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Bone fracture healing is a well-orchestrated but complex process that involves

numerous regulations at different scales. This complexity becomes particularly

evident during the inflammatory stage, as immune cells invade the healing region

and trigger a cascade of signals to promote a favorable regenerative

environment. Thus, the emergence of criticalities during this stage might

hinder the rest of the process. Therefore, the investigation of the many

interactions that regulate the inflammation has a primary importance on the

exploration of the overall healing progression. In this context, an in silico model

named COMMBINI (COmputational Model of Macrophage dynamics in the Bone

INjury Immunoresponse) has been developed to investigate the mechano-

biological interactions during the early inflammatory stage at the tissue,

cellular and molecular levels. An agent-based model is employed to simulate

the behavior of immune cells, inflammatory cytokines and fracture debris as well

as their reciprocal multiscale biological interactions during the development of

the early inflammation (up to 5 days post-injury). The strength of the

computational approach is the capacity of the in silico model to simulate the

overall healing process by taking into account the numerous hidden events that

contribute to its success. To calibrate the model, we present an in silico

immunofluorescence method that enables a direct comparison at the cellular

level between the model output and experimental immunofluorescent images.

The combination of sensitivity analysis and a Genetic Algorithm allows dynamic

cooperation between these techniques, enabling faster identification of themost

accurate parameter values, reducing the disparity between computer simulation

and histological data. The sensitivity analysis showed a higher sensibility of the

computer model to the macrophage recruitment ratio during the early

inflammation and to proliferation in the late stage. Furthermore, the Genetic

Algorithm highlighted an underestimation of macrophage proliferation by in vitro

experiments. Further experiments were conducted using another externally

fixated murine model, providing an independent validation dataset. The
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validated COMMBINI platform serves as a novel tool to deepen the

understanding of the intricacies of the early bone regeneration phases.

COMMBINI aims to contribute to designing novel treatment strategies in both

the biological and mechanical domains.
KEYWORDS

bone fracture healing, inflammatory phase, macrophages, in silico model, multiscale
model, sensitivity analysis, genetic algorithm, immunofluorescence
1 Introduction

Fracture healing in long bones is a complex process where

numerous biological factors cooperate for the complete restoration

of the original bone structure and functionality. What makes this

process fascinating is the innate capacity of the bone to

autonomously initiate its own healing following an injury

[Bigham-Sadegh and Oryan (1)]. Immediately after the injury,

biological and mechanical factors within the healing region guide

the progression of fracture repair [AI-Aql et al. (2); Hankenson et al.

(3); Bahney et al. (4)]. The haematoma that forms within the bone

fracture has a strong osteoinductive potential [Tsunoda et al. (5);

Kolar et al. (6)], generating the environment for successful initiation

of the healing process. The early stage of bone fracture healing is

characterized by a cascade of events that involves numerous cells,

molecules and chemicals recruited from disrupted blood vessels,

bone marrow and periosteum niches.

The inflammatory stage is the initial step of bone fracture

healing [Schmidt-Bleek et al. (7)]. It starts immediately after the

injury as a first response and clears the fracture region of debris,

apoptotic cells and necrotic tissue [Niu et al. (8)]. When an open

fracture occurs, the inflammatory response prevents the unhindered

invasion of external pathogens, thereby reducing the risk of diseases

or infection [Loi et al. (9)]. The inflammatory environment is

formed promptly after the injury through the invasion and

recruitment of specialized cells [Baht et al. (10)], namely innate

immune cells. The haematoma region, where the initial phases of

healing take place, is formed by a blood clot as a result of disrupted

vessels [Kolar et al. (6); Schell et al. (11)] This clot, which contains

bone debris and other dead cells forms a region where the

inflammatory response is promoted (pro-inflammatory) [Kolar

et al. (6)]. The recruitment of innate immune cells such as

neutrophils and macrophages will guarantee the cleansing of the

healing area from debris and dead cells, which are phagocytized and

degraded [Wu et al. (12); Loi et al. (9); Maruyama et al. (13);

Gierlikowska et al. (14)]. During the initial inflammation by innate

immune cells, a specialized adaptive immune response is triggered

with the recruitment and activation of T and B cells, natural killer

cells and dendritic cells [Baht et al. (10)]. Especially T cells of the

adaptive immune system have been found to regulate the tissue

formation beyond the hematoma phase [Reinke et al. (15); Schlundt

et al. (16); Bucher et al. (17)]. The innate immune response is

initiating the healing cascade whereas the adaptive immune
02
response is dynamically regulating the ongoing inflammatory

process. The current version of the COMMBINI model focuses

on this inevitable inflammatory stage initiated primarily by

macrophages after bone injury.

The physiological development of the inflammatory stage is

paramount for the successful repair of the injury [Mountziaris and

Mikos (18); Wu et al. (12); Loi et al. (9); Gu et al. (19); Hoff et al.

(20); Duda et al. (21)]. However, due to the many factors involved,

disruption to the healing cascade is not rare. While some

disturbances may have minimal impact, there is a possibility for

the occurrence of compromising events, leading to healing delay or

non-unions [Bishop et al. (22); Wildemann et al. (23)]. Scenarios

where a depleted quantity of macrophages is induced show

compromised repair [Alexander et al. (24); Vi et al. (25);

Schlundt et al. (26)]. Additionally, prolonged inflammation can

have detrimental effects on the healing process, leading to chronic

inflammation [Maruyama et al. (13)]. Therefore, it is crucial to

regulate and buffer the inflammation (anti-inflammatory response)

after a certain number of days [Newman et al. (27)]. Accordingly, a

well-coordinated sequence of events is required to generate a

suitable environment for the repair and remodeling stages, which

will complete the healing process in the following weeks [Baht et al.

(10)]. Due to its “dance-opener” role, the successful development of

the inflammatory stage is essential to guarantee a productive healing

progression. Consequently, many recent studies on bone fracture

healing have shifted their focus to this initial stage [Maruyama et al.

(13); Newman et al. (27); Baratchart et al. (28)]. Therapeutics and

treatments that support the correct initiation of bone fracture

healing hold clinical significance in the new generation of

biological and mechanical instruments aimed at reducing the risk

of failure to heal.

Most of the available literature utilizes in vitro models to

investigate the immune events that characterize the inflammatory

stage of bone healing [Ying et al. (29); Lin et al. (30); Nathan et al.

(31)]. However, evaluating the role of dynamics and interactions in

the complete scenario remains experimentally challenging.

