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Abstract

The potential to study and improve different aspects of our lives is ever growing thanks to the abundance of data available in today’s
modern society. Scientists and researchers often need to analyze data from different sources; the observations, which only share a
subset of the variables, cannot always be paired to detect common individuals. This is the case, for example, when the information
required to study a certain phenomenon is coming from different sample surveys. Statistical matching is a common practice to
combine these data sets. In this paper, we investigate and extend to statistical matching two methods based on Kernel Canonical
Correlation Analysis (KCCA) and Super-Organizing Map (Super-OM). These methods are designed to deal with various variable
types, sample weights and incompatibilities among categorical variables. We use the 2017 Belgian Statistics on Income and Living
Conditions (SILC) and we compare the performance of the proposed statistical matching methods by means of a cross-validation
technique, as if the data were available from two separate sources.
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1. Introduction

In the era of Big Data, a huge volume of information is con-
tinuously gathered through a wide range of activities. However,
in many scientific and commercial applications, the availabil-
ity of data still remains constrained due to the information of
interest often being fragmented and coming from many differ-
ent sources. Various private and public entities collect data by
means of sample surveys, which are analyzed for a variety of
reasons, but sometimes the required data are not available from
a single source. In these situations, the set up of a new survey
containing all of the required information would be impracti-
cal due to time and financial constraints. A more feasible al-
ternative is to combine the already existing data using statis-
tical matching (D’Orazio et al., 2006b), a technique which is
also known as data fusion, synthetical matching or statistical
record-linkage.

Let’s consider the case of two data sets sharing some but not
all variables referring to the same target population. An ex-
act matching (record linkage) of the two data sets is likely to
be impossible either because the observed individuals in the
two data sets do not overlap (often the case with independent
sample surveys conducted on large populations) or because a
common variable for the identification of the individuals (e.g.
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program (project 2019-PRB-8). We gratefully acknowledge data in the form of
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and the Household Budget Survey (2016) from Statistics Belgium.

social security number) is not available. In these cases, statisti-
cal matching can be used to merge the two data sets (D’Orazio
et al., 2006b). The result will be a synthetic data set with both
common and non-common variables jointly displayed, which
can be used to carry out further statistical analysis. Statistical
matching can be viewed as a missing data problem and sev-
eral imputation methods can be used to fill the missing values.
These techniques were first introduced in (Anderson, 1957);
for a literature review, see (Kim and Shao, 2013; Van Buuren,
2018). The use of statistical matching started growing during
the 1960s and has gained particular prominence in Europe in the
context of media analysis in marketing, see (Rässler, 2002) for
a detailed history and (Fosdick et al., 2016; Conti et al., 2017)
for a literature review of statistical matching. Among others,
a comparison of exposure to media and purchase behavior has
been made in (Kamakura and Wedel, 1997) merging data com-
ing from two separate surveys. Statistical matching has been
widely adopted also in economics, where (Okner, 1972) was the
first main contribution. A typical situation, where it plays a key
role, is the study of the relationship between household income
and consumption expenditure (Tonkin and Webber, 2012; Do-
natiello et al., 2014; Serafino and Tonkin, 2017; López-Laborda
et al., 2020). The national statistical institutes of many Euro-
pean countries collect this kind of information, but subdivide it
into two separate surveys: the Statistics on Income and Living
Conditions (SILC) and the Household Budget Survey (HBS). In
this case, the goal of statistical matching is to create a synthetic
data set where income and expenditure variables are jointly dis-
played. Similar methods are also used by national institutions
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as in (Saverio et al., 2008), where they integrate two Italian sur-
veys (Labour force and Time use) to have one unique data set
to avoid the costs of doing a new survey to collect both infor-
mation together.

The objective of this paper is to propose new statistical
matching procedures based on extensions of two machine learn-
ing techniques that are adapted to statistical matching for tab-
ular data with sample weights: Kernel Canonical Correlation
Analysis (KCCA), and Super-Organizing Map (Super-OM).
We compare these methods with more trivial extensions us-
ing Canonical Correlation Analysis (CCA) as well as with
more classical econometric methods based on distance hot-deck
(HD) and multivariate linear and multinomial logistic regres-
sions (REG). KCCA has been used for data fusion in (Mitsuhiro
and Hoshino, 2020). However, it is extended here to deal with
further issues as the two other techniques, namely the ability to
deal with mixed variable types, sample weights and problems of
incompatibility between categorical variables, as pointed out by
(D’Orazio et al., 2006a). This latter case occurs, for example,
when we have two variables that indicate the city and the coun-
try of residency: if Paris corresponds to the variable city, then
the imputed country should be France and not another country.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a
method of dimensionality reduction. We can extend it in a non-
linear way with the KCCA proposed by (Lai and Fyfe, 2000)
and (Akaho, 2001). KCCA is a machine learning technique that
uses the kernel trick to map data into higher dimensional spaces
where classical CCA is performed to extract non linear relation-
ships from the data. In cross-domain matching, KCCA has also
been used to perform matching between text and images using
information about the relationship between both data sources
(Shimodaira, 2014). The use of KCCA for statistical match-
ing is first proposed by (Mitsuhiro and Hoshino, 2020). That
type of matching is in the class of kernel matching, because it
assigns new values by kernelized means of the observed ones.

The second approach is based on the Super-Organizing Map
(Super-OM) (Wehrens and Buydens, 2007), a more flexible ex-
tension of the Self-Organizing Map (SOM) introduced by (Ko-
honen, 1982). The SOM is an unsupervised machine learn-
ing method used to produce a low-dimensional representation
of a high-dimensional input space, which relies on an artificial
neural network architecture. In the literature, SOMs have been
already adopted to impute missing values, a common issue in
many practical applications. For example, they have been used
to impute missing values in the French National Personal Trans-
port Survey (1993-1994) (Fessant and Midenet, 2002). A simi-
lar technique has been applied to socioeconomic data on hous-
ing in Ile-de-France and government spending (Cottrell and
Letrémy, 2007) and, more recently, to surface water data with
observations on different physicochemical variables (Folguera
et al., 2015). In this paper, we propose a statistical matching
technique based on a Super-OM, an extension of the classical
SOM that allows for linking two sets of variables. To the best
of our knowledge there is no other article proposing a statistical
matching technique based on either SOMs or Super-OMs.

