
Practicing Abstraction Skills Through Diagrammatic
Reasoning Over CAFÉ 2.0

Géraldine Brieven ,Lev Malcev ,Benoit Donnet
Université de Liège, Institut Montefiore, Belgium

Abstract—Shaping first-year students’ minds to solve problems
at different levels of abstraction is both important and challeng-
ing. Although abstraction is a crucial skill in problem-solving,
especially in STEM subjects, students often struggle with abstract
thinking. They tend to focus their efforts on concrete aspects of
the problem, where they feel more comfortable and closer to the
final solution. Unfortunately, this approach can cause them to
overlook critical details related to the problem or its solution.

To address this issue in our Introduction to Programming
(CS1) course, we introduced a programming methodology that
requires students to create a graphical representation of their
solution and then derive the code from it. To enable them to
practice this diagrammatic reasoning approach on a regular
basis, we developed a learning tool called CAFÉ 2.0. It facilitates
a semester-long activity in which students solve problems by
submitting both a graphical representation of their solution and
its implementation. Further to checking the final implementation,
CAFÉ 2.0 also provides personalized feedback on how students
have graphically modeled their solution and how consistent it is
with their code. This paper presents an overview of the features
of CAFÉ 2.0 and the methodology it currently supports in the
context of our CS1 course. Then, using a survey and learning
analytics, this paper evaluates students’ interactions with CAFÉ
2.0. Finally, the potential for extending CAFÉ 2.0 to other STEM
disciplines is discussed.

Index Terms—CAFÉ 2.0, Computer-Assisted Learning, Auto-
mated Feedback, Abstraction, Diagrammatic Reasoning, CS1

I. INTRODUCTION

Entering Higher Education can be a challenging transition.
Students are expected to autonomously digest complex and
expansive academic topics. However, students often miss per-
sonalized feedback and have difficulties in self-regulating [1].
In our country, this trend is even more pronounced, as the open
access is the norm in most Science, Technology, Engineering
and Mathematics (STEM) fields, including Computer Science
(CS). This leads to a situation where many students lack a
strong mathematical foundation and struggle with abstraction,
which are both crucial skills for solving problems and, there-
fore, mastering a STEM discipline [2].

This paper focuses on CS, which is closely related to
STEM [3]. More specifically, we consider an Introduction to
Programming course (usually referred to as CS1), that covers
specific programming language concepts (C language) as well
as abstraction. To mobilize abstraction skills, we teach an
approach where the difficulty lies not in writing code, but in
a modeling phase that is prior to a development phase.

To make this modeling phase accessible to first-year stu-
dents while keeping it relevant, we adopt an “active” algorithm
visualization technique. Although thinking through drawing is

Active and
Regular

FeedbackDiagrammatic
Reasoning

(DR)

Activities

How ?
What ?

PCA

Why ?

Learning

Interactive
Blank Model

Tool

CAFÉ 2.0

 Objectives

Modeling

Development

Figure 1. Motivation and context around CAFÉ 2.0 and our CS1 course.

more intuitive and requires less formalization, it also relies on
diagrammatic reasoning (DR), which involves abstraction [4]
and is therefore an important competence in STEM [5], [6].

In this paper, we present one type of visualization, aiming
at modeling a loop, i.e., an iterative process repeating a
certain number of times a block of instructions. We call it
LOOP DRAWING (commonly referred to as Graphical Loop
Invariant [7]). We integrate it in a programming methodology
defined as Loop Drawing Based Programming (abbreviated as
LDBP) [8]. To teach this methodology, we present it as a set of
five solution parts that are clearly detailed in the theoretical and
practical classes. Each of them belongs to the modeling phase
or the development phase, or bridges them. This approach
requires training and experience as it is new to students. But
once mastered, it makes them approach programming from
a new frame, privileging analysis over trial and error [9]. It
results in clearer, less complex, and more effective solutions.
That programming methodology is presented in Sec. II.

More generally, Fig. 1 summarizes the context and chal-
lenges described so far in the rectangle labeled “Objectives”.

Encompassing these objectives, Fig. 1 expresses how to
meet them. To ensure regular and active participation from
a large group of students and provide them with personalized
feedback, the most effective approach is to utilize a remote
activity supported by an online system. We implemented such
a learning tool and we called it “CAFÉ 2.0” (standing for
“Correction Automatique et Feedback des Étudiants”1). Its
features are described in Sec. III. Generally, CAFÉ 2.0 presents
programming problems and scaffolds the expected solution

1which means “Automated Assessment and Feedback for Students”

https://orcid.org/0000-0003-1410-1470
https://orcid.org/0000-0002-5259-4336
https://orcid.org/0000-0002-0651-3398

through placeholders that map with the LDBP methodology’s
solution parts. Students must fill them and submit their answer.
Then, they receive automated formative feedback and feedfor-
ward and, from that review, they can refine their solution and
submit it again. Unlike most CS learning tools that are limited
to automatic code simulation and evaluation [10], [11], [12],
[13], [14], CAFÉ 2.0 focuses not only on program output, but
also on the cognitive abstraction process involved in program
construction. This feature makes relevant the expansion of
CAFÉ 2.0 to other STEM problems whose solution is also
constructed using a canvas to be filled in, before moving to
lower levels of abstraction. Sec. VII shows how CAFÉ 2.0
could be extended and illustrates an example in Physics.

In practice, to make students use CAFÉ 2.0, it needs to
be integrated into the course via activities, as shown in the
outer rectangle labeled “Activities” in Fig. 1. In our course,
the Programming Challenge Activity (PCA) was created [15].
In the context of the PCA, students must regularly solve
statements. The modalities of the activity are detailed in
Sec. IV.

After this, Sec. V presents the context in which we collected
data in order to report how students perceived the LDBP
methodology, CAFÉ 2.0 and the PCA, and how they distribute
their attention between DR and coding tasks. These results are
presented in Sec. VI. They mainly show that the methodology
is hard to embrace, the PCA is engaging, and CAFÉ 2.0’s
feedback stimulates students’ practice. By delving into a
closer examination of their use of the LDBP methodology, we
could also noticed that students tend to oscillate between the
modeling and development phases.