Computer modeling is gaining more and more interest in the

academic field for the investigation of mechano-biological

processes occurring at multiple levels [Giorgi et al. (32);

Vavourakis et al. (33); Lafuente-Gracia et al. (34)]. The possibility

to simulate cellular and molecular dynamics and interactions is a

valuable asset for the detailed study of bone fracture healing

[Borgiani et al. (35); Garcıá-Aznar et al. (36)]. Despite their
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potential, existing computer models of bone fracture healing are

mostly limited to the study of the mechano-biological process

during repair phases, neglecting the role of the inflammatory

stage [Lafuente-Gracia et al. (34)]. To date, only few computer

models explored this stage of bone healing by using continuous

domains to investigate the dynamics of inflammatory cell and

cytokine concentrations [Kojouharov et al. (37); Trejo et al. (38);

Baratchart et al. (28)]. However, while those models only evaluate

the temporal evolution of the inflammatory cells and cytokines

dynamics, the multiscale in silico model that we propose employs

the computational potentialities to extend the investigation to the

spatial dimensions.

In this manuscript, we present a novel in silico framework to

investigate the mechano-biological interactions in the early

inflammatory stage of bone fracture healing at tissue, cellular

and molecular levels. A multiscale model is proposed to

investigate the interactions between different levels of biological

components (e.g. cells, cytokines). The agent-based modeling

approach provides a new perspective on the role of immune cell

populations during the inflammatory stage and their intrinsic

capacity to regulate - and be regulated - by the pro- and anti-

inflammatory cytokines at the molecular level. The model

combines multiple algorithms, to simulate the complete

spectrum of multiscale interactions and regulations that happen

during the inflammation phase in bone healing. Model calibration

was performed using a combination of in vitro and in vivo results

reported in the literature, in part analyzed using a newly

developed in silico immunofluorescence pipeline. Model

validation was executed using an in-house in vivo experiment.

With this study, we deliver a computational tool that supports the

investigation of novel therapeutics and treatments to enhance

bone fracture healing with dedicated attention to the multiscale

events that interlace during the inflammatory stage.
2 Materials and methods

2.1 The agent-based model to investigate
the cellular level

To investigate the inflammatory stage of bone fracture healing,

a multiscale in silico model has been developed. The model, named

COMMBINI (COmputational Model of Macrophages dynamics in

the Bone INjury innate Immunoresponse), aims to simulate the

biological and mechanical environment during the progression of

the healing of a long bone fracture. To date, only the cellular and

molecular modules of COMMBINI have been developed with the

support of PhySiCell [Ghaffarizadeh et al. (39)], an open-source

software that simulates the cells as single entities within an agent-

based model. These virtual cells perform phenotype-specific

activities (e.g. migration, proliferation) and regulate the molecular

level (e.g. consumption and production of cytokines).

During the inflammatory stage, the cellular level plays a major

role, as the innate immune cells actively contribute to initiating the

healing response. To simulate this cellular level, an agent-based

model has been developed. With this approach, each cell was
Frontiers in Immunology 03
simulated independently and not as a passive component of a cell

population, thereby providing stochasticity to the investigation and

guaranteeing the spatio-temporal variability that characterizes

biological systems [Wehrens et al. (40); Allen et al. (41)]. The

simulation was performed within a geometrical domain that

represents the shape of a murine tibia fracture over a virtual period

of 3 days, encompassing the early inflammatory stage. For the current

study, a fracture opening in the center of the bone was simulated. The

size of the fracture gap depends on the specific case study under

investigation (cfr. § 2.3, 2.7). The model geometry was created by

assuming a hollow cylinder as a simplified shape for the bone and a

spheroid shape for the callus domain (healing region), following the

same assumptions as previous studies [Wang and Yang (42); Borgiani

et al. (43); Perier-Metz et al. (44)]. The healing region is the spatial

domain where cell activities and molecular dynamics are simulated.

Boundary conditions are imposed on the surfaces of the healing

region. Bone marrow is simulated as a reservoir of non-polarized

macrophages: they are recruited from the bonemarrow compartment

to invade the healing region. Furthermore, once the inflammation is

over, the macrophages leave the region and emigrate back to the

marrow compartment. The same conditions are imposed on the

curved surface of the healing region, which simulates the periosteal

boundaries. A zero-flux condition is imposed on the surface of the

bone cortex as it is assumed that cells cannot migrate and cytokines

cannot diffuse through it. The 2D model is generated by an

intersecting plane along the middle axis (Figure 1A).

The iterative nature of the model allowed the investigation of the

cellular environment evolution with a time resolution of Dtcell =
1 min. In each iteration, virtual cells within the Region of Interest

(ROI) perform specific actions based on phenotype-specific ratios,

and the cellular environment is updated accordingly. Four different

cell phenotypes are described in this computer model: non-polarized

macrophages (M0), pro-inflammatory macrophages (M1),

anti-inflammatory macrophages (M2) and polymorphonuclear

neutrophils (PMN) (Figure 1B). The PMNs are the only cell type

simulated within the healing region at the initial time-point. They are

uniformly distributed within the region with an initial concentration

[PMN]0. Macrophages start to appear from the first iterations of the

simulation onward. At the molecular level, an initial concentration of

fracture debris (Db0) is homogeneously distributed within the healing

region. This initial condition is crucial as the presence of debris

chemotactically promotes the invasion of the healing region by the

immune cells. No inflammatory cytokines are simulated within the

region at the initial time-point but they start being secreted from

the first iteration onwards. The M0 recruitment from the marrow

cavity and tissues surrounding the healing region is stimulated by the

presence of debris. The PMNs and macrophages phagocytose the

debris, leading to a decrease in its concentration and recruitment

capacity as healing progresses. To simulate this behavior in the

computational model, the M0 recruitment ratio follows a dynamic

pattern that decreases along with the physiological reduction of debris

concentration within the healing region [Trejo et al. (38)]:

DM0
Dt

= kR(M0) 1 −
½MF�

½MF�max

� �
½Debris� (1)
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Equation (1) halts macrophage recruitment when no more

debris needs to be removed or if the maximal concentration of

macrophages is reached within the healing region. The dynamic is

regulated by two parameters, whose variation can lead to faster or

slower recruitment of macrophages: kR(M0) is the maximum non-

polarized macrophage recruitment ratio and [MF]max is the

maximal macrophage concentration allowed within the healing

region. To create a realistic evolution of the cellular environment

during the inflammatory stage of bone healing, the macrophages

and PMNs perform additional activities, i.e. they migrate,

proliferate, polarize and are subject to apoptosis (Figure 1C).

