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Abstract: The demand for lightweight aggregates in concrete compositions for diverse structural and
non-structural applications in contemporary building construction has increased. This is to achieve a
controllable low-density lightweight concrete, which reduces the overall structural weight. However,
the challenge lies in achieving an appropriate strength in lightweight concrete while maintaining
a lower unit weight. This research aims to evaluate the performance of lightweight concrete by
integrating expanded polystyrene (EPS) as a partial replacement for coarse aggregate. Test specimens
were cast by blending EPS with coarse aggregate at varying proportions of 0%, 15%, 30%, and 45%,
while maintaining a constant water-to-binder ratio of 0.60. To enhance the bonding and structural
capabilities of the proposed lightweight concrete mixes, reinforcement with 2% and 4% steel fibers
by volume of the total concrete mix was incorporated. Silica fume was introduced into the mix
to counteract the water hydrophobicity of EPS material and enhance the durability of lightweight
concrete, added at a rate of 10% by weight of cement in all specimens. A total of 60 samples, including
cylinders and beams, were prepared and cured over 28 days. The physical and mechanical properties
of the lightweight EPS-based concrete were systematically examined through experimental testing
and compared against a standard concrete mix. The analysis of the results indicates that EPS-based
concrete exhibits a controllable low density. It also reveals that incorporating reinforcement materials,
such as steel fibers, enhances the overall strength of lightweight concrete.

Keywords: expanded polystyrene; lightweight; steel fiber; silica fume; compressive strength; flexural
strength

1. Introduction

Lightweight concrete (LWC) has gained more interest and is increasingly being ex-
plored by researchers due to its low density in contrast to conventional concrete. Interest
in LWC has increased as an alternative solution to normal concrete due to its low dead
load and self-weight of structural elements. As a result, smaller sections can be achieved.
According to a study, the compressive strength and bulk density of low-strength but
lightweight concrete ranges from 7 to 18 MPa and 800 to 1400 kg/m3, respectively [1]. In
past decades, researchers have tried to use different alternative materials as substitutes for
aggregates to prepare LWC that can achieve acceptable strength with lower self-weight [2,3].
Initially, aggregates made from expanded fly ash, clays, preprocessed shales, and those
that come from natural porous volcanic sources were used to lower the density of LWC [4].
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In the beginning, lightweight concrete was mainly used as an insulating material with
air-entrained mixes of volcanic ash and hydrated lime to lessen the overall weight of the
material [5]. These low-density artificial lightweight aggregates have been used in concrete
with varying degrees of success in density reduction. In recent years, expanded polystyrene
(EPS) has been used as an alternative material to aggregates. The concrete industry has paid
more attention to EPS due to its adequate low density, relative strength, and good thermal
resistance. Expanded polystyrene is a lightweight cellular plastic with small spherical
particles of 98% air and a wide range of densities (10 to 20 kg/m3). The properties it
possesses include having a closed-cell nature, being lighter weight and nonporous, and
hydrophobicity [6]. The utilization of EPS aggregate in concrete is mainly to reduce its
overall weight in comparison to conventional concrete, which has a large self-weight with
a low strength-to-weight ratio and substandard performance of thermal insulation [7]. The
keen innovation in the advancement of EPS-based concrete was the preparation under
air-entrained conditions using lightweight aggregates (LWAs) of polymeric particles having
bulk densities of about 16 to 160 kg/m3. From the experimental work, it was observed that
EPS beads of smaller sizes yielded concrete having a reasonable strength in the absence of
additives [2]. In addition, 30% EPS incorporation by volume of self-compacted concrete
could reduce the density and compressive strength up to 30% and 40%, respectively [8].
Similarly, in another study, the utilization of EPS in concrete mix was examined. It was
reported that with the addition of EPS in concrete without a superplasticizer, the density
decreased by about 11.3% and 16.2% vice versa [9]. It was also reported that 5% EPS
substitution as fine aggregate in concrete resulted in 16% lower compressive strength in
comparison to control specimen strength. However, by increasing the EPS content up to
10%, the tensile strength was enhanced by 43% [10]. Other research also demonstrated
EPS’s effectiveness in enhancing concrete’s durability and mechanical properties [11]. So,
EPS is a discarded waste product like other various types of waste, and it has superior
physical and mechanical capabilities that can be incorporated in concrete mix at optimal
levels without compromising the strength of concrete in order to meet the demands for
modern buildings and construction [12–14].

