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I. Introduction

S TARSHADES are a promising concept for achieving the

necessary level of starlight suppression needed to detect

habitable zone exoplanets [1–3]. By deploying a separate spacecraft

along the line of sight (LOS) of a space telescope to a target star, a

shadow is cast onto the telescope pupil, blocking on-axis starlight

while passing off-axis exoplanet light. Ensembles of end-to-end

mission simulations produce posterior distributions of planet

discoveries and the parameters of detected planets for specific

mission designs [4,5]. For missions with a starshade, these

simulations must incorporate the relevant dynamics, which increases

computation time. Of the two main starshade flight modes of station

keeping and retargeting between observations, the latter uses the

most fuel and is our main focus [6–8]. The retargeting or slewing

process creates a vast search space of trajectories: we can choose from

any star on a target list and achieve alignment after an arbitrary slew

time. At each decision step, the simulation scheduler must select the

next best star to observe based on costs and the constraints of required

integration times, evolving keepout regions, and mission goals

[4,5,7,9,10].

Rather than solving a time-constrained optimization problem for

each target at each decision step for each simulation, we can

approximate the solution via various heuristics. Using simplified fuel

cost models as in the work of Glassman et al. [7] or substituting the

fuel cost with angular separation between stars as in the work of

Savransky et al. [4] reduces the computation time but also accuracy.

Kolemen and Kasdin [8] included the full dynamics in their

simulations within a cost matrix: they precomputed individual

trajectories from star i to star j in their target list and populated a static
two-dimensional (2-D) matrix with fuel costs. Their cost matrix,

however, was only computed for fixed slew times, whereas the

trajectory optimization requires more exploration of the time
parameter due to dynamic constraints.
We propose a new parameterization of the cost matrix that both

captures accurate fuel cost solutions and more adequately explores
the constrained search space of possible slews. The parameterization
is based on the slew time Δt and angular separation ψ between any
two stars; the new cost matrix is sufficiently continuous that a 2-D
interpolant can be used globally for any target list with only a small
reduction in accuracy. We integrate this new parameterization within
the ExoplanetOpen-Source ImagingMission Simulator (EXOSIMS)
[5,10], which is a framework for end-to-endmission simulations, and
show that examples of science yield results for different simulation
ensembles.

II. Starshade Dynamical Model

A. Circular Restricted Three-Body Problem

We assume a space telescope on a nominal halo orbit about the
sun–Earth L2 point [11,12]; the starshade trajectories about the halo
are governed by the dynamics of the circular restricted three-body
problem (CR3BP) [13]. A frameR (with orthogonal unit vectors x̂, ŷ,
and ẑ; Cartesian coordinates �x; y; z�, and originO at the barycenter
of the primary masses) is defined to rotate with the two primaries
relative to an inertial frame I with unit vectors î, ĵ, and k̂, as shown
in Fig. 1.
The equations ofmotion for the third object (which is the starshade

in this study) within this rotating frame are

�x − 2 _y � ∂Ω
∂x

� fSRP ⋅ x̂ (1)

�y� 2 _x � ∂Ω
∂y

� fSRP ⋅ ŷ (2)

_z � ∂Ω
∂z

� fSRP ⋅ ẑ (3)

with

Ω�x; y; z� � 1

2
�x2 � y2� � 1 − μ

r1
� μ

r2
(4)

r1 �
����������������������������������������
�μ� x�2 � y2 � z2

q
(5)

r2 �
�����������������������������������������������
�1 − μ − x�2 � y2 � z2

q
(6)

whereΩ�x; y; z� is the effective potential due to the two primaries; r1
and r2 are the distances from the two primaries, respectively; and
fSRP is the solar radiation pressure (SRP) force. All units in this
formulation are normalized as described by Koon et al. [13]. The
reducedmass fraction μ is defined as the smaller primary mass scaled
by the mass sum.
The SRP force acts on the starshade, which is modeled as an

axisymmetric plate of cross-sectional area A with unit vector n̂
defined normal to the surface [14]. An intermediate P frame [15] is
defined along the sun–starshade vector r1 as shown in Fig. 2, with

p̂1 �
r1
jr1j

(7)
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p̂2 �
ẑ × p̂1

jẑ × p̂1j
(8)

and

p̂3 � p̂1 × p̂2 (9)

The pitch and clock angles, α and δ, are defined as spherical angles

relative to P. The normal vector is then

n̂ � cos αp̂1 � sin α cos δp̂2 � sin α sin δp̂3 (10)

For the retargeting portions of the starshade mission, we assume no

preferential attitude: on average, half of the starshade area faces the

sun throughout the trajectory (or, equivalently, α � 60°). The clock
angle is assumed to be, on average, δ � 0°.
The total force exerted on the starshade throughout its motion [15]

is

fSRP � 2PA cos α�b1p̂1 � �b2 cos α� b3�n̂� (11)

where b1, b2, and b3 are optical coefficients with values taken from

Glassman et al. [7]. Integrating the full equations of motion with

initial conditions in the vicinity of the nominal (precomputed)

telescope halo orbit provides the motion of the starshade.