In COMMBINI, cellular migration is stochastically simulated as

a sequence of “jumps” in random directions to create a movement

pathway in the 2D space [Allen et al. (41)]. The span of each jump is

defined by the migration speed (kv) associated with each cell
Frontiers in Immunology 04
phenotype. Cellular proliferation is simulated by generating a

daughter cell with identical characteristics to its mother cell in

one of the neighboring positions. The proliferation ratio (kp)

associated with each cell phenotype determines the frequency of

cell division within each iteration. Apoptosis is simulated as the

removal of cells by programmed cell death. The apoptosis ratio (ka)

of a cell increases with the accumulation of phagocyted debris

[Bratton and Henson (45)] and the number of other cells in its

vicinity, mimicking the consumption of essential nutrients for

survival. Furthermore, macrophages have the ability to change

their phenotype in response to the surrounding inflammatory

environment as perceived at the molecular environment (more

details in § 2.2). The M0 macrophages can, under specific molecular

conditions, polarize into either an M1 or M2 phenotype (Figure 1B)

[Yunna et al. (46)]. In our model, this process is simulated as the
A B

C

FIGURE 1

Overview of the COMMBINI components. (A) Simulation domain (blue), based on the callus geometry for bone fracture healing, wherein the cellular
and molecular levels are simulated. Dimensions reported in mm. (B) Multiscale interactions between the cellular level (left) and the molecular level
(right). Circular arrows: proliferation/population doubling; dash-dotted arrows: macrophage polarization/interpolarization; gradient arrows: cytokine
secretion; black arrows: cellular activity regulations (solid: promotion, dashed: inhibition). M0: non-polarized macrophages, M1: pro-inflammatory
macrophages, M2: anti-inflammatory macrophages, PMN: polymorphonuclear neutrophils, TNFa: Tumor Necrosis Factor alpha, IL10: Interleukin 10,
TGFb: Transforming Growth Factor beta, IFNg: Interferon gamma. (C) Schematic representation of the rules that regulate the two levels. At the
cellular level (top), for each cell it is checked if the cell is in an apoptotic, proliferative or polarized state, according to dynamics reported in the
literature and translated into computer model algorithms. If apoptotic (a), the cell is removed by the model; if proliferative (b), a daughter cell is
created in one of the surrounding positions; if polarized (c), the phenotype changes. The cell can migrate (d) by performing a sequence of jumps.
Each cell releases specific molecules at the molecular level (bottom) by increasing their concentration in the specific position (e). Then, the
molecules diffuse (f) from regions of high concentrations to low; and degrade (g) following exponential dynamics, therefore having a faster decay in
more concentrated regions. The molecular environment regulates the polarization algorithm (c) and drives cell migration (d) through chemotaxis.
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change of the phenotype flag associated with the macrophage.

Following the phenotype switch, the virtual macrophage adjusts

its behavior by modifying its parameter values and algorithm

dynamics according to the characteristics assigned to the new

phenotype. Moreover, although infrequent, interpolarization can

occur between M1 and M2 phenotypes, depending on whether pro-

inflammatory macrophages reside in an anti-inflammatory

environment, and vice versa (Figure 1B)[Yunna et al. (46)]. Inter-

polarization into pro-inflammatory macrophages is rare compared

to the interpolarization into the anti-inflammatory phenotype due

to the natural progression of the bone healing process. To avoid

unnecessary complexity, this model does not include further

subdivisions within the M2 subtypes. However, the model can be

readily expanded to include such subdivisions if the scope is

extended beyond the inflammatory stage to incorporate the

repair phase.

In the discrete agent-based model, the apoptosis, proliferation

and polarization conditions are reported as probability values for

the respective event to occur within the iteration period Dtcell.
Therefore, during each iteration, a random floating point value

between 0 and 1 (precision 10−6) is assigned to each cell for each

event. If the value exceeds the probability value, the event does not

get triggered (N paths in Figure 1C). Conversely, if the value is

lower than the probability value, the cell is removed, generates a

daughter cell or changes its phenotype (Y paths in Figure 1C). For

cell proliferation, the position of the daughter cell is randomly

selected from the four adjacent positions that are not occupied by

other cells. Migration is performed at every iteration by allowing

the cell to jump multiple times to adjacent positions based on

their migration speed and the spatial and temporal resolution of

the model. In this model, assuming a spatial resolution of 1 µm

(cellular model spatial resolution) and an iteration period of Dtcell
= 1 min (temporal resolution), a PMN (kv = 5.00 µm min−1) will

perform five jumps during each iteration. The direction of each

jump is randomly chosen among the four surrounding positions

that are not occupied by other cells, when chemotaxis is not

involved. However, a large part of the phagocytic cells

included in this work is driven by the fracture debris gradient.

Chemotaxis is incorporated into the model by directing cell

movement according to the gradient of the chemotactic agent

concentration (Figure 1C).

While macrophages are recruited, PMNs promote the onset of

the inflammatory response. In the first version of COMMBINI,

PMNs are the only non-macrophage population considered at the

cellular level. At the start of the simulation, PMNs are uniformly

distributed within the healing region with an initial concentration

[PMN]0. Through the course of the inflammation, PMNs are

recruited from the surrounding tissues by following a dynamic

analogous to (1). PMNs are short-lived cells that tend to disappear

from the healing region after triggering the initial inflammatory

signal and its amplification [Summers et al. (47)]. Therefore, the

proliferation of PMNs is not included in the model (Figure 1B). To

simulate the natural behavior of neutrophils, PMNs simulated in

COMMBINI release pro-inflammatory cytokines and clear debris

from their surroundings to generate a pro-inflammatory

environment [Kovtun et al. (48, 49)].
Frontiers in Immunology 05
2.2 Differential equations to describe the
molecular level dynamics

The cellular level has a mutual regulatory relationship with the

molecular level. Consequently, we simulated the molecular model

within the same agent-based model that simulates the cellular

environment. The dynamics of cytokine concentration at the

molecular level are simulated using partial differential equations

(PDE) with function descriptions obtained from the literature

(Supplementary Table 2). The equations were solved using the

BioFVM solver [Ghaffarizadeh et al. (50)] on a 2000 µm x 2000 µm

square 2D grid within the healing region, with a resolution of 10

µm. The concentration of each inflammatory cytokine is evaluated

in each grid element. This setup enables multiscale interactions, as

each element in the molecular model shares its position with one or

more cells in the cellular environment, according to the common

coordinate system. The activities of the cells within the same

element are regulated by the cytokine concentration within it

(Figure 1C). Conversely, the presence of cells within each element

regulates the intrinsic variation of cytokine concentration,

reproducing phenotype-specific dynamics (Figure 1C).

