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Abstract. We present an algorithm, effective over a broad range of planet populations and
instruments, for optimizing integration times of an exoplanet direct imaging observation sched-
ule, to maximize the number of unique exoplanet detections under realistic mission constraints.
Our planning process uses “completeness” as a reward metric and the nonlinear combination of
optimal integration time per target and constant overhead time per target as a cost metric con-
strained by a total mission time. We validate our planned target list and integration times for a
specific telescope by running a Monte Carlo of full mission simulations using EXOSIMS, a code
base for simulating telescope survey missions. These simulations encapsulate dynamic details
such as time-varying local zodiacal light for each star, planet keep-out regions, exoplanet
positions, and strict enforcement of observatory use over time. We test our methods on the
Wide-Field Infrared Survey Telescope (WFIRST) coronagraphic instrument (CGI). We find that
planet, Sun, and solar panel keep-out regions limit some target per-annum visibility to <28% and
that the mean local zodiacal light flux for optimally scheduled observations is 22.79 mag
arcsec−2. Both these values are more pessimistic than previous approximations and impact the
simulated mission yield. We find that the WFIRST CGI detects 5.48� 0.17 and 16.26� 0.51

exoplanets, on average, when observing two different planet populations based on Kepler Q1-Q6
data and the full Kepler data release, respectively. Optimizing our planned observations using
completeness derived from the more pessimistic planet population (in terms of overall planet
occurrence rates) results in a more robust yield than optimization based on the more optimistic
planet population. We also find optimization based on the more pessimistic population results
in more small planet detections than optimization with the more optimistic population. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JATIS.6.2.027001]
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1 Introduction

The 2010 astronomy and astrophysics decadal survey highly prioritized exoplanet bulk popu-
lation statistics and inventorying planets around nearby stars (within 30 pc).1 The Wide-Field
Infrared Survey Telescope (WFIRST),2 prioritized by the 2010 decadal survey, will include
a coronagraphic instrument (CGI) capable of directly imaging and detecting new exoplanets
unobservable by modern radial velocity or transit techniques. The expected performance of CGI
in blind search surveys can be estimated through probabilistic methods using completeness.3,4

An alternative method is to execute a Monte Carlo of full survey simulations on simulated uni-
verses. This process creates an ensemble of design reference missions (DRMs) containing a list
of target stars observed, the integration time used for each star, when the simulated observations
occurred, and the simulated outcome of each observation. Such a collection of DRMs, produced
by our method, effectually certifies the ability of the instrument to make the expected number of
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detection observations claimed in a probabilistic evaluation such as completeness. It is important
to note that both methods are still equally limited in their overall prediction accuracy by the
assumptions made about the true population of exoplanets to be discovered.

Detailed DRMs enable requirement definition and design iteration optimization for future
telescopes, including the large-scale mission concepts under development by science and
technology definition teams for NASA’s 2020 decadal survey. Both the Habitable Exoplanet
Observatory (HabEx)5 and the Large UV-Optical-Infrared Surveyor (LUVOIR)6 mission con-
cepts contain a significant exoplanet direct imaging component with HabEx reserving 1.95 years
for coronagraph science operations and LUVOIR reserving 50% of the total mission time for
exoplanet science. While target revisits and spectral characterizations could represent a substan-
tial portion of the executed mission, we purposefully omit optimization with revisits or character-
izations due to the complexity of that problem. We do include the rare spectral characterization in
our WFIRST mission simulations. In our optimization process, we focus solely on delivering
an estimate of the maximum possible number of uniquely detected exoplanets under realistic
mission constraints by evaluating the number of detections made through single-visit observa-
tions of stars, henceforth referred to as yield. We leave the inclusion of revisits, orbit character-
izations, and spectral characterizations in full survey optimization for future work.

Brown, in Ref. 3, used single-visit completeness to estimate the number of extrasolar planets
potentially discoverable with the terrestrial planet finder, an earlier direct imaging mission concept.
Single-visit completeness, hereafter referred to as completeness, is the probability of detecting a
planet, drawn from a particular population, using a particular instrument, should one exist about
a given target star.3,4,7 When completeness is evaluated for each star in a full target list, summed,
and scaled by the expected number of planets from that population per star (η), we arrive at the
expected number of planets to be detected from that population by that mission.8 While this tech-
nique can be used to quickly evaluate a mission’s performance, it abrogates temporal constraints
and uncertainties, such as target visibility, variable overhead times, changing local zodiacal light
intensity, and unscheduled characterizations of newly detected planets. Solely using complete-
ness to evaluate a mission can therefore only provide an upper bound for expected performance.