II. OBJECTIVE : TEACHING ABSTRACTION THROUGH
DIAGRAMMATIC REASONING (DR)

In STEM, computational thinking (CT) concepts are perma-
nently mobilized in order to solve problems, and abstraction
stands as the keystone of CT [16]. Although abstract thinking
is a core skill for many scientists [17], there is no universal
definition of abstraction [18]. Similarly, there is no standard
method for teaching it [18]. The most suitable definition of
abstraction for our teaching approach is the use of drawings
to show important relationships between variables in a piece of
code while ignoring unnecessary aspects of the problem [19].
As such, we believe that applying DR [20] is an appropriate
way to introduce CT [21] and to allow students to develop
their abstraction skills. Previous studies have also shown that
developing spatial skills by asking students to construct their
own visualization has a positive impact on their learning
of STEM disciplines [22], [23]. More specifically, it also
promotes success in CS1 courses [24], [25].

For this purpose, we defined the LDBP methodology. It con-
sists in first designing the solution (through a modeling phase)
so that its implementation (through a development phase)
becomes straightforward. These modeling and development
phases echo other frameworks from the literature. Namely,
they map the two key tasks (modeling and implementing) of
software development, identified by Zehetmeier et al. [26].

Modeling phase

Loop
Drawing

Code

Development phase
Generalisation Specific States Generalisation

Theoretical
Justification

that loop ends

Realisation
i

i
0

i
N

F = N - i

0 N

N

0

unsigned i=0;

(i==N)

Initial State

Final State

Loop Variant

Done To do

Figure 2. The five solution parts belonging to the two LDBP phases.

They also match with two of the stages of Loksa et al. [27],
where students are expected to translate some abstract repre-
sentations of a solution into code.

In particular, our LDBP methodology applies each time
students need to implement a loop and it relies on drawing [8].
The drawing reflects the program loop’s behavior that solves
the problem and serves as the core of the modeling phase, as
highlighted through Fig. 2. It encompasses all of the necessary
information, in such a way that the split-attention effect [28]
is avoided. Fig. 2 also shows that LOOP DRAWING should be
manipulated to illustrate specific solution states: the INITIAL
and FINAL STATES. This is similar to what is taught by
Walker in his second stage [9], that aims at developing LOOP
DRAWING from a problem statement and connecting it to
the pieces of code development. To do this, students must
clarify any and all relationships among variables using LOOP
DRAWING. Then, they should exploit it before and after the
loop, mapping so with our INITIAL and FINAL STATES.

Next, Fig. 2 shows the development phase, where students
deduce a piece of code from these two states and integrate
them in their whole code stemming from LOOP DRAWING.

Finally, besides this sequence of realisations, a theoretical
justication (the Loop Variant) must be provided to ensure the
loop ends. The Loop Variant is a function that calculates the
number of elements that remain to be processed in the loop,
based on the number of iterations that have been performed
so far. This function must be decreasing, so that it becomes
negative after a certain number of iterations. This indicates that
there are no more elements to process, and the loop exits.

III. TOOL : CAFÉ 2.0

This section describes CAFÉ 2.0, in the context of our CS1
course. Its first module supports the problem-solving process,
by going through the modeling and development phases, where
the modeling phase relies on DR. Its second module consists
in building a personalized feedback.

M
odeling Phase

D
ev

el
op

m
en

t P
ha

se

Read Statement

Loop
Drawing (1)

Loop
Variant (4)

Code (5)

Programming Challenge Activity

CORRECTION & FEEDBACK
Solution Part Errors Feedback

Loop Variant
Code

Final State
Initial State

Loop Drawing

Final
State (3)

Initial
State (2)

Submission

 Im
pr

ov
in

g
su

bm
is

si
on

MISCONCEPTION
LIBRARY

Figure 3. Activity Diagram showing how students are solving Challenge in
CAFÉ 2.0, during the PCA.

Step1 → Step2 → Step3 → Step4 → Step5 → Step6

LOOP DRAWING → INITIAL STATE → FINAL STATE → LOOP VARIANT → CODE → SUBMISSION

Figure 4. Expected problem-solving path following the LDBP methodology.

A. Problem-Solving Module

At a global level, CAFÉ 2.0 assists students in problem-
solving by breaking down the expected solution into specific
solution parts. They are depicted through the upper part of
Fig. 3 and, more concretely, through Fig. 5, being a screenshot
of CAFÉ 2.0. They are aligned with our methodology (see
Fig. 2). We define a step as any update to a solution part, and
a problem-solving path as a sequence of steps leading to the
submission. The expected problem-solving path is provided in
Fig. 4. Although students are taught to perform the solution
parts in this order, CAFÉ 2.0 does not force them to do so.
Due to this freedom, many problem-solving paths are possible.
We do not lock that path as students may avoid that constraint
anyway by using their own code editor, which would cause us
to lose track of their actual problem-solving path.

Going deeper, at a local level, CAFÉ 2.0 also individually
outlines each solution part. In Fig. 5, the first tab (labeled
“Loop Drawing”) contains a predefined canvas called the
Blank Model. It depicts the shape that the correct LOOP
DRAWING should have to solve a given problem. While solv-
ing the problem, the students must annotate the Blank Model
so that the drawing becomes their own LOOP DRAWING. Two
types of boxes must be filled in: (i) the red boxes, standing
to host expressions composed by students (i.e., constants,
variables, operations, or left blank – see a in box 2 on
Fig. 5); (ii) the green boxes, standing to host labels that
students must drag and drop from a list that is predefined
by the supervisor (see the list on the left of the Blank Model
in Fig. 5). By constraining the LOOP DRAWING, automatic
semantic correction becomes possible. This is accomplished
by pre-modeling the empty framework (i.e., Blank Model),
utilizing the predefined boxes, where each box symbolizes a
solution component.

The tab “Loop Variant” expects students to provide the
Loop Variant function. The tabs “Initial State” and “Final
State” allow students to transpose their LOOP DRAWING in
specific states to get them closer to the final solution (being
the code). Finally, the code part is simply represented through
a template [29] where students have a placeholder (see “Code
Editor” on Fig. 5). Moreover, they can compile and test the
whole code through the “Playground Mode”.

