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Featured Application: The prospective identification of mowing events holds promise for applica-
tion across diverse domains, including the assessment of arthropod biodiversity as an explanatory
factor and the evaluation of general agricultural practices. An examination of their occurrences
over time has the potential to enhance the efficient allocation of inherent territorial resources for
animal feeding.

Abstract: The extensive identification of mowing events on a territory holds significant potential
to help monitor shifts in biodiversity and contribute to assessing the impacts of drought events.
Additionally, it provides valuable insights into farming practices and their consequential economic
and ecological effects. To overcome challenges in obtaining reference grazing information directly
from the field, this study introduces a novel methodology leveraging the compressed sward height
(CSH) derived from Sentinel-1, Sentinel-2, and meteorological data, boasting an accuracy of 20 mm.
Our central hypothesis posits that the mowing status of a parcel can be automatically discerned
by analyzing the distribution and variation of its CSH values. Employing a two-step strategy, we
first applied unsupervised algorithms, specifically k-means and isolation forest, and subsequently
amalgamated the outcomes with a partial least squares analysis on an extensive dataset encompassing
194,657 pastures spanning the years 2018 to 2021. The culmination of our modeling efforts yielded a
validation accuracy of 0.66, as ascertained from a focused dataset of 68 pastures. Depending on the
studied year and with a threshold fixed at 0.50, 21% to 57% of all the parcels in the Wallonia dataset
were tagged as mown by our model. This study introduces an innovative approach for the automated
detection of mown parcels, showcasing its potential to monitor agricultural activities at scale.

Keywords: machine learning; compressed sward height; mowing

1. Introduction

With an average net annual productivity of 161 gC year−1 m−2 [1], grasslands emerge
as crucial focal points in climate change mitigation efforts [2]. On the European stage, this
significance is recognized as a pivotal driver in the implementation of greening policies [3,4].
Beyond environmental considerations, the economic facet is underscored by the integration
of grass into cow diets, leading to a reduction in feed ration costs [5]. The frequency of
mowing events, the timing of their occurrence, and the number of times they are executed
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can significantly influence forage yield and quality [6,7]. Additionally, mowing practices
impact grassland biodiversity, affecting fauna heterogeneity, with potential consequences
for arthropods [8] and specific cases such as butterflies, where it hinders the destruction
of larvae and eggs [9]. Regarding the flora of grasslands and pastures, managing well
the mowing events can promote plant species diversity [10], though other factors like
hydrological considerations, as mentioned in [11], must be considered. Whether pertaining
to cattle diets or biodiversity implications, awareness of mowing events can inform better
management practices. From a societal perspective, grass plays a crucial role in shaping
public perceptions of farming practices [3,12]. Furthermore, the inclusion of grass in the
diet of dairy cows triggers alterations in milk fatty acid composition, such as an increase in
C18:3, contributing to enhanced organoleptic and nutritional qualities attributed to pasture
grazing or fresh grass intake [13,14]. To align with contemporary consumer expectations,
dairy companies have established protected designations of origin mandating specific
grazing parameters, either in terms of time periods or available areas.