Macrophage polarization is regulated by the molecular level as

the macrophages simulated at the cellular level polarize according

to the cytokine concentration predicted in the same spatial location

of the healing region (Figure 1C). Tumor Necrosis Factor alpha

(TNFa) and Interleukin 10 (IL10) have been chosen for this model

to respectively represent pro- and anti-inflammatory cytokines at

the molecular level. Therefore, we described the macrophage

polarization rules as probability functions, which are regulated by

the concentration of those cytokines [Trejo et al. (38)]:

P(M0 → M1) = k01
TNFa½ �

a01 + TNFa½ � (2)

P(M0 → M2) = k02
IL10½ �

a02 + IL10½ � (3)

P(M1 → M2) = k12
IL10½ �

a12 + IL10½ � (4)

P(M2 → M1) = k21
TNFa½ �

a21 + TNFa½ � : (5)

In equations (2 - 5), the parameters k represent the macrophage

polarization ratios and the parameters a represent the cytokine half-

saturation for macrophage polarization.

The molecular environment is, in turn, regulated by the immune

cells (Figure 1B). These release pro- and anti-inflammatory cytokines,

according to the dynamics included in the model. In addition to TNFa
and IL10, the model includes Transforming Growth Factor beta

(TGFb) and Interferon gamma (IFNg), as they regulate cell activity

in the healing region: e.g. TGFb lowers secretion of pro-inflammatory

cytokines by M1 macrophages [Nagaraja et al. (51)], and IFNg
downregulates macrophage proliferation (Figure 1B). All the cell-

specific cytokine secretion dynamics simulated in this model are

reported in Table 1.
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The cytokines diffuse through the molecular level by following

Fick’s law of diffusion, with a specific diffusion coefficient (D)

associated with each cytokine. Neumann boundary conditions (no-

flux) have been assigned to the borders of the healing region and

bone cortex. Additionally, decay rates (d) have been set for each

cytokine to simulate their enzymatic degradation, leading to a

decrease in concentration. A temporal resolution of Dtmol = 1 s

was assigned to iteratively simulate the dynamics within the

molecular level. To coordinate the temporal dynamics between

the two levels, which are characterized by different temporal

resolutions, the cellular environment updates every 60 iterations

of the molecular level.

Additionally, the molecular level simulates the dynamical

spatio-temporal variation of the concentrations of debris within

the healing region. In this study, the term debris is used to define the

agglomerate of dead cell bodies and necrotic tissue pieces resulting

from the bone fracture. The presence of debris elicits the release of

Damage Associated Molecule Pattern (DAMP) inflammatory

stimuli. The distribution of debris concentration is included at the

molecular level as a biological variable capable of influencing the

inflammatory stage development [Chow et al. (52)]. In

COMMBINI, the macrophages follow the debris concentration

gradient at the molecular level to orient their migration towards

the zones of the healing region characterized by a higher

concentration of debris. Phagocytosis has been implemented in

the model as the capacity of macrophages and PMNs to remove

debris in their spatial surroundings, hence clearing the healing

region. An engulfment ratio ke was defined to quantify the debris

phagocyted by those cells within the iteration period.
2.3 Dedicated in vivo experiments for
model calibration

The model parameters at both cellular and molecular levels

were obtained from previously published in vitro works that
Frontiers in Immunology 06
investigated the biological characteristics of macrophages and

cytokines (Supplementary Tables 1, 2). Afterward, a parameter

calibration was performed to minimize the differences between

the simulation outcomes and the experimental results from

dedicated in vivo studies through the use of immunofluorescent

imaging of macrophage populations. The in vivo experiments have

received approval from the Ethical Committee for Animal

Experimentation of the KU Leuven (approval number 020/2022).

Tibial osteotomies (1 mm) were created in male C57BL/6 mice,

fixated with an external Ilizarov fixator as previously described [van

Gastel et al. (53)]. Three samples were obtained from the animals at

3 days post-fracture and prepared for immunohistology. The

samples were fixated in formalin overnight at 4°C and decalcified

with an edetic acid (EDTA) solution. The decalcified fracture

samples were embedded in paraffin and 5 µm thick sections were

mounted on glass slides. One slide from the center of each sample

has been selected for immunofluorescence staining, obtaining n = 3

ex vivo images to use for calibration. The slides were deparaffinized

with Histo-Clear (National Diagnostics, cat. no. HS-202) and

dehydrated, followed by enzymatic antigen retrieval using 1 mg

mL−1 Pepsin in 0.02M HCl. The samples were blocked with 5%

bovine serum albumin (BSA) in phosphate-buffered saline (PBS)

with 0.1% Tween20 (Merck, cat. no. P1379) and 0.01% Tergitol

(AppliChem, cat. no. A9780) for 45 minutes at room temperature.

The samples were stained with immunofluorescent markers for

macrophages and their specific subtypes. DAPI identifies all the

nuclei and the Cluster of Differentiation 68 (CD68) is a general

marker for macrophages [Schlundt et al. (26)]. Co-expression of

CD68 and CD80 is specific for pro-inflammatory macrophages,

while co-expression of CD68 and CD206 identifies anti-

inflammatory macrophages [Schlundt et al. (26)]. The samples

have been incubated overnight at 4°C with a 1:500 dilution of

anti-CD68 antibody (ThermoFisher, cat. no. 14-0681-82) and a

1:100 dilution of anti-CD80 (ThermoFisher, cat. no. PA5-85913) or

anti-CD206 antibody (ThermoFisher, cat. no. PA5-101657) in
TABLE 1 Cell-specific cytokine secretion dynamics for each cytokine included in the in silico model.

M0

TNFa kTNF 1 +
kTNI

1 + e ðaTNI−½IFNg�Þ

� �

IL10 kIL10

TGFb kTGF

IFNg kIFNe
−a

ITN[TNFa]

M1

TNFa kTNF(kTNILe
−aTNIL ½IL10� + bTNIL)(kTNTGe

−aTNTG ½TGFb� + bTNTG) 1 +
kTNI

1 + e ðaTNI−½IFNg�Þ

� �

TGFb kTGF

IFNg kIFNe
−a

ITN[TNFa]

M2
IL10 kIL10

TGFb kTGF

PMN
TNFa kTNF

IFNg kIFN
M0: non-polarized macrophages, M1: pro-inflammatory macrophages, M2: anti-inflammatory macrophages, PMN: polymorphonuclear neutrophils, TNFa: Tumor Necrosis Factor alpha, IL10:
Interleukin 10, TGFb: Transforming Growth Factor beta, IFNg: Interferon gamma.
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blocking buffer. On the second day, the samples were incubated for

4 hours at room temperature with Goat anti-rat IgG, Alexa Fluor

Green 488 antibody with a 1:500 dilution (ThermoFisher, cat. no.

A-11006) and Donkey anti-Rabbit IgG, Alexa Fluor Red 594 with a

1:1000 dilution (ThermoFisher, cat. no. A32754) in blocking buffer.