At that point, it is worth noting the two interests in decom-
posing students solution into predefined solution parts. First,
it allows CAFÉ 2.0 to pave students’ problem-solving path
with respect to a given methodology. Next, it frames their
solution, making feasible automated personalized feedback,
mainly thanks to the Blank Model.

B. Correction and Feedback Module

When a student submits their solution (by clicking the
“Submit” button on Fig. 5), CAFÉ 2.0 automatically corrects
it and provides personalized feedback and feedforward. As
shown in Fig. 6, the system identifies students’ mistakes
using error codes that are classified and characterized in a
misconception library.

1) The misconception library: It is worth noticing that
the concept of misconception is broadly used in the STEM
literature [30], [31]. In this paper, we similarly use the terms
“misconception”, “error”, and “mistake” to refer to “something
that is done wrong”. From a general point of view, any
supervisor wanting to use CAFÉ 2.0 as automatic assessment
and feedback system should define a rubric checklist [32]
beforehand, forming so the misconception library. That rubric
should be organized according to the parts a student’s submis-
sion is made up of. For each solution part, typical mistakes
should be identified. We built it based on previous experiences,
like presented in other studies [33], [34]. Then, each mistake
should be characterized by a unique error code, a nature
(syntactic/semantic), a gravity factor (quantifying how serious
the mistake is), a feedback message (explaining in details the
error), and, optionally, a corresponding reference to the course
(i.e., feedforward). Once the misconception library has been
fed, some respective rule-based checks must be implemented
and simply configured in order to catch each mistake in a
given submission related to a given problem.

2) The Correction and Feedback Construction: When these
last set-ups are ready, the system can process submissions. For
a given student’s submission, each solution part is digested by
a dedicated checker module that detects any potential mistake
defined in the misconception library.

In particular, for the LOOP DRAWING, each box is checked
against the expected solution as well as the contents of the
other boxes filled by the student. Each box is numbered so
that they can be easily referenced in the feedback, making
it richer while still being clear and easy for the student to
digest. To define a Blank Model, a supervisor can use the Loop
Drawing Editor implemented in CAFÉ 2.0. It offers patterns
and predefined graphical components [8] that can be arranged
to build a Blank Model. It is worth noting that students can

Figure 5. Screenshot of the PCA in CAFÉ 2.0. It also shows how CAFÉ 2.0 follows the LDBP methodology with tabs, one for each solution part.

CORRECTION & FEEDBACK
Solution
Part Error Feedback

Loop Drawing

structName

doneOn

todoVar

varUndef

Code
genFctErr

genFctErr

varLink

property

upperbound ...

Errors Solution
Part

Nature
Gravity
Factor

Course
Ref

Loop Drawing SYNTAX 0,1structName

Loop Drawing SEMANT 0,1doneOn

Loop Drawing SEMANT 0,1todoVar
...

Initial State SYNTAX 0,5varUndef

Initial State 0,3varInitInv

Final State 0,8notCond

Final State 0,5notTrue

Variant Loop 0,6isInstruct

Variant Loop 0,4notDecr

Code 1notCompil

Code 0,4genFctErr SEMANT
...

...

...

...

SEMANTLoop Drawing

Loop Drawing
Loop Drawingupperbound

property

varLink

0,1

0,1

0,2

SEMANT

varInitInv

Submission

SYNTAX

SYNTAX

SYNTAX

SYNTAX

SEMANT

SEMANT

SEMANT

MISCONCEPTION LIBRARY

Initial State

CH3-SL14

CH3-SL22

CH3-SL41

CH3-SL42

CH3-SL68

CH3-SL11

CH5-SL25

CH3-SL10

CH1-SL35

CH6-SL2

CH6-SL18

...

...

...

...

...

...

...

...

...

/

/

/

...

Figure 6. Correction and Feedback module of CAFÉ 2.0.

also use it to define their own LOOP DRAWING by directly
filling in the components, independently from any activity.

Next, the checks related to the INITIAL STATE, the FINAL
STATE, and the Loop Variant cover the scan of the LOOP
DRAWING’s specific states students derived as well as their
consistency with the final code and the other fields (e.g., vari-
ables introduced in the INITIAL STATE have to be initialized
in the code accordingly).

Finally, regarding the code, it first gets compiled. Then,
different tests are run, each of them corresponding to a general
or a particular scenario.

If an error is detected, the student’s final grade is affected
by the gravity factor that characterizes the error. In addition,
the corresponding feedback message and course reference are
added to the list of comments that are ultimately provided to
the student. This list of comments is split on a per-solution-
part basis. Fig. 6 shows an example of misconception library
from which mistakes were detected in a given submission.

Finally, once the feedback has been received, no particular

order in the problem-solving path is expected as each student
has their own errors to fix, categorized per solution part. From
a theoretical standpoint, CAFÉ 2.0 implements “Answer-until-
correct” (AUC) [35] feedback approach allowing students to
refresh their solution as many times as needed. It is compa-
rable to Singh et al. [36] approach, where students receive a
numerical value indicating the number of required changes,
along with suggestion(s) on how to correct the mistake(s).

IV. ACTIVITY : THE PCA

Three times during the semester, students are given a
Programming Challenge [15]. This usually requires an ad-
ditional four out-of-class hours. Their content for Academic
year 2022–2023 is described in Table I. Each Challenge
consists in a problem potentially split in several subproblems
(defined in the last column in Table I). For each subproblem
(relying on a loop), a Blank Model and a code template are
provided (Fig. 5). Regarding the modalities, a Challenge starts
on Wednesday, 06:00PM and finishes on Friday, 08:00PM.
During this 2-days timeframe, a student can submit up to
three times their solution, each one receiving an automated
feedback. The latest submission determines the final mark
and each Challenge accounts for 2% of the final mark for
the course. After this certificative period, students are free to
keep training, but it will not affect their final grades.

V. METHOD

During the academic year 2022–2023, 97 students (N=97)
registered to our CS1 course. Among them, 53% (resp. only
20%) had more than 2h/week (resp. 4h/week) of Physics (resp.
Maths) in Secondary school. A tiny proportion of students
(5%) had some prior programming experience.