In addition, like other cementing agent materials, LWC has also brittle characteris-
tics [15]. This became clear when diagonal tension or shear failure was prominent in LWC.
The brittleness of such lightweight concrete mix must be reduced with acceptable physical
and mechanical properties [16]. To achieve a ductile nature in materials, numerous studies
have demonstrated the use of discrete fibers as reinforcement materials in concrete with rea-
sonable performance [17]. Similarly, when fibers of a hooked-end nature were incorporated
in concrete with varying contents of 0.0% to 1.5%, it resulted in a split tensile strength of 10%
to 18% higher [8]. At 2.0 vol% steel fiber, the compressive strength increased up to 20% [18].
Material fatigue strength also increases with the introduction of steel fibers by reducing
crack opening [19]. Moreover, the steel fibers create a network structure in the concrete
matrix, which effectively prevents segregation and cracks due to plastic shrinkage [20].

Furthermore, adding supplementary cementitious materials (SCMs) alters the inner
structure of lightweight concrete, increasing the concrete mix’s brittleness and resistance
against cracking [21]. Recent research studies have proven that silica fume can effectively
limit the inner concrete matrix by its bridging action. It reported increased strength
development by adding about 10% condensed silica fume [11]. It was observed that
the substitution of silica fume and pozzolans up to 5% and 15% by weight of cement,
respectively, showed increases in the compressive strength. The minute particles of SCMs
work as microstructural modifiers, reducing the void spaces in the cement matrix. Similarly,
silica fume works as an effective pozzolan, chemically reacting to produce calcium silicate
hydrate (C-S-H) and increasing the mechanical properties of concrete mix as a result.

This study explores lightweight EPS as a substitute for coarse aggregate in low-density,
low-strength, but lightweight concrete. However, freshly mixed EPS-based concrete faces
challenges like segregation due to its lightweight and hydrophobic nature, impacting its
workability. Optimal aggregate replacement levels affect concrete strength, and excessive
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substitution weakens it. Investigating EPS as a substitute is promising, but ongoing research
mainly focuses on reducing density and imposing strength reduction challenges. Our study
assesses the structural performance of lightweight concrete properties with varying EPS
levels (0%, 15%, 30%, and 45%), steel fibers, and silica fume, aiming to address segregation
and enhance bonding. The findings highlight that EPS-based concrete with steel fibers and
silica fume shows potential with low density and higher flexural strength, and an optimal
lightweight concrete design mix is proposed.

2. Materials and Methods
2.1. Materials

In this study, ordinary Portland cement (OPC) was used as a binder material according
to ASTM C150 standards [22]. It was uniform gray in color and free from hard lumps.
River sand was used as the fine aggregate, which conformed to the standard specifications
for fine aggregate materials. After drying, it was passed through a sieve to remove any
roots and debris. Locally available natural aggregate of 14 mm particle size was used in
compliance with ASTM C33/33M-18 [23]. Sieve analysis was performed to confirm the
standard particle size. Portable tap water was used for mixing the concrete ingredients and
for curing purposes to fulfill the requirement of ASTM C1602/1602M [24]. Commercially
available EPS beads were used. The lightweight EPS beads were small impermeable balls
of 2–3 mm diameter with a bulk density of 20 kg/m3. The physical properties of the mixed
proportions are presented in Table 1.

Table 1. Physical properties of ordinary Portland cement and fine and coarse aggregates.

Properties
Materials

OPC EPS Fine Aggregates Coarse Aggregates

Specific gravity 3.6 - 2.44 2.85
Fineness (%) 2.43 - 2.64 7.32

Color Grey - Dark Dark
Soundness 1.10 - - -

Porosity (%) - - 0.06 0.90
Moisture content - - 3.56 0.20

Water Absorption (%) - 4% by vol. 1.2 0.76
Compacted bulk density (kg/m3) - 20 1681.81 1803.69

Loose bulk density (kg/m3) - - 1630 1571.69
Standard consistency (%) 27.3 - - -
Initial setting time (min) 120 - - -
Final setting time (min) 320 - - -