B. Establishing Line of Sight

During station keeping, the size of the shadow cast onto the

telescope pupil plane by the starshade depends on the triangle formed

by d, the constant separation distance between the telescope and

starshade [8], and the starshade radius RS. This defines a geometric
inner working angle θI [1], which is the smallest angle from the
telescope-starshade LOS an exoplanet can be situated before its light
too gets suppressed by the starshade, given by

tan θI �
RS

d
(12)

We assume values for the starshade radius and θI that, together,
specify the separation distance.
The starshade begins the retargeting trajectory at a distance d along

the LOS to target star i at time ti; it ends at a distance d along the LOS
to target j at time tj � ti � Δt, whereΔt is the slew time [7,8]. More
details can be found in the work of Soto et al. [9].

C. Solving the Boundary Value Problem

The starshade positions are well defined at the endpoints of the
retargeting trajectory but the corresponding velocities are not. This
boundary value problem (BVP) is solved using Eqs. (1–3). We use
similar methods as Kolemen and Kasdin [8]: the collocation
algorithm solve_bvp, which is a Python implementation found in
the scipy package [16]. A detailed explanation of our
implementation was provided by Soto et al. [9]. The final continuous
trajectory from the LOS of star i to the LOS of star j is depicted in
Fig. 3. These solutions set the velocities at the start and end of the
retargeting trajectory: vRT�ti� and vRT�tj� respectively.

D. Calculating Fuel Cost

Changes in velocity at the transitions between station keeping and
retargeting shown in Fig. 3 are modeled as impulsive maneuvers,
which instantaneously change thevelocity vectorwithout altering the
position vector. We quantify the fuel use by these velocity changes
Δv. The velocity of the starshade in the inertial frame IvSK must
match the inertial velocity of the telescope during station keeping [8],
which is converted from the rotating to the inertial frames using
rotation matrices defined by Koon et al. [13]. The retargeting

Fig. 1 Diagram of the sun–Earth rotating frame in the ecliptic plane

with locations of L2 and telescope–starshade–star configuration shown.
Target stars outside the sun’s keepout region are observable to the
telescope.

Fig. 2 Diagram of R and P frames used in equations of motion. P
frame is defined perpendicular to the sun–starshade vector. Based on
work of Dachwald et al. [15].

Fig. 3 Schematic of two starshade flight modes: station keeping with
star i, retargeting to star j, and station keeping with star j. An angle ψ
separates LOS vectors to the two stars.

2672 J. GUIDANCE, VOL. 42, NO. 12: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 1

78
.5

1.
19

5.
10

 o
n 

Fe
br

ua
ry

 1
8,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
37

47
 



velocities vRT are similarly converted to inertial velocities (for more
details, see thework of Soto et al. [9]). TheΔv for each discrete jump
is found by

Δv�ti� � kIvRT�ti� −I vSK�ti�k (13)

Δv�tj� � kIvRT�tj� −I vSK�tj�k (14)

where the superscript I is dropped for conciseness. The totalΔv for a
given retargeting maneuver from star i to star j for transfer time Δt
initiated at t0 is

Δv�i; j;Δt; t0� � Δv�ti� � Δv�tj� (15)

We calculate fuel use Δm for a nominal chemical propulsion
system via Tsiolkovsky’s rocket equation [17]

Δm � m0�1 − e−�Δv∕g0Isp�� (16)

wherem0 is the initial total mass, g0 is the standard gravity constant,
and Isp is the specific impulse of the rocket engine. The starshade
mass is sequentially decremented throughout the mission simulation
as fuel is expended.

III. Parameterizing Fuel Cost

A. Fuel Cost Matrix

The total Δv for retargeting maneuvers, for a telescope on a
predefined halo orbit and constant d, is a function of four parameters:
the two stars i and j, the time t0 atwhich themaneuver is initiated (i.e.,
where the telescope is located on the halo orbit), and the slew timeΔt.
One may choose to ignore some parameters to create feasible fuel
cost heuristics: Kolemen and Kasdin [8] created cost matrices as
functions of i and j but kept Δt and t0 fixed. Ignoring the slew time
parameter, however, prevents proper application of the time
constraints required to properly simulate end-to-end missions.