From a content perspective, our course strongly focuses on
the LDBP methodology, described in Sec. II. Fifteen hours of
theoretical and traditional exercises sessions are dedicated to

Table I
DESCRIPTION OF THE CHALLENGES SUPPORTED BY CAFÉ 2.0 DURING THE ACADEMIC YEAR 2022–2023.

Challenge Starting Date Topic Details

1 Oct. 19th Counting the odd digits for all numbers in [a, b]
outer loop (spans [a, b])
inner loop (count odd digits in a given number)

2 Nov. 9th Compressing an integer array into another a single loop

3 Nov. 30th Displaying all numbers in array T that follow a property G

uint power(uint a, uint b)
uint is_prime(uint x)
uint is_g(uint x)
void display(int T[], int N)

it (roughly half of the course schedule). Moreover, students
are also exposed to the three Challenges described in Sec. IV.

At the beginning of the semester, students were informed
they would be part of a research study and they got the
opportunity to opt-out of the study. All students gave their
consent and no one opted-out throughout the semester.

Perception data was collected via an anonymous survey,
following the final exam. 74 students shared their opinion.
Further, additional data was collected via CAFÉ 2.0 and
it was anonymized prior to our analysis. In particular, any
action performed by a student was logged, e.g., login/logout,
opening/closing a tab, updating the Blank Model, etc. Further,
all logs are timestamped.

Prior to analyzing the logs to track students’ actions on
CAFÉ 2.0, the data was pre-processed to remove any unex-
pected usage traces. Specifically, we addressed the issue of
external IDE (Integrated Development Environment) usage by
identifying instances of copying and pasting. This allowed us
to monitor the amount of isolated pastes in CAFÉ 2.0’s code
editor, thereby enabling us to recognize possible employment
of external IDEs. A paste is considered isolated if there is
no recorded corresponding copy action in CAFÉ 2.0. Our
preliminary analysis revealed 72 submissions out of 469 in
which at least one isolated paste was identified. As a result,
these submissions were excluded from the dataset.

VI. PRELIMINARY EVALUATION

The purpose of this section is to showcase the value of
CAFÉ 2.0. To fulfill this objective, we first present students’
perspectives on the three goals behind CAFÉ 2.0 (see Fig. 1).
Subsequently, we observe how students implement the LDBP
methodology, using learning analytics. The impacts of CAFÉ
2.0 on students’ performance is left for future work.

A. Perception

Considering students’ opinion related to the LDBP method-
ology, Fig. 7 shows a large majority (63%) appear to mainly
like coding. On the opposite, only 34% of students find LOOP
DRAWING useful, 27% are not sure about that claim, and 39%
explicitely express they do not take any benefit from it. That
demonstrates the difficulty students may encounter in grasping
the LDBP methodology. That statement gets confirmed seeing
how students self-assess some of their skills: (i) about half
of the students consider they are rigorous enough; (ii) 35%
of them feel their code is of good quality; (iii) similarly,

010203040506070 10 20 30 40 50 60 70 80
Percentage of Responses

The quality of my Loop Drawing
is good

The quality of my code is good

I lack rigor

Loop Drawing is useful

I just like coding

Strongly Disagree

Disagree

Neither Agree nor Disagree

Agree

Strongly Agree

Figure 7. Perception of the LDBP methodology (N = 74).

010203040506070 10 20 30 40 50 60 70 80
Percentage of Responses

MidTerm

Redo examples

PCA (formative)

PCA (certificative)

Exercises Sessions

Theoretical Sessions

Strongly Disagree

Disagree

Neither Agree nor Disagree

Agree

Strongly Agree

Figure 8. Perception of the PCA with respect to other activities (N = 74).

38% of students think that they are able to design a good
LOOP DRAWING. These last opinions are in favor of a lack
of awarness regarding abstraction (it is aligned with previous
results [37], [38]). By correlating the five statements, we have
discovered a positive and more significant correlation between
self-rated code quality and LOOP DRAWING design quality
(r=0.42, p=0.0002), suggesting that LOOP DRAWING helps in
better coding. To a lower extend, we also noticed that students
who find LOOP DRAWING useful tend to give a higher rate
to their ability to design it (r=0.30 and p=0.0116), which
expresses the importance of motivating the effectiveness of
the LDBP methodology.

A second inquiry in the survey assesses how the PCA, sup-
ported by CAFÉ 2.0, affects students’ motivation in learning,
in comparison to other (more conventional) activities. Fig. 8
shows that the PCA comes as the second most stimulating
activity, after the theoretical lessons. 60% of the respondents
(strongly) agreed that the PCA was motivating, 25% had no
opinion, and 15% did not embrace that online experience.

010203040506070 10 20 30 40 50 60 70 80
Percentage of Responses

Boosts in checking the
theoretical supports

Makes realize the gaps

Helps in better understanding
the topic

Boosts in improving the
solution

Is discouraging

Is clear and understandable

Strongly Disagree

Disagree

Neither Agree nor Disagree

Agree

Strongly Agree

Figure 9. Perception of the feedback (N = 74).

Specifically, the inclusion of both the formative and certifi-
cation periods seems to be beneficial to the practice of the
course. A closer look reveals a slightly stronger preference for
the formative period. It is likely that some students were able
to benefit from the PCA independently, without the pressure
of being graded. However, some did not take advantage of the
formative periods to train. One possible reason for the lower
activity outside the certification period could be that students
became stuck despite receiving feedback, which hindered their
progress and prevented them from completing the Challenge.

Finally, special interest was paid to the way students per-
ceived the automated feedback. Fig. 9 reflects that CAFÉ
2.0 feedback is well received by the students. Half of the
respondents found it clear and understandable, 30% had some
misunderstanding of it, and 20% could not understand it well.
Nevertheless, the majority of respondents (74%) felt encour-
aged to improve their solution after receiving the feedback.
Likewise, more than 60% of respondents could identify their
gaps, focus on the appropriate theoretical support to fill them,
and better understand the topic. Finally, it is also interesting
to note that, although some students struggled to digest the
feedback, few of them felt truly discouraged.