Despite the existence of these specifications, there is a notable absence of factual
verification regarding adherence to these conditions. As a response to this challenge, the
Chronopâture tool was recently developed with the objective of automatically quantifying
the number of days a herd spends grazing, utilizing GPS collars [15]. Unfortunately, the
widespread deployment of such equipment encounters hindrances, as it entails a con-
siderable financial investment. An alternative proposition by [16] suggests detecting a
grass-based diet through milk mid-infrared spectral data, although its relevance is confined
to dairy herds. Consequently, this has led to the exploration of mowing event detection
through satellite data in various studies. Sentinel-1 (S1) [17] and Sentinel-2 (S2) data [18,19]
are frequently deliberated upon, sometimes supplemented by Landsat 8 [20], and occasion-
ally integrated with weather time series [21]. Various algorithms, including deep learning
with neural networks [20,22], random forest, and support vector machine [21], have been
tested. Key constraints of this approach highlighted in the literature include optical data
availability, as seen in [18], where missing data were supplemented using S1 data. In
other studies [20], availability and performance were only monitored over available data
periods. A second constraint is the lack of comprehensive reference data [18], requiring
grazing/management calendars. Both [17,23] underscore this challenge. However, var-
ious satellite-based proxies, such as the normalized difference vegetation index and the
enhanced vegetation index values [21,23], and biomass assessments, like the leaf area
index [23,24], have been employed for mowing event detection. Extending the range of
proxies to grass height, as explored in [25,26], or even compressed sward height (CSH), as
in [27], offers the opportunity to gather more reference data with reduced time and effort.
CSH, measured under a rising plate meter, is more reproducible than classical grass height
assessment and is often considered a reliable proxy for biomass [28]. Our team has recently
developed models predicting CSH with around 20 mm accuracy from S1, S2, and meteo-
rological data [27], facilitating on-site measurement circumvention with the rising plate
mater. These models are integrated into a prediction platform, enabling longitudinal CSH
prediction during the grazing period for all parcels in Wallonia [29]. Therefore, recognizing
the documented impacts of mowing on forage availability, quality, and biodiversity [9,30],
this study seeks to explore the feasibility of mowing event detection using the evolution of
predicted CSH across the Walloon territory. The innovative approach promises improved
accuracy by addressing the scarcity of reference data.

2. Materials and Methods

All computations in this study were conducted utilizing R v4.1.1 software [31] within
the RStudio development environment [32]. Additionally, Python v3.9 [33] was employed
in the Spyder development environment [34]. A comprehensive list of the packages utilized
is provided in Table 1. For enhanced clarity in navigating the various stages of this study,
the general workflow is outlined in Figure 1.
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Table 1. List of packages used.

R Python

Software Version Reference Software Reference

R 4.1.1 [31] os v3.9 [35]
raster 3.4-13 [36] Re v3.9 [37]

sf 1.0-2 [38] Pandas v1.4.1 [39]
data.table 1.14.0 [40] Numpy v1.21.5 [41]

caret 6.0-93 [42] Dask v2023.4.1 [43]
scikit-learn v1.0.1 [44]
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2.1. Initial Data

The estimation process was anchored in the methodology outlined in [29], encompass-
ing a substantial dataset of 10,883,214,548 pixel-based CSH predictions. These predictions,
pertaining to 100 m2 square pasture pixels on specific test dates, were documented between
2018 and 2021, covering 194,656 parcels situated in the Walloon region of Belgium. The over-
arching procedure involved retrieving S1 GRD products from the European Space Agency
API. While the Scihub version [45] initially facilitated this operation, it was subsequently
replaced by the Copernicus dataspace ecosystem [46]. The retro diffusivity of VV and
VH polarization from S1 data was geocoded and computed to serve as inputs in the CSH
prediction model. Simultaneously, S2 data in L2A format were obtained from the Theia [46]
platform. Both the prepared S1 and S2 data underwent resampling to a 10 m resolution
defined over the entire Walloon region of Belgium, with a specific mask applied to parcels
designated as pastures in 2018. Subsequently, daily meteorological data encompassing air
temperature (◦C), wind speed (m/s), solar radiation (J/cm2), precipitation (mm), relative
air humidity (%), and potential evapotranspiration (mm/day) were retrieved from the
Agromet platform [47]. Additionally, degree days, with a lower threshold of 0 ◦C and an
upper threshold of 35 ◦C, were calculated. Cumulative degree days and precipitation over
3, 7, and 15 days were also computed. Employing a data augmentation strategy based
on the prior use of data for up to 4 days in the past, with S2 acquisition serving as the
reference for data aggregation initiation, both S1 and S2 data were aggregated. Following
this, meteorological data were incorporated, associating parcels with the nearest meteo-
rological station. Once the dataset was assembled for each acquisition date, predictions
were executed at a pixel level using a Cubist prediction model, resulting in an estimated
accuracy of approximately 20 mm [27].
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Records with CSH predictions falling outside the defined calibration range, specifically
[0;250] mm, were systematically removed to confine extrapolation (resulting in the deletion
of 0.02% of records). Subsequently, records associated with parcels possessing an area
smaller than 4900 m2 were excluded to enhance the probability that most pixels constituting
the parcel fully align with its boundaries (leading to the removal of 24.89% of parcels). The
final filtering step involved retaining only records with more than three CSH predictions
per parcel for the computation of descriptive statistics (resulting in the deletion of 0.004%).
The cleaned dataset encompassed 39,578,872 pixels and 145,724 parcels. To conclude, these
pixel-based data were aggregated per parcel and date to calculate the mean (MEAN_DAY)
and standard deviation (SD_DAY). The descriptive statistics for this refined dataset are
detailed in Table 2. Both MEAN_DAY and SD_DAY offer a straightforward yet effective
means to differentiate potential groups based on predicted CSH.