B. Sorting by Star Angular Separation

We create a new parameterization of the fuel cost matrix using the
angular separation between stars. We define a unit vector for the
location of each star in the inertial frames r̂i∕0 and r̂j∕0. The star
angular separation ψ is

ψ � sgn�r̂j∕0 ⋅ k̂� arccos�r̂i∕0 ⋅ r̂j∕0� (17)

The sign of the angular separation is takenwith respect to the inertial
frame to differentiate alignments with stars ahead of, or behind, the
halo motion of the telescope, which require different amounts
of fuel.
We consolidate the two dimensions of the previous i − j cost

matrix into a single dimension: an angular separation from the
previously observed star. We populate the second remaining
dimensionwithΔt: all possible slew times to align with a star at some
separation ψ . The new 2-D cost matrix in Fig. 4 is generated at a
specific t0 relative to some reference star and shows substantially
more continuity than previous parameterizations [8]. From themap, it
is clear that the relationship between the two parameters is nonlinear.
At small values of ψ , fuel costs increase with slew time: quick flights
at short distances require less fuel. At large ψ values, fuel costs
decrease with slew time: traversing large distances is easier with
longer flights.

C. Global Fuel Cost Interpolant

We exploit the continuity of the new fuel cost matrix with a two-
dimensional interpolant. We use interp2D, which is a Python
implementation found in the scipy package [16], using linear
interpolation between points. A single cost matrix can be generated
independently of the specific target catalog because only position

vectors are needed to calculate angular separations. To reduce
interpolation errors, we generate the Δv map using a fake catalog of
stars with a compact distribution in ψ , which was described in the
appendix of Soto et al. [9].
Twoparameters are neglectedwith this approach: the time atwhich

maneuvers are initiated t0, and the location of the previous observed
star. We conducted three separate tests to quantify the errors
associated with these simplifications; in each, we generated multiple
cost matrices where Δv � f�ψ ;Δt� and used a target list T ⊂ Z,
which is a subset of integers. We computed each matrix at various t0
taken at 20-day intervals throughout the ∼6month halo orbit period.
In the first test, we selected a random pair of stars i1 and j1 ∈ T and
calculated the true retargetingΔv for a range ofΔt (ranging from 5 to
80 days in steps of 1 day), all initiated at a single t0.We then compared
the true fuel costs to interpolated values from all fuel cost matrices at
different t0 for the same star pairing. In the second test, we calculated
the true Δv for a different random pair of stars i2 ∈ T and j2 ∈ T
using the same Δt range and at every different t0. We then compared
this array of true fuel costs to interpolated results using a single fuel
cost matrix generated at a single t0. In the third test, we selected 50
random star pairs∈ T at every t0 and compared true and interpolated
fuel cost values. The frequencies of the percent errors for each test are
shown in Fig. 5. The mean absolute value percent error for
interpolation was found to be under 10% for all tests, and it was
approximately 2.53% for test 1, meaning that the derived cost matrix
can be used as a target selection heuristic, as long as true fuel costs are
then evaluated for the selected target. Generating trajectories of 195
realignments for slew times ranging from 5 to 80 days (in steps of 5
days) takes approximately 12 min on a dual-core 2.5 GHz processor.
These calculations are now completed, with reasonable errors, within
a fraction of a second using the new interpolant and parameterization,
allowing for their inclusion in full mission simulations.

IV. Scheduling with Time Constraints

A. Dynamic Time Constraints

Mission time constraints are imposed on the global optimization
problem by defining upper and lower bounds on the Δt axis of the
costmatrix. Amajor time constraint is due to keepout regions [4,7]. A
minimum keepout angle must be maintained between the telescope
LOS and the direction of any bright object to avoid light
contamination in the pupil. Light from a bright object can also reflect
from the starshade into the telescope, requiring a maximum keepout
angle from the telescope pointing. Solar panel pointing restrictions
also limit the permissible telescope look vectors. Figure 1 shows the
solar keepout region schematically.
The keepout zones evolve through time as the telescope moves

along its orbit in an inertial frame. We define an observable window,
which is the period of timewhen a star is continuously observable, via

Fig. 4 Heat map of Δv as a function of both star angular separation ψ
and slew time Δt. Interpolated values are shown. Color bar is shown in
log scale.
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a binary keepout map [4]. We precalculate angles βb between the

relative positions of the target star and all bright solar system bodiesb
(the sun, Earth, moon, etc.) throughout the entire mission and

evaluate

45 deg < βSun < 90 deg (18)

45 deg < βMoon � βEarth (19)

1 deg < βothers (20)

We populate the binary keepout map with the union of the preceding

conditions. Figure 6 shows a sample keepout map over one year of

mission time, with different colors representing the cause of a

particular keepout. At each decision step in the mission simulation,

we impose the observable time windows from the binary keepout

map as upper and lower bounds on Δt for every star (at some ψ)
within the interpolant. This allows us, for the first time, to combine

strict time constraints with full CR3BP fuel cost solutions in end-to-

end mission simulations.

