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This paper presents one of the first high-order simulations of inductively coupled plasma
(ICP). First, a multi-domain solver using a variant of discontinuous Galerkin method, called the
hybridized discontinuous Galerkin method, is developed. This multi-domain solver is verified
on an analytical conjugate heat transfer problem, showing that the order of convergence is
retrieved. Then, the method is extended to the simulation of an inductively coupled plasma,
involving the coupled simulation of magnetohydrodynamic flow inside the torch to the Maxwell
equations outside. The method is applied to a test case involving the swirled flow of argon and
compared to results obtained with finite volume codes. The results are in very good agreement,
but further improvements to the coupling boundaries need to be developed to remove small
amplitude wiggles at the interface, which have a negative impact on the predicted heat flux.

I. Nomenclature

𝑢 = Velocity field
𝑇 = Temperature
𝜕𝑧 𝑝 = Pressure gradient
𝜇0 = Void magnetic permeability
𝜂 = Dynamic viscosity
𝑘 = Heat conductivity
𝑅 = Pipe radius in CHT problem
𝑑 = Pipe thickness in CHT problem
𝐸𝐼 = Induced electric field
𝐸𝐶 = Coil electric field
𝐸𝑃 = Plasma electric field
𝜆 = Hybrid unknwon
𝑤 = State vector
𝑞 = Gradient of state vector or heat flux
𝜇, 𝜏, 𝜑 = Basis functions
𝑏𝑐 = Quantities relative to a boundary
𝐾 = Quantities relative to the 𝐾 𝑡ℎ element
𝑙 = Quantity relative to a domain

C = Compatibility condition
𝐹 = Physical flux
𝑐 = Quantity relative to convection
𝑑 = Quantity relative to diffusion
𝑆 = Source term
Ψ = Vector of convected quantities
𝑚1/2 = Averaged momentum
𝑚𝑝 = Pressure diffusion low-Mach preconditioner
𝑑 = Pipe radius in CHT problem
𝑃𝐽 = Power dissipated by Joule effect
𝐸𝐶 = Coil electric field
𝜎𝑒 = Electric conductivity
𝑓 = Induction current frequency
𝜏𝑖 𝑗 = Component of the viscous stress tensor
T = Tesselation of the domain
Ω = Computational domain
Γ = Mesh skeleton
𝑡 = Time variable
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N = Residual of the system
H = Numerical flux
F = Interface Condition

𝑥, 𝑟, 𝑧 = Spatial variables
𝑛 = Outward pointing normal
ℎ = Discretized quantity

II. Introduction
Inductively coupled plasma (ICP) facilities are experimental devices of capital importance in space exploration. By

recreating the thermodynamic conditions during atmospheric reentry, they allow for the study of the demise of space
debris and thermal shields. The Plasmatron, located at the von Karman Institute for Fluid Dynamics in Belgium, is the
most powerful facility of this type in the world. With a power of 1200 kW, it can reach a temperature of 10000 K. The
unique features of this facility makes it attractive and led to collaborations with NASA and ESA in the past.

However, ICP are complex facilities, featuring various strongly coupled physical phenomena that need to be correctly
predicted to enhance the quality of the tests. Since experimental measurements are not always easy to acquire, the
development of numerical methods for capturing the ICP flow correctly are of capital importance. Several codes have
been developed in the past, see for instance [1] and [2]. While giving satisfactory results, they were based on the finite
volumes method, demanding a high number of elements in the near wall region in order to capture the high temperature
gradients arising in the facility. Moreover, low order finite volumes methods are not well suited for studying unsteady
features such as instabilities or even turbulence. For this reason, a higher-order accurate discretisation is developed
based upon the family of discontinuous Galerkin (DG) methods. In addition, the use of an unstructured discontinuous
finite-element like method allows to relax greatly the quality requirements of the mesh, which is very useful for complex
geometry and technological features. The present paper displays one of the first simulations of inductively coupled
plasmas, using a hybridized discontinuous Galerkin (HDG) method [3, 4].

ICP being a multi-physics problem, one of its main challenges is the multi-domain aspects, in other words the
simulation of different strongly coupled physics in separate domains interconnected with specific interface conditions.
In this paper, a discretisation technique for these interface connections is developed and applied to two problem types.
As a proof of concept, the CHT problem is studied, since an analytical solution can be found. In the CHT, the equations
governing the heat transfer in the solid material is a simple heat diffusion equation, while the Navier-Stokes equations are
solved in the fluid domain. In the case of inductively coupled plasma (ICP), the full system of Navier-Stokes and electric
field equation is solved inside the torch, while only the electric field equation rules the domain outside the facility.

There are two main approaches to multi-domain simulations. The first one is the staggered approach, where the
domains are handled separately by stand alone solvers exchanging data. The staggered approach can be either strongly
or loosely coupled. The former subiterates until equilibrium is reached, while the latter just performs one forward step
successively for each of the domains. The information collected by one domain at its boundary is considered as a
known, even though it is the result of the computations from another domain. This approach is conceptually simple and
straightforward to implement. However, the method is known to lead to instabilities. There is a large body of literature
on stability analysis of coupled method (see for instance e.g. [5, 6]). An example of application for inductively coupled
plasma can be found in [1, 2].

The second approach is the monolithic one. This time, the system is solved as a whole. This allows for faster and
more stable convergence to the solution. However, it is much more complex to implement, and has a strong impact on
the system structure as it links the unknowns from one domain to another.

In this work, a fully-coupled approach is developed for the HDG method. To our best knowledge, this strategy has
never been tried before in the literature for HDG. The closest examples are found in solution of multi-domain problems
with the classic DG method [7]. Consequently, a significant part of this work is dedicated to the development of a HDG
multi-domain fully coupled solver.

This work is presented as follows. First, the basis of HDG method and its solution strategy is presented. Next, an
extension of the HDG method to multi-domain problems is derived. A comparison of the numerical and analytical
solutions of a classic multi-domain case, called the conjugate heat transfer (CHT) problem, is then presented. The
specifications of a typical ICP simulation are then given. Finally, an example of a ICP test case is presented.
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III. Hybridized discontinuous Galerkin method for single-physics problems
Before discussing our approach to multi-physics HDG, it is useful to describe its single-physics pendant, as they

share the exact same mathematical structure. The developments here follow closely [3], [4], [8].

A. Problem statement
Let us consider a domain Ω ⊂ R𝐷 of dimension 𝐷 with boundary 𝜕Ω. Let us define the conservative equation over

Ω:
𝜕𝑡𝑢(𝑥, 𝑡) + ∇ · 𝐹 (𝑢(𝑥, 𝑡),∇𝑢(𝑥, 𝑡)) = 𝑆(𝑢(𝑥, 𝑡),∇𝑢(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 ∈ R+0
𝑢(𝑥, 𝑡) = 𝑢𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑑 , 𝑡 ∈ R+0
∇𝑢(𝑥, 𝑡) · 𝑛 = 𝑞𝑛,𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑛, 𝑡 ∈ R+0
𝑢(𝑥, 0) = 𝑈 (𝑥), 𝑥 ∈ Ω

(1)

where 𝑢 : (𝑥, 𝑡) ∈ Ω × R+ → 𝑢(𝑥, 𝑡) ∈ R𝑁 is the vector of conserved variables, 𝑁 is its dimension, 𝐹 : (𝑥, 𝑡) ∈
Ω × R+ → 𝐹 (𝑥, 𝑡) ∈ R𝑁×𝐷 is the physical flux function, and 𝑆 : (𝑥, 𝑡) ∈ Ω × R+ → 𝑆(𝑥, 𝑡) ∈ R𝑁 represents the
source terms. 𝜕Ω𝑑 , 𝜕Ω𝑛 ⊂ 𝜕Ω are the parts of the boundary where the Dirichlet and Neumann boundary conditions
apply respectively. 𝑢𝑏𝑐 : (𝑥, 𝑡) ∈ 𝜕Ω𝑑 × R+ → 𝑢𝑏𝑐 (𝑥, 𝑡) ∈ R𝑁𝐷 and 𝑞𝑛,𝑏𝑐 : (𝑥, 𝑡) ∈ 𝜕Ω𝑛 × R+ → 𝑞𝑛,𝑏𝑐 (𝑥, 𝑡) ∈ R𝑁𝑁
represent the known boundary functions for the state and the nomral component of the gradient state vectors respectively.
𝑁𝑁 and 𝑁𝐷 represent the number of variables to which a Neumann and a Dirichlet boundary conditions are applied
respectively, with 𝑁𝐷 + 𝑁𝑁 = 𝑁 . Please note that 𝜕Ω𝑑 and 𝜕Ω𝑛 depend on the variable under consideration. Finally,
𝑈 : 𝑥 ∈ Ω → 𝑈 (𝑥) ∈ R𝑁 represents an initial field.