The article is structured as follows. First, section 2 provides
background information about statistical matching. In section

3, we present the two methodologies and their theoretical foun-
dations. In section 4, we use the SILC 2017 survey data for
Belgium; we treat them as if they were available from two sep-
arate sources and by means of a cross-validation technique we
compare the performance of the proposed statistical matching
methods. Finally, in Section 5, we provide an application where
we merge the SILC 2016 and HBS 2016 surveys for Belgium,
similar to the one in (Tonkin and Webber, 2012; Serafino and
Tonkin, 2017).

2. Statistical matching : Background

We consider two data sets from two independent sample sur-
veys (A and B) containing nA and nB individuals, respectively.
Each data set is composed of a matrix of common variables
X and two matrices of non-common variables Y and Z. In
Figure 1, we summarize all the matrices and their dimensions,
where Jq, for q ∈ {x, y, z}, denotes the number of columns (i.e.
variables). Note that all the values in YB and ZA are missing. In
general, we denote the values of the i-th individual in XA by xA

i .
Finally, we use wA and wB to indicate the vectors of individual
weights (bounded between zero and one) of length nA and nB,
respectively, whereas WA and WB correspond to their diagonal
matrices.

Figure 1: Sample survey data.

The purpose of the methodologies described in this section
is to create a synthetic data set, where X, Y and Z are jointly
displayed. For the sake of simplicity, in the rest of the paper,
we will focus our attention on the creation of the synthetic data
set (XB,YB,ZB), but the same procedure can be used to create
(XA,YA,ZA).

In the statistical matching literature, in order to reconstruct
the missing variables YB in data set B, there are three main tra-
ditional approaches (Aluja-Banet et al., 2007): parametric mul-
tivariate distributions, regressions and hot-deck. The first con-
sists in estimating a full joint parametric distribution of (X,Y)
from data set A and then use it to impute YB in B. The sec-
ond approach investigates the relationship between XA and YA

in data set A using regression models (not necessarily linear),
which are then applied to reconstruct YB in data set B. The third
approach, hot-deck, is a fully non-parametric method, which
consists in finding for each entity in data set B a similar en-
tity in data set A from which we can borrow the values of YA.
Furthermore, mixed methods exist, which combine two of the
previous approaches. Other non-traditional methods based on
Bayesian modeling (D’Orazio et al., 2006b) and machine learn-
ing algorithms exist in the literature. The Bayesian techniques
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use posterior distributions to draw values for the parameters of
the joint distribution of X and Y and generate data from it. For
the machine learning ones, a two-step procedure has been pro-
posed in (Spaziani et al., 2019), where machine learning tech-
niques (naive Bayes, random forests or boosting algorithms)
are first applied to predict the non-common variables in both
data sets and, then, a hot-deck method is used to improve these
predictions. However, these procedures do not take the survey
weights into account and do not consider a unique relationship
between all common variables and all non-common variables.

2.1. Sample Weights

In general, sampling is not done in a uniform way on the
whole population. This means that two households do not have
the same probability of being drawn in the sample. In fact,
draws are usually done using stratification methods. For ex-
ample, for SILC data in Belgium, see Section 4, a two-stage
stratification method is used. First, a certain number of munic-
ipalities are drawn in each region (e.g. province in Belgium),
and then, in each municipality, a certain number of households
will be selected according to a second criterion (e.g. a sys-
tematic selection on the age of the reference person or the tax
quantile).

Such a construction of our database forces us to use weights
to take into account the fact that two households do not have
the same chances to be selected and do not represent the same
number of people in the population studied.

First, some design weights are calculated. They are set equal
to the inverse probability of selection of an individual in the
population (see Appendix A for more details). Next, the sam-
ple weights are created by adjusting these design weights for
non-responses and to reproduce characteristics from the popu-
lation, such as gender, age, size of the household, region, work-
ing status, etc (see Appendix B.2 for more details). Finally, the
individual weights are the household weights that are assigned
to each member of the household.

In a large number of surveys, these weights are available. So,
it is fundamental to take them into account during all statistical
analysis methods and therefore during statistical matching to
get the best possible match between our final results and the
population.

3. Proposed statistical matching technique

3.1. Kernel Canonical Correlation Analysis (KCCA)

In this section, we present an extension of the statistical
matching technique based on the Kernel Canonical Correlation
Analysis (KCCA) proposed by (Mitsuhiro and Hoshino, 2020).
First, we provide a brief introduction to the classical Canonical
Correlation Analysis (CCA) and how it can be used to perform
statistical matching. Then, we present its non-linear extension:
KCCA. In order to simplify the notation, we consider X and Y,
two centered matrices with n rows. In the context of statistical
matching, these matrices can be centered version of XA and YA,
or XB and ZB.

3.1.1. Canonical Correlation Analysis (CCA)
Canonical Correlation Analysis (CCA) is based on the fol-

lowing maximization problem:

max
a,b

aT XT WYb,

under the constraints that:

aT XT WXa = 1 and bT YT WYb = 1,

where a and b are known as canonical vectors and U = Xa and
V = Yb as canonical variables. This consists of maximizing
the correlation between Xa and Yb under constraints on their
variance to ensure uniqueness of the solution.

The same problem can be formulated as a generalized eigen-
value problem:(

0 Cxy

Cyx 0

) (
a
b

)
= λ

(
Cxx 0
0 Cyy

) (
a
b

)
,

where, Cxx = XT WX, Cyy = YT WY Cxy = XT WY and
Cyx = YT WX.

Statistical matching: imputation of the missing values.. After
centering XA and YA, the a obtained from the CCA procedure
is used to impute the missing values in YB. For this purpose,
we compute UA = XAa and UB = XBa, where XB is centered,
and we use a kernel function, e.g. Gaussian

Kh(x, y) =
1
√

2π
exp

(
−

(x − y)2

2h2

)
,

to measure the distance between all components of UA and UB.
The bandwidth parameter h can be chosen by a cross-validation
procedure. Finally, we obtain ŶB = ΩYA, a weighted mean of
the variables in YA, where:

Ω =
(
ω1,ω2, · · · ,ωnB

)T

ωi =

 wA
1$i1∑nA

j=1 wA
j$i j

,
wA

2$i2∑nA
j=1 wA

j$i j
, · · · ,

wA
nA
$inA∑nA

j=1 wA
j$i j

 , (1)

where $i j = Kh

(
uB

i , u
A
j

)
for i ∈ {1, · · · , nB} and j ∈ {1, · · · , nA},

and uB
i (resp. uA

j ) is an element of UB (resp. UA).

