remind: constant laser power → non constant Md

Const power

𝑃 = 1100 W

Need to consider the laser power varying with layer number 

More homogeneous melt pool and microstructure

32



Optimization under uncertainty

Min Max

Ambient temperature 284.15 312.15

Substrate preheating 
temperature

555.15 591.15

Convection 200 300

Radiation 0.8 1

Conductivity 0.93 1.07 

Heat capacity 0.95 1.05

Optimized parameter: Laser power

T.Q.D Pham Journal of Manufacturing Processes 2023 33

Range

User  defined  melt pool  width



Laser power varying with layer number

If laser power value < 578 W, there will be no melting pool since 
the tp° is smaller than the melting temperature

𝑓(𝑥) = 𝑎 × 𝑒−𝑘𝑥 + 𝑏

𝑎 ∈ 200,800 , 𝑏 ∈ 550,1500 , 𝑘 ∈ 0.15,0.25

T.Q.D Pham Journal of Manufacturing Processes 2023 34

a,  b,  k 
also called 
α1 α2 α3

 = the  unkowns



Optimal P(layers) under Minimal Energy

Differential Evolution (DiE)
Monte Carlo Simulations (MC) 

Price KV. 
Differential evolution, intelligent 
systems reference library 2013.

Bilal M Eng Appl Artif Intel 2020
Opara Evol Comput 2019

T.Q.D Pham Journal of Manufacturing Processes 2023

Objective function (step  5)  : 

Mean µq

& Standard deviation σq

of the  difference
(computed melt pool size-user 

defined value)
+

Process Energy

(w weight and  ζ scale  factors) 

35



Robust Results

→Found: 

a = 407.1,

𝑏 = 910.16, 𝑘 = 0.1498

𝑎 ∈ 200,800 , 𝑏 ∈ 550,1500 ,
𝑘 ∈ 0.15,0.25

𝑓(𝑥) = 𝑎 × 𝑒−𝑘𝑥 + 𝑏

Power Laser function versus layers Melt pool depth versus layers

Target = Solution found 

T.Q.D Pham Journal of Manufacturing Processes 2023

Jardin Optic & Laser technology 2023
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FE solution: Newton Raphson optimization without energy constraint

DL solution: Robust optimization - uncertainty & energy constraint added 



Sensitivity analysis and computational cost
np = 60
size of the population to 
investigate the 3 unknown 
parameters defining 
power function (layer)

nMC = 400
number of MC simu to 

evaluate the objective 
function within the iterative 
loop for one set of value of 
the unkown parameters 

29 days… 1 hour 10 min 

Why taking 
time to develop 

a surrogate 
model is worth

37

convection

conductivity

radiation capacity

Nbr of  iter before  stabilisation



Apply robust  optimization framework to other material, other shape 

What is next ? 

Develop more efficient FE simulations (always validated by experiments) 
-2D representative for 3D … accuracy ? 
-couples FE method with Proper Orthogonal Decomposition  to decrease CPU time ? 

Leroy Dubief PhD (Estia & Univ Bretagne sud) 2023

Follow Particle FEM method coupling  Computat. fluid Dynamics  and Solid mechanics  Bobach Uliege Phd 2023

Develop Microstructure predictions based on Tp°(t) : 
-Phase Field model, Delahaye Uliege Phd 2022 
-Time-phase Transformation-Block approach TTB, Tchuindjang Metals 2021,
-Phenomenological approach (JMAK, KM), Crespo Scripta Materialia 2010.

Exploit experiments to get material parameters: 
-Thermo physical properties,
-Phase transformation kinetic from quenching dilatometer, 
-% of phase from nanoindentation, 
-% of phase by DL applied on optical images or EBSD map …. 

Collaboration 
Data sharing
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Paper #3: A framework for the robust optimization under uncertainty in additive manufacturing

Thinh Quy Duc Pham, Truong Vinh Hoang, Xuan Van Tran, Seifallah Fetni, Laurent Duchêne, Hoang Son Tran, 

Anne-Marie Habraken

Journal of Manufacturing Processes, IF: 6.2, 2023

Paper #2: Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition 
process using a deep learning-based surrogate model 

Thinh Quy Duc Pham, Truong Vinh Hoang, Xuan Van Tran, Seifallah Fetni, Laurent Duchêne, Hoang Son Tran, 

Anne-Marie Habraken

Probabilistic-Engineering-Mechanics, IF: 3.784, 2022

Paper #1: Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning

Thinh Quy Duc Pham, Truong Vinh Hoang, Xuan Van Tran, Quoc Tuan Pham, Seifallah Fetni, Laurent Duchêne, 

Hoang Son Tran, Anne-Marie Habraken

Journal of Intelligent Manufacturing, IF: 6.498, 1-19, 2022
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Robustness check
Robust optimization FE NR Deterministic method

The mean value of the melt pool 

depth and its distribution 

obtained from 200 FE simulations

The empirical distribution 

of 200 melt pool depth data 

at layer 15
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Histogram of 
the 1000 MC 
and 
100 FE
simulations

The mean gradually 
decreases with clad 
height, which is observed 
in several studies

Propagation of uncertainty on cooling rate for 
middle point of the layers 

T.Q.D Pham Probabilistic-Engineering-Mechanics 2022 41
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