Density (kg/m3) - 13 - -

To produce EPS-based concrete, the coarse aggregate was replaced with EPS at 0%,
15%, 30%, and 45% in the concrete mix. In addition, to reduce the brittleness of the concrete
mixture, steel fibers (SFs) of 1 mm in diameter and 50.8 mm in length were added at 2% and
4% by weight of concrete mixed. The SFs were obtained from annealed wires via a process
of thermal annealing and from burnt wires during the process of iron settings. The typical
physical appearance of these materials is presented in Figure 1a–c. Finally, commercially
available supplementary cementitious material (SCM), such as silica fume, was utilized
to adjust the EPS-based concrete flow. The chemical compositions of OPC and SFs are
summarized in Table 2.
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Table 2. Chemical composition of OPC and silica fume.

Chemical Composition
Weight (%)

OPC Silica Fume

CaO 62.3 1.2
SiO2 20.6 91

Al2O3 5.6 1.3
Fe2O3 3.4 1.6
MgO 3.6 1.3
SO3 2.4 0.1

2.2. Mix Proportions

In this study, concrete mix of M15 grade was used for the experimental design. Mix
proportions of 1:2:4 were used to prepare all concrete specimens. Two main variables were
adopted, namely EPS as a replacement for coarse aggregate ranging from 0%, 15%, 30%,
and 45%, and steel fibers at proportions of 2% and 4% by weight of concrete mixed, as
shown in Table 3. A water-to-binder ratio of 0.6 was used in the concrete mixes. Further,
silica fume was incorporated at 10% by weight of cement in all concrete mixes. Prior to
mixing, the molds were assembled and lubricated appropriately for the safe removal of
hardened concrete samples. A total of 60 samples were prepared for each proportion,
comprising 30 cylinders and 30 beam samples. The test samples were made in concrete
cylinders (ϕ150 × 300 mm3) and concrete beams (150 × 150 × 450 mm3).

Table 3. Details of specimen casting.

EPS % Cured Days Steel Fiber % No. of
Cylinders No. of Beams

0% 28 0 3 3

15% 28
0 3 3
2 3 3
4 3 3

30% 28
0 3 3
2 3 3
4 3 3

45% 28
0 3 3
2 3 3
4 3 3

2.3. Mixing Process and Fabrication of Specimens

A standard mixing sequence for the making and curing of concrete specimens was
adopted, which complied with ASTM C192 standard [25]. Initially, by using a laboratory
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concrete mixer, all of the ingredients of concrete were blended, and then normal tap water
was added to complete the mix. The mixer machine was used to obtain a homogenous
mixture. Thereafter, the oiled molds for each specimen category were filled in three layers
and compacted, as shown in Figure 2a,b. Concrete specimens of cylinders and beams were
cast and kept at room temperature for 24 h, as shown in Figure 2c. All of the molds were
sealed with a plastic sheet to avoid water loss due to evaporation. After a day, the concrete
specimens were de-molded and placed in water for a curing period of 28 days. After all
steps, three replicates for each sample were used for testing.
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2.4. Test Methods
2.4.1. Physical Properties of Materials

The distribution of aggregate particles by size was evaluated in accordance with
the test procedure outlined in ASTM C136 [26]. Similarly, the tests for bulk density and
porosity were accomplished using the standard provisions of ASTM C29 [27]. To check
the properties of fresh concrete, consistency tests for all mix proportions were adopted
by using a slump test conforming to ASTM C143 [28]. The workability of all EPS-based
concrete mixes was determined and compared to the normal mix.

2.4.2. Compressive Strength Test

The compressive strength of concrete is the ability of concrete structural elements to
carry the load without tending to crack or deflect. In this research, the cylinder specimens
with dimensions (ϕ150 × 300 mm3) were used for the compressive strength test following
ASTM C39 [29]. The tests were carried out on the specimen after the 28-day period of curing.
A universal testing machine (UTM, Shimadzu Corporation, Kyoto, Japan) was used for this
test. Three replicates were used for each mix. The average results of three specimens for
each proportion were used for the comparative analysis. Prior to the compressive strength
test, each cylinder’s mass and volume were measured to determine its density.