Statistical matching: multiple canonical variables. In general,
it is possible to consider the first κ canonical variables. If X
and Y contain zero-mean variables and κ is the rank of the ma-
trix XT Y , the i-th canonical variable, for i = 2, · · · , κ, can be
calculated by solving the following problem:

max
a,b

aT
i XT WYbi

under the constraints

aT
i XT WXa j =

{
0 j < i
1 j = i and bT

i YT WYb j =

{
0 j < i
1 j = i ,

where a1 and b1 are the first canonical vectors.
In order to perform the statistical matching with more than

one canonical variable it is possible to use a product kernel.
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3.1.2. Kernel canonical correlation analysis (KCCA)
Kernel canonical correlation analysis (KCCA) is a non-

linear extension of CCA proposed by (Lai and Fyfe, 2000) and
(Akaho, 2001). Contrary to the classical CCA, the matrices X
and Y are transformed into

Φx (X) = (φ (x1) ,φ (x2) , · · · ,φ (xn)) ∈ Hx

and
Φy (Y) = (φ (y1) ,φ (y2) , · · · ,φ (yn)) ∈ Hy,

where Hx and Hy are Hilbert spaces. To simplify the nota-
tions, we suppose in the rest of the paper that mapped data
are centered. The case of non-centered mapped data can be
easily treated by the technique used for Kernel Principal Com-
ponent Analysis (KPCA) (see (Schölkopf et al., 1998), ap-
pendix B). We denote the inner products in the Hilbert spaces
by U = 〈a|Φx (X)〉 and V =

〈
b
∣∣∣Φy (Y)

〉
, where a ∈ Hx and

b ∈ Hy.
The aim is to find a and b that maximize the correlation be-

tween U and V under variance constraints to insure the unique-
ness of the solution.

For this purpose, as in (Akaho, 2001), we can write

a =

n∑
i=1

αiφx (xi) b =

n∑
i=1

βiφy (yi)

U =

n∑
i=1

αi
〈
φx (xi)

∣∣∣φx (X)
〉

V =

n∑
i=1

βi

〈
φy (yi)

∣∣∣φy (Y)
〉
,

where αi and βi are scalars. In practice, thanks to the Mercer
theorem, we do not need an explicit form for φx and φy. In fact,

the inner product
〈
φx (xi)

∣∣∣∣φx

(
x j

)〉
, resp.

〈
φy (yi)

∣∣∣∣φy

(
y j

)〉
, can

be replaced by a symmetric positive definite kernel (Kx)i j =

Khx

(
xi, x j

)
, resp.

(
Ky

)
i j

= Khy

(
yi, y j

)
, where Kx and Ky are

known as Gramian matrices.
We can calculate α = (α1, · · · , αn)T and β = (β1, · · · , βn)T

as a solution of the following generalized eigenvalue problem
(Bach and Jordan, 2002):(

0 KxKy

KyKx 0

) (
α
β

)
= λ

(
KxKx 0

0 KyKy

) (
α
β

)
. (2)

Note that if we want to take into account the individual weights,
we need to rewrite equation (2) as follows:(

0 KxWKy

KyWKx 0

) (
α
β

)
= λ

(
KxWKx 0

0 KyWKy

) (
α
β

)
. (3)

If the Gramian matrices are not full rank, the matrices(
KxKx 0

0 KyKy

)
or

(
KxWKx 0

0 KyWKy

)
will be singular, as explained by (Melzer et al., 2001) and (Kuss
and Graepel, 2003). Thus, we need a regularization parameter
γ, which avoids singularities and guarantees uniqueness of the
solution:(

0 KxWKy

KyWKx 0

) (
α
β

)
= λ

(
KxWKx + γIn 0

0 KyWKy + γIn

) (
α
β

)
,

or alternatively:(
0 KxWKy

KyWKx 0

) (
α
β

)
= λ·( 1

2 ((Kx + γIn) WKx + KxW (Kx + γIn)) 0
0 1

2

((
Ky + γIn

)
WKy + KyW

(
Ky + γIn

))) (α
β

)
,

where In is the n×n identity matrix. The bandwidth parameters
of the kernels Khx (·, ·) and Khy (·, ·), as well as the regularization
parameter γ, can be chosen using a cross-validation procedure.

Similarly to CCA, KCCA can be extended to the case of
more than one canonical variable.

Statistical matching: imputation of the missing values. Once
we fit a KCCA model on XA and YA, we calculate α. We
can use it to impute the missing values in YB. For this pur-
pose, we compute UA = KA

xα and UB = KB
xα, where

(
KA

x

)
i j

=

Khx

(
xA

i , x
A
j

)
and

(
KB

x

)
i j

= Khx

(
xB

i , x
A
j

)
. Finally, we obtain

ŶB = ΩYA, a weighted mean of the variables in YA, where
Ω is defined in equation 1 and the corresponding bandwidth is
chosen by cross-validation.

Algorithm 1 KCCA
Input: XA and YA, the centered common and non-common

variables in data set A and XB, the common variables in
data set B. wA and wB the weights in both data sets.

Output: A data set B with the centered XB and ŶB

1: Calculate α and β of the KCCA between XA and YA using
wA.

2: Calculate the kernel canonical variables UA = KA
xα and

UB = KB
xα.

3: for i = 1, · · · , nB do
4: for j = 1, · · · , nA do
5: Calculate $i j = Kh

(
uB

i , u
A
j

)
where Kh is a Gaussian

kernel.
6: end for
7: end for
8: Calculate ŶB = ΩYA.

3.2. Super-Organizing Map
The Super-Organizing Map (Super-OM) is an extension of

the Self-Organizing Map (SOM). It is composed of separate
layers for different sets of input variables with distinct weights,
which make the Super-OM a more flexible model compared to
the classical SOM. In this article, we will focus on a Super-OM
with two input layers: XA and YA, the two sets of common and
non-common variables, respectively.

We consider a Super-OM with a two-dimensional rectangular
grid of K neurons (other types of grids can also be used, e.g.
hexagonal). The two input layers are connected to the neurons
in the corresponding hidden layers, which are characterised by
weight vectors mk,1 ∈ RJx and mk,2 ∈ RJy , for k = 1, · · · ,K .
The output layer consists of the K neurons with weight vectors
mk = (mk,1,mk,2), for k = 1, · · · ,K . In Figure 2, we provide an
example of Super-OM architecture with two layers and K = 9
neurons.
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Figure 2: Architecture of a Super-OM with 2 layers and 9 neurons.