B. Spatial discretization
If Ω is tessalated in a collection T of 𝑁𝑒 non-overlapping subdomains Ω𝐾 called elements, one has

T =
⋃
𝐾

Ω𝐾 , and Ω𝐾

⋂
Ω𝐾 ′ = ∅ if Ω𝐾 ≠ Ω𝐾 ′ (2)

Let us also define the set of boundary elements 𝜕T

𝜕T = {𝜕Ω𝐾\𝜕Ω : Ω𝐾 ∈ T } (3)

and the mesh skeleton Γ

Γ = {𝑒 : 𝑒 = Ω𝐾 ∩Ω𝐾 ′ for Ω𝐾 ,Ω𝐾 ′ ∈ T ,Ω𝐾 ≠ Ω𝐾 ′ } (4)

We highlight here that each element 𝑒 of Γ is represented twice in 𝜕T , and that Γ does not contain 𝜕Ω.

C. Functional spaces
The purpose of HDG is to find an approximation to the solution 𝑢 and its gradient 𝑞 = ∇𝑢 on functional spaces

given on Ω and Γ. Let us define the sets of square-integrable functions over Ω and Γ as

𝑉 =
{
𝑣 : 𝑥 ∈ Ω → 𝑣(𝑥) ∈ R𝐷 , 𝑣 ∈ 𝐿2 (Ω)

}
𝑊 =

{
𝑤 : 𝑥 ∈ Ω → 𝑥(𝑥) ∈ R, 𝑤 ∈ 𝐿2 (Ω)

}
𝑀 =

{
𝑚 : 𝑥 ∈ Γ → 𝑚(𝑥) ∈ R, 𝑚 ∈ 𝐿2 (Γ)

} (5)

The sets 𝑉 ,𝑊 and 𝑀 are infinite dimensional. One can define finite-dimensional subsets for reconstructing 𝑢 and 𝑞. Let
us define 𝑉ℎ,𝑊ℎ, 𝑀ℎ such that

𝑉ℎ ⊂ 𝑉, dim(𝑉ℎ) = 𝑚𝑉
𝑊ℎ ⊂ 𝑊, dim(𝑊ℎ) = 𝑚𝑊
𝑀ℎ ⊂ 𝑀, dim(𝑀ℎ) = 𝑚𝑀

(6)

A set of linearly independent vectors can be defined for each of these subspaces. They will be denoted in the following
by 𝜏𝑖 ∈ 𝑉ℎ, 𝑖 = 1, 2, ..., 𝑚𝑉 , 𝜑𝑖 ∈ 𝑊ℎ, 𝑖 = 1, 2, ..., 𝑚𝑊 and 𝜇𝑖 ∈ 𝑀ℎ, 𝑖 = 1, 2, ..., 𝑚𝑀 , and be called the basis functions of
the space. An example of subspace 𝑉ℎ is the set of polynomial of degree ≤ 𝑚𝑉 , whose basis function can be composed
of Lagrange polynomials of degree 𝑚𝑉 . In this work, Dubiner’s monomial basis is used.

3



D. Weak formulation
Equation 1 can be rewritten by considering the gradient of the variables as an unknown of the problem

𝜕𝑡𝑢(𝑥, 𝑡) + ∇ · 𝐹 (𝑢(𝑥, 𝑡), 𝑞(𝑥, 𝑡)) = 𝑆(𝑢(𝑥, 𝑡), 𝑞(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 ∈ R+0
𝑞(𝑥, 𝑡) = ∇𝑢(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 ∈ R+0
𝑢(𝑥, 𝑡) = 𝑢𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑑 , 𝑡 ∈ R+0
𝑞(𝑥, 𝑡) · 𝑛 = 𝑞𝑛,𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑛, 𝑡 ∈ R+0
𝑢(𝑥, 0) = 𝑈 (𝑥), 𝑥 ∈ Ω

(7)

The weak formulation of Eq. (7) is written (if (𝜏, 𝜑) ∈ 𝑉 ×𝑊)

∑︁
𝐾

∫
Ω𝐾

(𝜕𝑡𝑢𝐾 − 𝑆𝐾 )𝜑𝐾 − 𝐹𝐾∇𝜑𝐾𝑑𝑉 +
∑︁
𝐾

∫
𝜕Ω𝐾\𝜕Ω

𝐹𝐾 (𝑢, 𝑞) · 𝑛𝐾𝜑𝐾𝑑𝑆 +
∫
𝜕Ω

𝐹𝐾𝑛 (𝑢, 𝑢𝑏𝑐, 𝑞, 𝑞𝑛,𝑏𝑐, 𝑛𝐾 )𝜑𝐾𝑑𝑆 = 0∑︁
𝐾

∫
Ω𝐾

𝑞𝐾𝜏𝐾 + 𝑢𝐾∇𝜏𝐾𝑑𝑉 −
∑︁
𝐾

∫
𝜕Ω𝐾\𝜕Ω

𝑢𝐾𝑛𝐾𝜏𝐾𝑑𝑆 −
∫
𝜕Ω

𝑢𝐾𝑏𝑐𝑛
𝐾𝜏𝐾𝑑𝑆 = 0

(8)
where the spatial and temporal dependence of variables and vectors have been omitted in order to avoid clutter and the
upper script 𝐾 denotes the restriction of a function on the domain Ω𝐾 ∈ T . We also have defined the normal component
of the physical flux 𝐹𝑛 = 𝐹 · 𝑛.

E. Weak formulation
Let us define the functions �̂�𝐾

ℎ
and 𝑞𝐾

ℎ

�̂�𝐾ℎ =


𝜆
𝐾,𝐾 ′

ℎ
on 𝜕Ω𝐾 ∩ 𝜕Ω𝐾 ′

𝑢𝐾𝑏𝑐,ℎ on 𝜕Ω𝐾 ∩ 𝜕Ω𝑑
𝑢𝐾ℎ on 𝜕Ω𝐾 ∩ 𝜕Ω\𝜕Ω𝑑

(9)

and

𝑞𝐾ℎ =

{
𝑞𝐾ℎ on (𝜕Ω𝐾 ∩ 𝜕Ω𝐾 ′ ) ∪ (𝜕Ω𝐾 ∩ 𝜕Ω\𝜕Ω𝑛)
𝑞𝐾𝑛,𝑏𝑐,ℎ on 𝜕Ω𝐾 ∩ 𝜕Ω𝑛

. (10)

where the 𝜆 variables are called the hybrid unknowns. As discussed below, the functions �̂�ℎ and 𝑞ℎ will play an
important role in the multi-physics version of HDG. They will be discussed later. In HDG, the discretized version of
Eq. (8) is given by∑︁

𝐾

∫
Ω𝐾

(𝜕𝑡𝑢𝐾ℎ − 𝑆𝐾 )𝜑𝐾𝑖 − 𝐹𝐾∇𝜑𝐾𝑖 𝑑𝑉 +
∑︁
𝐾

∫
𝜕Ω𝐾

H(𝑢𝐾ℎ , 𝑞
𝐾
ℎ , �̂�

𝐾
ℎ , 𝑞

𝐾
ℎ , 𝑛

𝐾 )𝜑𝐾𝑖 𝑑𝑆 = 0 𝑖 = 1, 2, ..., 𝑚𝑊∑︁
𝐾

∫
Ω𝐾

𝑞𝐾ℎ 𝜏
𝐾
𝑖 + 𝑢𝐾ℎ ∇𝜏

𝐾
𝑖 𝑑𝑉 −

∑︁
𝐾

∫
𝜕Ω𝐾

�̂�𝐾ℎ 𝑛
𝐾𝜏𝐾𝑖 𝑑𝑆 = 0 𝑖 = 1, 2, ..., 𝑚𝑉∑︁

𝑒∈Γ

∫
𝑒

[
H(𝑢𝐾𝑒

ℎ
, 𝑞
𝐾𝑒
ℎ
, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝐾𝑒
ℎ
, 𝑛𝐾𝑒 ) + H (𝑢𝐾

′
𝑒

ℎ
, 𝑞
𝐾 ′
𝑒

ℎ
, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝐾 ′
𝑒

ℎ
, 𝑛𝐾

′
𝑒 )

]
𝜇
𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆 = 0 𝑖 = 1, 2, ..., 𝑚 − 𝑀

(11)

The superscript 𝐾, 𝐾 ′ denotes the restriction of a function on the facet shared by Ω𝐾 and Ω𝐾 ′ . The solution is
reconstructed in a finite element-manner:

𝑢ℎ =

𝑚𝑊∑︁
𝑖=1

𝑢𝑖𝜑𝑖 , 𝑞ℎ =

𝑚𝑉∑︁
𝑖=1

𝑞𝑖𝜏𝑖 𝜆ℎ =

𝑚𝑀∑︁
𝑖=1

𝜆𝑖𝜇𝑖 . (12)

Ω𝐾𝑒 and Ω𝐾 ′
𝑒

represents the elements who share the facet 𝑒 as a boundary. Finally, the physical flux at the element
interfaces is discretized using a numerical flux function

𝐹𝐾𝑛 ≃ H(𝑢𝐾 , 𝑞𝐾 , �̂�𝐾ℎ , 𝑞
𝐾
ℎ , 𝑛

𝐾 ) (13)
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This formulation has many similar features as a classic DG formulation. First, it employs a high-order interpolation
of the solution over the elements. Second, information is transmitted from one element to another through numerical
fluxes. However, since the method contains an additional set of degrees of freedom compared to classic DG, it requires
an additional set of equation. It is given in Eq. (11) by the conservation of the numerical flux through the traces∑︁

𝑒∈Γ

∫
𝑒

[
H(𝑢𝐾𝑒

ℎ
, 𝑞
𝐾𝑒
ℎ
, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝐾𝑒
ℎ
, 𝑛𝐾𝑒 ) + H (𝑢𝐾

′
𝑒

ℎ
, 𝑞
𝐾 ′
𝑒

ℎ
, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝐾 ′
𝑒

ℎ
, 𝑛𝐾

′
𝑒 )

]
𝜇
𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆 = 0 𝑖 = 1, 2, ..., 𝑚𝑀 (14)

which ensures the conservativity of the method.
The addition of the hybrid degrees of freedom allows for the decomposition of the full problem into two tasks.

