KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM.

"The theorem of Grassmanli in a space of n dimensions."

By LUCIEN GODEAUX.

Reprinted from:
Proceedings of the Meeting of Saturday October 26, 1907.
(November 28, 1907).

Mathematics. - "The theorem of Grassmann in a space of n dimensions." By Lucien Godeaux, at Morlanwelz (Hainault). (Communicated by Prof. P. H. Schoute).

We shall designate by the letter S a linear space and the number of dimensions of this space shall be the index.

The notation V_{i}^{j} represents a variety, the locus of ∞^{i} elements and of order j.

The order of a variety, locus of spaces S_{k} occurring in an $(n-k)(k+1)-1$ times infinite number in a space S_{n}, is the number of S_{k} of an S_{k+1} through an S_{k-1} of this S_{k+1} and belonging to the variety.

1. In an S_{s} the theorem of Grassmann can be read thus:

The locus of S_{0} for which the S_{1} which unite it to three fixed S_{0} meet three fixed S_{1} in three S_{0} of the same S_{1} is a variety V_{1}^{3}.

In an S_{8} it has been given it the two following forms:
The locus of an S_{0} for which the S_{2} which unite it to four fixed S_{1} meet four fixed S_{1} in four S_{0} of a same S_{1} is a V_{2}^{4}. (Le Paige, Sur la génération de certaines surfaces par des faisceaux quadrilinéaires, Bul. de Belgique, 1884, 3e série, tome VIII).

The locus of an S_{0} for which the S_{1} which unite it to four fixed S_{0} meet four fixed S_{2} in four S_{0} of a same S_{3} is a V_{2}^{4}.
2. Let there be in an $S_{n} k S_{r_{i}}$ which we shall designate by A_{i} and $k S_{s_{i}}$ which we shall designate by $B_{i},(i=1, \ldots k)$.

Let p be a number satisfying the $2 k$ inequalities

$$
\begin{align*}
& r_{i}+p+1 \leqq n-1 \tag{1}\\
& r_{i}+s_{i}+p+1 \geqq n, \quad(i=1, \ldots k) \tag{2}
\end{align*}
$$

A space S_{p} determines with the k spaces $A_{i} k$ spaces $S_{r_{i}+p+1}$. These spaces meet the corresponding spaces B_{i} in k spaces $S_{r_{i}+s_{i}+p-n+1}$.

If these k spaces belong to an $\left.\sum_{i=1}^{\sum_{i=1}^{n}}\left(r_{i}+s_{i}\right)+k(p-n+2)-1\right)$,
the space S_{p} describes a variety $V_{(n-p)(p+1)-1}$ the order of which is to be found.

Let us suppose we have

$$
\begin{equation*}
\Sigma\left(r_{i}+s_{i}\right)+k(p-n+2)=n+1 \tag{3}
\end{equation*}
$$

Let C be an $S_{\rho+1}$ and D an S_{p-1} of C.
Let us designate by \triangle an S_{p} passing through D and situated in C.

Let us take $k-1$ spaces Δ and let us number them $1, \ldots j-1$, $i+1, \ldots k$.

These $k-1$ spaces Δ determine with $k-1$ spaces A_{i} suitably chosen $k-1$ spaces $S_{r_{i}+\mu+1}$. These spaces meet the corresponding spaces B_{i} in $k-1$ spaces $S_{r_{i}+s_{i}+p-n+1},(i=1, \ldots, j-1, j+1, \ldots k)$.

These spaces determine an $S_{i=j-1}^{\sum_{i=1}\left(r_{i}+s_{i}\right)+\sum_{i=j+1}^{i=n}\left(r_{i}+s_{i}\right)+(k-1)(p-n+2)-1.1010}$
This space has in common with B_{j} a space

$$
\sum_{i=1}^{S_{i=1}-1} r_{i}+\sum_{i=j+1}^{i=n} r_{i}+\sum_{i=1}^{i=n} s_{i}+(k-1)(p+2)-k n-1
$$

In its turn this space determines with A_{i} a space

$$
\sum_{i=1}^{S_{i=j+1}}\left(r_{i}+s_{i}\right)+(k-1)(p+2)-k n
$$

On account of the equality (3) the latter meets C in a single point, which determines with D a space Δ_{j}.