The vectors of weights mk are estimated by means of a batch
algorithm similar to the one used for the classical SOM. The
main difference lies in the calculation of the distance measure,
which now takes into account the weight of each layer. The
vectors of weights are initialized with random values and, at
each iteration t ∈ {1, · · · ,T } the algorithm follows the steps
described hereafter:

1. For all input vectors {(xA
i , y

A
i ) : i = 1, · · · , nA}, find the

Best Matching Unit (BMU), i.e. the neuron with the low-
est distance from the input vector (xA

i , y
A
i ):

k̃(t)
i = arg min

k
d(t)

i,k;

where k̃(t)
i denote the index of the BMU and

d(t)
i,k = δ

√√√ Jx∑
j=1

[
xA

i, j − m(t)
k,1, j

]2
+ (1 − δ)

√√√√ Jy∑
j=1

[
yA

i, j − m(t)
k,2, j

]2

(4)
is a weighted Euclidean distance (other distance measures
can be used) and δ is the weight of the first layer;

2. Update the vectors of weights (for k = 1, · · · ,K):

m(t+1)
k =

∑nA
i=1(xA

i , y
A
i )wA

i K(t)
k̃i,k∑nA

i=1 wA
i K(t)

k̃i,k

where wA
i is the sample weight, (xA

i , y
A
i ) is a row vector and

K(t)
k̃i,k

is a neighborhood function centered in the BMU, e.g.
a Gaussian kernel

K(t)
k̃i,k

= exp

− d∗(t)
k̃i,k

2σ2(t)

 ,
where d∗(t)

k̃i,k
is the distance between the neurons k̃(t)

i and k
in the topological map space; and σ(t) is the width of the

kernel, a monotonically decreasing function 1

σ(t) = σ0 − (σ0 − σ1)
t
T

;

3. Set t = t + 1 and repeat from step 1 while t < T .

Statistical matching: imputation of the missing values. The
imputation of the missing values in YB is performed in three
steps:

1. The hyperparameters (i.e. the size of the topological map
and the weight δ) of the Super-OM are tuned on data set A
using cross-validation;

2. Use the selected hyperparameters to train the Super-OM
on data set A;

3. For i = 1, · · · , nB, find the Best Matching Unit (BMU), the
neuron with the lowest distance between xB

i and the weight
vectors m̂k,1, for k = 1, · · · ,K , and compute the prediction
ŷB

i as the weighted average of YA. The latter is computed
with weights, for j = 1, · · · , nA, equal to wA

j if xA
j belongs

to the BMU and 0, otherwise.

3.3. How to deal with categorical variables

In order to avoid incompatibility problems in the categori-
cal variables (e.g. predicting that a person lives in Paris, while
he/she is living in Germany), we propose to use a two-step pro-
cedure. First, we impute the missing categorical variables in YB

(or ZA) and then the continuous ones.
In the first step, the imputation of the categorical variables

is based on all the common variables (XA and XB) and the
compatibility matrix Θ, where Θi j, for i ∈ {1, · · · , nB} and
j ∈ {1, · · · , nA}, takes value one if the ith row of categorical
common variables in XB is the same as the jth row of categori-
cal common variables in XA and zero, otherwise. Note that if an
individual in data set B does not have a compatible counterpart
in A, we reduce the number of variables on which we verify the
equality until there is at least one compatible individual. Once
the compatibility matrix is computed, for each individual i of
the receiver data set, we draw at random individuals from data
set A with probabilities:

ω̃i =

 wA
1$i1Θi1∑nA

j=1 wA
j$i jΘi j

,
wA

2$i2Θi2∑nA
j=1 wA

j$i jΘi j
, · · · ,

wA
nA
$inAΘinA∑nA

j=1 wA
j$i jΘi j

 ,
(5)

where $i j = Kh

(
uB

i , u
A
j

)
, for the techniques based on CCA.

Whereas, for the Super-OM technique, $i j = Khs (xA
j , x

B
i )κi j,

where κi j is a dummy variable equal to one if xA
j has the same

best matching unit as xB
i and zero, otherwise, and a simple “rule

of thumb” is used to select hs (i.e. hs = 1.06σ̂n1/5).
In the second step, the categorical variables imputed in the

first step are added to the common variables and we impute

1where σ0 is the quantile 2/3 of the distances between neurons in the topo-
logical map and σ1 is equal to zero, as chosen in (Wehrens and Buydens, 2007)
and (Wehrens and Kruisselbrink, 2018).

5



Algorithm 2 Super-OM
Input: XA and YA, the centered common and non-common

variables in data set A and XB, the common variables in
data set B. wA and wB the weights in both data sets.

Output: A data set B with the centered XB and ŶB.
1: Initialize the weights mk.
2: t = 1
3: while t < T do
4: ∀i ∈ {1, · · · , nA} find the Best Matching Unit of
{(xA

i , y
A
i )}:

k̃(t)
i = arg min

k
d(t)

i,k;

5: for k = 1, · · · ,K do Update :

m(t+1)
k =

∑nA
i=1(xA

i , y
A
i )wA

i K(t)
k̃i,k∑nA

i=1 wA
i K(t)

k̃i,k

;

6: end for
7: Set t = t + 1
8: end while
9: for i = 1, · · · , nB do

10: Find the BMU of xB
i

11: for j, 1 · · · , nA do
12: Calculate 1BMU

i j that is equal to 1 if i and j have the
same BMU and 0 otherwhise.

13: end for
14: end for
15: Calculate ŶB = ΩYA, where:

Ω =
(
ω1,ω2, · · · ,ωnB

)T

ωi =

 wA
1 1BMU

i1∑nA
j=1 wA

j 1BMU
i j

,
wA

2 1BMU
i2∑nA

j=1 wA
j 1BMU

i j

, · · · ,
wA

nA
1BMU

inA∑nA
j=1 wA

j 1BMU
i j

 .

the continuous variables in YB (or ZA) using the methodology
presented in the previous Sections 3.1.1, 3.1.2 and 3.2.