Since bone is autofluorescent, the Vector TrueVIEW

autofluorescence quenching kit (Vector, cat. no. SP-8400-15) was

used. Finally, a counterstaining was performed with 5 µg mL−1

DAPI for 10 minutes. The samples were dried and mounted in

VECTASHIELD Vibrance Antifade (Vector, cat. no. H-1700).

Samples were imaged using the Olympus IX83 inverted

microscope within 48 hours. The sections were conserved at

-20°C for additional image acquisitions.
2.4 Deep-learning cell quantification and in
silico immunofluorescence

A custom Python script was developed to analyze the

immunofluorescent images and extract quantitative information

at the cellular level. The outcome of the pipeline generates a fully

segmented image with spatial information about macrophage

distribution. Whole-cell segmentation was performed by Mesmer

(DeepCell), a deep-learning tool trained on an extensive database

of tissue image data and validated by experts [Greenwald et al.

(54)]. Dimension filtering is applied to the images and the

elements with a surface area below 80 µm2 or larger than 200

µm2 are not classified as cells [Cannon and Swanson (55)]. An

ROI is chosen on the immunofluorescent image by selecting the

fracture region, avoiding the bone cortex and staining artifacts. All

cells within the ROI are labeled according to phenotype and

quantified. For each macrophage phenotype, concentrations are

calculated by dividing the number of cells by the ROI area. This

data is compared with the macrophage concentrations simulated

by the cellular level in the agent-based model. To perform a more

direct qualitative comparison, in silico immunofluorescence was

generated as output of the computational model by assigning

the same color-coded pattern to the virtual cells as the
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immunofluorescent images. For example, the bright green

fluorescence assigned to the CD68 channel was used to paint

the cytoplasm of all the virtual macrophages, as they are supposed

to express that marker (Figure 2). Co-marking is represented by

the chromatic combination of the two markers: i.e. M1 cells that

are co-marked by CD68 (green) and CD80 (red) are represented

in silico with a yellow color (Figure 2). Additionally, this novel

computational technique delivers a dataframe that contains

information about all the cells identified within the ROI of the

immunofluorescence image. Each cell is categorized in detail

according to its size, the 2D position of its centroid and

marker positivity.
2.5 Design of experiments to reduce the
calibration complexity

The parameter calibration of the computer model was

performed by following an optimization pathway to reduce the

difference between quantified experimental and simulation

outcomes. The calibration process can be time-exhaustive when

many model parameters are included. Therefore, a sensitivity

analysis was performed to determine the model parameters that

most strongly influence the quantitative outcome of COMMBINI.

The model was run multiple times with different combinations of

parameter values. Reduction of the number of simulation runs was

possible by cutting non-necessary repetitions with the support of

Taguchi’s orthogonal arrays [Kacker et al. (56)]. This strategy is

convenient when many parameters have to be analyzed: the model

is regulated by 36 parameters and a 2-level sensitivity analysis

would have required 236 simulation repetitions to analyze all the

parameter combinations (full factorial). With Taguchi’s orthogonal

array, we reduced this number to 72, drastically dropping the

estimated runtime of the analysis. An analysis of variance

(ANOVA) was performed on the model outputs to evaluate the

percentage of the total sum of squares (%TSS) for each parameter

[Isaksson et al. (57)]. The absolute value of this percentage

represents how sensitive the output is to variation of the
FIGURE 2

Region of Interest selection in the distal bone fracture (A) and cellular level comparison between ex vivo (B) and in silico (C) immunofluorescence at
day 3 post-fracture. The staining utilized for ex vivo immunofluorescence marked nuclei in blue (DAPI), generic macrophages (MF) in green (CD68)
and pro-inflammatory macrophages (M1) in yellow (co-expression of CD68 and CD80, green + red = yellow). In silico immunofluorescence used
the same color-code associated with the specific macrophage markers used in the experiments to facilitate a direct qualitative comparison between
experimental data and the simulation results. For quantitative comparison, macrophage concentration within the same area (red outline) is
compared, located at the callus site indicated in (A). Scalebar = 200 µm.
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parameter value: higher %TSS expresses a more significant

influence on the output. The sign associated with the %TSS

indicates the influence on the output variation: if positive, an

increase in the parameter value results in an increase in the

output value and vice versa. For each output, the four most

influential parameters were selected according to the highest

%TSS absolute value.
2.6 Genetic Algorithm to perform the
model parameter calibration

Once the most significant parameters were identified by the

sensitivity analysis, we calibrated them with the support of a

Genetic Algorithm (GA) [McCall (58)]. A fitness function was

generated employing data from experimental images, with the aim

of reducing the quantitative differences between the in silico model

and ex vivo immunofluorescence images. Numerical differences

between experimental data (e.g. concentration of macrophages)

and the corresponding quantitative output from the agent-based

model of the cellular level were employed as the fitness function.

The GA follows an evolutionary approach based on subsequent

generations, aiming to minimize the fitness function. If a

combination of parameter values did not reduce the function, it

was removed by the algorithm in the following generation,

allowing it to keep only the most promising ones. The selection

of the most promising values and their cross-combination with

the other components of the population minimized, generation

after generation, the fitness function until a predetermined

threshold was met. A more detailed explanation of the GA

methodology employed to calibrate this model is reported in

Supplementary Materials.
2.7 Model validation with an independent
experimental dataset

Validation of the results was performed on a different dataset of

experimental immunofluorescent images (n = 2), previously

reported by Schlundt et al. (26). Differently from the dataset that

was used for calibration, the model of the validation set is

characterized by a smaller fracture gap size (0.7 mm), in a

different bone (femur) from female mice. The mouse strain

(C57BL/6) was analogous to our in-house experiment and the

same immunofluorescent staining markers were used to

investigate the macrophage distribution in ex vivo images. The

model domain was adapted to match the dimensions of the

validation experiment’s bone and fracture gap. The biological

parameter values obtained from the GA calibration process were

validated by quantitatively comparing the macrophage populations

concentrations simulated on this new domain and the ones

measured from ex vivo immunofluorescent images. The success of

the validation process supports the claim that confirms the assertion

that the additional calibration step using data from in vivo

experiments is important and leads to a more accurate

representation of the inflammatory phase of fracture healing in
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murine long bones than when using parameter values derived from

in vitro experiments reported in the literature.
2.8 Statistical analysis of the in silico results

Due to the involvement of the discrete agent-based framework,

the multiscale model has a stochastic nature. The variability is

shown by the mean and standard deviation of multiple repetitions

(n = 5) of the simulation under the same investigative conditions

and different initial random seeds. One-tailed student’s T-test was

performed to investigate the differences between the calibrated and

non-calibrated models.
3 Results

3.1 In silico immunofluorescence with
literature values

When in vitro experiments reported in the literature are used to

parametrize the model, the simulation results show a concentration

of macrophages within the healing region of 346.4 ± 9.3 mm−2 after 1

day, followed by an average increase of 12.7% between day 1 and day

3. Specifically, at day 1 the M0 concentration is 207.5 ± 8.1 mm−2, the

M1 concentration is 99.2 ± 7.4 mm−2 and the M2 concentration is

39.7 ± 7.1 mm−2. As the inflammation progresses, the concentrations

vary between day 1 and day 3: M0 decreases by 84.4 ± 4.1%, M1 and

M2 increase 2.2-fold (± 0.3) and 3.2-fold (± 0.8) respectively

(Figure 3A). At the molecular level, the cellular engulfment leads to

a reduction in fracture debris over time, resulting in the complete

clearance of debris from the healing region within 3 days (Figure 3B).