2.4.3. Flexural Strength Test

The flexural strength test was conducted on beams having dimensions of 150 × 150
× 450 mm3 at 28 days under center-point loading in accordance with ASTM C293 [30].
The test measures the resistance capacity of specimens against bending failure. The test
indicates the modulus of the rapture of specimens. A total of 30 beam specimens with
9 samples for each proportion of EPS-based concrete were tested. For the results and
analysis, the average value of three samples for each proportion was noted.
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3. Results and Discussion
3.1. Physical Properties
3.1.1. Density

The saturated surface dry (SSD) densities of concrete specimens with varying propor-
tions of EPS and steel fibers are shown in Figure 3. The figure illustrates that the density
of specimens decreased with an increase in EPS content in the mix. The SSD density
was reduced from about 1935 kg/m3 to 925 kg/m3 with an addition of 15% to 45% EPS,
respectively, which could be classified as lightweight concrete. The experimental results
showed the maximum reduction in SSD density by mixing a 45%/55% ratio of coarse
aggregate/EPS, and the density of hardened concrete was reduced by 53% when compared
to the standard concrete sample. For 15% and 30% EPS substitution to coarse aggregate,
the reduction in density was about 20% and 35%, respectively. The density reduction was
attributed to the weightless nature of EPS beads and the extremely hollow microstructure
with lower specific gravity. The summary of all experimental results is shown in Table 4.
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Table 4. Concrete density with different contents of EPS and steel fibers.

Sample Concrete with
EPS (%)

Steel
Fibers (%)

Density (kg/m3)
No. Test 1 Test 2 Test 3 Mean

1 0% 0% 1940 1930 1935 1935
2 15% 0% 1560 1550 1555 1555
3 15% 2% 1610 1620 1615 1615
4 15% 4% 1650 1640 1645 1645
5 30% 0% 1270 1280 1275 1275
6 30% 2% 1550 1560 1555 1555
7 30% 4% 1570 1560 1665 1665
8 45% 0% 930 920 925 925
9 45% 2% 1340 1360 1350 1350

10 45% 4% 1410 1400 1405 1405

3.1.2. Workability

The EPS-based lightweight concrete’s workability was evaluated in terms of slump
test at a constant water: binder ratio of 0.60. The values of the slump measurements are
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reported in Table 5. All proportions of mixes had slump values in the range of 4–40 mm
(Figure 4). The concrete mix with 15% EPS content and without steel fibers had a slump
value of 33 mm, which was 20% less than standard concrete. This could be due to the
lightweight and hydrophobic nature of EPS, which tends to reduce the water absorption
capacity of the concrete mixture as a result EPS particles floating up due to segregation
and bleeding. Although at this value, the mixes were flexible and easily worked without
compaction. Furthermore, the testing results indicated that the workability of concrete
at the plastic stage was affected by the contents of EPS and steel fibers. It was observed
that the slump of fresh concrete decreased with the addition of steel fibers because steel
fibers held all of the ingredients together without segregation. The steel fibers contributed
to decreasing the slump value of the concrete mix used for the specimens and helped
to reduce the bleeding. When steel fibers were utilized as 4% of concrete with the same
EPS dosage of 15%, there was about a 35% reduction in the slump value. Moreover, the
addition of silica fume also reduced the slump value due to its pozzolanic properties. Silica
fume reacts with calcium hydroxide to form additional cementitious compounds. This
reaction can help control bleeding by absorbing excess water and preventing it from rising
to the surface.

Table 5. Results of the slump cone test with proportions of EPS and steel fibers.

Sample
No.

Concrete with
EPS (%) Steel Fibers (%) Water/Binder Slump Value

(mm)

1 0% 0% 0.60 40
2 15% 0% 0.60 33
3 15% 2% 0.60 32
4 15% 4% 0.60 18
5 30% 0% 0.60 25
6 30% 2% 0.60 13.5
7 30% 4% 0.60 12.4
8 45% 0% 0.60 12
9 45% 2% 0.60 11
10 45% 4% 0.60 04
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3.2. Mechanical Properties
3.2.1. Compressive Strength

The 28-day compressive strengths of normal concrete with different contents of EPS
and steel fibers are illustrated in Table 6. Figure 5 shows EPS-based concrete samples and
their failure pattern. The incorporation of EPS solely resulted in reduced compressive
strength within the test specimens. It decreased by 32%, 50%, and 71.1% in sample numbers
2, 5, and 8, respectively, compared to standard concrete, as illustrated in Figure 6.