Completeness has previously been used as a reward metric for multiple observation integra-
tion time optimizations. Brown demonstrated a method for finding the group Δmag (difference
in brightness between the planet and star in magnitudes) and number of target trade-off point by
optimizing a target list subset Δmag against the number of targets in that subset assuming differ-
ent fixed mission times.3 While this method approximates the reward gradient for achieving a
specific group Δmag, it overlooks the gain made by customizing Δmagi for each individual star,
i. Hunyadi et al., in Ref. 9, advanced Brown’s work by maximizing summed completeness over
all targets assuming a fixed mission time and using integration times as the decision variables.
In this new approach, star integration times are optimized to equivalent slopes beyond the com-
pleteness versus log integration time inflection point and the highest completeness per integra-
tion time of these targets is then selected. To practically achieve this, the authors of that study
discretized integration times into 1 h increments and calculated completeness values for each
integration time. Their final target list contained the set of highest completeness per integration
time targets. Hunyadi et al. specifically investigated Earth-analog planets in the habitable zone
(as also done in Ref. 3), but also explored Jupiter and Saturn-analogs. Alternatively, a limiting
search observation, as defined by Brown,10 would observe a target for the fixed exposure time
sufficient to achieve the system’s limiting planet–star magnitude, Δmaglim, for each target. The
creation of the final observation schedule in Ref. 10 involved selecting the subset of targets with
precalculated integration times and overhead time per observation that fit within the total observing
time. While Brown implemented target revisits, which can improve yield, the use of precalculated
Δmaglim makes the resulting target list suboptimal. While optimization of integration times and
inclusion of revisits mark improvements in yield and target list planning realism, the omission of
overhead times and discretization of integration times limits the ability to practically implement
the desired observations within a finite span of time and under dynamic mission constraints.

A refinement of Brown and Hunyadi’s work—altruistic yield optimization (AYO)4—uses
completeness versus integration time as a figure of merit as in Ref. 10 to incrementally sacrifice
stars from a target list and reallocate the integration time, ti, from star i to the largest dcjðtjÞ∕dtj
star j in increments of dt. At its core, this represents a form of “greedy optimization” which
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incrementally converges each observation to a constant slope similar to that described in Ref. 9.
This method does not allow for the reintroduction of targets stars to the target list, a necessity of a
dynamically evolving mission schedule. Finally, the original AYOmethod does not fully account
for overhead times in the calculation of integration times but rather states that the addition of time
can occur after the fact and the use of a finite dt parameter results in a loss of potential
completeness.

None of these yield optimization processes use optimization with continuous integration
times or test the ability to schedule observations via full mission simulations accounting mission
elapsed time (MET). Brown stressed that Monte Carlo simulations of the mission as a whole
should be used to produce confidence in the proposed mission’s integrity.3 Brown’s work seeded
the founding pillars of our well book-kept full mission survey simulator to include:

1. tracking individual exoplanets around target stars versus MET;
2. tracking spacecraft position versus MET;
3. accounting for solar system body locations and keep-out regions versus MET;
4. accounting for variations in local zodiacal light versus MET;
5. potential restriction of telescope observations to prescribed observing blocks and time-

sharing with other observatory instruments versus MET.

The EXOSIMS11 code base was specifically developed to book-keep these parameters across
MET. In EXOSIMS and this paper, we account for the locations of individual exoplanets around
target stars versus MET, the tracking of our observatory on a nominal L2 Halo orbit12 versus
MET, solar system body locations versus MET from ephemeridies, keep-out occlusion of target
stars versus MET, changes in local zodiacal light intensity versus MET, and possesses the
capability to account for cordoned off observing blocks reserved for other instruments at varying
MET, and portion of mission life reserved for observatory science.