Pro- and anti-inflammatory cytokines secreted by immune cells

exhibit analogous dynamics throughout the onset of bone healing,

though pro-inflammatory cytokine secretion is more intense during

the early stage of healing (Figure 3C), followed by a delayed anti-

inflammatory wave (Figures 3C, D).
3.2 Sensitivity analysis to evaluate the most
influential parameters for in silico outputs

When considering the total macrophage concentration output,

the ANOVA test revealed that the in silico model exhibited the

highest sensitivity to the macrophage recruitment ratio (kR(M0))

during the early stage of inflammation (%TSS = 46.9% at day 1,

reduced to %TSS = 3.3% at day 3). In the later stage, it was observed

that the initial concentration of PMNs ([PMN]0) had the largest

impact, although with a negative trend (%TSS = -37.5% at day 3).

Additionally, the non-polarized macrophage proliferation ratio (kp

(M0)) influenced the results at day 1 (%TSS = 12.9%), while the pro-

inflammatory macrophage proliferation ratio (kp(M1)) had a greater

effect on the output at day 3 (%TSS = 15.9%). Furthermore, the debris

engulfment ratio associated with PMNs (ke(PMN)) exhibited an

influence on the predicted macrophage concentration at day 3,

with a negative trend (%TSS = -13.4%). The complete list of %TSS
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associated with each parameter at day 1 and 3 is reported in

Supplementary Table 3.
3.3 Genetic Algorithm to identify optimal
parameter set

By minimizing the fitness function, defined as the difference in

the macrophage concentration within the healing region between

values obtained from computer simulations and experiments on

day 3 postfracture, the GA identified the optimal combination of

values for the most influential parameters at that time-point

([PMN]0, kR(M0), kp(M1), ke(PMN)). The algorithm converged after

nine generations for the parameters (Figure 4), and it resulted in a

clear tendency for higher macrophage proliferation rates (kp(M1)) to

better capture the experimental data (1.07 10−3 min−1, +28.5%

compared to literature value). Calibrated values for macrophage
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recruitment and neutrophil engulfment ratios showed smaller yet

still considerable divergence from literature-based values (kR(M0) =

2.33 10−2 h−1, +10.9%; ke(PMN) = 2.71 10−3 min−1, -18.6%) and the

initial PMN population tended to maintain the concentration value

found in the literature ([PMN]0 = 984.38 µm−3, -1.6%). Throughout

the iteration of the GA, the average difference between in silico

output and ex vivo immunofluorescent image quantification

decreased from 240.9 mm−2 to 107.1 mm−2, resulting in a 56.5%

reduction of the fitness function (Figure 4).

When the model was run with the optimized parameters, the

M0 concentration peaked around day 1 (213.1 ± 17.4 mm−2) and

decreased with the progression of the inflammation (35.7 ± 6.5

mm−2 on day 3). Pro- and anti-inflammatory macrophage

concentrations increased from day 1 (M1: 122.1 ± 14.6 mm−2,

M2: 43.2 ± 8.3 mm−2) to day 3 (M1: 281.9 ± 26.6 mm−2, M2: 140.0 ±

25.4 mm−2) (Figure 5A). The M1 concentration showed a

significant influence of the calibration on day 1 (p = 0.016) and
A

B

D

C

FIGURE 3

Representative images of the temporal evolution of the cellular level (A) and the molecular level (B–D) during the fracture healing progression.
Model results were collected from one quarter of the healing callus every 24 hours since the fracture induction (initial). In (A) we superimposed the
quantitative variation of macrophage concentration (mean ± standard deviation, n = 5) over the course of the healing process. Neutrophil population
is not shown to improve readability. M0: non-polarized macrophages, M1: pro-inflammatory macrophages, M2: anti-inflammatory macrophages,
TNFa: Tumor Necrosis Factor alpha, IL10: Interleukin 10. Scalebar = 100 µm.
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day 3 (p = 0.008), in contrast to both M0 and M2 concentrations

where no significant influence was observed (p > 0.05).

When comparing the results of the model using literature-based

values (Figure 3A) with those obtained with the calibrated model,

we observed that the qualitative dynamics of macrophage

concentration during the inflammation processes remained

unaltered for all the subtypes. However, there was an increase in

the number of cells within the healing region. The pro-

inflammatory macrophage concentration in particular increased

(+31.0%) due to the GA-driven increment of the proliferation ratio.

This observation aligns with the fitness objective of the calibration

to reduce the difference in macrophage concentration on day 3
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between ex vivo immunofluorescence (518.8 ± 8.3 mm−2, identified

as CD68+ cells) and computer model results (non-calibrated: 389.3

± 36.5 mm−2; GA optimized: 457.6 ± 51.5 mm−2, p =

0.033) (Figure 5B).
3.4 Validation of the calibration results
with an alternative dataset

In the case of the 0.7 mm fracture dataset, we observed a

decrease in macrophage concentration within the healing region.

The ex vivo immunofluorescence data at day 3 showed a
FIGURE 4

Calibration of the four most influential parameters ([PMN]0, kR(M0), kp(M1), ke(PMN)) to optimize the in silico predicted macrophage concentration at day
3. Evolution of a 16-sample population is represented by the gradient-colored lines: each sample represents a combination of values associated with
the four parameters. The Genetic Algorithm is initialized at generation 0 by randomly associating to each parameter a value within the range of
+/-50% of the values found in the literature (identified by #) (Supplementary Tables 1, 2). The dynamic evolution of the algorithm led the
combination of the parameter to converge to values that better calibrate the model. Diverging bumps observed in the evolution of the lines are
associated with mutations, singularities of the Genetic Algorithm to increase the investigative variability. After a full run of Genetic Algorithm (9
generations in this case), a value is identified for each parameter to calibrate the model (black diamond). The capacity of the Genetic Algorithm to
minimize the fitness function is observed in the evolutionary reduction of the difference of macrophage concentration between in silico and ex vivo
data (yellow bars). For additional details about the Genetic Algorithm, the reader is addressed to Supplementary Materials.
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concentration of 414.0 ± 22.6 mm−2 (CD68+). This reduction in