B. How Students Embrace the LDBP Methodology?

This section targets to draw the different problem-solving
paths students follow. According to the LDBP methodology,
students should achieve the five solution parts in the suggested
order (Fig. 3 and Fig. 4). However, as explain in Sec. III, CAFÉ
2.0 does not force them to do so.

To assess how the methodology was actually handled, we
distinguish between the first submission of a Challenge (N1 =
135 submissions) and subsequent ones after feedback (N2→n

= 263 submissions). The latter are referred to as “feedback
based submissions”. The motivation behind this distinction is
that the solution parts that students choose to work on are
strongly influenced by the feedback they received for all the
submissions following the first one. Conversely, when students
prepare their first submission, they all start from the same
point, which better frames the discussion.

Fig. 10 distills the number of steps students take to build
their solution. 70% of them need a maximum of eight steps
for their first attempt, while 10% go from one part to another
more than 14 times. As for the feedback based submissions,

0 4 8 12 16 20 24 28 32 36 40
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

v
e

st
u

d
e
n
ts

d
is

tr
ib

u
ti

o
n

First Submission

Feedback Based Submissions

Figure 10. Number of steps articulating the problem-solving paths.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
Steps

D
is

tr
ib

u
ti

o
n

o
f

so
lu

ti
o
n

p
a
rt

s

Loop Drawing

Initial State

Final State

Loop Variant

Code

Submission

Done

(a) First submission (N1=135 – 312 steps sequences).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
Steps

D
is

tr
ib

u
ti

o
n

o
f

so
lu

ti
o
n

p
a
rt

s

Loop Drawing

Initial State

Final State

Loop Variant

Code

Submission

Done

(b) Feedback based submissions (N2→n = 263 – 575 steps sequences).
Figure 11. Programming Challenges solving path followed by students.

fewer steps are required: 70% of students need less than five
steps to tune their solution. Based on these observations, our
analysis will focus on the first eight steps students take for
each subproblem in each submission.

Fig. 11 presents two Alluvial diagrams2, one for each

2An Alluvial diagram is a type of flow chart that represents changes in a
network structure over time. In that sense, it helps identify patterns and trends
(see https://en.wikipedia.org/wiki/Alluvial_diagram).

https://en.wikipedia.org/wiki/Alluvial_diagram

0 4 8 12 16 20 24 28 32 36 40
Number of oscillations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

u
m

u
la

ti
v
e

st
u

d
e
n
ts

d
is

tr
ib

u
ti

o
n

First Submission

Feedback Based Submissions

Figure 12. Number of oscillations between the modeling and development
phases (per submission).

submission type.
From Fig. 11a, we can see that students address their

attention to the four parts of the modeling phase, before
moving further. More generally, the LOOP DRAWING step
occurs the most frequently. Some students also appear to
move back and forth between consecutive parts. Typically,
from step 1 to 4, 25% of students confine their attention on
LOOP DRAWING and the INITIAL STATE. Regarding their last
updates, 50% of students submit their whole solution right
after performing the code part, while the others review their
modeling phase. Finally, 10% of students submit the first
version of their solution without any code.

These results suggest that students embrace the method-
ology since they first focus on the parts included in the
modeling phase and keep going back to them further in their
problem-solving path. However, these results are limited to
the eight first steps. Therefore, in order to capture to which
extent students move back and forth between the modeling
and development phases, Fig. 12 highlights the cumulative
distribution of students across the number of oscillations
between these phases. The main outcome is that students do
not follow a linear path. Instead, they seem to permanently
try to reconcile their abstract representations and their code.
Quantifying that finding, 60% of students oscillate more than
five times between their design and their code.

For the feedback based submissions, Fig. 12 shows that
the frequency of oscillations is much lower than for the first
submissions. Typically, 80% of students move less than four
times between an abstract representation and their code. More
precisely, Fig. 11b depicts that they do not go (anymore)
through the whole flow. Half of the students submit the new
version of their solution after two steps, the latest. 35% of
them even just review their LOOP DRAWING, without adapting
the code accordingly. Among the others, 80% of them skip
reviewing their code after updating their representation(s),
which may lead to some dissonances between their modeling
and development phases. On the contrary, many students (30%
for the transition from step 2 to 3 typically) move back to
LOOP DRAWING after managing the code, which illustrates
some reverse engineering.

To summarize, students oscillate between the modeling and

development phases. A similar behavior was observed by
Friebroon et al. [39], [40], showing that the process of problem
solving involves back and forth transitions between levels of
abstraction. In our case, this is especially true for the first
submission. For the next ones, students mainly go through
LOOP DRAWING and its states. When looking at the mistakes
captured by the system, most of them occurred for the mod-
eling phase, which explains such a behavior. More generally,
these results also show the interest of CAFÉ 2.0. Students focus
on the graphical model of their solution, thus training their
abstraction skills through diagrammatic reasoning.

VII. EXTENDING CAFÉ 2.0

This section projects CAFÉ 2.0 as an interdisciplinary learn-
ing tool, aiming to train abstraction through DR, in general.

A. General Considerations

To integrate a new problem profile in CAFÉ 2.0, the follow-
ing requirements must be met:

Requirement 1: The problem solving process should be
paved by a sequence of solution parts.
Requirement 2: Problem solving should run through two
phases : the abstraction one and the concrete one.
Requirement 3: The abstraction phase should rely on
diagrammatic reasoning.
Requirement 4: The graphical representation should be
dynamic, in such a way that it can be manipulated
to illustrate different solution states (general ones and
specific ones).
Requirement 5: The graphical representation should be
made up of predefined graphical components. They can
stand as placeholders or movable elements students must
handle when they are designing a solution.

In addition, regardless of the discipline, an activity must be
designed to make CAFÉ 2.0 an integral part of the course.
Finally, it should be noted that first-year students are the most
appropriate target group to avoid modeling solutions that are
too complex. Moreover, it is likely that first-year students are
the ones most in need of this type of support.

B. Application to Physics

To emphase the interdisciplinary potential of CAFÉ 2.0,
we match it to a specific problem profile picked from another
field than CS. In particular, we are considering the following
Kinematics problem in Physics :

A car of mass m = 1200kg is parked on a slope of
α = 30◦. We would like to compute the magnitude of
the friction forces so that the car is at rest.