B. Exoplanet Open-Source Imaging Mission Simulator Implementa-
tion

We use EXOSIMS [5] to execute mission simulations: the next

best star is sequentially selected for observation while time is still left

in the mission and fuel still remains in the starshade. The original

code has been modified to accommodate binary keepout maps and

2-D fuel cost interpolants: all prior to running simulations. Other time

limits are also implemented, including integration times [10] and

other mission-specific constraints. A more detailed review of the

code updates is found in the work of Soto et al. [9].
We generate an ensemble of simulations using different schedulers

[9]: a random walk scheduler that selects the next target at random

from currently observable ones, a greedy scheduler choosing the

target with the next highest completeness (probability that a star has a

single orbiting exoplanet belonging to an assumed population and is

observable by the instrument in question) [18,19], and a linear cost

scheduler [4]. The last scheduler defines the cost function

c � c1Δvmin � c2�1 − CO� − c3funv � c4f rev (21)

where ci are tunable weights; c is an m × 1 vector of costs for the m
stars in the filtered target list; Δvmin is a vector of the minimum fuel

cost values for eachm;CO is a similar vector of completeness values;

and funv and f rev are factors that prioritize targets that have not been

observed yet and targets deemed for a revisit, respectively. The linear

cost scheduler selects the star corresponding to the root node of the

minimum cost path in a truncated search of the tree of all possible

future paths (see the work of Savransky et al. [4] for details).

Previously, the c1 term used a coarse heuristic for fuel costs given by

just the angular separation of two targets, and so the new

implementation is significantly better at capturing the true

retargeting costs.

Fig. 5 Percent errors between true Δv values and interpolated values for three different test cases, shown as solid lines. Mean and median values are
calculated from percent error absolute values.

Fig. 6 Binary keepout map for a subset of stars on a target list.
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V. Mission Simulation Results

The results of a mission simulation using the linear cost scheduler
are shown in Fig. 7; assumptions and mission parameters are listed in
Table 1 [20], which are similar to the Wide-Field Infrared Survey
Telescope (known as WFIRST) mission [21]. Starshade parameters
are taken from studies of the Exo-S mission [6]. Dry and total masses
are estimated by assuming the launch vehicle capabilities of a Falcon
9 [22]. In this case, the schedule contains 29 total observations for the

three-year mission; six led to positive detections, and three full
spectral characterizations were completed.
Figure 7 shows observed target star positions as filled circles (in the

equatorial coordinate system), with the circle color representing the
completeness value of each target. The first observed target ismarked
with a bold border. Line colors denote the amount ofΔv used for each
retargeting slew; line thickness decreases as the mission progresses.
We conducted an ensemble of 1000mission simulations, with each

of the different selection schemes outlined in Sec. IV.B. Normalized
yield frequencies and total observations are shown in Figs. 8 and 9.
The linear cost function produced, on average, the most unique
detections and conducted more observations due to more strategic
fuel use.

VI. Conclusions

A fuel cost interpolant based on full solutions to the circular
restricted three-body problem starshade trajectories was presented,
which effectively explored the slew time tradespace for any pair of
targets. These efficient and fast approximations were also
implemented within Exoplanet Open-Source Imaging Mission
Simulator to perform ensembles of end-to-end exoplanet direct
imaging missions for starshade-based imagers. The introduction of
these accurate and fast dynamical fuel cost solutions was shown, in
simulation, to increase both the total number of observations

Table 1 Mission parameters and
assumptions

Parameter Value

Mission time 3 years
Halo period 179 days
Pupil diameter 2.37 m
Δmag 22.5
Planet population Kepler-like [21]
Total Δv 2094.33 m∕s
Inner working angle 72 milliarcsecond
Starshade diameter 26 m
Separation distance 37,242.26 km
Isp 308 s
Dry mass 1250 kg
Total mass 3500 kg

Fig. 7 Sample schedule generatedusingnewobservation scheduler for a
starshade mission. Each circle represents the location of a different
observed star.

Fig. 8 Frequency of unique detections for three ensembles of 1000mission simulations using a randomwalk, maximum completeness (Max Comp), and
linear cost scheduler.

Fig. 9 Frequency of number of observations for three ensembles of 1000
mission simulations using a random walk, maximum completeness, and
linear cost scheduler.
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(because fuel is used more strategically) and the number of unique
detections. These improvements have, for the first time, allowed us to
realistically treat starshade fuel costs accurately in ensembles of end-
to-end mission simulations, thereby greatly increasing our
confidence in their results and improving their utility as a mission
analysis and design tool. Although the focus was only on the case of
chemical propulsion simulated through impulsive maneuvers, a
future comparative analysis will be conducted on solar electric
propulsion through continuous low-thrust maneuvers.
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