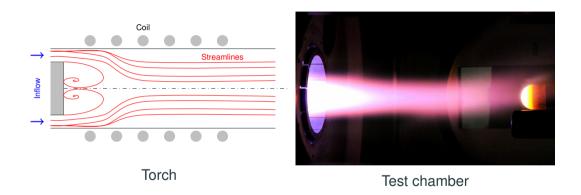
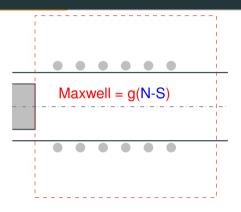

# Development of a multi-domain hybridized discontinuous Galerkin solver for inductively coupled plasma

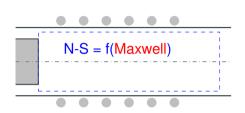



Corthouts Nicolas, Hillewaert Koen, May Georg, Magin Thierry

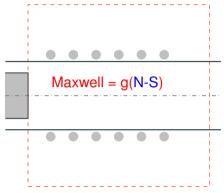


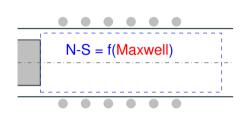






#### **Context of research**



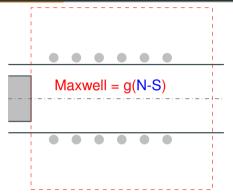

 $\textit{Re} \sim 100 \quad \textit{Ma} \sim 0.001 \quad \rho \simeq \rho(\textit{T}).$ 

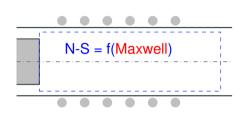

# ICP: segregated approach of previous solvers





# ICP: segregated approach of previous solvers



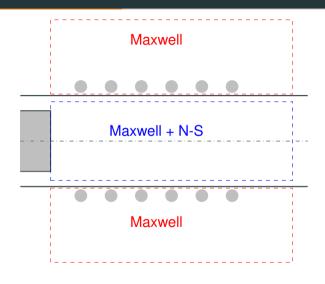

#### **Pros**

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

# ICP: segregated approach of previous solvers



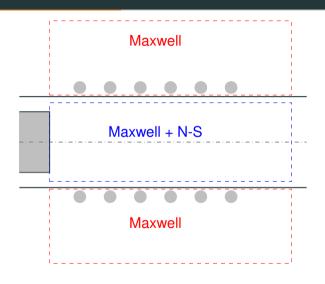



#### **Pros**

- It works (see Magin, 2004).
- Allows to freeze the electric field in unsteady simulations.

#### Cons

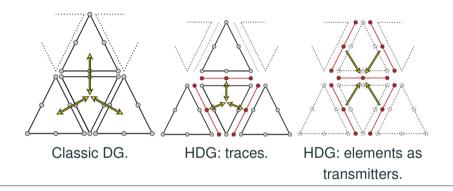
 Convergence can be hard to achieve (O(1000) iterations with COOLFluiD).


#### A multi-domain solver



#### Two approaches

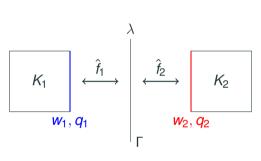
- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.


#### A multi-domain solver



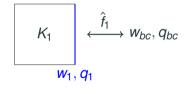
#### Two approaches

- MONOLITHIC: system solved as a whole.
- COUPLED: two solvers that exchange interface data.


#### The numerical method: HDG



- 1. **Local systems** of element size solved directly.
- 2. A global system smaller than the global DG system.


#### Multi-domain HDG

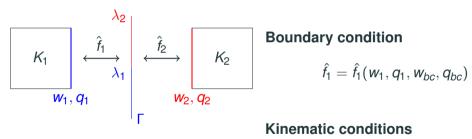
### Conservativity



$$\int_{\Gamma} \left[ \hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

#### **Multi-domain HDG**




#### Conservativity

$$\int_{\Gamma} \left[ \hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

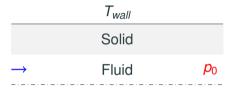
#### **Boundary condition**

$$\hat{f}_1 = \hat{f}_1(w_1, q_1, w_{bc}, q_{bc})$$

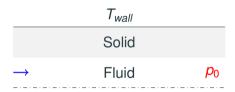
#### **Multi-domain HDG**



#### Conservativity


$$\int_{\Gamma} \left[ \hat{f}_1(w_1, q_1, n_1) + \hat{f}_2(w_2, q_2, n_2) \right] \mu dS = 0.$$