macrophage concentration is also predicted by the GA-calibrated in

silico model for the 0.7 mm gap. Specifically, the in silico model

predicted a concentration of 415.2 ± 28.8 mm−2 at day 3 post-

fracture (Figure 5B).
4 Discussion

This manuscript presents an integrated in silico-in vivo pipeline

for the development and calibration of a computational model

capturing the early phase of fracture healing, called COMMBINI. By

employing agent-based modeling, each biological cell is represented

as a single discrete entity and not as an element of a dynamic

continuous concentration, providing a novel perspective on the

investigation of the early phase of the bone healing process. The

agent-based model is designed with stochastic algorithms to

faithfully reproduce the biological behavior of cells [Andrews

et al. (59); Wehrens et al. (40); Allen et al. (41)]. However,

COMMBINI also includes deterministic rules to investigate the

processes that drive healing progression, such as chemotaxis. These

deterministic rules are essential for introducing spatial information

and preventing the agent-based model from generating a

homogeneous environment. Chemotactic attraction is one of the

deterministic factors promoting the directional migration of the

immune cells within the healing region [Kolar et al. (6)].

Specifically, debris chemotaxis was observed to be essential to

simulate the recruitment of the first macrophages from the bone

marrow and surrounding tissues to the center of the fracture gap.

The implementation of a spatio-regulated debris clearance rule to

reproduce the natural behavior of macrophages [Gordon and

Plüddemann (60); Westman et al. (61)] was necessary to

complete the callus invasion, reducing the recruitment of

further macrophages.
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The molecular level has been simulated by solving diffusion-

decay differential equations within a region that shares the

coordinate system with the cellular level, following the approach

in Borgiani et al. (43). The domain size has been chosen to fully

include the healing domain and its spatial resolution has been

adapted to create a sufficiently fine grid on which to solve the

equations, avoiding to increase the computational costs. With the

proposed resolution (10 µm), the molecular level is capable of

adequately reproducing the cytokine dynamics without increasing

the simulation time. Also, temporal resolution differs between the

cellular and molecular levels. By following the in-code values

proposed by BioFVM, the time resolution has been kept to the

order of seconds to guarantee an accurate and smooth simulation of

the molecular dynamics, with no detriment to computational

performances. These settings have been based on previous

benchmarks of the solver, where adequate accuracy has been

obtained in diffusion-decay systems under the same temporal

resolution utilized in this work [Ghaffarizadeh et al. (50)].

Furthermore, the overall timespan of the inflammatory stage is

limited to few days and there is no necessity to use hour- or day-

scale resolution to reduce the number of iterations, as in simulations

of later stages of bone healing, which progresses through months

[Borgiani et al. (43); Nasello et al. (62)]. In light of an eventual

upscaling of the model to 3 dimensions, the spatial and temporal

resolutions used in this study might be adapted after performing

convergence analyses.

At the molecular level, the in silico model accurately simulates

the transition from a pro-inflammatory to an anti-inflammatory

environment, replicating the dynamic changes in the concentration

of specialized inflammatory cytokines that occur during the initial

phases of bone fracture healing [Maruyama et al. (13)]. Within the

healing region, it is possible to observe a first pro-inflammatory

wave of TNFa, with peak concentrations in the marginal regions

during the first hours. This is followed by a progressive invasion of
A B

FIGURE 5

Results after Genetic Algorithm calibration and comparison with experimental data. (A) Dynamic variation of the concentration of the different
macrophage types (M0: non-polarized macrophages, M1: pro-inflammatory macrophages, M2: anti-inflammatory macrophages, mean ± standard
deviation, n = 5) over the course of the inflammation progression, when Genetic Algorithm calibrated parameters are used. (B) Comparison between
the experimental immunofluorescence concentration of macrophages (Exp. [CD68+]) (black bars, mean ± standard deviation, n = 3 for calibration
dataset, n = 2 for validation dataset) and computational predicted concentration of macrophages (Comp. [MF]) (gray bars, mean ± standard
deviation, n = 5) with parameter based on literature data (Non-Calibrated, N.C.) or calibrated with Genetic Algorithm (G.A.). Scatter plots of the 5
results from the computer model are added to show the model stochasticity.
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the defect site as the inflammatory response progresses (Figure 3C).

The IL10 concentration was more prominent in the healing region

around 2 days post-operation (Figure 3D), generating an anti-

inflammatory environment to extinguish the inflammatory

response and progress to the following repair stage. Modulation

of the duration of the pro- and anti-inflammatory phases is critical

to avoid unnecessary extended inflammation, which may lead to

chronicity [Loi et al. (9)]. Therefore, the multiscale computer model

might be used to investigate the two-way interactions between the

cellular and molecular levels to predict how regulations at the

smaller scale can have spatial-related implications on larger scales.

Exogenous provision of treatments can be implemented at the

molecular level by simulating a user-defined concentration spike

in the healing region within a defined spatio-temporal frame.

Molecular therapeutics targeting the inflammatory response, such

as non-steroidal anti-inflammatory drugs [Lisowska et al. (63)],

could be preliminarily tested with COMMBINI to investigate their

effect on enhancing bone healing at the cellular level.

The computer model parametrized with literature data

predicted a lower macrophage concentration within the callus

region when compared to experimental data. To improve the

model predictions, we performed a sensitivity analysis on the

model outputs, followed by a sensitivity analysis on the model

outputs followed by optimization of the most influential

parameters using a GA and experimental results from a

dedicated in vivo experiment. The sensitivity analysis showed

that the model was particularly sensitive to changes in the

macrophage recruitment ratio during the initial stage of healing

and to the macrophage proliferation constant in the later

inflammation. This result follows the expected monotonic

relationship between the recruitment and proliferation ratio

values and the macrophage concentration within the healing

region. The GA calibration with experimental results on day 3

post-operation confirmed that an increasing value of the

macrophage proliferation ratio was necessary to reduce the

difference in macrophage concentration between the in silico

and experimental results. The literature data (Supplementary

Tables 1, 2), which we used to originally parametrize the model,

underestimates the capacity of macrophages to proliferate within

the healing region. Specifically, the value assigned to macrophage

proliferation ratio has been obtained from in vitro cellular assays

of isolated mature macrophages [Chitu et al. (64)]. However, while

performing in vitro experiments on macrophages is less

challenging than in vivo, only these last provide more

exhaustive information on the behavior of those cells [Luque-

Martin et al. (65)]. A valid compromise might be the use of

advanced in vitro models, as organ-on-chip, to generate the

investigative environment that more closely resembles the

inflammatory scenario [Wikswo (66); Zhang et al. (67)].