Table 2. Summary statistics (mean ± SD) for predicted compressed sward height (CSH) at the pixel
level, and aggregated averages per parcel and date (MEAN_DAY) with corresponding standard
deviations (SD_DAY) across the 4-year period.

Year Nparcels 1 Pixel CSH
(mm)

MEAN_DAY
(mm)

SD_DAY
(mm)

2018 86,218 56.0 ± 19.9 56.2 ± 17.5 7.0 ± 5.3
2019 86,617 63.8 ± 21.6 62.8 ± 17.6 8.1 ± 6.2
2020 91,224 60.1 ± 20.1 59.6 ± 16.6 7.5 ± 6.0
2021 136,892 59.2 ± 18.5 58.8 ± 15.7 7.3 ± 5.0

1 Nparcels = number of parcels.

2.2. Data Preparation

Given the time-intensive nature of collecting grazing calendars and the resulting
acquisition of a limited reference dataset, this study leveraged unsupervised learning to
explore the potential for identifying the mowing status of a parcel based on the temporal
variation of predicted CSH. The central working hypothesis posits that mowing events can
be discerned from abrupt differences in CSH or related descriptive statistical parameters
within the grazing period. To facilitate the identification of these potential patterns, the
dataset underwent initial processing. Therefore, we investigated three data aggregation
strategies (DAS) grounded in the distribution and variation of MEAN_DAY and SD_DAY
over the grazing period. These strategies were tested both in combination and separately,
with a reduction method applied to these features. The primary objective was to optimize
computational resources and address concerns related to model overfitting. Specifically,
the three DAS applied per parcel and year were the following: In Strategy 1, we aggre-
gated MEAN_DAY and SD_DAY to compute the mean, standard deviation (sd), skewness
(sk), and kurtosis (ku) for the considered grazing period (yearstats dataset: 8 features
(4 × 2 features)). In Strategy 2, as the temporal density of data was not the same per parcel
and year, we standardized MEAN_DAY and SD_DAY weekly (31 features as there are
31 weeks during the grazing season) for each studied trait (week_std dataset: 62 features
(31 × 2 features)) by subtracting the mean and dividing by the standard deviation. Finally,
in Strategy 3, fast Fourier transform (FFT), a dimensional reduction method, was applied
to the week_std dataset to reduce the number of components to 10, which is a good com-
promise to limit the mirror effect of this kind of modeling (week_fft dataset: 20 features
(10 × 2 features)). To optimize computational resources, all values in the datasets under-
went rescaling before dimension reduction. This was achieved by dividing each value by
250, the maximum value within the calibration set used to construct the Cubist model for
predicting CSH.

For the daily standardization outlined in Strategy 2, the recording days were organized
in a daily-spaced dataset covering the period from 1st April to 3rd November (e.g., 217 days).
The choice of 3rd November was made to evenly divide the dataset into seven segments,
facilitating comparison with other time-standardized datasets. Subsequently, date gaps
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(highlighted in red in Figure 2) where MEAN_DAY and SD_DAY were unavailable due to
meteorological reasons were filled using linear interpolation, as we made the hypothesis
that grass growth is linear within a short period, summarized as follows:

CSHi = CSHprev +
(
CSHnext − CSHprev

)
× dt

ndays

where CSHi = the interpolated date, CSHprev = the previous date of CSH prediction,
CSHnext = the next available date of CSH prediction, dt = the number of days between
the previous prediction and the interpolated date, and ndays = the length of the time gap
between the previous and next predictions. For values between the first record and the first
date and between the last record and the last date, linear interpolation was not possible, so
the closest MEAN_DAY or SD_DAY value was attributed, as illustrated in blue in Figure 2.
For the week standardization, the MEAN_DAY and SD_DAY values covered in the 217-day
standardized dataset were averaged for each of the 31 adjacent periods of 7 days.
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2.3. Unsupervised Analysis to Detect Mowing Events

The 12 datasets (resulting from 4 years × 3 DAS) served as input for two distinct
unsupervised algorithms for categorization (UACs): isolation forest (IF) and k-means. The
IF algorithm, proposed by [48], employs random partitioning of the dataset to identify
anomalies. Given the expectation that mown parcels would exhibit different behavior
than grazed parcels, it can be assumed a priori that mown parcels would be detected as
an abnormal population. To this end, the contamination threshold was set to 0.2, a value
aligned with the prevailing management practices in the Walloon region of Belgium [49].
Indeed, the predominant management modality for permanent pasture, comprising 42.7%
of the usable agricultural area, involves either grazing or a combination of grazing and
mowing, which is ten times more extensive than temporary pastures in terms of surface
area [50]. The second unsupervised algorithm tested was based on a k-means algorithm [51].
The k-means algorithm is a clustering method that segregates a dataset into k distinct,
non-overlapping subsets called clusters by iteratively assigning data points to the cluster
with the nearest mean and updating the cluster centroids. As this method necessitates
specifying the number of clusters beforehand, 2 to 5 clusters were tested to evaluate the
partitioning. From the requirement for interpretability, a 5-cluster limitation was chosen to
parameterize the k-means.

The interpretation of the clusters generated by both UACs relied on the following
hypothesis: groups exhibiting higher average values for MEAN_YEAR and SD_YEAR
should predominantly consist of mown parcels. This was inferred from the expectation
that grass height in mown parcels would be significantly higher than in grazed parcels
until the mowing event, and the variability in this parameter would be more pronounced.
Following the identification and labeling of mown and pasture clusters, all parcels cate-
gorized within these groups over the 4-year period were incorporated into three distinct
datasets corresponding to week_std, week_fft, and year-stats datasets.

Subsequently, supervised learning was conducted using partial least squares discrimi-
nant analysis (PLS-DA) on the three datasets, where the mown character was designated
as “1” and the pasture character as “0”. PLS-DA aims to identify patterns indicative of
mowing events by maximizing the correlation between these variables and the occurrence
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of mowing events. To address the imbalanced proportion between mown and pasture
modalities, the up-sampling technique from the caret package was applied before the
PLS-DA. Outputs from the stratified ten-fold cross-validation informed the determination
of the number of components in the PLS-DA model, mitigating overfitting and providing
an assessment of the overall accuracy of the obtained classification. In addition to cluster
predictions, PLS-DA enabled the prediction of the probability of being in the mown cluster.
To evaluate the similarity in signals produced by these different models, correlations be-
tween the probabilities obtained from the six constructed PLS-DA models were calculated.
Furthermore, for the three types of datasets, we examined the number of occurrences that
would be labeled as mown with a probability exceeding 50% for k-means and IF.

2.4. Description of the Validation Set

Segmenting and interpreting clusters provide a method to distinguish between mown
and unmown parcels. However, it is essential to recognize that the machine’s perception
might not always align with actual field reality. To externally validate the findings of
our study, we utilized grazing calendars collected by our partners at the “Centre des
Technologies Agronomiques” (CTA, Strée, Belgium) and the “Fourrages Mieux” ASBL
(Bastogne, Belgium), covering the same timeframe as the one used for CSH predictions.
The validation set comprised 55 distinct parcels with confirmed mowing events, situated in
the Walloon region of Belgium. Given that certain parcels were affiliated with the same
farms, Figure 3 provides an overview of their spatial distribution. For most parcels, we
achieved the precision of predicting the mowing date within one or two days. In the case
of three parcels, our knowledge was limited to the occurrence of mowing events during
the summer period. In total, this dataset encompasses 55 distinct parcels, and Table 3
provides a detailed description of this validation dataset. From this validation set, the rate
of correctly classified mown parcels was estimated for each UAC and type of dataset.
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Table 3. Description of the validation set.