1) Problem-Solving Setting: Considering this specific type
of problem, five solution parts could be defined: (i) Repre-
senting the situation and identifying the forces acting on the
object of interest (here the car); (ii) Choosing a system and de-
composing the various forces so that they follow the system’s
directions; (iii) Deriving the mathematical expression(s) that
allow one to formulate the friction forces; (iv) Transposing the

2. Forces decomposition in a system

1. Force Diagram

Modeling phase

4. Horizontal Road

5. Equation Solving
(with values)

Development phase
GENERALISATION

x

y

x

y

3. Final equation(s)

GENERALISATIONSPECIFIC STATES

(a) Problem-Solving Flow in Physics

2. Forces decomposition in a system

x

y

1

2

3

4

5
6

7

8

9

10

11

12 13
14 15

17
16 18

19

20

Description

x-axis
cos
sin
...

(b) Blank Model in Physics.
Figure 13. How CAFÉ 2.0 can fit to a Physics Introduction course.

general representation in a particular case (where the problem
may be possible to solve intuitively); (v) Using numerical data
to compute the solution. Fig. 13a illustrates these solution
parts and maps them to the two phases supported by CAFÉ
2.0 (Requirement 2). Fig. 13a also shows that the problem
should be solved sequentially (Requirement 1). Further, the
Force Diagram satisfies Requirement 3. Finally, this drawing
is manipulated at step 4 meeting so Requirement 4.

2) Correction and Feedback Setting: To automate correc-
tion and feedback, a misconception library needs to be defined
and fed. This library should cover most of the misconceptions
students may fall into while solving the problem, as explained
in Sec. III-B and illustrated in Fig. 6. For example, considering
our Kinematics problem, for the second solution part where
the forces should be decomposed according to the system, a
typical mistake could be that the students did not direct all
the arrows according to the orthonormal system that is set.
Another example of an error could be that the second equation
does not reflect the drawing above.

3) Solution Parts Modeling Setting: Similar to the Blank
Model, it is important to hide the key components from the
expected pictorial representation of the situation. In this way,
students have to identify and connect them on their own,
while still having benchmarks thanks to the provided canvas.
Furthermore, on the supervisor’s side, these components have
to be modeled (by having a specific semantic and relation
with each other) in order to enable automated personalized
feedback. For the Kinematics problem of interest, a relevant
empty diagram could be the one exposed by Fig. 13b. This
figure is based on different types of graphical components.

Each of them is mapped to a specific color. As in the Blank
Model, red boxes should contain variables while green ones
expect a description selected from a drop-down list. In addition
to them, purple boxes represent forces and movable arrows are
illustrated in yellow. Everything else is fixed.

VIII. RELATED WORK

Fig. 14 highlights the three dimensions of CAFÉ 2.0 (aligned
with the objectives introduced in Fig. 1): it implements di-
agrammatic reasoning (Sec. II) within an activity (Sec. IV)
and provides automated feedback (Sec. III). Several tools
sharing those features are presented3, with most being related
to programming. This is because CT skills, approached via
DR in this paper, are often seen as directly linked to CS [3].

To the best of our knowledge, the only tool that trains DR
and provides automated feedback at the same time is Sow-
iso [41], by calling GeoGebra [42]. Sowiso proposes exercises
for practicing STEM disciplines (mainly Mathematics, but also
some topics in Physics). Sowiso enables teachers to create
their own classroom and visualize their students performance.
However, it does not include the exercises in any activity or
game. Sowiso is also expanding to teaching programming (in
Python), but without relying on DR.

Generally, training DR and automating the review of a
graphical model constructed by a student is challenging [43].
This may explain why many learning tools solely focus on
either (i) DR (e.g., BlueJ [44]), (ii) design and simulation (e.g.,
Geogebra [42], Codex [45], Scratch [46]), or (iii) automated

3Providing an exhaustive list of all the similar learning tools is out of the
scope of this paper.

CAFÉ
2.0

Training
DR

Automated
Feedback

Engaging
environment (via

activities, games...)

Dodona
Scratch

CODEX

Geogebra VIDE

BlueJ

Sowiso

Webcat

myLab
Programming

Figure 14. Objectives of CAFÉ 2.0 and other tools meeting them.

feedback on the final solution, without considering abstract
thinking, upstream to the code (e.g., VIDE [14], Dodona [13]).

Enabling solution simulations can help students determine if
they are on the right track. Codex [45] is a gamified application
that offers challenges to solve, along with a visualization of the
execution of their pseudocode. Scratch [46] provides a visual
programming environment [47] in which students manipulate
graphical elements and figures to create programs that generate
animations. Like for the LOOP DRAWING, boxes are objects
treated as entities and organized to represent computational
relationships [48]. This approach is suitable for students with
limited computer programming knowledge [49].

Further than simulating specific instances, many tools offer
programming exercises, with automated feedback [50]. Most
of them use “test-based correction”, i.e., the student’s code is
corrected through unit tests. Dodona [13] typically provides
problem statements and corresponding unit tests that are
specifically designed to cover edge cases. However, it does not
assist students with exploratory modeling and visualization.
Dodona only checks the final solution, which is the code. Stu-
dents are encouraged to use Dodona as it supports activities,
similar to CAFÉ 2.0 which supports the PCA. Activities are
crucial to promote engagement [51].

IX. CONCLUSION

This paper introduces CAFÉ 2.0, a system that offers
personalized feedback. Currently, CAFÉ 2.0 supports an online
activity in which students solve programming problems, based
on a graphical model called LOOP DRAWING.

For each new problem statement, the supervisor must pro-
vide its definition and corresponding solution. The solution
should be expressed through distinct parts, each presented on
a canvas (either a template or a Blank Model) with designated
placeholders for students to complete. Defining the semantics
and potential errors associated with each solution part in
advance is crucial. This helps guide students in solving the
problem and allows for automated assessment. Additionally,
all students’ actions are recorded, allowing for tracking of their
problem-solving strategies.

This paper focuses on the sequence of solution parts that
students go through, in order to see if students actually adopt
the problem-solving process supported by CAFÉ 2.0. Knowing
that each solution part is related to a modeling or development
phase, we can see that students tend to oscillate between
modeling and coding tasks. Further research could explore
the amount of time students spend on these tasks and the
corresponding impact on their problem-solving skills. These
results could be compared to the ones obtained by Böttcher and
Grellner [52], who answered similar questions in the context
of their own courses.