Additionally, increasing the range of the GA (beyond the

current upper bound of 50% variation) and including additional

targets beyond the general macrophage concentration (e.g.

macrophage subtypes) could further enhance the calibration.

To ensure accurate alignment between the simulated and

experimental results, we developed an in silico immunofluorescence
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pipeline. In the simulation results, each macrophage subtype is

visualized with a specific color, corresponding to the fluorescent

staining used for the corresponding macrophages observed in the

immunofluorescent images of the experimental outcomes. The

calibration of the model was performed by quantitatively

comparing the macrophage concentration inside a user-defined

ROI on both in silico and experimental immunofluorescent images.

The same procedure was employed to validate the model results with

a second set of immunofluorescence images obtained from an

independent experiment performed in murine femurs with a

0.7 mm osteotomy, collected at day 3 post-operation. The in silico

fracture geometry was adapted to the validation dataset by reducing

the dimension within the callus domain, while the model itself

remained unaltered. Similar to the trend observed from

experimental images, the in silico model predicted a reduced

macrophage concentration for the smaller fracture gap. The

validation data set was smaller than the calibration data set (n = 2)

but we deemed it sufficient for the purpose of this proof of concept

study where the focus is on the model development, calibration and

the use of in silico immunofluorescence. In follow-up studies, when

additional features will be added to the model (e.g. third spatial

dimension, influence of mechanical loading), dedicated validation

experiments will be run with sufficient power, including additional

time points and spatial information to validate all aspects of the

cellular and intracellular dynamics. Additionally, while the original

parameter set used to calibrate the model was obtained from a male

mouse population, the validation was performed in female animals.

Macrophage characteristics in mice have been observed to be diverse

between males and females [Chen et al. (68); Varghese et al. (69)].

Nevertheless, no obvious sex-specific influences were detected

between the calibration and validation phase, though this might be

due also to other potentially influencing factors such as age and

strain. In this study, we have developed the model to capture normal

healing in healthy adult mice. Its behavior when simulating other

(patho)physiological states (ageing, disease-associated alterations or

genetic modification), will be the subject of follow-up studies.

The model presented in this work aims to fill a wide gap in the

in silico skeletal modeling field. While most of the state-of-the-art

models limit their analysis to the later stages of bone fracture

healing (repair and remodeling) [Ghiasi et al. (70); Borgiani et al.

(35)], COMMBINI provides a new perspective on the role of the

immune response in supporting and guiding bone healing during

the first hours and days post-injury. The project’s overall aim is to

build a mechano-biological environment that can simulate how

changes at the molecular level (e.g. administration of exogenous

pro-/anti-inflammatory cytokine) and the cellular level (e.g.

specialized macrophage colonies seeded on a scaffold) might affect

bone tissue regeneration. To date, COMMBINI includes only the

biological regulators of the inflammatory phase. Future work will

include the role of mechanical loading (e.g. from gait) on the

regulation of the biological processes as it is well known that

macrophages are mechanosensitive cells [Li et al. (71)]. The

inclusion of the mechanical loading will add another source of

(spatial) variation in the model, which might allow to capture the

spatially non-uniform distribution in macrophage subtype observed
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experimentally [Stefanowski et al. (72)]. Additional limitations that

will be included in future iterations of COMMBINI are the

inclusion of cytokine chemotaxis [Edderkaoui (73)] and further

refinement of the multiscale regulations of the macrophage

population dynamics related to the development of the natural

pro- and anti-inflammatory environment [Schlundt et al. (26);

McCauley et al. (74); Frade et al. (75)]. Moreover, to limit the

computational complexity of the current model, COMMBINI

excludes the investigation of adaptive immune cells. Adaptive

response plays a role in the late inflammatory stage and,

therefore, its regulation is relevant for the subsequent

regeneration stages [Baht et al. (10); Bucher et al. (76)]. The

inclusion of additional macrophage subsets (e.g. M2 subsets: M2a,

M2b, M2c, M2d) and lymphocytes could increase granularity at the

cellular level and it is a possible route to cover also the subsequent

repair and remodeling stages with this model [Bucher et al. (17);

Gharavi et al. (77); Nikovics et al. (78)].

The model will be extended to include the transition into the

early repair stage of bone healing, characterized by skeletal tissue

formation. The addition of specialized cells (e.g. skeletal progenitor

cells, osteoblasts, endothelial cells) will simulate the progression

from the inflammatory to the repair stage and the revascularization

within the healing region. Finally, the current simulation version of

the model has been executed in 2D which is a choice made in

relation to compute costs and the calibration/validation data

available. In order to validate the 3-dimensional version of the

model, 3D imaging techniques or reconstruction of stacked 2D

slices will be required.

With the presented model, we developed a calibrated tool to

investigate bone fracture healing progression starting from the

initial inflammatory stage. To date, COMMBINI can simulate

the natural innate immune response progression but will

integrate the role of external interferences in the future. We

believe that the in silico approach could favor a novel predictive

strategy to plan adequate therapeutical strategies before surgical

intervention when disruptive mechano-biological conditions occur

(e.g. wide segmental defect, chronic inflammation). Furthermore,

due to its multiscale nature, the model will be able to include

alteration of the tissue, cell or molecular environment related to

skeletal diseases. Osteomyelitis is a bacterial infection of the bone

that might occur in case of open fracture [Slyamova et al. (79)].

The computational model can be integrated with the bacterial

population and antibiotic treatment provision to investigate the

role of the treatment on the infection and its influence on the

natural development of the inflammatory response. The possibility

of predicting the quantitative and qualitative outcome of the

treatment strategy before its practical application will assist the

operator in choosing the optimal path to follow, especially in case

of challenging scenarios. For example, the impact of scaffolding the

fracture with smart biomaterials, which sense environmental

stimuli and respond accordingly, can be evaluated in silico with

this model. The COMMBINI project fits well in the new trend of in

silico trials [Pappalardo et al. (80); Viceconti et al. (81)] where

validated computer models are employed to better inform or

augment traditional in vitro and in vivo (animal and human)

studies during the development of new therapeutic strategies.
Frontiers in Immunology 13
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With COMMBINI we developed a multiscale integrated in silico

model for the study of the early inflammatory stage of bone fracture

healing. An original approach with in silico immunofluorescence

was presented and employed to calibrate the model with data from

in vivo experiments. The calibration with a GA showed that in vitro

models could not fully capture the macrophage proliferation

process during bone healing inflammation. The validation with

data from an independent experiment demonstrated the capacity of

COMMBINI to capture the essential biological elements at play

during the inflammatory phase of bone healing.
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