Temporality Category 2018 2019 2020 2021

With a precise date

N events 12 11 44 0
N farms 2 4 5 0

N parcels 12 11 11 0
N refusal mowing 1 0 0 8 0

Without the precise date N events = N parcels 3 3 3 3
1 refusal mowing = mowing events occurring to cut the grass patches that were not grazed on a pasture.

3. Results

As was explained in the introduction, training models to precisely detect mowing
events over the year requires extensive knowledge of the mowing dates. This proves to
be a challenge to acquire on a large scale. Therefore, this study introduced an alternative
approach using CSH predicted from S1, S2, and meteorological data. Employing a multi-
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year perspective spanning from 2018 to 2021, the study focused on entire grazing seasons,
detecting distinctive patterns through features derived from the predicted CSH to categorize
parcels as mown or not mown. Three feature datasets—week_std, week_fft, and yearstats—
were tested, along with two UACs, namely, k-means and IF.

Applying the threshold based on standard practices in grazing management in south-
ern Belgium, IF divided 80% of the samples into a normal population (referred to as Group
0) and 20% into an abnormal population (referred to as Group 1). Mown parcels are an-
ticipated to exhibit concurrently higher values for MEAN_YEAR and SD_YEAR. Some
descriptive statistics of these traits for each of the two groups identified by IF are presented
in Table 4. Across all tested datasets, MEAN_YEAR and SD_YEAR were consistently higher
for Group 1, indicating that this group likely comprises the mown parcels.

Table 4. Descriptive statistics of MEAN_YEAR and SD_YEAR of predicted compressed sward height
(in mm) for each isolation forest (IF). Groups with potential mown parcels are highlighted in bold.
Groups with the opposite characteristics are underlined.

week_fft week_std yearstats

Year IF MEAN_YEAR SD_YEAR MEAN_YEAR SD_YEAR MEAN_YEAR SD_YEAR

2018 Group 0 55.21 6.8 55.04 6.71 55.58 6.99
Group 1 59.05 8.64 59.78 9.01 57.85 8

2019 Group 0 61.41 7.71 61.17 7.5 61.86 7.83
Group 1 68.19 10.35 69.2 11.21 66.7 10.02

2020 Group 0 58.78 7.33 58.22 6.93 58.69 7.26
Group 1 62.77 9.01 64.99 10.58 63.12 9.29

2021 Group 0 57.21 6.76 56.77 6.53 57.54 6.85
Group 1 63.18 9.26 64.51 9.95 62.2 9.03

The k-means algorithm identified five clusters, designated as clusters 0 to 4 in Table 5.
However, the assignment of cluster labels may vary across datasets, as it is influenced by
the distinct starting points and differences in observations and features inherent to k-means.
Consequently, the first step is to highlight the clusters associated with mowing events for
each dataset. Following a methodology akin to the one utilized for IF, data labeling was
performed by interpreting the descriptive statistics of MEAN_YEAR and SD_YEAR. This
analytical process allowed the identification of 1 to 3 clusters associated with mown events
for each dataset, as delineated in Table 5. By positing the working hypothesis that a parcel
tagged as mown in each DAS for the same year is more likely to be a mown parcel, we
could establish an indirect reference dataset. Conversely, a similar rationale was applied
for the detection of grazed parcels. Table 6 provides the count of common parcels identified
as mown or grazed based on the studied year and the UAC used. We were thus able to
consider the number of parcels flagged as mown by the three datasets. For each of them,
across the 4 years, the mean variation of the percentage of tagged mown parcels ranged
from 0.39 to 0.40 for k-means, and from 0.19 to 0.23 for IF, as presented in Table 7.