When j varies from 1 to k, one obtains k series of spaces \triangle between which exists a $(1,1, \ldots 1)$ correspondence. There are k coincidences.

The variety described by the space S_{ρ} is $V_{(n-p)(p+1),-1}^{k}$.
The locus of a space S_{p} for which the $S_{r_{i}+p+1}$ which unite it to k fixed spaces $S_{r_{i}}$ meet $k S_{s_{i}}$ in $k S_{r_{i}+s_{i}+p-n+1}$ of a same $S_{\Sigma\left(r i+s_{t}\right)+k(p-n+2)-1},(i=1, \ldots k)$, is a variety $\stackrel{k}{V_{(n-p)}^{(p+1)-1}}$

The spaces A_{i} are evidently principal spaces of the locus of S_{p}, principal space having the same meaning as principal point or plane of a complex of rays.

In S_{3} we find the following theorem:
The locus of an S_{1} for which the S_{2} which join it to four S_{0} meet four S_{1} in four S_{0} of a same space S_{2} is a variety $V_{3}^{:}$(complex of order four).
3. If we regard the ordinary space as if generated by right lines we have a geometry of four dimensions. We shall now show two generalizations of the theory of Grassmann in this geometry.

Let us imagine k linear congruences $G_{1}, \ldots G_{k}$, and k plane pencils $\left(P_{1}, \boldsymbol{\pi}_{1}\right), \ldots\left(P_{k}, \pi_{k}\right)$. Let us imagine moreover to be given a linear system C of linear complexes to the amount in number of ∞^{6-k}.

An arbitrary right line g determines k linear complexes with the
k congruences G. These have in common with the k corresponding plane pencils k lines $p_{1}, \ldots p_{k}$.

Let us now find the locus of the line g when the k lines p belong to a same complex of the system C.

Let (A, \boldsymbol{a}) be any plane pencil. Let us take $k-1$ lines of this pencil and let us number them $1, \ldots i-1, i+1, \ldots k$.

Each of these lines determines with the corresponding congruence G a linear complex, which has in common with the corresponding plane pencil $(P, \boldsymbol{\pi})$ a line p. The $k-1$ lines p found in this way determine a complex of the system C. This complex has a line p_{i} in common with the plane pencil $\left(P_{i}, \pi_{i}\right)$. This line determines with G_{i} a complex having a line a_{i} in common with (A, α). When i varies from 1 to k we have k series of lines a between which exists a $(1,1, \ldots 1)$ correspondence. There are k coincidences.

The locus of a right line for which the linear complexes that it determines with k fixed linear congruences meet k fixed plane pencils in k lines of a linear complex of a system of $6-k$ terms is a complex of degree k (order and class) to which belong the given k linear congruences.

If $k=6$, we have a theorem of Grassmann.
4. Let us suppose five groups of three lines $H_{1}, \ldots H_{5}$ and five nets of lines $R_{1}, \ldots R_{5}$.

An arbitrary line g determines with $H_{1}, \ldots H_{6}$ five linear congruences which meet the five corresponding nets in five lines. If these five lines belong to a selfsame linear congruence the line g describes a congruence.
Let $\boldsymbol{\pi}$ be a plane. Let us consider in this plane five series of lines $p_{1}, \ldots p_{5}$.
Between the lines of these series it is easy to see that there is such a correspondence that to four ight lines corresponds a fifth.

Let us suppose that three right lines are fixed, whilst the fourth describes a pencil. It is then easy to verify that the fifth also describes a pencil. According to an extension of the principle of Zeuthen there are fifteen coincidences.

The locus of a right line taken in such a way that the linear congruences which it determines with five systems of three lines have in common with five nets five lines of a same linear congruence is a congruence of the fifteenth class.

In the same way we can verify that this congruence is also of order fifteen and that it contains the generatrices of the same kind as the given lines of the five quadratic surfaces determined by these lines.