The first one is to solve many small problems located at each element. The second one is to solve a globally coupled
problem, which links all hybrid unknowns.

F. Solution strategy
The solution strategy of HDG, is described in this section. Eq. (11) can be solved using a Newton’s method. It can

be rewritten in the form
Nℎ (𝑥𝑛ℎ; 𝑦𝑖) = 0 (15)

where 𝑥𝑛 = (𝜆𝑛
ℎ
, 𝑢𝑛
ℎ
, 𝑞𝑛
ℎ
) and 𝑦𝑖 = (𝜇𝑖 , 𝜑𝑖 , 𝜏𝑖). The purpose of Newton’s iteration is to find a solution to the linearized

problem
N ′
ℎ (𝑥

𝑛
ℎ; 𝑦𝑖)𝛿𝑥

𝑛
ℎ = −Nℎ (𝑥𝑛ℎ; 𝑦𝑖) (16)

from an initial guess 𝑥0
ℎ
. Once the solution 𝑥𝑛

ℎ
is obtained, the value of 𝑥𝑛

ℎ
is used as initial guess to solve for

𝑥𝑛+1
ℎ

= 𝑥𝑛
ℎ
+ 𝛿𝑥𝑛

ℎ
. Equation (16) can be conveniently written in matrix form

©«
𝐴 𝐵 𝑅

𝐶 𝐷 𝑆

𝑀 𝑁 𝐿

ª®®¬︸          ︷︷          ︸
N′
ℎ
(𝑥𝑛
ℎ

;𝑦𝑖 )

𝛿𝑥𝑛
ℎ︷︸︸︷©«

𝛿𝑄

𝛿𝑈

𝛿Λ

ª®®¬ =
©«
𝐹

𝐺

𝐻

ª®®¬︸︷︷︸
−Nℎ (𝑥𝑛ℎ ;𝑦𝑖 )

=
©«
−R1

−R2

−R3

ª®®¬ , (17)

where all the matrices of Eq. (17) are defined in Appendix A, and R 𝑗 , 𝑗 = 1, 2, 3 is the residual of an equation. Because
each element exchanges information through the trace using the numerical flux, each element is only indirectly coupled
to its neighbours via the trace variables. In other words, the submatrix

Σ =

(
𝐴 𝐵

𝐶 𝐷

)
(18)

is block diagonal. The size of each block does not exceed the number of degrees of freedom on the element. Equation (17)
can be rewritten in two sets of equations: (

𝐴 𝐵

𝐶 𝐷

) (
𝛿𝑄

𝛿𝑈

)
=

(
𝛿𝐹

𝛿𝐺

)
−

(
𝛿𝑅

𝛿𝑆

)
𝛿Λ (19)

and (
𝐿 𝑀

) (
𝛿𝑄

𝛿𝑈

)
+ 𝑁𝛿Λ = 𝐻 (20)

By eliminating the local variables from Eq. (20) with the help of Eq. 19, one gets a system for the hybrid unknowns:

©«𝑁 −
(
𝐿 𝑀

) (
𝐴 𝐵

𝐶 𝐷

)−1 (
𝛿𝑅

𝛿𝑆

)ª®¬ 𝛿Λ = 𝐻 −
(
𝐿 𝑀

) (
𝐴 𝐵

𝐶 𝐷

)−1 (
𝛿𝐹

𝛿𝐺

)
(21)

This system can be efficiently solved by constructing the local matrices and invert them on the spot while building the
global matrix. Then, the global system Eq. (21) is solved and the hybrid unknowns are used to reconstruct the local
ones. The solution algorithm to solve the full HDG system is given in Algorithm 1. Note that R represents the residual
of the global system Eq. (21).
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Algorithm 1 Solution procedure for HDG
Initialize 𝜆ℎ, 𝑤ℎ, 𝑞ℎ;
while | |R | |2 > 𝜀 do

for i = 1,..., 𝑁𝑒 do
Assemble local system (Eq. (19));
Solve local system;
Store local solution;
Assemble global system (Eq. (21));

end for
Solve global system;
Update 𝜆ℎ, 𝑤ℎ, 𝑞ℎ;

end while

IV. Hybridized discontinuous Galerkin method for multi-physics problems
This Section describes the extension of single-physics to multi-physics HDG. First, the basic assumptions of the

method are described. Then, the spatial discretization and functional spaces are presented. Finally, the treatment of the
interfaces between domain is discussed, along with the algorithm of the method.

A. Hypotheses on multi-physics problems
In this work, multi-physics problems are governed by different sets of equations that act on different but fixed spatial

locations. Those domains exchange information through their common boundaries, called the interface boundary. The
interface is fixed in time. In the following rationale, the mesh matches at the interface between two physical domains.
The exploration of non-conforming meshes, moving or cell-cutting boundaries (like immersed boundary methods) for
HDG are not treated here. Finally, only non-overlapping domains are considered.

To fix the idea, let us consider two non-overlapping domains Ω1 and Ω2 governed by different physics. For instance,
in the conjugate heat transfer (CHT) model, Ω1 would be a channel where a fluid flows and the Navier-Stokes equations
apply, while Ω2 would be the solid pipe surrounding the channel, where the heat diffusion equation governs the heat
transfer phenomena. Both media have a common interface, which is called here Γ1,2. The two physics are linked by
interface conditions. In the case of CHT, the normal heat flux through the interface is conserved, while the temperature
at the interface is continuous across the boundary between domains. On the other hand, a boundary condition has to
be imposed on velocity and pressure, since in our model no information is transmitted from the velocity and pressure
fields of the Navier-Stokes domain to the solid pipe. The crucial point of multi-domain simulations is the treatment of
those information exchange and boundary condition imposition between two physical models. We will see that HDG is
particularly well suited for these types of problems.

B. Continuous formulation
The multi-physics problem can be defined as a collection of single-physics problems. Let us consider a domain

Ω𝑙 ⊂ R𝐷 of dimension 𝐷 with boundary 𝜕Ω𝑙 . Let us define the conservation equation over Ω𝑙:

𝜕𝑡𝑢
𝑙 (𝑥, 𝑡) + ∇ · 𝐹𝑙 (𝑢(𝑥, 𝑡),∇𝑢𝑙 (𝑥, 𝑡)) = 𝑆𝑙 (𝑢𝑙 (𝑥, 𝑡),∇𝑢𝑙 (𝑥, 𝑡)), 𝑥 ∈ Ω𝑙 , 𝑡 ∈ R+0

𝑢𝑙 (𝑥, 𝑡) = 𝑢𝑙𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑙𝑑 , 𝑡 ∈ R+0
∇𝑢𝑙 (𝑥, 𝑡) · 𝑛 = 𝑞𝑙𝑛,𝑏𝑐 (𝑥, 𝑡), 𝑥 ∈ 𝜕Ω𝑙𝑛, 𝑡 ∈ R+0
𝑢𝑙 (𝑥, 0) = 𝑈𝑙 (𝑥), 𝑥 ∈ Ω𝑙

(22)

Note that all symbols retain the same meaning as in Section III.A, but the superscript 𝑙 = 1, 2, ..., 𝑁𝑑 denotes the
subdomain under consideration.
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C. Spatial discretization and functional spaces
Now, let us consider 𝑁𝑑 distinct physical problems on 𝑁𝑑 non-overlapping domains Ω𝑙 . Consequently,

Ω =

𝑁𝑑⋃
𝑙=1

Ω𝑙 (23)

The spatial discretization for each domain Ω𝑙 is performed in the same way as for the single-physics case

T 𝑙 =
⋃
𝐾

Ω𝑙𝐾 , and Ω𝑙𝐾

⋂
Ω𝑙𝐾 ′ = ∅ if Ω𝑙𝐾 ≠ Ω𝑙𝐾 ′ 𝑙 = 1, 2..., 𝑁𝑑 (24)

Similarly, the set of boundary elements 𝜕T 𝑙 is defined as

𝜕T 𝑙 = {𝜕Ω𝐾\𝜕Ω𝑙 : Ω𝐾 ∈ T 𝑙} (25)

and the mesh skeleton Γ𝑙

Γ𝑙 = {𝑒 : 𝑒 = Ω𝑙𝐾 ∩Ω𝑙𝐾 ′ for Ω𝑙𝐾 ,Ω
𝑙
𝐾 ′ ∈ T 𝑙 ,Ω𝑙𝐾 ≠ Ω𝑙𝐾 ′ } (26)

In addition to the previously defined set of traces, we also define the set of traces on the interface between physical
domains Γ𝑙,𝑙′ :

Γ𝑙,𝑙
′
= {𝑒 : 𝑒 = Ω𝐾 ∩Ω𝐾 ′ for Ω𝐾 ∈ T 𝑙 ,Ω𝐾 ′ ∈ T 𝑙′ }, 𝑙, 𝑙′ = 1, 2, ..., 𝑁𝑑 (27)

The same functional spaces as for the single-physics case are used here. See Section III.C for more details.