Assuming the correctness of the parcel labels, we constructed a comprehensive refer-
ence dataset that encompassed all parcels labeled for each studied year. Leveraging this
new dataset enabled the application of supervised learning, which was executed using
PLS-DA. The prediction performance, obtained through a 10-fold cross-validation, is pre-
sented in Table 8 for each feature matrix. The discrimination between mowing and grazing
events proved to be excellent, with observed accuracies surpassing 93% for all models.
Models utilizing datasets generated from the k-means segregation technique exhibited
higher accuracy compared to those using the IF method.
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Table 5. Descriptive statistics of MEAN_YEAR and SD_YEAR of predicted compressed sward height
(in mm) for each k-means clustering. Clusters with potentially mown parcels are highlighted in bold.
Clusters with the opposite characteristics are underlined.

week_fft week_std yearstats

Year K-Means MEAN_YEAR SD_YEAR MEAN_YEAR SD_YEAR MEAN_YEAR SD_YEAR

2018

Cluster 0 53.3 5.92 56.67 10.58 57.65 8.12
Cluster 1 57.03 7.14 57.92 7.69 57.26 6.8
Cluster 2 55.43 7.18 53.35 6.86 60.68 9.38
Cluster 3 54.73 5.96 54.73 5.96 54.73 5.96
Cluster 4 59.09 8.86 59.09 8.86 59.09 8.86

2019

Cluster 0 61.47 7.35 65.18 9.08 57.93 6.3
Cluster 1 58.18 6.39 62.82 7.57 58.61 6.37
Cluster 2 62.84 8.29 69.54 11.38 64.74 9.17
Cluster 3 62.75 8.25 62.75 8.25 62.75 8.25
Cluster 4 62.87 8.27 62.87 8.27 62.87 8.27

2020

Cluster 0 53.28 5.68 63.38 9.56 55.48 5.67
Cluster 1 63.61 9.47 55.6 5.93 62.73 8.12
Cluster 2 57.54 6.95 61.24 7.37 61.33 8.75
Cluster 3 59.76 7.73 59.76 7.73 59.76 7.73
Cluster 4 59.74 7.71 59.74 7.71 59.74 7.71

2021

Cluster 0 56.3 6.28 54 6.03 59.02 6.61
Cluster 1 62.71 8.72 58.76 10.8 64.81 10.32
Cluster 2 59.87 7.7 58.93 6.75 62.82 8.18
Cluster 3 58.7 7.34 58.7 7.34 58.7 7.34
Cluster 4 58.66 7.36 58.66 7.36 58.66 7.36

Table 6. Number of parcels labeled as mown or grazed simultaneously by models using the 3 different
feature matrices.

K-Means Isolation Forest

Year Seemingly
Mown Parcels

Seemingly
Grazed Parcels

Seemingly
Mown Parcels

Seemingly
Grazed Parcels

2018 2901 3086 5343 54,267
2019 4335 19,880 5923 54,904
2020 8082 1296 5610 56,698
2021 750 2454 10,601 88,201

TOTAL 16,068 26,716 27,477 250,070

Table 7. Percentage of parcels tagged as mown in each dataset with both UACs.

Year
K-Means Isolation Forest

Weekstd Weekfft Yearstats Weekstd Weekfft Yearstats

2018 0.38 0.42 0.44 0.20 0.21 0.28
2019 0.38 0.41 0.39 0.20 0.21 0.22
2020 0.56 0.57 0.50 0.18 0.19 0.27
2021 0.23 0.21 0.29 0.17 0.17 0.14

Mean 0.39 0.40 0.40 0.19 0.19 0.23
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Table 8. Prediction performance of the partial least squares discriminant analysis to predict seemingly
mowing events.

Algorithm Dataset N
Components

Calibration
Accuracy

Validation
Accuracy
(N = 68)

K-means week_std 4 0.99 ± 0.0004
(N = 42,784)

0.48
(N = 33)

week_fft 7 0.99 ± 0.0004
(N = 42,784)

0.66
(N = 45)

yearstats 6 0.98 ± 0.0011
(N = 42,784)

0.54
(N = 37)

Isolation forest week_std 7 0.95 ± 0.0006
(N = 277,547)

0.18
(N = 12)

week_fft 9 0.95 ± 0.0005
(N = 277,547)

0.31
(N = 21)

yearstats 6 0.94 ± 0.0006
(N = 277,547)