This two-step procedure helps preserve joint distributions of
subsets of common and non-common variables, as well as sub-
sets of non-common variables only. Let’s consider the simple
case of two dummies (e.g., living in Belgium and in Brussels,
where the first can be a common or a non-common variable
and the second is a non-common variable) and one continuous
non-common variable (e.g., gross income). We could predict
the non-common variables using a one-step procedure not ad-
justing for compatibility constraints. However, this would in-
troduce a bias in the estimation of the proportion of inhabitants
in Belgium who live in Brussels. Our two-step procedure will
lead to a better estimate of this proportion because we will not
predict incompatible individuals (e.g. inhabitants in Belgium
who live in Paris). Besides, we could apply ex-post the com-
patibility constraints in the one-step procedure. However, this
would lead to a poorer estimate of, for example, the mean gross
income given the dummy variables because the ex-post adjust-
ment would only affect the dummies. This kind of bias will not
appear in our two-step methodology because the predictions of
the categorical variables in the first step are used to predict the
continuous ones.

4. Comparison of Methodologies

In this section, we analyze the performance of the two sta-
tistical matching methods based on KCCA and Super-OM. In
particular, we compare their performance with the ones of the
more trivial extensions based on CCA, but also with common
methods applied in econometrics (HD and REG).

For this purpose, we use the 2017 Belgian Statistics on In-
come and Living Conditions (SILC), from which we selected
two subsets of common and non-common variables (see Tables
1 and 2, respectively). We divide the data set in five folds and,
in each of them, we impute the non-common variables, as if
they are missing. The remaining four-fifths are used to tune,
by a 5-fold cross-validation procedure (see algorithm 4), the
hyperparameters associated to the different machine learning
algorithms.

All the methodologies applied in this Section (except HD) are
implemented using the two-step procedure presented in Section
3.3. In the first step, we minimize the sum of the weighted Mis-
classification Rates (wMCR) of the categorical non-common
variables, which have been transformed into dummies. While,
in the second step, we minimize the sum of the Root weighted
standardized Mean Squared Errors (RwsMSE) of the continu-
ous non-common variables. These error measures are defined
as:

wMCR
(
yd, ŷd

)
=

n∑
i=1

wiI
(
yd

i , ŷd
i

)
(6)

and

RwsMSE (yc, ŷc) =

√√√√
n∑

i=1

wi

(
yc

i − ŷc
i

)2

σ̂2 , (7)
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Algorithm 3 Final algorithm with KCCA
Input: XA and YA, the centered common and non-common

variables in data set A and XB, the common variables in
data set B. wA and wB the weights in both data sets.

Output: A data set B with the centered XB and ŶB.
1: for i = 1, · · · , nB do
2: for j = 1, · · · , nA do
3: Calculate Θi j = 1

((
XA

ca

)
i
=

(
XB

ca

)
j

)
.

4: end for
5: Set k = 1
6: while Θi· =

−→
0 do

7: for j = 1, · · · , nA do
8: Calculate Θi j = 1

((
XA

ca

)
i

dca−k
=

(
XB

ca

)
j

)
where

dca−k
=

denotes the fact that the equality must be satisfied on dca−k
components.

9: end for
10: Set k = k + 1.
11: end while
12: end for
13: Calculate αca and βca of the KCCA between XA and YA

ca
using wA.

14: Calculate the kernel canonical variables UA = KA
xαca and

UB = KB
xαca.

15: for i = 1, · · · , nB do
16: for j = 1, · · · , nA do
17: Calculate $i j = Kh

(
uB

i , u
A
j

)
where Kh is a Gaussian

kernel.
18: end for
19: end for
20: for i = 1, · · · , nB do
21: Draw a

(
ŶB

ca

)
i
from YA

ca with the probability ω̃i.
22: end for
23: Create the matrices X̃A =

(
XA,YA

ca

)
and X̃B =

(
XB, ŶB

ca

)
.

24: Calculate αco and βco of the KCCA between X̃A and YA
co

using wA.
25: Calculate the kernel canonical variables ŨA = K̃A

xαco and
ŨB = K̃B

xαco.
26: for i = 1, · · · , nB do
27: for j = 1, · · · , nA do
28: Calculate $i j = Kh

(̃
uB

i , ũ
A
j

)
where Kh is a Gaussian

kernel.
29: end for
30: end for
31: Calculate ŶB

co = ΩYA
co.

32: ŶB =
(
ŶB

ca, ŶB
co

)
.

Algorithm 4 Algorithm with 5-fold cross-validation
Input: XA and YA, the centered common and non-common

variables in data set A and XB, the common variables in
data set B. wA and wB the weights in both data sets.

Output: A data set B with the centered XB and ŶB.
1: Split A in five folds noted Ai, i = 1, · · · , 5.
2: for p = 1, · · · , np

ca where np is the number of hyperparam-
eters to test do

3: for i = 1, · · · , 5 do
4: Use the four other folds to predict YAi

5: end for
6: wMCRp = wMCR

(
YAi

ca, ŶAi
ca

)
7: end for
8: kca ← min

{
wMCRp

}
9: Use the combination kca of hyperparameters to predict the

categorical variable ŶB
ca

10: for p = 1, · · · , np where np
co is the number of hyperparam-

eters to test do
11: for i = 1, · · · , 5 do
12: Use the four other folds to predict YAi

co as ŶAi
co.

13: end for
14: RwsMS Ep = RwsMSE

(
YAi

co, ŶAi
co

)
15: end for
16: kco ← min

{
RwsMS Ep

}
17: Use the combination kco of hyperparameters to predict the

categorical variable ŶB
co

18: ŶB =
(
ŶB

ca, ŶB
co

)
.

where n is the total number of observations, wi is the sample
weight (bounded between zero and one), I(.) is an indicator
function, ŷd

i is the imputed value of a true dummy variable yd
i ,

ŷc
i is the imputed value of a true continuous variable yc

i with
i = 1, · · · , n, and

σ̂2 =

n∑
i=1

wi

yc
i −

 n∑
i=1

wiyc
i

2

.

In order to tune the different hyperparameters used by the
machine learning algorithms (CCA, KCCA and Super-OM), we
mainly used a grid search, as described hereafter.

CCA and KCCA. In both procedures, we consider two-
dimensional canonical variables. Their hyperparameters are
tuned by 5-fold cross-validation and grid search. For CCA, we
have only one hyperparameter in each phase, the bandwidth h;
we use in both phases a grid of forty-nine values on the interval
[0.01, 0.25]. In Table 3, we list the different hyperparameters
for KCCA and the intervals used to find their optimal values2.