This paper describes our process for producing a set of planned observations maximizing
unique exoplanet detection yield and subsequently validating this prediction under realistic mis-
sion conditions. The observation planning process incorporates a combination of filters applied
to a planet population and star catalog, described in Secs. 2.1 and 2.2, completeness calculations
detailed in Sec. 2.3, and our optimization algorithms with binary-integer programming (BIP)13

and sequential least squares quadratic programming (SLSQP),14 discussed in Sec. 2.4. Our
validation process is outlined in Sec. 2.5 where we discuss the framework of EXOSIMS11,15–17

survey simulation as well as incorporation of time-varying keep-out regions (Sec. 2.5.1), time-
varying local zodiacal light noise (Sec. 2.5.2), and the convergence of our Monte Carlo simu-
lation (Sec. 2.5.4). We then show practical application on WFIRST in Sec. 3, where we discuss
attributes of the observing plan and a comparison of planet populations input versus instrument
capabilities versus detected planet population. We also include instrument and fit file parameters 18
in Sec. 7 and a full optimized target list in Sec. 8.

2 Methods

2.1 Planet Populations

To calculate completeness for each target for a specific instrument, we first generate a joint
probability density function of Δmag and planet–star separation projected onto the image plane,
s, using Monte Carlo as in Ref. 3 for an assumed planet population. We use two planet
populations in this paper; one derived from Kepler’s detections from Q1-Q6 data19 (Kepler-
like)20 and another derived from NASA’s Exoplanet Program Analysis Group (ExoPAG)
Study Analysis Group 13 (SAG13).21,22 The Kepler-like and SAG13 populations both share the
same eccentricity and albedo distributions but differ in their occurrence rates, semimajor axis,
and planetary radii distributions. The final output necessary for calculating completeness is the
joint probability distribution of Δmag and s which is found by sampling the respective planet
population and fitting a rectilinear bivariate spline. We use the same sampling methods and
distributions for both calculating the joint probability distributions and generating planets in
our simulated universes.
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2.1.1 Kepler-like planetary semimajor axis and radii

For the Kepler-like planet population, we adopt a power-law distribution for semimajor axis (a)
modified from the power law fit in Ref. 23 to be of the form

EQ-TARGET;temp:intralink-;e001;116;692faðaÞ ¼
a−0.62

anorm
exp

�
−

a2

a2knee

�
; (1)

where −0.62 is adopted from Ref. 24. In this model, we include an exponential decline in semi-
major axis past a “semimajor axis knee” (aknee). This “knee” is motivated by a lack of giant
planet discoveries by the Gemini Planet Imager, which indicates the RV-based power-law planet
occurrence rate from Ref. 23 approaches 0 between 10 and 100 AU.25 Using giant planet radial
velocity data, Ref. 26 fit many period break points to the giant planet occurrence rate power-law
model. We assume an intermediate knee equivalent to aknee ¼ 10 AU. The normalization factor
is given by integrating the non-normalized distribution over a specific a range

EQ-TARGET;temp:intralink-;e002;116;563anorm ¼
Z

amax

amin

a−0.62 exp

�
−

a2

a2knee

�
da; (2)

where we consider values of a range in amin ¼ 0.1 AU to amax ¼ 30 AU, again based on the
paucity of wide-separation planets discovered to date. The per-simulation average distribution of
a is shown in the histogram above Fig. 1(a). We note that amin < minðsmin;iÞ for WFIRSTand this
planet population. Since the closest target list star has distance minðdiÞ ¼ 2.63 pc and has the
smallest observable planet star separation minðsmin;iÞ ≈ IWA ×minðdiÞ, then WFIRST’s inner
working angle (IWA) of 0.15 arcsec means the smallest planet–star separation observable by
WFIRST is 0.394 AU. By assuming a maximum planet eccentricity ðemaxÞ ¼ 0.35, the smallest
observable semimajor axis amin from ðsminÞ ≈ aminð1þ emaxÞ ¼ 0.292 AU.