$$\hat{f}_1 = \hat{f}_1(w_1, q_1, w_{bc}, q_{bc})$$

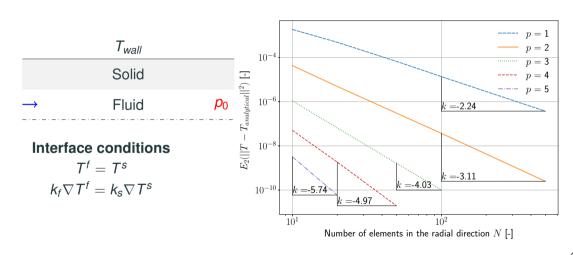

#### Kinematic conditions

$$\int_{\Gamma}\mathcal{F}(\lambda_{\mathsf{1}},\lambda_{\mathsf{2}})\mu d\mathcal{S}=0$$

# **Application: Conjugate heat transfer**



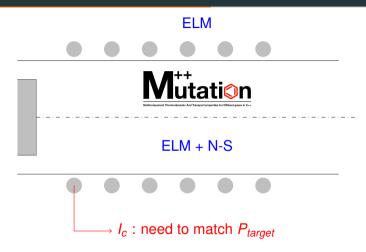
# Application: Conjugate heat transfer

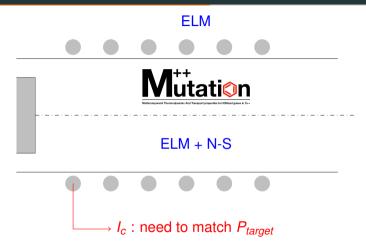



#### Interface conditions

$$T^f = T^s$$

$$k_f \nabla T^f = k_s \nabla T^s$$


# Application: Conjugate heat transfer

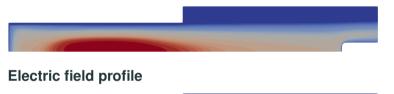











AUSM numerical + low-mach preconditioning (Magin 2004) and Damped Newton-Raphson method.

### Temperature profile

$$T_{min} = 350 \text{ K}$$
 $T_{max} = 11000 \text{ K}$ 

#### Temperature profile



$$T_{min} = 350 \text{ K}$$
  
 $T_{max} = 11000 \text{ K}$ 

$$E_{min} = 0 \text{ V}$$
  
 $E_{max} = 3650 \text{ V}$ 

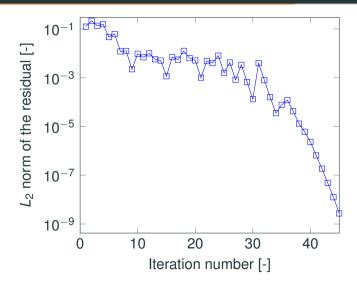
#### Temperature profile



$$T_{min} = 350 \text{ K}$$
 $T_{max} = 11000 \text{ K}$ 

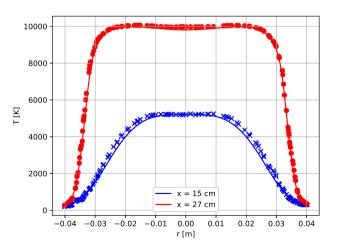
#### **Electric field profile**




$$E_{min} = 0 \text{ V}$$
  
 $E_{max} = 3650 \text{ V}$ 

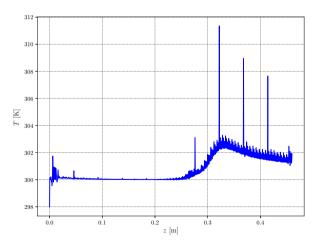
#### Power dissipated in the facility




$$P_{min} = 0 \text{ W/m}^3$$
$$P_{max} = 10^{11} \text{ W/m}^3$$

# **Convergence history**



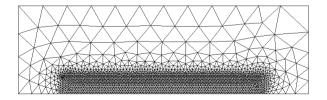

## Application to ICP: quantitative results for the mini-torch

Comparison with results of previous ICP code (AUSM flux, p = 2, swirl = 45°).



# Application to ICP: oscillations near the wall

Temperature oscillations in the near wall region.




# ICP: mesh comparison

FV mesh



ICP mesh



#### **Conclusions and future work**

- A versatile tool has been implemented in the HDG code.
- High order ICP flows are now possible.
- Possibility of extending to various physical situation.
- High order methods are prone to oscillations. We are working on them.
- Overall, the code is not very robust, and a slight change in mesh configuration or simulation parameters can lead to unstable simulations.