Super-OM. In Steps 1 and 2, we consider two Super-OM mod-
els, both with a square grid of neurons. Their hyperparameters
K (the number of neurons) and δ (as in formula 4) are tuned by
5-fold cross-validation. In Table 4, we list the possible values
used to find the optimal ones in the two steps.

2Some of these intervals have been chosen after several trials.
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Variable Description Type

RB090 Gender Categorical
RX010 Age Continuous
DB040 Region Categorical

PE040 Educational level attained Categorical(ISCED level)
PB190 Marital status Categorical
PB220A Country of citizenship Categorical
PB210 Country of birth Categorical
PL031 Activity status Categorical

PL031 Number of hours worked Categoricalper week
PL140 Type of work contract Categorical

PL111 Economic activities Categoricalin employment
PL040 Status in employment Categorical
PL051 Occupation status (ISCO-08) Categorical
HX060 Type of the household Categorical
HX040 Size of the household Continuous
HS110 Car ownership Categorical

Table 1: Common variables

Variable Description Type

PY010N Employee cash or near cash Continuousincome (Net income)

PY030G Employer’s social insurance Continuouscontribution (Income)
PY100N Old-age benefits (Net income) Continuous
RX050 Low work intensity status Categorical
PB200 Consensual union Categorical

PH030 Limitation in activities Categoricalbecause of health problems

Table 2: Non-common variables

HD. We use the distance hot-deck algorithm implemented in
the R package StatMatch. The donation classes are created us-
ing three variables: Gender, Region and Marital status, whereas
the distance is calculated using Age and Size of the household.
For each individual in the receiver data set, the Manhattan dis-
tances to all the individuals in the donor data set that are in the
same class are calculated. Then, the non-common variables of
one of the

√
ND + 1 closest individuals, where ND is the num-

ber of available donors, is picked up at random and imputed in
the receiver data set.

4.1. Results

The performance of the different methodologies used to im-
pute the missing values is measured by the weighted stan-
dardized Mean Absolute Error (wsMAE) and Root weighted
standardized Mean Squared Error (RwsMSE), for the continu-
ous variables, and wMCR, for the categorical variables. The
wMCR and the RwsMSE are defined in equation 6 and 7 re-

Step Hyperparameter Interval

Bandwidth h 5 · 10−3 − 3.5 · 10−2
of the kernel (prediction)

1 Bandwidth 0.5 · h−2
x 4 · 10−4 − 1.2 · 10−3

of the kernel in Kx

Bandwidth 0.5 · h−2
y 4 · 10−4 − 1.2 · 10−3

of the kernel in Ky

Regularization parameter γ 1 · 10−5 − 3 · 10−5

Bandwidth h 1 · 10−2 − 7 · 10−2
of the kernel (prediction)

2 Bandwidth 0.5 · h−2
x 1.4 · 10−3 − 2.2 · 10−3

of the kernel in Kx

Bandwidth 0.5 · h−2
y 1 · 10−4 − 1.6 · 10−3

of the kernel in Ky

Regularization parameter γ 1 · 10−5 − 3 · 10−5

Table 3: Hyperparameters for KCCA

Step Parameter Values

1 & 2 Grid size (K) 3 × 3, 4 × 4, ... , 20 × 20
Layer weight (δ) 0.05, 0.1, ... , 0.9, 0.95

Table 4: Hyperparameters for Super-OM.

spectively, while

wsMAE
(
yc, ŷc

)
=

n∑
i=1

wi

∣∣∣∣∣∣yc
i − ŷc

i

σ̂

∣∣∣∣∣∣ ,
where n is the total number of observations, wi is the sample
weight (bounded between zero and one), ŷc

i is the imputed value
of a true continuous variable yc

i with i = 1, · · · , n, and

σ̂2 =

n∑
i=1

wi

yc
i −

 n∑
i=1

wiyc
i

2

.

As a measure of the overall quality of the matching, we com-
puted the mean of the RwsMSE of all variables (after the trans-
formation of the categorical ones into dummies).

We also compute two multivariate coefficients of determina-
tion. The first is the one defined by (Cohen et al., 2002), based
on the generalized variance (i.e. determinant of covariance ma-
trix):

mult-R2
1 = 1 −

det
(
RYŶ

)
det (RY ) det

(
RŶ

)
where RYŶ is the full correlation matrix of the variables in Y and
Ŷ and RY (resp. RŶ ) is the correlation matrix of the variables in
Y (resp. Ŷ). The second, with a geometric interpretation, is the
one defined by (Jones, 2019):

mult-R2
2 = 1 −

S S E
S S T

,

where SST =
∑n

i=1 wi
[
d (yi, ȳ)

]2, SSE =
∑n

i=1 wi (d (yi, ŷi))2 and

d(p, q) =

√∑J
j=1

(
p j − q j

)2
.
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Finally, we use the Cramér–von Mises criterion to assess the
goodness of fit of all bivariate distributions. Theoretically, it is
defined as

CVM =

∫
R

∫
R

[
F̂nA (x, y) − ĜnB (x, y)

]2
dHnA+nB (x, y)

where F̂nA (x, y), ĜnB (x, y) and HnA+nB (x, y) are the bivariate
empirical distributions of two variables X and Y in data set A,
B and A + B, respectively.

In practice, we use an empirical Cramér–von Mises criterion
where the double integrals are approximated by a sum,

C̃VM =
nA + nB

2

∑
j∈{A,B}

n j∑
i=1

w j
i

[
F̂nA

(
x j

i , y
j
i

)
− ĜnB

(
x j

i , y
j
i

)]2
,

(8)

where wA
i (resp. wB

i ) denotes the standardized weights such that
the sum is equal to one of observations in data set A (resp. B).

The aforementioned criteria are used to assess the quality of
the imputations obtained with the different statistical matching
techniques in each of the five folds. Their averages over the five
folds are provided in Table 5. In terms of wsMAE, RwsMSE,
wMCR and the overall error measures (Total RwsMSE), HD
underperforms all the other methods, as expected, due to its ran-
dom nature. The errors of the continuous variables are in many
cases twice as large as those produced by our proposed method-
ologies. The best performance is achieved by REG, followed by
KCCA. In terms of the two multivariate coefficients of determi-
nation (mult-R2), these conclusions are mitigated. However,
if we look at the averages of the empirical Cramér–von Mises
(C̃VM) criteria, which measure the distances between empiri-
cal distributions (including dependencies between the consid-
ered variables), the conclusions are different. In Table 5, we
provide the average of the C̃VM criteria for all couples of non-
common variables, as well as all couples of one common and
one non-common variable3.