More generally, we could also use CAFÉ 2.0 to study stu-
dents’ problem-solving strategies in other areas by extending
it. CAFÉ 2.0 is applicable to introductory courses that use
abstract graphical representations to construct solutions. In
Physics, for example, students often solve Kinematics prob-
lems with the help of force diagrams. We have already taken
steps to extend CAFÉ 2.0 to this problem profile, envisioning
it as a tool for practicing abstraction through diagrammatic
reasoning in various STEM contexts.

SOFTWARE ARTEFACT

CAFÉ 2.0 is written in Python 3. It requires the Pandas
library for working properly. CAFÉ 2.0 source code is available
at this URL: https://gitlab.uliege.be/cse.

ACKNOWLEDGMENTS

This work is supported by the CyberExcellence project
funded by the Walloon Region, under number 2110186.

REFERENCES

[1] G. Brieven, S. Liénardy, and B. Donnet, “Lessons learned from 6 years
of a remote programming challenge activity with automatic supervision,”
in Proc. European Distance and E-Learning Network (EDEN), June
2022.

[2] P. Henderson, T. Cortina, and J. Wing, “Computational thinking,”
in Proc. ACM Technical Symposium on Computer Science Education
(SIGCSE), March 2007.

[3] Y. Li, A. Schoenfeld, A. Disessa, A. Graesser, L. Benson, L. English, and
R. Duschl, “On computational thinking and STEM education,” Journal
for STEM Education Research, vol. 3, no. 1, August 2020.

[4] K. Tylén, R. Fusaroli, J. Philipsen, J. Rączaszek-Leonardi, S. Østergaard,
and F. Stjernfelt, “Diagrammatic reasoning: Abstraction, interaction, and
insight,” Pragmatics and Cognition, vol. 22, no. 2, pp. 264–283, January
2014.

[5] P. Osztián, Z. Katai, and O. Erika, “On the computational thinking and
diagrammatic reasoning of first-year computer science and engineering
students,” Frontiers in Education, vol. 7, September 2022.

[6] A. Bakker and M. Hoffmann, “Diagrammatic reasoning as the basis for
developing concepts: A semiotic analysis of students’ learning about
statistical distribution,” Educational Studies in Mathematics, vol. 60,
no. 3, pp. 333–358, November 2005.

[7] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, Inc., 1976.
[8] G. Brieven, S. Liénardy, L. Malcev, and B. Donnet, “Graphical loop

invariant based programming,” in Proc. Formal Method Teaching Work-
shop (FMTea), March 2023.

[9] H. M. Walker, “Curricular syncopations: Where/how do loop invariants
fit?” ACM Inroads, vol. 14, no. 1, p. 6–13, February 2023.

[10] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: Automatically
grading programming assignments,” in Proc. Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE),
June/July 2008.

[11] Pearson, “My lab programming,” [Last Accessed: October 12th,
2023]. [Online]. Available: https://www.pearsonmylabandmastering.
com/northamerica/myprogramminglab/

https://gitlab.uliege.be/cse
https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab/
https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab/

[12] R. Lobb and J. Harlow, “Coderunner: a tool for assessing computer
programming skills,” ACM Inroads, vol. 7, no. 1, pp. 47–51, March
2016.

[13] C. Van Petegem, R. Maertens, N. Strijbol, J. Van Renterghem, F. Van der
Jeugt, B. De Wever, P. Dawyndt, and B. Mesuere, “Dodona: Learn
to code with a virtual co-teacher that supports active learning,” arXiv,
cs.CY 2210.10719, October 2022.

[14] D. Pawelczak and A. Baumann, “Virtual-C – a programming environ-
ment for teaching C in undergraduate programming courses,” in Proc.
IEEE Global Engineering Education Conference (EDUCON), April
2014.

[15] S. Liénardy, L. Leduc, D. Verpoorten, and B. Donnet, “Challenges,
multiple attempts, and trump cards – a practice report of student’s expo-
sure to an automated correction system for a programming challenges
activity,” International Journal of Technologies in Higher Education
(IJTHE), vol. 18, no. 2, pp. 45–60, June 2021.

[16] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, March 2006.

[17] A. Darwish, “The abstract thinking levels of the science-education
students in Gaza universities,” Asia-Pacific Forum on Science Learning
and Teaching, vol. 15, no. 2, December 2014.

[18] D. Zehetmeier, A. Böttcher, A. Brüggemann-Klein, and V. Thurner,
“Defining the competence of abstract thinking and evaluating CS-
students’ level of abstraction,” in Proc. Hawaii International Conference
on System Sciences (HICSS), January 2019.

[19] N. M. Seel, Ed., Encyclopedia of the Sciences of Learning. Springer
Verlag, 2011.

[20] M. Anderson, B. Meyer, and P. Olivier, Eds., Diagrammatic Represen-
tation and Reasoning. Springer London, 2002.

[21] G. Pólya, How to Solve It. Princeton University Press, 1945.
[22] N. Kiernan, A. Manches, and M. Seery, “The role of visuospatial

thinking in students’ predictions of molecular geometry,” Chemistry
Education Research and Practice, vol. 22, no. 3, pp. 626–639, January
2021.

[23] L. B. Nilson, The Graphic Syllabus and the Outcomes Map. Jossey-
Bass, 2007.

[24] J. Parkinson and Q. Cutts, “Investigating the relationship between spatial
skills and computer science,” in Proc. ACM Conference on International
Computing Education Research (ICER), August 2018.

[25] M. Cooper, C. Shaffer, S. Edwards, and S. Ponce, “Open source soft-
ware and the algorithm visualization community,” Science of Computer
Programming, vol. 88, pp. 82–91, August 2014.

[26] D. Zehetmeier, A. Böttcher, V. Thurner, and A. Brüggemann-Klein,
“A concept for addressing abstract thinking competence while teaching
software development,” in Proc. IEEE Global Engineering Education
Conference (EDUCON), April 2020.