D. Weak formulation discretization
The weak formulation of the problem is obtained very similarly as for the single-physics case. Assuming

𝑙 = 1, 2, ..., 𝑁𝑑 , it is written in its most general form as∑︁
𝐾

∫
Ω𝑙
𝐾

(𝜕𝑡𝑢𝑙,𝐾ℎ − 𝑆𝑙,𝐾 )𝜑𝐾𝑖 − 𝐹𝑙,𝐾∇𝜑𝐾𝑖 𝑑𝑉 +
∑︁
𝐾

∫
𝜕Ω𝑙

𝐾

H 𝑙 (𝑢𝑙,𝐾
ℎ
, 𝑞
𝑙,𝐾

ℎ
, �̂�
𝑙,𝐾

ℎ
, 𝑞
𝑙,𝐾

ℎ
)𝜑𝐾𝑖 𝑑𝑆 = 0, 𝑖 = 1, ..., 𝑚𝑊∑︁

𝐾

∫
Ω𝑙
𝐾

𝑞
𝑙,𝐾

ℎ
𝜏𝐾𝑖 + 𝑢𝑙,𝐾

ℎ
∇𝜏𝐾𝑖 𝑑𝑉 −

∑︁
𝐾

∫
𝜕Ω𝑙

𝐾

�̂�
𝑙,𝐾

ℎ
𝑛𝐾𝜏𝐾𝑖 𝑑𝑆 = 0, 𝑖 = 1, ..., 𝑚𝑉∑︁

𝑒∈Γ𝑙∪Γ𝑙,𝑙′

∫
𝑒

F 𝑙 (𝑢𝑙,𝐾𝑒
ℎ

, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝑛𝐾𝑒 ; 𝑢𝑙,𝐾
′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
, 𝑛𝐾

′
𝑒 )𝜇𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆 = 0, 𝑖 = 1, ..., 𝑚𝑀

(28)

Once again, all symbols keep their previous definition, with the superscript 𝑙 denoting the subdomain. Equation (28)
has a very similar form as Eq. (11), but differ mainly in the transmission condition between elements, here represented
by the function F 𝑙 . On an internal facet in Γ𝑙 (i.e. a facet that neither a frontier between two domain or a boundary),
such function reduces to the conservation of the numerical flux through the trace, and one gets

F 𝑙 = H 𝑙 (𝑢𝑙,𝐾𝑒
ℎ

, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝑛𝐾𝑒 ) + H (𝑢𝑙,𝐾
′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
, 𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
, 𝑛𝐾

′
𝑒 ),∀𝑒 ∈ Γ𝑙 (29)

On the other hand, on Γ𝑙,𝑙
′ , the compatibility conditions can be more complex. Indeed, nothing guarantees that the

number of degrees of freedom on the trace and on the element boundary correspond. Let’s take once again the example
of CHT. Let us consider two elements on both side of a domain interface. The number of unknowns on the fluid side is
greater than the number of unknowns on the solid side, since the Navier Stokes equations solve for (𝑝, 𝑢, 𝑇) while the
heat equation only solves for 𝑇 . Since only the heat flux is transmitted through the domain interface, the only required
hybrid unknowns there are the ones associated with temperature. Consequently, the flux conservation will only apply to
temperature, while classic boundary conditions will be applied on the remaining flow fields.

The previous examples treats with continuous fields across interfaces. This has for consequences to define a common
set of hybrid unknowns for temperature at the facet interface of CHT problems. But this is not always the case. For
instance, in electromagnetic field applications, the normal component of the electric field is not conserved, while the
electric diffusive flux across the interface is. In those cases, the number of hybrid degrees of freedom on the domain
interfaces needs to be doubled to take into account the jump in the electric field. Additional compatibility conditions
have to be imposed on these degrees of freedom in order to guarantee the solvability of the system.
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Consequently, the system can be rewritten in the form∑︁
𝐾

∫
Ω𝑙
𝐾

(𝜕𝑡𝑢𝑙,𝐾ℎ − 𝑆𝑙,𝐾 )𝜑𝐾𝑖 − 𝐹𝑙,𝐾∇𝜑𝐾𝑖 𝑑𝑉 +
∑︁
𝐾

∫
𝜕Ω𝑙

𝐾

H 𝑙 (𝑢𝑙,𝐾
ℎ
, 𝑞
𝑙,𝐾

ℎ
, �̂�
𝑙,𝐾

ℎ
, 𝑞
𝑙,𝐾

ℎ
)𝜑𝐾𝑖 𝑑𝑆 = 0∑︁

𝐾

∫
Ω𝑙
𝐾

𝑞
𝑙,𝐾

ℎ
𝜏𝐾𝑖 + 𝑢𝑙,𝐾

ℎ
∇𝜏𝐾𝑖 𝑑𝑉 −

∑︁
𝐾

∫
𝜕Ω𝑙

𝐾

�̂�
𝑙,𝐾

ℎ
𝑛𝐾𝜏𝐾𝑖 𝑑𝑆 = 0∑︁

𝑒∈Γ𝑙∩Γ𝑙,𝑙′𝑐𝑜𝑛𝑡.

∫
𝑒

[
H 𝑙 (𝑢𝑙,𝐾𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝑛𝐾𝑒 ) + H 𝑙 (𝑢𝑙,𝐾
′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
, 𝜆
𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾 ′

𝑒

ℎ
, 𝑛𝐾

′
𝑒 )

]
𝜇
𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆

+
∑︁

𝑒∈Γ𝑙,𝑙′
𝑑𝑖𝑠𝑐

∫
𝑒

[
H 𝑙 (𝑢𝑙,𝐾𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝑛𝐾𝑒 ) + H 𝑙′ (𝑢𝑙
′ ,𝐾 ′

𝑒

ℎ
, 𝑞
𝑙′ ,𝐾 ′

𝑒

ℎ
, 𝜆
𝑙′ ,𝐾𝑒 ,𝐾 ′

𝑒

ℎ
, 𝑞
𝑙′ ,𝐾 ′

𝑒

ℎ
, 𝑛𝐾

′
𝑒 )

]
𝜇
𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆

+
∑︁

𝑒∈Γ𝑙,𝑙′
𝑑𝑖𝑠𝑐

∫
𝑒

C𝑙 (𝑢𝑙,𝐾𝑒
ℎ

, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝜆
𝑙,𝐾𝑒 ,𝐾

′
𝑒

ℎ
, 𝑞
𝑙,𝐾𝑒
ℎ

, 𝑛𝐾𝑒 ; 𝑢𝑙
′ ,𝐾 ′

𝑒

ℎ
, 𝑞
𝑙′ ,𝐾 ′

𝑒

ℎ
𝜆
𝑙′ ,𝐾𝑒 ,𝐾 ′

𝑒

ℎ
, 𝑞
𝑙′ ,𝐾 ′

𝑒

ℎ
, 𝑛𝐾

′
𝑒 )𝜇𝐾𝑒 ,𝐾

′
𝑒

𝑖
𝑑𝑆 = 0

(30)

where we have defined Γ
𝑙,𝑙′

𝑐𝑜𝑛𝑡. and Γ
𝑙,𝑙′

𝑑𝑖𝑠𝑐.
the portions of Γ𝑙,𝑙

′ where the transmitted variable are continuous and
discontinuous across the interface respectively, and C the compatibility function that links the doubled hybrid unknowns
from each side of the facet. To fix the idea, let us consider the particular case of two media whose interface surface
charge is 𝑞𝑠 . The normal component of the electric field has a discontinuity that can be described as

𝐸1𝑛1 + 𝐸2𝑛2 =
𝑞𝑠

𝜀0
(31)

where 𝜀0 is the void electric permittivity. In that particular case, the function C is defined as

C = 𝐸𝜆1𝑛1 + 𝐸𝜆2𝑛2 −
𝑞𝑠

𝜀0
(32)

Since the problem has been now discretized, the next Section deals with the solution strategy.

E. Solution strategy
The previous Sections have given the main features of multi-physics HDG. The solution strategy of Eq. (30) is now

discussed. In this work, a monolithic strategy has been chosen, meaning that the system is solved as a whole. In that
way, the solution strategy for this multi-physics solver is exactly the same as the single-physics one. Indeed, Algorithm 1
is slightly modified in order to take into account the multiple models. The complete solution procedure is given in
Algorithm 2.