The statistical matching methods based on machine learning
techniques (KCCA, Super-OM and CCA) exhibit lower values,
meaning that they have a better performance than REG, with
KCCA providing the best results.

HD also exhibits low values because it simply reproduces the
dependencies of the non-common variables in the donor data
set; KCCA provides the best performance if we consider the
average of the C̃VM criteria between all combinations of one
common and one non-common variable.

Figures 3–5 contain density plots comparing the original dis-
tributions of the continuous variables and the imputed ones(for
the first fold, the graphs being similar for the others). In line
with previous results, the distributions obtained from KCCA
seem to be very close to the original ones; in particular, they
seem to outperform CCA and REG.

3In the computation of C̃VM, data set A and B (in eq. 8) contain the true
data and the one obtained through statistical matching, respectively, for a given
fold.

Figure 3: Density plot of variable PY010N for the first fold

Figure 4: Density plot of variable PY030G for the first fold

Figure 5: Density plot of variable PY100N for the first fold

In conclusion, the results indicate that our methodologies
combine the advantages of both REG and HD. They seem bet-
ter than REG in preserving the joint distribution, as measured
by the empirical Cramér–von Mises criteria. At the same time,
they also outperform HD in terms of prediction error.
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Variable Measure KCCA Super-OM CCA HD REG

PY010N wsMAE 0.23 0.25 0.25 0.64 0.22
PY010N RwsMSE 0.59 0.63 0.62 1.46 0.58
PY030G wsMAE 0.27 0.28 0.30 0.64 0.24
PY030G RwsMSE 0.63 0.67 0.68 1.48 0.61
PY100N wsMAE 0.20 0.20 0.21 0.29 0.20
PY100N RwsMSE 0.58 0.57 0.60 0.77 0.57
RX050 wMCR 0.13 0.14 0.13 0.16 0.12
PB200 wMCR 0.14 0.15 0.13 0.19 0.13
PH030 wMCR 0.33 0.31 0.33 0.37 0.26

Total (cont.) RwsMSE 0.60 0.62 0.63 1.23 0.58
Total (cat.) RwsMSE 0.95 0.95 0.94 1.03 0.87
Total RwsMSE 0.87 0.87 0.86 1.08 0.80

Total Multivariate R2
1 (Cohen, 2013) 0.99 0.99 0.99 0.97 0.99

Total Multivariate R2
2 (Jones, 2019) 0.63 0.59 0.59 -1.05 0.64

Total Average C̃VM Bivariate Non-Common 1.18 2.43 1.78 0.67 9.85
Total Average C̃VM Bivariate Mixed 0.67 1.39 0.94 0.82 5.42

Table 5: Results (average over five folds) of the different statistical matching techniques applied to the SILC data set only. wsMAE, weighted standardized Mean Absolute Error; RwsMSE, Root weighted standardized
Mean Squared Error; wMCR, weighted Misclassification Rates; Total, all variables; Total (cont.), all continuous variables; Total (cat.), all categorical variables; Bivariate Non-Common, average of the C̃VM criteria
for all couples of non-common variables; Bivariate Mixed, average of the C̃VM criteria for all couples of one common and one non-common variable.
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5. Application

In this section, we apply the proposed statistical matching
methods to integrate the Statistics on Income and Living Con-
ditions (SILC) and the Household Budget Survey (HBS) data
sets for Belgium in 2016. The objective is to impute the con-
sumption variables (grouped into 10 macro-categories, see Ta-
ble 7) from HBS into SILC. For this purpose, we employ 12
common variables which are available in both data sets (see Ta-
ble 6) and the two-step procedure in Section 3.3. In the first
step, we impute the binary variables indicating whether the as-
sociated expenditure is equal to zero or not. Then, in the second
step, we impute the continuous variables taking into account the
corresponding dummies imputed in the previous step.

Since we do not know the true values of the non-common
variables in the receiver data set (SILC), we cannot calculate
wsMAE, wsMAE, RwsMSE, wMCR and the multivariate R2.
For the C̃VM criteria, we do not know the empirical bivari-
ate distributions of the common and non-common variables in
the receiver data set, but for illustration purposes, we approxi-
mate them with the donor data set (HBS). In Table 8, we pro-
vide the averages of the C̃VM criteria for all couples of non-
common variables, as well as all couples of one common and
one non-common variable4. The results are consistent with
the ones in the previous section (at least for non-common vari-
ables). KCCA provides the best results, and all the other pro-
posed methods outperform REG. HD results are not displayed
since our formula for the C̃VM criteria overrates their quality
(roughly the difference between two similar distributions calcu-
lated on the same data set – donor).

Variable Type

Gender Categorical
Age Continuous
Region Categorical
Educational level attained (ISCED level) Categorical
Marital status Categorical
Activity status Categorical
Type of work contract Categorical
Status in employment Categorical
Size of the household Continuous
Number of Children Continuous
Monthly imputed rent Continuous
Total net income Continuous

Table 6: Common variables

6. Conclusion

In this paper, we have extended several machine learning
techniques to statistical matching: Kernel Canonical Correla-
tion Analysis (KCCA), Super-Organizing Map (Super-OM).

4In the computation of C̃VM, data set A and B (in eq. 8) are the donor
(HBS) and the receiver (SILC), respectively.

Variable Type

1 Food products and non-alcoholic beverages Continuous
2 Alcoholic beverages, tobacco, narcotics Continuous
3 Clothing and footwear Continuous
4 Housing, water, electricity, gas and other fuels Continuous
5 Furnishing, household equipment Continuous

and routine maintenance of the house
6 Health Continuous
7 Transport Continuous
8 Communications Continuous
9 Recreation and culture Continuous
10 Education Continuous
11 Restaurants and hotels (horeca) Continuous
12 Miscellaneous goods and services Continuous

Table 7: Non-common variables

Non-Common Mixed

KCCA 431.37 500.89
Super-OM 705.27 683.81
CCA 561.81 588.68
REG 962.63 918.48

Table 8: Fusion SILC-HBS. Average of the empirical Cramér-von Mises crite-
ria (C̃VM), as in eq. 8, for the different statistical matching techniques. Non-
Common, average of the C̃VM criteria for all couples of non-common vari-
ables; Mixed, average of the C̃VM criteria for all couples of one common and
one non-common variable.