Table 6. The compressive strength of concrete with various proportions of EPS and steel fibers at
28 days.

% of EPS & Steel Fibers Compressive Strength (MPa)

EPS SF Test 1 Test 2 Test 3 Mean

0% 0% 15.648 18.271 17.800 17.240
15% 0% 12.414 12.482 12.241 12.379
15% 2% 15.637 15.846 15.526 15.67
15% 4% 14.353 14.185 14.240 14.259
30% 0% 7.588 7.243 7.347 7.393
30% 2% 8.308 8.650 8.540 8.499
30% 4% 8.262 8.927 8.098 8.429
45% 0% 5.186 5.518 5.077 5.260
45% 2% 6.158 5.891 6.217 6.089
45% 4% 4.756 4.577 4.555 4.629
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Figure 5. Compressive strength test. (a) EPS-based concrete sample failure pattern without steel
fibers; (b) EPS-based concrete sample failure pattern with steel fibers.

The specimens made with the incorporation of a higher content of EPS had the
least compressive strength. This reduction could be attributed to the lightweight and
hydrophobic nature of EPS [31], which tended to reduce the water absorption capacity of the
concrete mixture and float up, with segregation occurring as a result. The compensation for
the reduction in concrete strength with the incorporation of EPS has also been discussed in
a previous study. For example, EPS with 15% replacement of coarse aggregate reduced the
compressive strength of lightweight concrete up to 45% [32]. Steel fibers were incorporated
to amplify the compressive strength to counter the effect of improper bonding in EPS-
based concrete. For instance, in concrete with 15% EPS and 2% steel fibers, the strength
was slightly reduced to 10% compared with normal concrete. The concrete samples that
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contained 30% EPS with 4% steel fibers had 34.6% less compressive strength than normal
concrete. Similarly, the compressive strength of concrete that contained 45% EPS with 4%
steel fibers showed 74.6% less strength than normal concrete.
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Moreover, the reduction in the compressive strength of concrete increased as more
content of EPS was substituted for coarse aggregate and vice versa. This was because
the coarse aggregate was mainly responsible for the strength of the concrete mix. It was
also noted that the enhancement in the strength of the concrete specimen was due to the
rougher surface of the aggregate, which provided better bonding with the cement particles.
Another reason was improper compaction of a large amount of EPS contents. As a result,
the number of voids in concrete increased. So, the substitution of coarse aggregate with 15%
EPS and 2% steel fibers had a minimal effect on the concrete performance. Furthermore,
adding cementitious materials such as silica fume can increase the viscosity of the cement
paste, making it less prone to segregation. As a result, strength increases. This also helps in
maintaining a uniform distribution of aggregate throughout the mixture.

3.2.2. Compressive Strength vs. Density

Table 7 presents the compressive strength of normal concrete in comparison with
various proportions of EPS and steel fibers corresponding to density at 28 days. With the
addition of 15% EPS and 0% steel fibers, the reduction in density was about 20% and the
compressive strength was 28% in comparison to normal concrete, as shown in Figure 7.
This could be due to the high hydrophobic nature of EPS, which diminished the bonding
between the cement paste and EPS particles in the concrete mix due to segregation. Based
on the results, a considerable reduction was noted in the dry density and compressive
strength of EPS-based concrete compared to the normal mix. However, it was also apparent
that utilizing 15% EPS and 2% steel fibers improved the strength with lower density in
comparison to the remaining proportions corresponding to normal concrete. The results
showed that at an optimal level of 15% EPS and 2% steel fibers, concrete exhibited 10%
less compressive strength with 17% lower density compared to the normal concrete mix.
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This gain in compressive strength was likely caused by the inclusion of steel fibers, which
increased the resistance to segregation and held the ingredients of concrete. Therefore,
despite the slight reduction in strength, adopting 15% EPS and 2% steel fibers could partially
compensate for the acceptable low density.

Table 7. Density and compressive strength of normal concrete compared with various contents of
EPS and steel fibers.

Sample
No.