0.40
(N = 27)

To assess the coherence among the different models, we computed the correlations
of their probabilities of being mown parcels, depicted in Figure 4. The observed positive
correlations suggested a similar signal across the various models, even though they were
all executed using a reference dataset created based on the UAC outputs. However, these
correlations did not reach 1, indicating some discrepancies between the labels assigned to
parcels by the different algorithms. The highest similarity was noted between the PLS-DA
models developed from the week_std k-means and week_fft k-means datasets. As shown
in Figure 4, PLS-DA models created from datasets generated through the IF and k-means
techniques did not exhibit strong convergence; their correlation was generally below 0.80 in
most cases. This contrast is further highlighted when comparing the reference datasets
used to execute the PLS-DA. Only 1858 parcels/year were consistently labeled as mown by
these two methods, representing 11.56% in the k-means dataset and 6.76% in the IF dataset.
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To evaluate the performance of the models, external validation was required as the
reference values were established through unsupervised learning. According to the val-
idation performance detailed in Table 8, PLS-DA demonstrated superior performance,
particularly when utilizing datasets derived from k-means, with a validation accuracy
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reaching up to 0.66, a criterion for discriminating the best model. An indirect validation
approach involves applying the developed PLS-DA models to the entire dataset to observe
the number of detected mown parcels. Table 9 presents the count of parcels labeled as
mown by the best PLS-DA algorithm for each studied year. The probability threshold set
to label a parcel as mown was defaulted to 0.5. However, testing alternative threshold
values resulted in noticeable variations in the number of parcels tagged as mown, as shown
in Table 9. Consequently, fixing this threshold would be necessary. Unfortunately, the
available validation set did not provide the number of mowing events associated with each
parcel.

Table 9. Percentage of parcels labeled as mown in the entire dataset using the PLS-DA based on
the week_fft dataset with the k-means approach for several thresholds of mown probability (in
parentheses).

Year
Total

Parcels

Percentage of Parcels Flagged as Mown

week_fft
(0.50)

week_fft
(0.45)

week_fft
(0.40)

week_fft
(0.35)

week_fft
(0.30)

2018 86,218 42 53 65 77 88
2019 86,617 41 48 57 66 78
2020 91,224 57 66 75 84 91
2021 136,892 21 27 36 47 65
Total 400,915 40 49 58 68 80

4. Discussion

As highlighted in the introduction, there is a growing interest in understanding graz-
ing and mowing management practices, particularly to assess the potential environmental
impacts [6,8,11]. This could be addressed with the creation of a grazing calendar, but its
updating proves to be time-consuming, limiting its adoption among farmers [20]. Another
possible solution is the utilization of GPS collars [15], but despite their effectiveness, they
face restrictions due to the significant financial investment involved. An alternative that
holds appeal for farmers is associated with the use of readily available spatial data, espe-
cially through projects like Copernicus [46]. However, the varying availability of optical
data and the lack of comprehensive reference data pose constraints on the development of
models [18,20] for detecting mowing events. The innovative aspect of this study lies in the
application of unsupervised learning based on CSH predicted from S1, S2, and meteoro-
logical data. This approach aims to address the challenge of the scarcity of reference data,
providing a novel solution for mowing event detection.

The detection of mowing clusters was possible with both UACs, but only
1858 parcels/year were consistently labeled as mown by these two techniques, repre-
senting 11.56% in the k-means dataset and 6.76% in the IF dataset. This difference could be
explained by the fact that for the IF algorithm, the isolation of parcels considered mown
was based on a fixed threshold (i.e., 20%). To solve this issue, we considered examining
the percentage of parcels flagged as mown by the three datasets, as shown in Table 7. The
results showed mean variation from 0.39 to 0.40 for k-means and from 0.19 to 0.23 for IF
across the 4 years. The percentage observed for k-means is therefore more in line with the
Walloon statistics [50].