First, we include sample weights in all the methodologies.
Then, we propose a two-step procedure to deal with mixed data
and incompatibilities between categorical variables. Finally, we
compare the performance of the proposed methodologies with
more trivial extensions such as Canonical Correlation Analysis
(CCA), as well as more traditional econometric methods such
as distance hot-deck (HD) and multivariate and multinomial re-
gression (REG).

In a first exercise, the 2017 Belgian Statistics on Income and
Living Conditions (SILC) data set is divided into five folds. In
each fold, a set of variables is imputed as if they were missing
on hand of the four remaining folds. This application has shown
that the proposed methodologies are able to render competitive
results, in particular for KCCA, and to harness the different ad-
vantages of both HD and REG methods: preserving the joint
distributions and having small prediction errors. In a second
application, we illustrate a set of consumption variables from
the Household Budget Survey (HBS) into the SILC data set for
Belgium in 2016. Once again, we observe that KCCA seems to
perform very well.

The investigation of an efficient iterative procedure to inte-
grate multiple data sets and the generation of fictitious data sets
from the trained models (e.g. in case of confidential data) are
promising paths for future research. In addition, given the high
computational costs of KCCA in case of very large data sets,
a bootstrap version of this procedure is worthy of further re-
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Appendix A. Initial weights in a two-stage stratification

The probability of selection of a new household can be calcu-
lated in a two-stage stratification procedure. It is the probability
that a household is drawn given the primary sample unit (PSU,
e.g. the municipality in Belgium) is drawn multiplied by the
probability that the PSU is drawn. A PSU can be drawn several
times so it leads us to the following formula :

Ph = P (h drawn)

= P (h drawn|X drawn) · P (X drawn)

=
nh

NX

(
1 −

(
1 −

NX

Nh

)gh
)

where :

• X denotes the PSU of h.

• nh the number of households to be drawn in the (selected)
PSU (40 by PSU for SILC in Belgium),

• NX the number of households in the PSU,

• Nh the number of households in the stratum,

• gh the number of PSU drawn in the stratum.

Because NX is much smaller compared to Nh, a first order Tay-
lor approximation can be used and :

Ph =
nh

NX

(
1 −

(
1 −

NX

Nh

)gh
)

≈
nh

NX

NX

Nh
gh

≈
nh

Nh
gh.

This calculation does not take into account the fact that when a
household is drawn, it is immunized to be drawn again. Gen-
erally, given the number of households per PSU, the difference
is negligible and neglected in practice. The initial weight of a
household is just equal to the inverse of this probability.

Appendix B. Adjustment of the weights

Appendix B.1. Adjustment for non-response
The weights are then adjusted for non-response in one of fol-

lowing ways.
The classical idea is, if we have a household h that belongs

to a group k, :

w(n)
h = wh

1
Rk

where

Rk =
sum of design weights of responding units in cell k

sum of design weights of selected units in cell k
.

A second possibility is to use a logit regression where re-
sponse propensities Rh is estimated using some variables that
are available for every individuals. If a large number of vari-
ables are available for all households, i.e. both those who re-
sponded and those who did not, this type of model will give
better results. For instance, in Belgium for SILC, Statbel uses
a multiple logit regression model based on the province, the
household size, the household type, the urbanity of PSU, and
the fiscal income quantile of the household. Then the adjusted
weights using that second technique become :

w(n)
h = wh

1
Rh
.

Appendix B.2. Final Adjustment
Then, the final weights are obtained by adjusting the weights

w(n)
h to reproduce characteristics from the sample population.

We suppose that there exist J auxiliary variables x1, · · · x j · · · xJ

(age, gender, region,... where categorical variables are trans-
formed in dummies). The individual variables are aggregated
at household level (number of men, number of women, ...)

For SILC, the calibration of (Deville and Särndal, 1992) is
used with only dummy variables. It consists in minimizing:

min
w( f )

k

S∑
k=1

w(n)
k G

w( f )
k

w(n)
k

 such that
S∑

k=1

w( f )
k x jk = X j∀ j ∈ {1, · · · , J} ,

where X j is the total of the variable x j in the population and
S is the sample size.

Several functions can be chosen for G. For example, Statbel
in Belgium, uses for SILC :

G(r) =

{ (1−L)(U−1)
U−L

[
(r − L) log

(
r−L
1−L

)
+ (U − r) log

(
U−r
U−1

)]
if r ∈ ]L,U[

+∞ otherwise

where they have to fix a lower bound L and an upper bound
U.

The choice of this function is adapted to dummy variables. It
is a truncated raking ratio. Raking ratio is developed by (Dem-
ing and Stephan, 1940) and is a method that is equivalent to the
method when G(r) = r log(r) − r + 1 as explained in (Deville
and Särndal, 1992). In truncated raking ratio, we impose that

L ≤
w( f )

k

w(n)
k

≤ U.

The purpose of making this truncated version is to restrict the
weights to avoid extremely large values compared to original
weights while maintaining the advantages of the raking ratio,
i.e. avoid having negative weights (if L ≥ 0.). Moreover, this
method always leads to a solution as the raking ratio.
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López-Laborda, J., Marı́n-González, C., Onrubia-Fernández, J., 2020. Estimat-
ing engel curves: a new way to improve the silc-hbs matching process using
glm methods. J Appl Stat 47, 1–18. doi:https://doi.org/10.1080/
02664763.2020.1796933.

Melzer, T., Reiter, M., Bischof, H., 2001. Nonlinear feature extraction us-
ing generalized canonical correlation analysis, in: International Confer-
ence on Artificial Neural Networks, Springer. pp. 353–360. doi:https:
//doi.org/10.1007/3-540-44668-0_50.

Mitsuhiro, M., Hoshino, T., 2020. Kernel canonical correlation analysis for
data combination of multiple-source datasets. Jpn J Stat Data Sci 3, 1–18.
doi:https://doi.org/10.1007/s42081-020-00074-z.

Okner, B., 1972. Constructing a new data base from existing microdata sets: the
1966 merge file, in: Annals of Economic and Social Measurement, Volume
1, number 3. NBER, pp. 325–362.
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