Concrete with
EPS (%) Steel Fibers (%) Density (kg/m3)

Compressive
Strength (MPa)

1 0% 0% 1935 17.240
2 15% 0% 1555 12.379
3 15% 2% 1615 15.67
4 15% 4% 1645 14.259
5 30% 0% 1275 7.393
6 30% 2% 1555 8.499
7 30% 4% 1665 8.429
8 45% 0% 925 5.260
9 45% 2% 1350 6.089
10 45% 4% 1405 4.629
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Figure 7. Relations between concrete density and 28 days compressive strength of EPS-based concrete.

3.2.3. Flexural Strength Test

The flexural strength tests were performed on concrete beam specimens after 28 days
of curing and the results are demonstrated in Table 8. The test setup and specimen mode
of failure with and without steel fibers are shown in Figure 8a,b. The flexural strength
of concrete specimens featuring sole incorporation of EPS at replacement rates of 15%,
30%, and 45% for coarse aggregate exhibited values of 5.30 MPa, 5.12 MPa, and 4.47 MPa,
respectively, in contrast to 6.32 MPa observed in standard concrete. Adding lightweight
EPS along with steel fibers led to rising fracture strength, as indicated in Figure 9. The
bend or flexural strength for all specimens varied with the different proportions of EPS and
steel fibers. For instance, at the age of 28 days, the flexural strength for normal concrete
was about 6.32 MPa, whereas 6.57 MPa strength was noted with the incorporation of 15%
EPS and 2% steel fibers. So, the performance of lightweight EPS-based concrete with
the said proportions increased by 5% compared to normal concrete. These positive bond
strength effects in the lightweight EPS-based concrete were due to the ductile nature of steel
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fibers, which was responsible for resistance against slipping and reduced crack initiation,
increasing the bond strength of the EPS-based concrete mix as a result.

Table 8. The flexural strength of concrete beams with various proportions of EPS and steel fibers at
28 days.

% of EPS and Steel
Fibers Flexural Strength (MPa)

Sample No. EPS SF Test 1 Test 2 Test 3 Mean

1 0% 0% 6.482 6.197 6.288 6.323
2 15% 0% 5.262 5.414 5.234 5.303
3 15% 2% 6.728 6.550 6.432 6.570
4 15% 4% 6.556 6.460 6.446 6.487
5 30% 0% 5.091 5.217 5.051 5.120
6 30% 2% 5.188 5.535 4.999 5.241
7 30% 4% 4.317 4.207 4.158 4.227
8 45% 0% 4.473 4.610 4.335 4.473
9 45% 2% 4.764 4.978 4.767 4.836
10 45% 4% 3.751 3.476 3.406 3.544
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Figure 8. Flexural strength test of casted beams. (a) Typical EPS-based concrete beam failure;
(b) EPS-based concrete beam failure mode reinforced with steel fibers.
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It is notable that with the same content of 15% EPS and 4% steel fibers, the flexural
strength improved to 3.5% compared to normal concrete. Similar results were reported:
even after flexural cracking, the steel fibers could endure the elongation and expansion of
cracks [33]. This is a virtue of steel fibers, which act as a bridge prior to cracking and reduce
the disintegration of aggregates in concrete mixes. It could also be due to the fact that steel
fibers hold crack expansion and elongation even after failure due to bending since they are
made of steel. Further substitution of EPS in concrete with steel fibers showed a decrease
in flexural strength. For example, with 30% and 45% incorporation of EPS and 2% steel
fibers, the flexural strength was reduced to 18% and 25% in contrast to normal concrete.
To conclude, the inclusion of 15% EPS in concrete with 2–4% steel fibers influenced and
increased the flexural strength of concrete. Ultimately, using steel fibers in EPS-based
concrete at this optimal level improved the durability and material ductility.

3.2.4. Flexural Strength Test vs. Density

The flexural strengths of the beam specimens after 28 days against density with differ-
ent contents of EPS and steel fibers are shown in Table 9. The stress at failure in bending
of concrete was established and reduced linearly with the addition of only lightweight
EPS contents corresponding to density. However, when 15% EPS and 2% steel fibers were
introduced, a 5% enhancement in the flexural strength of EPS-based concrete was observed
alongside a remarkable 17% reduction in density compared to standard concrete. Further,
at 15% EPS and steel fiber content up to 4%, there was a 3.5% improvement in strength
coupled with a 15% decrease in density compared to the normal concrete benchmark, as
evidenced in Figure 10.