Algorithm 2 Solution procedure for multi-domain HDG
Initialize 𝜆ℎ, 𝑤ℎ, 𝑞ℎ;
while | |R | |2 > 𝜀 do

for l = 1, ..., 𝑁𝑑 do
for i = 1,..., 𝑁𝑒 do

Assemble local system (Eq. (19)) of subdomain 𝑙;
Solve local system of subdomain 𝑙;
Store local solution of subdomain 𝑙;
Assemble global system (Eq. (21));

end for
end for
Solve global system;
Update 𝜆ℎ, 𝑤ℎ, 𝑞ℎ;

end while

Consequently, the multi-physics aspect of the problem modifies only the interface relation, but not the solution
strategy nor the local solver, preserving all the features of the HDG method.
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V. Applications
This section deals with the application of the solver to two test cases. The first one, the conjugate heat transfer

problem, is a well-known multi-physics problem with analytical solution, and allows to study the continuous field
transmission across the interfaces. Then, we apply the multi-physics solver to the complex case of inductively coupled
plasma and compare our computations to the results of previous codes.

A. Conjugate heat transfer
The conjugate heat transfer problem is a well-known academic problem. A schematic is given in Fig. 1. A fluid

flows in heat-conducting pipe. The upper wall of the pipe is at constant temperature 𝑇𝑤𝑎𝑙𝑙 . The lateral walls of the pipe
are adiabatic. At the inlet of the channel, the analytical temperature and velocity profile are prescribed in order to match
the analytical solution described below. The centre line of the pipe is axisymmetric while the exit is at a given constant
pressure 𝑝0. Finally, at the interface, the heat flux is conserved while a no-slip wall boundary condition is applied to the
velocity field. The problem can be decoupled in three parts: the pipe, the solid and the interface domains.

𝑇𝑠 (𝑧, 𝑅 + 𝑑)

Solid

Fluid

𝐿

𝑅

𝑑

𝑝0

Fig. 1 Illustration of the conjugate heat transfer problem. The pipe is made of a solid material with finite
thickness. Heat is exchanged between the solid and the fluid, resulting in equilibrium fully-developed steady-state
temperature and velocity profiles.

Flow in the pipe The conjugate heat transfer problem is usually studied in the case of constant thermodynamic
properties. This leads to a polynomial temperature profile of degree 4 and a polynomial velocity profile of degree 2 in
the pipe, limiting the convergence study of such test case to polynomial interpolations of degree 3 and 1 respectively,
since for higher order interpolation the solution is exactly captured by the solver. Instead, we found an analytical solution
for the temperature and velocity profiles in the case where the viscosity 𝜂 𝑓 and thermal conductivity 𝑘 𝑓 of the fluid vary
as

𝜂 𝑓 (𝑇) = 𝜂 𝑓 ,0

(
𝑇0
𝑇

)2

𝑘 𝑓 (𝑇) = 𝑘 𝑓 ,0
𝑇

𝑇0

(33)

with 𝜂 𝑓 ,0 and 𝑘 𝑓 ,0 a constant viscosity and thermal conductivity respectively. In this particular case, if the density of the
fluid is constant, the temperature and velocity profiles in the pipe can be expressed in terms of Bessel and generalized
hypergeometric functions by solving the system

𝜕𝑡 (𝜌 𝑓 𝑢) + ∇ · (𝜌 𝑓 𝑢𝑢 + 𝑝I − 𝜏) = 0
𝜕𝑡 (𝜌 𝑓 𝑐𝑝𝑇 𝑓 ) + ∇ · (𝜌 𝑓 𝑐𝑝𝑇 𝑓 𝑢 + 𝑝𝑢 − 𝜏 · 𝑢) + ∇ · (𝑘 𝑓∇𝑇 𝑓 ) = 0

(34)

where 𝜌 𝑓 is the constant fluid density, 𝑝 is the static pressure, 𝑢 is the velocity vector, and 𝑐𝑝, 𝑓 is the heat capacity at
constant pressure. Solving these equations for a steady state fully developed fluid leads to the following expressions for
the temperature profile (see Appendix B for full developments and definition of the parameters showing in the following
equations)

𝑇 𝑓 = 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓


𝐽0

(
𝑟2

2
√
𝛽

)
𝐽0

(
𝑅2

2
√
𝛽

) 
1
2

(35)
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where 𝐽0 is a Bessel function of the first kind and 𝛽 is a constant parameter depending on thermodynamics, geometry of
the problem and the constant pressure gradient. On the other hand, the velocity profile is given by

𝑢(𝑟) = 𝜕𝑧 𝑝

4𝜂0

(
𝑇𝑖𝑛𝑡𝑒𝑟 𝑓

𝑇0

)2
[
𝑟2

1𝐹2 ( 1
2 ; 1, 3

2 ;− 𝑟4

16𝛽 ) − 𝑅
2

1𝐹2 ( 1
2 ; 1, 3

2 ;− 𝑅4

16𝛽 )
]

𝐽0

(
𝑅2

2
√
𝛽

) (36)

where 1𝐹2 is a generalized hypergeometric function. As in the constant thermodynamic coefficient case, the pressure is
linearly decreasing along the pipe of length 𝐿 such that

𝜕𝑧 𝑝 = 𝜕𝑧 𝑝(𝛽, 𝑘 𝑓 ,0, 𝜂 𝑓 ,0, 𝑇0) (37)

Solid side On the solid side, only an equation for temperature conduction is solved, namely

𝜌𝑠𝐶𝑠𝜕𝑡𝑇 − ∇ · (𝑘𝑠∇𝑇) = 0 (38)

with 𝐶𝑠 the heat capacity of the solid, 𝜌𝑠 the solid density and 𝑘𝑠 the solid thermal conductivity. The analytical solution
of this problem at steady state is well known:

𝑇𝑠 =
(
𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓

) ln
(
𝑟
𝑅

)
ln

(
1 + 𝑑

𝑅

) + 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 (39)

Interface The normal heat flux must remain constant at the fluid-solid interface

𝑘𝑠∇𝑇𝑠 · 𝑛 = 𝑘 𝑓∇𝑇 𝑓 · 𝑛 (40)

This condition allows to compute the value of the temperature at the interface between the solid and the fluid 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 :

−𝛿(𝑑, 𝑅, 𝛽, 𝑘 𝑓 , 𝑘𝑠)𝑇2
𝑖𝑛𝑡𝑒𝑟 𝑓 + 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 − 𝑇𝑤𝑎𝑙𝑙 = 0 (41)

where 𝛿 is a constant parameter of the problem. Since the interface consists only of a continuous temperature and a
conservation equation, the only hybrid degrees of freedom along the interface are the one related to temperature. All
other variable are determined through a boundary condition.

Convergence study The convergence study has been performed for two versions of the compatibility condition. The
first one consists of having only one set of hybrid unknowns associated to the the temperature and impose conservativity
of the numerical flux through the interface. The second one consists of doubling the unknowns related to temperature at
the interface, and to enforce conservativity of the numerical flux and the continuity of temperature across the interface.
It is possible to define completely a test case by fixing the pressure gradient and the interface temperature 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 , 𝜇 𝑓 ,0,
𝑘 𝑓 ,0, 𝑘𝑠 , 𝑇0 and the geometry of the problem. In this case, we chose the following parameters:

• 𝜇 𝑓 ,0 = 1×10−4 Pa s
• 𝜕𝑧 𝑝 = −3.5×106 Pa
• 𝑇0 = 350 K
• 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 = 0.1𝛿−1

• 𝑅 = 1.5×10−4m
• 𝑑 = 2×10−5m
• 𝑘 𝑓 ,0 = 0.01 Wm−1K−1

• 𝑘𝑠 = 0.02 Wm−1K−1

The convergence history is similar in both cases in all parts of the domain. Moreover, for a polynomial basis of
dimension 𝑝, the order of convergence 𝑝 + 1 is retrieved. The results are displayed in Fig. 2 and 3. The error norm used
for these computations is the following:

𝐸2 ( | |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2) =
∫
Ω
| |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2𝑑𝑉∫
Ω
| |𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2𝑑𝑉

. (42)

Note that a Lax-Friederichs convective numerical flux and a Local Discontinuous Galerkin (LDG) numerical fluxes
were used in the computations. The only difference between the models besides the interface treatment is that the first
case has less degrees of freedom than the second one, meaning that it is more interesting with continuous field to have
only one set of hybrid variables for temperature across the interface. Finally, the mesh used for the convergence study
has only one element in the width direction since the flow is supposed to be steady state, and is refined only in the radial
direction. The number of elements 𝑁 on the graph is inversely proportional to ℎ, the element size in the radial direction.
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Fig. 2 Convergence study of the CHT problem. Each plot represents the convergence of the 𝐿2 norm of the
error of a scalar field as a function of the element number in the radial direction. On the top, from left to right,
this error is represented for the temperature and velocity fields in the pipe. The bottom shows the error for the
temperature field in the solid pipe. This convergence study has been performed for the case of single set of hybrid
unknowns along the fluid-solid interface, requiring to impose only the conservativity of the numerical flux. 𝑝 and
𝑘 represent respectively the order of the polynomial interpolation of the solution of the approximation space and
the order of convergence. The error norm 𝐸2 ( | |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2) used is the ratio between 𝐿2 ( | |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2)
and 𝐿2 ( | |𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2 and is thus dimensionless.

B. Inductively coupled plasma
We apply the method developed here to the case of inductively coupled plasma (ICP). A schematic representation of

ICP is given in Fig. 4. ICP flows are very challenging to simulate as they require to capture large temperature gradients
while dealing with non constant thermodynamic properties. Indeed, in the most powerful ICP facility in the world, it is
possible to reach temperatures of 11 000 K inside the torch, while keeping the walls of the facility cooled down to 350 K.

