
Memory consolidation facilitated by burst-induced late-phase plasticity 
 

How do alternating periods of learning and rest contribute to memory consolidation? While it is recognized that 
learning relies on synaptic plasticity triggered by the spiking activity correlation between neurons, the role of rest 
periods and their biophysical mechanisms remain elusive. In this work, we leverage the interaction between the 
brain state fluctuations, reflecting changes in neuronal excitability, and memory, relying on synaptic plasticity 
occurring at different phases. Our approach involves a neural network model capable of transitioning between 
learning periods characterized by fast low-amplitude oscillations, and rest periods marked by slower large-
amplitude oscillations. At the neuronal level, it is characterized by biophysical neurons capable of switching 
between input-driven tonic firing and the less-explored collective bursting. 
 

In our model, synapses exhibit calcium-based early-phase plasticity, as studied in previous work. Here, we 
propose a new additional burst-induced late-phase plasticity mechanism. During learning, the early-phase 
plasticity forms new memories, as traditionally observed. During rest, the early-phase plasticity resets, returning 
to its baseline set point. It provides a physiological trace to drive the late-phase plasticity facilitating memory 
consolidation. 
 

Validating our model through a memory task utilizing the MNIST dataset, we demonstrate that switching from 
tonic to burst, combined with early- and late-phase plasticity enables the network to acquire new information 
while preserving existing memories. The collective bursting activity during rest, combined with late-phase 
plasticity, represents the generation of new postsynaptic proteins and morphological synapse changes (termed 
structural plasticity). We find that substituting rest with an additional learning period impedes memory 
consolidation, rendering it susceptible to noise. 
 

These findings propose a potential biological mechanism for unsupervised memory consolidation during rest and 
explain how the brain balances synaptic homeostasis and memory processes. Moreover, they suggest the utility 
of incorporating rest periods into machine learning models, highlighting the importance of including collective 
bursting and structural plasticity. 
 
 

A network model able to switch from input-driven tonic firing (learning) to collective bursting (rest) 
The brain manifests distinctive activity patterns during learning and rest, distinguished by a transition at the 
neuronal level from tonic to burst firing (Fig. 1A, left-top). In this work, we replicate this neural state transition 
with a network of conductance-based model neurons performing a classical supervised learning task – MNIST 
digit classification. During learning, 484 presynaptic neurons represent individual image pixels, and 10 
postsynaptic neurons represent the corresponding digit class. Presynaptic neurons spike according to the pixel 
intensity, while the postsynaptic neuron corresponding to the presented digit class spikes with high frequency, 
mimicking supervised learning. In the rest period, pre- and postsynaptic neurons exhibit synchronized bursts due 
to intrinsic ion channel properties. A neuromodulator (NM) projection, acting as an inhibitory input, controls the 
switch from learning to rest periods (Fig. 1A, right). 
 

Early- and late-phase synaptic plasticity in learning and rest 
In biological neurons, synaptic plasticity involves an early phase, marked by increased postsynaptic receptor 
efficacy and rapid receptor insertion, followed by a late phase dependent on de-novo protein synthesis and 
morphological changes (Fig. 1B, left-bottom) [Poirazi et Mel, 2001; Lamprechts et LeDoux,2004]. To model the 
early and late phases of plasticity, we suggest two components of the synaptic weight: the early weight 
undergoing calcium-based early-phase plasticity (w) [Graupner and Brunel, 2012] and the late weight undergoing 
late-phase plasticity, as proposed in prior studies [Clopath et al., 2008; Luboeinski et Tetzlaff, 2021]. The resultant 
effective synaptic weight is the product of the early- and late-weight. However, in this work, we replace the 
existing late-phase plasticity with our novel burst-induced late-phase plasticity. During learning, a high-firing 
presynaptic neuron (corresponding to a bright pixel) increases its early weight with the concurrently activated 
output neuron, replicating early-phase plasticity. During rest, we observe each early weight undergoes a burst-



induced reset, returning to baseline. The late weight follows the negative derivative of the early weight dl=-a 
dwt/dt, where a is a tunable proportionality factor. As the early weight resets and restores postsynaptic receptor 
efficacy, the late weight increases, modeling new protein generation and morphological changes driven by early 
synaptic modifications.  
 

The synergistic role of collective bursting and late-phase plasticity facilitates memory consolidation 
Our objective is to investigate the impact of rest periods on memory consolidation. At the end of each learning 
and rest period, we visualize the receptive field (RF) which illustrates the weight matrix associated with the output 
neuron. Through a repetitive cycle of learning (dark blue) and rest (light blue), we observe the RF consolidation 
(Fig. 1Bi). This consolidation demonstrates the network adaptability in learning digits and its resilience against 
noise. Interestingly, substituting rest periods with additional learning reveals a limitation: only the last presented 
digit is encoded (Fig. 1bii). Moreover, blocking late-phase plasticity—mimicking the effects of protein synthesis 
inhibitors— reveals the early-weight reset and failure to consolidate memory (Fig. 1biii). Replacing bursting with 
low-frequency spiking neurons prevents the reset of early weights but also restricts the network from acquiring 
new memory, which subsequently fades out over time (Fig. 1biv). These alterations make the network notably 
susceptible to noise. 
 

Conclusion 
This uniquity in this work lies in combining neuronal activity switches (tonic and burst firing, associated with 
learning and rest) with early- and late-phase plasticity models. We propose a model of burst-induced late-phase 
synaptic plasticity, exploiting the early weight as an eligibility trace. It provides insights into biological mechanisms 
during rest and offers a versatile tool for broader networks or diverse memory tasks. Importantly, this model 
hints at potential enhancements for learning algorithms without necessitating replay or recall mechanisms. 

Fig 1. A. Switches in brain states with the associated neural activity and plasticity mechanisms (left) modeled in 
a neural network (right). B. Receptive fields (RF) for the output neurons associated with the digits 0 and 9 with 
different combinations of neural activity and plasticity mechanisms. 
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