Table 9. Density and flexural strength of normal concrete compared with various contents of EPS and
steel fibers.

Sample No. Concrete with
EPS (%) Steel Fibers (%) Density (kg/m3)

Flexural
Strength (MPa)

1 0% 0% 1935 6.323
2 15% 0% 1555 5.303
3 15% 2% 1615 6.570
4 15% 4% 1645 6.487
5 30% 0% 1275 5.120
6 30% 2% 1555 5.241
7 30% 4% 1665 4.227
8 45% 0% 925 4.473
9 45% 2% 1350 4.836
10 45% 4% 1405 3.544

The increment in the flexural strength could be due to ductility in the tension of steel
fibers in the mix, and with the lightweight nature of EPS, the density was reduced. The
results also revealed that the concrete beam specimens with the highest steel fiber content
reduced the crack propagation since the fibers are made of steel. Additionally, beyond 15%
EPS and 4% steel fibers, there was a continuous reduction in the strength and density of
specimens. This could be due to substituting a large content of coarse aggregate with EPS.
Similarly, with large contents of steel fibers, challenges arise in terms of its compaction and
overall flexural strength can be affected as a result. In summary, the inclusion of up to 15%
EPS and 2% to 4% steel fibers yielded favorable outcomes, as shown in the results, with 3.5%
to 5% increases in flexural strength and a simultaneous density reduction ranging between
15% to 17% relative to the mechanical characteristics exhibited by standard concrete.
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3.2.5. Specific Strength of Concrete Specimens

The concrete strength-to-weight ratio is a comparison of its strength in relation to how
much it weighs. In this study, to obtain the specific strength of concrete specimens, the
compressive and flexural strengths of concrete with different EPS and steel fiber contents
were divided by its density, as illustrated in Table 10.

Table 10. Strength-to-weight ratio comparison of concrete with EPS and steel fiber contents.

Concrete with
EPS (%) Steel Fibers (%)

Saturated Dry
Density
(kg/m3)

28 Days
Compressive

Strength (MPa)

Specific
Strength

(kPa-m3/kg)

28 Days
Flexural

Strength (MPa)

Specific
Strength

(kPa-m3/kg)

0% 0% 1935 17.240 8.909 6.323 3.267
15% 0% 1555 12.379 7.960 5.303 3.410
15% 2% 1615 15.67 9.702 6.570 4.068
15% 4% 1645 14.259 8.668 6.487 3.943
30% 0% 1275 7.393 5.798 5.120 4.015
30% 2% 1555 8.499 5.465 5.241 3.370
30% 4% 1665 8.429 5.062 4.227 2.538
45% 0% 925 5.260 5.686 4.473 4.835
45% 2% 1350 6.089 4.510 4.836 3.582
45% 4% 1405 4.629 3.294 3.544 2.522

4. Conclusions

The study aimed to create lightweight concrete using varied proportions of expanded
polystyrene (EPS), steel fibers, and silica fume. Incorporating 15% EPS without steel fibers
resulted in a 20% reduced slump compared to standard concrete due to EPS segregation.
The addition of steel fibers affected workability. Density decreased by 20%, 35%, and 53%,
with 15%, 30%, and 45% EPS inclusion, respectively.

The optimal balance between low density and compressive strength in EPS-based
concrete was achieved with 15% EPS and 2% steel fibers. This mix showed a slight 10%
decrease in compressive strength and a 17% reduction in density compared to standard
concrete. Importantly, steel fibers improved resistance to segregation in the concrete
mixes. Steel fibers at 2% to 4% alongside 15% EPS improved flexural strength by around
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5% compared to regular concrete due to their ductile properties slowing crack growth.
However, beyond 4% steel fibers, a diminishing trend was noticed. Silica fume notably
enhanced concrete strength by refining the microstructure near the aggregate surface.
Thus, it can be concluded that the optimal mix design for achieving the desired mechanical
properties is incorporating 15% lightweight expanded polystyrene and 2% to 4% steel fibers.

However, there is scope for additional research related to integrating EPS materials
in concrete across various proportions. Further studies could be conducted to explore the
split tensile strength, environmental impact, and chemical interaction between EPS and
steel fibers within the concrete matrix on an optimized mix ratio. This will help advance
the development of lightweight concrete with enhanced performance and durability.
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