The working principle of an ICP facility is the following: first, an electric arc ionises a gas (usually air, or argon).
Then, an alternating current flowing through the coils surrounding the facility heats the fluid by Joule effect, creating a
partially ionised plasma. These plasmas have numerous spatial application, such as the study of ablation on reentry
material or the study of the demise of space debris. In this work, we are only interested in the torch part, where the
heating takes place. The test section, or the chamber, where the jet expands and the probe is placed, will not be discussed
here.

The equations solved in this section are derived from Navier-Stokes and Maxwell’s equations accompanied by the
classic assumptions made on ICP (see for instance [1] for a complete description of the assumptions), meaning that

• The flow is purely axisymmetric. All 3D effects are neglected. In particular, the coil is assumed to be composed
of parallel current loops flowing through infinitely thin wires. The impact of the coil configuration was shown to
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Fig. 3 Convergence study of the CHT problem. Each plot represents the convergence of the 𝐿2 norm of the
error of a scalar field as a function of the element number in the radial direction. On the top, from left to right,
this error is represented for the temperature and velocity fields in the pipe. The bottom shows the error for the
temperature field in the solid pipe. This convergence study has been performed for the case of doubled hybrid
unknowns along the fluid-solid interface, requiring to impose the continuity of the temperature in addition to the
conservativity of the numerical flux. 𝑝 and 𝑘 represent respectively the order of the polynomial interpolation
of the solution and the order of convergence. The error norm 𝐸2 ( | |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2) used is the ratio between
𝐿2 ( | |𝑣 − 𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2) and 𝐿2 ( | |𝑣𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 | |2 and is thus dimensionless.

have an impact on the torch symmetry[9]. These effects will be ignored here.
• The electric field is purely azimuthal. This results from the assumption that there is no diffusion current in the

axisymmetric plane (ambipolar assumption).
• The problem is at local thermodynamic equilibrium (LTE), meaning that the chemical reaction time is much

smaller than the characteristic flow time. Comparisons between experimental studies and finite volumes code
computations showed that this assumption holds in the range of pressure studied here to some extent [10], but the
hypothesis must be relaxed when the pressure in the facility decreases [11].

• All flow quantities are averaged over one oscillation frequency of the excitation current. Solving with the complete
time oscillation of the induction current means that the electromagnetic wave propagation must be captured. Since
they travel at the speed of light, the numerical problem becomes very stiff, increasing the computational costs.
Moreover, decreasing the time step of the simulation would require to capture non-equilibrium chemistry, as the
simulation time would become much smaller than the reaction time. This lead has never been investigated before
with an ICP code, and is not pursued here.

• We consider the problem at steady-state, neglecting all hydrodynamic and electromagnetic instabilities. Of course,
it is well known that a hot plasma jet released in cold air gives rise to instabilities driven by static pressure of the
facility and the ripple part of the induction current (see for instance [12–14]).
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• We consider that the Lorentz force is negligible. The Lorentz force is the cause of instabilities for low-frequency
and low pressure regimes. This is not the case for the application studied here [15].

Torch

Outer part

In
flo

w

Fig. 4 Schematic representation of an inductively coupled plasma (ICP). The torch is surrounded by coils (the
grey disks outside the torch) where an induction current flows. Inside the torch, a sample of streamlines has been
represented. The injection system is annular in order to produce a recirculation close to the inlet, stabilizing the
flow. It is also possible add a swirl component to the flow to further stabilize the torch.

ICP can be seen as a multi-domain problem. Indeed, one way of imposing a boundary condition on the electric
field is to extend the computational domain beyond the torch, and to cancel the electric field sufficiently far away from
the latter. This cuts the whole domain into two parts as shown in Fig. 5: the torch, where Maxwell and Navier-Stokes
equations are solved, and the outer region, where only Maxwell equations are solved. As for CHT, we describe here the
problem in three parts, the torch, the outer region and the interface. We then describe the various boundary conditions,
the numerical flux used for the computations and the iterative procedure employed for computing the induction current.

Torch In the torch, the system of equation resulting from the previous assumptions is given by

𝜕𝑡 (𝑟𝑤) + 𝜕𝑧
(
𝑟𝐹𝑧𝑐 (𝑤) − 𝑟𝐹𝑧𝑑 (𝑤,∇𝑤)

)
+ 𝜕𝑟

(
𝑟𝐹𝑟𝑐 (𝑤) − 𝑟𝐹𝑟𝑑 (𝑤,∇𝑤)

)
= 𝑟𝑆(𝑤,∇𝑤) (43)

where the state vector is
𝑤 =

(
𝜌 𝜌𝑢𝑧 𝜌𝑢𝑟 𝜌𝑢𝜃 𝜌𝑒 + 𝜌 𝑢2

2 𝐸𝑃

)𝑇
, (44)

the convective flux vector is given by

𝐹𝑧𝑐 =

(
𝜌𝑢𝑧 𝜌𝑢2

𝑧 + 𝑝 𝜌𝑢𝑧𝑢𝜃 𝜌𝑒𝑢𝑧 + 𝑢2

2 𝑢𝑧 + 𝑝𝑢𝑧 0
)𝑇

𝐹𝑟𝑐 =

(
𝜌𝑢𝑟 𝜌𝑢𝑧𝑢𝑟 𝜌𝑢𝜃𝑢𝑟 𝜌𝑒𝑢𝑟 + 𝑢2

2 𝑢𝑟 + 𝑝𝑢𝑟 0
)𝑇

,

(45)

the diffusive flux vector is given by

𝐹𝑧
𝑑

=

(
0 𝜏𝑧𝑧 𝜏𝑧𝑟 𝜏𝑧𝜃 𝜏𝑧𝑧𝑢𝑧 + 𝜏𝑧𝑟𝑢𝑟 + 𝜏𝑧𝜃𝑢𝜃 − 𝑞𝑧 𝜕𝑧 (𝑟𝐸𝑃)

)𝑇
𝐹𝑟𝑑 =

(
0 𝜏𝑟 𝑧 𝜏𝑟𝑟 𝜏𝑟 𝜃 𝜏𝑟 𝑧𝑢𝑧 + 𝜏𝑟𝑟𝑢𝑟 + 𝜏𝑟 𝜃𝑢𝜃 − 𝑞𝑟 𝜕𝑟 (𝑟𝐸𝑃)

)𝑇
,

(46)

and the source terms are given by

𝑆 =

(
0 0 𝑝+𝜌𝑢2

𝜃
−𝜏𝜃 𝜃
𝑟

−𝜌𝑢𝑟𝑢𝜃
𝑟

𝑃𝐽 𝐸𝑝 + 2𝑖 𝜋 𝑓 𝜇0𝜎𝑒 (𝐸𝑐+𝐸𝑃 )
𝑟

)𝑇
. (47)
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Maxwell + N-S

Maxwell

Maxwell

Fig. 5 Domain decomposition of inductively coupled plasmas in the HDG code. In the torch, Maxwell and
Navier-Stokes equations are solved. The domain is extended beyond the torch so the electric field is cancelled
sufficiently far away from the torch. In this extension region, called the outer region, only Maxwell’s equations
are solved.

with 𝜎𝑒 the electric conductivity of the plasma, 𝜇0 the magnetic permeability of the void and 𝑓 the oscillation frequency
of the induction current. The viscous stress tensor is then given by

𝜏𝑧𝑧 = 2𝜂
(
𝜕𝑧𝑢𝑧 −

1
3
∇ · 𝑢

)
𝜏𝑟 𝑧 = 𝜏𝑧𝑟 = 𝜂 (𝜕𝑧𝑢𝑟 + 𝜕𝑟𝑢𝑧)
𝜏𝑧𝜃 = 𝜂𝜕𝑧𝑢𝜃

𝜏𝑟𝑟 = 2𝜂
(
𝜕𝑟𝑢𝑟 −

1
3
∇ · 𝑢

)
𝜏𝑟 𝜃 = 𝜂

(
𝜕𝑟𝑢𝜃 −

𝑢𝜃

𝑟

)
𝜏𝜃 𝜃 = 2𝜂

(
𝑢𝑟

𝑟
− 1

3
∇ · 𝑢

)
, (48)

The velocity divergence in cylindrical coordinates is given by

∇ · 𝑢 = 𝜕𝑧𝑢𝑧 +
1
𝑟
𝜕𝑟 (𝑟𝑢𝑟 ) (49)

and the power dissipated by Joule effect is

𝑃𝐽 =
𝜎𝑒

2

(
𝑅𝑒(𝐸𝐼 )2 + 𝐼𝑚(𝐸𝐼 )2

)
(50)

where
𝐸𝐼 = 𝐸𝐶 + 𝐸𝑃 (51)

with 𝐸𝐶 the electric field produced by a coil and 𝐸𝑃 the electric field produced in reaction in the plasma. Analytical
solutions exist for 𝐸𝐶 , see for instance [16]. The interested reader can refer to [1] for a complete derivation of the
equations governing the ICP flows.
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Concerning the thermodynamics of the torch, the library Mutation++ [17] is used. The library uses table of
coefficients delivered by NASA in order to compute the thermo-physical properties of matter. Since the system is
considered to be at local thermodynamic equilibrium, the mixture’s equilibrium has to be found, which is computationally
expensive. In order to address this issue, a table of equilibrium states is pre-computed, and the values are linearly
interpolated in this table, accelerating the computations.