This previous step, which allowed labeling of parcels that seem to be affected by
mowing events, can be used to train a PLS-DA with the aim of automatically detecting
mowing events based on a large dataset. Indeed, the dataset size was 42,784 for k-means
and 277,547 for IF. This has never been used in past studies related to the detection of the
mowing effect. Indeed, they used between 236 and 1200 reference records [17,18,20,21]. The
size of our training set, reachable with the unsupervised learning method we presented, is
interesting to improve the robustness of a model [52]. The PLS-DA models showed a good
ability to detect seemingly mowing events, with a calibration accuracy ranging from 0.94 to
0.99. The ability of the k-means output to build the PLS-DA models was also better.
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To check the ability to detect confirmed mowing parcels, a validation was conducted
using a limited dataset (N = 68). The IF method employed in the study exhibited lower
accuracy, reaching a maximum detection rate of 40%, as shown in Table 8. Two main
hypotheses can be proposed to explain this result: either the model was trained with a fixed
threshold that does not match enough with the actual number of mowing events, or the
validation data had patterns that did not align well with the eventual patterns found by the
IF. It raises a question about the effectiveness of the method, especially given the temporal
nature of the data involved in this study. Consequently, our choice is to push the use of
k-means during unsupervised learning because the validation accuracy reached 0.66. Even
if this value was lower than the one observed for calibration, a 66% accuracy on a large
scale is deemed satisfactory when examining the literature. For instance, in [18], continuous
validation information resulted in the correct detection of 63% of mowing events. Higher
detection rates, up to 86%, have been reported [17] using change detection in the time series
of S1 and S2 data. However, it is important to note in this case that the precision of this
model dropped to 57% when considering all grassland types; our study also considered all
grassland types but considered them as pasture. Challenges in identifying mowing events
in this study may stem from the mixed practices of farmers, as evidenced in [18], where half
of the false positives were detected in pastures that were also grazed. Another potential
factor affecting model performance is intense grazing over a short period, identified as a
significant confounding factor in [17].

Now, we will examine the potential significance of the developed predictive models.
The aim of this study was to create a model for identifying mown or grazed parcels using
routinely recorded data (S1, S2, and meteorological data). This model serves the purpose
of verifying compliance with label specifications such as “Happy Marguerite cow” in
Belgium or “Lait de pâturage” in France, ensuring that cows are genuinely on pastures for
a specific duration rather than being fed with mown grass [15]. While the 66% validation
performance achieved might seem a bit low, it is important to note that the validation
set consisted of only 68 records. Enhancing the performance of this potential labeling
check could involve supplementing the obtained probability with information about milk
composition. It is well established that milk composition, particularly the fatty acid profile,
is influenced by diet.

This method opens up another potential application: estimating damages, such as
those resulting from droughts. Utilizing a meticulously assessed small reference dataset, the
study suggests that mowing events may diminish grassland resistance to drought [53]. For
instance, mowing can limit the water uptake capacity of plants by directly reducing their
evapotranspiration [54]. This application is of particular significance in Wallonia, where the
extensive time required for drought damage assessments often results in a standardized
rate assigned to the area without a precise evaluation of farmers’ losses. Implementing this
approach could offer advantages for both insurers and farmers, ensuring more accurate
financial compensation that aligns with the actual losses incurred.

5. Conclusions

This study aimed to develop models for detecting mown or grazed parcels using
easily recorded routine data, showcasing variable detection performance based on the
dataset and the unsupervised method employed. Predictions from the k-means technique
outperformed those derived from the IF outputs. The highest validation performance,
reaching 66%, was achieved by employing a PLS-DA with a dataset utilizing k-means
and incorporating week_fft features. The study’s approach aims to address the challenge
of acquiring reference data by leveraging all data acquired in the validation process and
employing unsupervised methods for model calibration. Utilizing a larger training dataset
leads to increased variability, thus enhancing the model’s robustness. Moreover, incor-
porating a proxy like the CSH, which considers multiple data sources from S1, S2, and
meteorological data, reduces the models’ dependency on external factors, a limitation often
encountered when exclusively using remote sensing data. We suggest further refinement of
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the initial PLS-DA model by implementing an assessed gap-filling method and employing
a larger validation set. These aspects, challenging to explore in depth in this study, are
crucial steps before considering the widespread application of this algorithm in areas such
as label marking, land-use changes, or drought assessment analyses.
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