[27] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, “Programming, problem solving, and self-awareness: Effects of
explicit guidance,” in Proc. Conference on Human Factors in Computing
Systems (CHI), 2016.

[28] J. Sweller, Instructional Design in Technical Areas. Australian Council
for Educational Research, April 1999.

[29] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review
of automated feedback generation for programming exercices,” ACM
Transactions on Computing Education (TOCE), vol. 19, no. 1, pp. 1–
43, September 2018.

[30] L. Nieuwkoop, “Data-driven intervention: a minor tweak, a major reve-
lation – correcting mathematic students’ misconceptions, not mistakes,”
Mathematics Educator, vol. 23, no. 1, pp. 24–44, 2013.

[31] I. Sikurajapathi, K. Henderson, and R. Gwynllyw, “Using e-assessment
to address mathematical misconceptions in engineering students,” In-
ternational Journal of Information and Education Technology, vol. 10,
no. 5, pp. 356–361, May 2020.

[32] S. Bharuthram and M. Patel, “Co-constructing a rubric checklist with
first year university students: A self-assessment tool,” Journal of Applied
Language Studies (APPLE), vol. 11, no. 4, pp. 35–55, December 2017.

[33] D. Zehetmeier, A. Bottcher, A. Brüggemann, and V. Thurner, “Devel-
opment of a classification scheme for errors observed in the process of
computer programming education,” in Proc. Higher Education Advances
(HEAd), June 2015.

[34] V. Almstrum, P. Henderson, V. Harvey, C. Heeren, W. Marion,
C. Riedesel, L.-K. Soh, and A. Tew, “Concept inventories in computer
science for the topic discrete mathematics,” in Working Group Reports

on ITiCSE on Innovation and Technology in Computer Science Educa-
tion (ITiCSE-WGR), June 2006.

[35] S. Narciss, Feedback Strategies for Interactive Learning Tasks.
Springer, January 2008, pp. 413—-424.

[36] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proc. ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), June 2013.

[37] A. Bottcher, K. Schlierkamp, T. Veronika, and D. Zehetmeier, “Teaching
abstraction,” in Proc. International Conference on Higher Education
Advances (HEAd), June 2016.

[38] J. Perrenet and E. Kaasenbrood, “Levels of abstraction in students’
understanding of the concept of algorithm: the qualitative perspective,”
in Proc. ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE), June 2006.

[39] M. Friebroon, R. Levy, and M. Armoni, “Abstraction and problem
solving in a CS curriculum for 4th grade,” in Proc. APSCE Conference
on Computational Thinking and STEM Education (CTE-STEM), July
2023.

[40] F. E. V. Castro and K. Fisler, “Qualitative analyses of movements
between task-level and code-level thinking of novice programmers,”
in Proc. ACM Technical Symposium on Computer Science Education
(SIGCSE), February 2020.

[41] A. Heck, “Using SOWISO to realize interactive mathematical
documents for learning, practising, and assessing mathematics,” MSOR
Connections, vol. 15, no. 2, pp. 6–16, 2017, [Last Accessed: December
15th, 2023]. [Online]. Available: https://cloud.sowiso.nl

[42] R. Ziatdinov and J. Valles, “Synthesis of modeling, visualization, and
programming in geogebra as an effective approach for teaching and
learning STEM topics,” Mathematics, vol. 10, no. 3, p. 398, January
2022.

[43] H. Keuning, J. Jeuring, and B. Heeren, “Towards a systematic review
of automated feedback generation for programming exercise,” in Proc.
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE), July 2016.

[44] M. Kölling and J. Rosenberg, “Objects first with Java and BlueJ
(seminar session),” ACM SIGCSE Bulletin, vol. 32, no. 1, p. 429, March
2000, [Last Accessed: December 15th, 2023]. [Online]. Available:
https://www.bluej.org/

[45] B. Goncalves, M. Moraes, B. Teixeira, and L. Leite, “CODEX – learning
object to support loop structure teaching,” in Proc. Latin American
Conference on Learning Technologies (LACLO), October 2018.

[46] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Learning computer
science concepts with scratch,” Computer Science Education, vol. 23,
no. 3, pp. 239–264, September 2013.

[47] P. Plaza M., A. Peixoto, E. Sancristobal, M. Castro, M. Blázquez,
A. Menacho, F. Loro, G. Carro Fernandez, J. Munoz, M. Munoz,
A. Munoz, S. Munoz, C. Munoz, B. Quintana Galera, and A. Lopez-
Rey, “Visual block programming languages and their use in educational
robotics,” in Proc. IEEE Global Engineering Education Conference
(EDUCON), April 2020.

[48] L. Begosso, L. R. Begosso, and N. Christ, “An analysis of block-
based programming environments for CS1,” in Proc. IEEE Frontiers
in Education Conference (FIE), October 2020.

[49] H. Nishino, “Ardestan: A visual programming language for arduino,”
in Adjunct Proc. ACM Symposium on User Interface Software and
Technology (UIST), October 2019.

[50] M. Messer, N. C. C. Brown, M. Kölling, and M. Shi, “Automated
grading and feedback tools for programming education: A systematic
review,” ACM Transactions on Computing Education, vol. 24, no. 1, pp.
1–43, March 2024.

[51] M. Forisek, “On the suitability of programming tasks for automated
evaluation,” Informatics in Education, vol. 5, no. 1, pp. 63–76, January
2006.

[52] A. Böttcher and R. Grellner, “Analysing students’ problem solving
capabilities to support teaching in software development,” in Proc. IEEE
Global Engineering Education Conference (EDUCON), March 2022.

https://cloud.sowiso.nl
https://www.bluej.org/

	Introduction
	Objective : Teaching Abstraction through Diagrammatic Reasoning (DR)
	Tool : Café 2.0
	Problem-Solving Module
	Correction and Feedback Module
	The misconception library
	The Correction and Feedback Construction

	Activity : the Pca
	Method
	Preliminary Evaluation
	Perception
	How Students Embrace the ldbp Methodology?

	Extending Café 2.0
	General Considerations
	Application to Physics
	Problem-Solving Setting
	Correction and Feedback Setting
	Solution Parts Modeling Setting

	Related Work
	Conclusion
	References