Outer region In the outer region, only the electric field is computed. Since the air is almost a perfect electric insulator
at ambient temperature, the following equation is solved:

𝜕𝑧 (𝑟𝜕𝑧𝐸𝑃) + 𝜕𝑟 (𝑟𝜕𝑟𝐸𝑃) =
𝐸𝑃

𝑟
. (52)

Interface The electric field being tangential to the interface, it is continuous. Since it is the only transmitted quantity
between the fluid and solid domains, only the hybrid degrees of freedom associated with the electric field are solved
there. The continuity of the normal numerical flux has to be imposed for the electric field, while boundary conditions
on the velocity, pressure and temperature fields have to be imposed.

Boundary conditions The boundary conditions are the following:

Maxwell far field
𝐸𝑃 = 0 (53)

Axis of symmetry
𝜕𝑟 𝑝 = 0, 𝜕𝑟𝑢𝑧 = 0, 𝑢𝑟 = 0, 𝜕𝑟𝑇 = 0 𝐸𝑃 = 0 (54)

Outlet
𝑝 = 𝑝0, 𝜕𝑧𝑢𝑧 = 0, 𝜕𝑧𝑢𝑟 = 0, 𝜕𝑧𝑇 = 0 (55)

Inlet wall
𝑢 = 0, 𝑇 = 𝑇𝑤𝑎𝑙𝑙 (56)

Inlet
𝑢 = 𝑈𝑖𝑛 (𝑟) (57)

with𝑈𝑖𝑛 (𝑟) the radial velocity inlet profile.
Interface wall The electric field numerical flux is conserved across the interface and

𝑢 = 0, 𝑇 = 𝑇𝑤𝑎𝑙𝑙 . (58)

Note that all quantities that are not imposed are copied from the inside.

Numerical flux In the simulation of ICP, the choice of the numerical flux is of paramount importance, since the
problem is very subsonic (𝑀 ≃ 10−4). At such low-mach number, the density of the mixture is mostly determined by
the temperature of the fluid, making the residual of the continuity equation almost pressure-independent. To overcome
this issue and better condition the system, a family of low Mach AUSM numerical convective flux has been developed
[1, 18, 19]. Such numerical flux can be written as follows

H 𝑐 (𝑤, 𝜆, 𝑛) = 1
2

(
𝑚1/2 + 𝑚𝑝

)
(Ψ𝑤 + Ψ𝜆) −

1
2
|𝑚1/2 | (Ψ𝜆 − Ψ𝑤) + 𝑃1/2 (59)

where Ψ is a vector of convected quantities

Ψ =

(
1 𝑢⊥ 𝑢 ∥ 𝑢𝜃 𝑒 + 1

2𝑢
2 + 𝑝

𝜌

)𝑇
(60)

with 𝑢⊥ and 𝑢 ∥ the perpendicular and parallel velocity to the facet under consideration. One defines

𝑚1/2 =
1
4
(𝜌𝑤 + 𝜌𝜆) (Ψ𝜆 + Ψ𝑤) (61)
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and
𝑃1/2 =

(
0 1

2 (𝑝𝜆 + 𝑝𝑤) 0 0 0
)
. (62)

Finally, 𝑚𝑝 is a pressure diffusion term stabilizing the flow

𝑚𝑝 = − 𝑝𝜆 − 𝑝𝑤
𝑉𝑝

(63)

where 𝑉𝑝 is a preconditionning velocity, chosen here as 𝑉𝑝 = 𝑈𝑚𝑎𝑥 , with𝑈𝑚𝑎𝑥 the greatest value of the inflow velocity.
A classic local discontinuous Galerkin solver is used for the diffusive part of the flux.

Iterative procedure for computing the induction current and initial conditions In ICP flows, only the power
dissipated in the facility by Joule effect is known. Since there is no analytical relation linking the induction current
to the power dissipated in the facility, one must determine the excitation current through an iterative procedure. For
steady-state solution, the procedure employed is the following one:

1) Solve the problem for one Newton iteration.
2) Compute the total power dissipated in the torch.
3) If the computed power does not match the target power, the induction current 𝐼𝑐 is updated. Knowning that the

power dissipated in the facility is such that
𝑃𝐽 ∝ 𝐼2𝑐 , (64)

a new induction current is computed such that

𝐼𝑘+1
𝑐 = 𝐼𝑘𝐶

√︄
𝑃
𝑡𝑎𝑟𝑔𝑒𝑡

𝐽

𝑃𝐽
(65)

The procedure is stopped once 𝑃𝐽 is sufficiently close to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝐽

. Concerning the initialization of the field, the induction
current is first set to 1 A, while a constant longitudinal velocity is applied everywhere in the torch. A parabolic
temperature profile is imposed, rising from the wall temperature to the highest expected temperature in the torch.

Comparison with previous ICP code The code developed here has been compared to results computed by Vanden
Abeele with a finite volumes code [20]. The test case consists of an ICP torch of Argon. The geometry of the torch is
given in Fig. 6.

120 mm80 mm76 mm

220 mm

100 mm

Fig. 6 Geometry of the argon ICP torch. The schematic is not at scale.

Argon is injected at a pressure of 0.1 atm and a flow rate of 2.8 g s−1 with a swirl of 𝑆 = 45◦. Note that the swirl
velocity 𝑢𝜃 verifies the relation 𝑢𝑧

𝑢𝜃
= 𝑆, where 𝑆 is expressed in radians. The power to be dissipated in the facility is

𝑃
𝑡𝑎𝑟𝑔𝑒𝑡

𝐽
= 10 kW, and the oscillation frequency is 𝑓 = 27 MHz. The comparison between the HDG ICP code with a

polynomial interpolation of degree 4 and the previous finite volumes code is given in Fig. 7. Small discrepancies are
observed close to the inlet. This is not surprising, as the finite volumes code uses an adiabatic wall at the inlet while we
used an isothermal wall boundary condition.
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Fig. 7 Comparison between the finite volumes (crosses and dots) and HDG (continuous lines) ICP codes radial
(𝑟) temperature profiles for two axial positions (𝑥) (close to the inlet (15 cm) and mid-torch (27 cm)). The solution
has been computed with a polynomial interpolation of degree 2.

Although the code has been verified on an ICP test case, some problems related to the ICP simulation with HDG
still remain to be solved. In particular, two main issues arose during the simulations.

The first one is related to the conditioning of the matrix of the hybrid system which degrades as the mesh is refined.
This problem is not only related to the ICP test case, but also on simple problems such as Poiseuille flows and CHT.
This ill-conditioning leads to large iteration of the GMRES solver and slows down the computations drastically. The fix
currently applied for this problem is to increase the filling of the ILU preconditioner, but this can only be a temporary
solution as filling also increases the solution time. Moreover it was observed that they do not depend on the mesh
refinement in the near-wall region.

On the other hand, oscillations of the temperature field were observed near the interface wall, especially close to the
inlet and the regions of large temperature gradients. An example of such oscillations is given in Fig. 8. The origin of
those wiggles has yet to be determined. These oscillations introduce spurious heat flux measurements at the wall.

On the otehr hand, an advantage of the HDG code compared to its finite volumes predecessor is that the mesh
constraints can be relaxed (see Fig. 9 for a comparison between a finite volumes and a HDG mesh). While finite volumes
solver required structured cells of a micrometre in the near-wall region in order to converge to a solution, HDG only
requires cells of a millimetre in the same area.

VI. Conclusion
In this work, we presented a multi-domain version of a hybridized discontinuous Galerkin solver. We showed that

the method developed keeps the solution strategy of a classic HDG single domain method.
We presented convergence tests on a conjugate heat transfer problem, and showed that we retrieved the expected

convergence rates for two versions of the multi-domain. The first one consisted of defining only one set of hybrid
unknowns at the interface boundary associated with the temperature, and to impose the conservativity of the normal
component of the numerical flux across the interface. The second one doubled these degrees of freedom and imposed
the continuity of temperature in addition to the flux conservativity. Both approaches gave similar results in terms of
convergence.

Then, a more complex test case, involving inductively coupled plasma, was presented. These computations showed
that the current HDG method is able to reproduce results from previous finite volumes codes. Moreover, it showed that
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Fig. 8 Temperature profile in the 𝑧 direction at the interface wall. Spurious oscillations occur close to the entry
region (𝑧 = 0 m) and close to the highest temperature gradient region (𝑧 = 0.32 m). The nature of these oscillation
is still under investigation. The contour plot represents the temperature distribution in the argon ICP torch.

the grid could be coarser in the near-wall region and the mesh could be triangular and unstructured, as opposed to the
finite volumes case.

We also showed that the current implementation has spurious oscillations at the level of the interface boundary
condition for the ICP test case. The conditioning of the problem degrades also with the mesh refinment. These are the
two main problems to be addressed before continuing the ICP developments, as the former leads to spurious heat flux
measurements at the wall, and the latter impinges the computational time.

Besides these main drawbacks, many topics have not been addressed in this paper. First, the multi-domain solver
is only restricted to meshes with matching connections. The solver could be generalized to non-matching meshes,
allowing to handle them separately. The code used here has hp adaptive algorithm implemented for single models.
Extending the code to non-matching meshes would allow the use of these algorithms, automatizing the mesh generation.
Another point is the code parallelisation, which has yet to be performed.

Another important topic is the study of unsteady phenomena, such as the hydrodynamic instabilities. The hot jet
released in the cold chamber is the siege of Kelvin-Helmholtz instabilities that must be correctly captured. These
instabilities can be influenced by the Lorentz force, which was completely disregarded here, or the static back pressure.
Studying the impact of this force on the flow can be of a interest.

Final subjects of interest would be the comparison of the results this code produces with experimental data and a
further assessment of the impact of the LTE assumption on the flow. However, these comparisons can be done only once
the spurious wiggles have been corrected.

The list of points to be investigated given here is far from exhaustive. The study of non-equilibrium chemistry in ICP
flows, the influence of the complete variation of flow quantities with the electric current or elemental de-mixing in local
thermodynamic equilibrium are other examples of subjects to be explored. By developing this pioneering high-order
solver, we hope to ease the study of these numerous topics.

18



Fig. 9 Comparison between the finite volumes mesh (left) and the HDG mesh (right). While finite volumes
requires very small elements at the upper wall (size of 1 µm) in order to converge, the HDG method is not so
stringent as millimetre sized cells in the near wall region is sufficient.

A. Jacobian of the HDG system
The HDG method is linearized in the form of
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and 𝑅1, 𝑅2 and 𝑅3 the residual of each equation and all other symbols keep their definition from Section IV.

19



B. Analytical solution of CHT problem with varying viscosity and thermal conductivity
We show here how an analytical solution to the axisymmetric incompressible conjugate heat transfer in a pipe of

radius 𝑅 surrounded by a pipe of thickness 𝑑 can be found for particular expressions of the thermodynamic properties of
the fluid. In particular, the viscosity 𝜂 and heat conductivity 𝑘 evolve according the power laws

𝜂(𝑇) = 𝜂0

(
𝑇

𝑇0

)𝑛
𝑘 (𝑇) = 𝑘0

(
𝑇

𝑇0

)𝑚 (68)

where 𝑛 and 𝑚 are real coefficients. The equations for the temperature 𝑇 and the velocity 𝑢 for incompressible flows
have to be solved altogether:

1
𝑟
𝜕𝑟 (𝑟𝜂𝜕𝑟𝑢) = 𝜕𝑧 𝑝

1
𝑟
𝜕𝑟 (𝑟𝑘𝜕𝑟𝑇 + 𝑟𝜂𝑢𝜕𝑟𝑢) = 𝑢𝜕𝑧 𝑝

(69)

where 𝜕𝑧 𝑝 is the constant temperature gradient along the pipe. Integrating the first equation yields

𝑟𝜂𝜕𝑟𝑢 =
𝜕𝑧 𝑝

2
𝑟2 + 𝐶1 (70)

Because 𝜕𝑟𝑢(0) is finite, 𝐶1 = 0. Multiplying the momentum equation by 𝑢 and injecting in the temperature equation
yields

1
𝑟
𝜕𝑟 (𝑟𝑘𝜕𝑟𝑇 + 𝑟𝜂𝑢𝜕𝑟𝑢) =

𝑢

𝑟
𝜕𝑟 (𝑟𝜂𝜕𝑟𝑢) (71)

which, after simplification, yields
𝜕𝑟 (𝑟𝑘𝜕𝑟𝑇) + 𝑟𝜂 (𝜕𝑟𝑢)2 = 0 (72)

By injecting the integrated momentum equation in this result, one gets

𝜕𝑟 (𝑟𝑘𝜕𝑟𝑇) +
𝑟3 (𝜕𝑧 𝑝)2

4𝜂
= 0 (73)

When injecting the expression for the viscosity and heat conductivity, we get

𝑘0
𝑇𝑚0 (𝑚 + 1) 𝜕𝑟

(
𝑟𝜕𝑟𝑇

𝑚+1
)
+ 𝑟

3 (𝜕𝑧 𝑝)2

4𝜂0

𝑇𝑛0
𝑇𝑛

= 0 (74)

Let us define 𝛼 and 𝛽 such that
𝛼 = 𝑇𝑚+1, 𝛽 =

4𝜂0𝑘0

𝑇𝑚+𝑛
0 (𝑚 + 1) (𝜕𝑧 𝑝)2 (75)

The equation becomes

𝜕𝑟 (𝑟𝜕𝑟𝛼) +
𝑟3

𝛽
𝛼

−𝑛
𝑚+1 = 0 (76)

In the particular case of −𝑛
𝑚+1 = 1,

𝜕𝑟 (𝑟𝜕𝑟𝛼) +
𝑟3

𝛽
𝛼 = 0 (77)

and its general solution is a linear combination of Bessel functions of the first and second kind

𝑇𝑚+1 = 𝐶1𝐽0

(
𝑟2

2
√
𝛽

)
+ 𝐶2𝑌0

(
𝑟2

2
√
𝛽

)
, (78)

where

𝐽𝛼 (𝑥) =

∞∑︁
𝑝=0

(−1) 𝑝
𝑝!Γ(𝑝 + 𝛼 + 1)

( 𝑥
2

)2𝑝+𝛼

𝑌𝛼 (𝑥) =
𝐽𝛼 (𝑥) cos(𝛼𝜋) − 𝐽−𝛼 (𝑥)
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(79)
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with
Γ(𝑧) =

∫ ∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 , 𝑧 ∈ C. (80)

Note that, for 𝑧 integer, one simply has
Γ(𝑧) = (𝑛 − 1)! , 𝑧 ∈ N. (81)

Since 𝑇 is finite at the centerline, 𝐶2 = 0 (lim𝑥→0𝑌0 (𝑥) = −∞). On the other hand, at the fluid-solid interface, the
temperature is the one at the interface so that
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(
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2
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Consequenlty,
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On the other hand, the velocity can be expressed as
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since it is assumed that 𝑛
𝑚+1 = −1. Now, integrating the equation and using the boundary condition 𝑢(𝑅) = 0 yields

𝑢(𝑟) = 𝜕𝑧 𝑝
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where

𝑝𝐹𝑞 (𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧) =
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is the generalized hypergeometric. Note that the maximal velocity and pressure gradient are linked by the relation

𝑢(0) = 𝑢𝑚𝑎𝑥 = −𝜕𝑧 𝑝
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Let us now find an expression for the interface temperature by using the continuity of the normal heat flux through the
interface. The heat flux there seen from the fluid side is

𝑘 𝑓 𝜕𝑟𝑇 = 𝑘0
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𝛽
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)
(88)
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The heat flux in the solid is a classic logarithmic profile:

𝑇 = (𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖𝑛𝑡𝑒𝑟.)
ln

(
𝑟
𝑅

)
ln

(
𝑅+𝑑
𝑅

) + 𝑇𝑖𝑛𝑡𝑒𝑟. (89)

Equating this result with the heat flux in the solid yields

−𝑅𝑘0𝑇
𝑚+1
𝑖𝑛𝑡𝑒𝑟 𝑓√
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√
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2
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𝑅 ln

(
𝑅+𝑑
𝑅

) (90)

Let us define

𝛿 =

𝑅2𝑘0 ln(1 + 𝑑/𝑅)𝐽1

(
𝑅2

2
√
𝛽

)
√
𝛽(𝑚 + 1)𝑇𝑚0 𝑘𝑠𝐽0

(
𝑅2

2
√
𝛽

) (91)

The equation for the interface temperature reduces to

−𝛿𝑇𝑚+1
𝑖𝑛𝑡𝑒𝑟 𝑓 + 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 − 𝑇𝑤𝑎𝑙𝑙 = 0 (92)

It can be interesting to specify the admissible values of 𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 in order to obtain a positive wall temperature, which is
equivalent to have

𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 (1 − 𝛿𝑇𝑚𝑖𝑛𝑡𝑒𝑟 𝑓 ) > 0 (93)

To simplify the computations, we consider the case 𝑚 = 1. Since by the definition of Bessel functions and the variables
of the problem, 𝛿 > 0,

𝑇𝑖𝑛𝑡𝑒𝑟 𝑓 ∈]0; 𝛾−1 [ (94)

Outside of this interval, the wall temperature is supposed to be negative, which is unphysical. On the other hand, the
temperature profile is supposed to be positive everywhere in the flow. Knowing that 𝑟 ∈ [0; 𝑅2], it means that 𝑅2

2
√
𝛽

is at
most the first zero of 𝐽0 (𝑥). Consequently, considering that 𝛽 > 0

𝛽 >
𝑅4

4 𝑗20,1
(95)

where 𝑗0,1 is the first zero of 𝐽0 (𝑥). This sharp limit leads to the following inequatlity for the pressure (𝑚 = 1)

(𝜕𝑧 𝑝)2 <
8𝜂0𝑘0𝑇0 𝑗

2
0,1

𝑅4 (96)
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