We base our Kepler-like planetary radii (R) based on Fig. 7 in Ref. 19. We define the bin
counts in Fig. 7 of Ref. 19 as R85. These bins range from Rmin ¼ 1R� to Rmax ¼ 22.6R� and are
based solely on data from planets with periods >0.8 days, but <85 days. To properly tune the
overall Kepler-like planet occurrence rates (ηKL) starting with R85, we first use Eq. (2) evaluated
at amin ¼ a0.8 to amax ¼ a85 to get a85;norm. Here, a0.8 and a85 are the semimajor axes corre-
sponding to periods of 0.8 and 85 days around a Sun mass star. We then scale R85 by
Eq. (2) and a85;norm to get the adjusted planetary radii occurrence rates:

EQ-TARGET;temp:intralink-;e003;116;335Rvals ¼ R85

anorm
a85;norm

: (3)

We multiply the last five bins in Rvals by 2.5 to account for longer orbital baseline data and more
closely match the larger period orbit distributions available from radial velocity surveys at the
time when this distribution was first derived.23,27 Even with this multiplication, the right-hand
side histogram of Fig. 1(a) shows the characteristic drop-off in planetary radius clearly observ-
able in Fig. 7 of Ref. 19. The Kepler-like planet occurrence rate per star is ηKL ¼ P

Rvals ¼
2.375 over the specific a and R ranges discussed in this section.

When we simulate a universe of Kepler-like planets, we first calculate the number of planets
to generate for each planet radius bin (Nq) for all bins in Rvals. This is given as

EQ-TARGET;temp:intralink-;e004;116;196Nq ¼ Np

�
Rvals;qP
Rvals

�
: (4)

In this paper, Np is the number of planets to generate. In our Monte Carlo completeness
calculations, we generate 108 planets. We take Nq samples from a log-uniform distribution over
the q’th bin range in Rvals to get a set of planets radii (Rq).

19 Finally, we randomly select Np radii
from the collective nine sets of planetary radii to get R ¼ S

9
q¼1 Rq. At the same time, we use

an inverse transform sampler to generate a ¼ fak ∀ k ∈ 1::Npg based on Eq. (1).
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2.1.2 SAG13 planetary radii and semimajor axis

The SAG13 planet population represents a significant update on the Kepler-like population,
incorporating all available Kepler data circa 2017. The occurrence rate model presented in
Ref. 28 is a power-law model fit as a function of ln P and ln R but does not include an occur-
rence rate turnover indicated in giant planet occurrence rates from radial velocity studies26 and
the lack of detections of large a planets by subsequent Gemini Planet Imager survey results.25

Fig. 1 The universe of planets generated over all simulations for (a) Kepler-like and (b) SAG13
planet populations. (c) and (d) The populations of detected planets for simulations run with
completeness calculated using the Kepler-like planet population observing a universe of (a) the
Kepler-like planets and (b) SAG13 universe of planets. (e) and (f) The populations of detected
planets for simulations run with completeness calculated using the SAG13 planet population
observing a universe of (a) the Kepler-like planets and (b) SAG13 universe of planets.
Overlay text on (a) and (b) shows average occurrences per grid-space averaged over the
Monte Carlo of simulations. Overlay text on (e) and (f) shows average detections per grid-space
averaged over the Monte Carlo of simulations. These plots reference RpvsSMAdetectionsDATA_
WFIRSTcycle6core_CKL2_PPKL2_2019_04_05_19_34_.txt.

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-5 Apr–Jun 2020 • Vol. 6(2)



We need an occurrence rate model that is in terms of linear Keplerian orbital elements and
decreases occurrence rates for large a planets so our extrapolation of the model beyond the
bounds in Ref. 28 does not produce substantially more large a planets than expected. We include
a full derivation of the SAG13 occurrence rate model implemented22,29 in EXOSIMS in Sec. 7.8
but summarize the steps, important components, and results here.

We start with the original occurrence rate model fit from Ref. 28 included as Eq. (37) and
convert from ðln P; ln RÞ to ðP;RÞ resulting in Eq. (38). We reconstructed the occurrence rate
grid from the linear model in Fig. 2(a). When directly compared to the occurrence rate grid for
G-type stars in Ref. 28, we see a maximum deviation of 0.74 (100× planets per bin occurrence)
and maximum percent deviation of 13%. We then convert Eq. (38) from period (P) space to
a space using Eqs. (39) and (40) assuming a solar mass star to arrive at Eq. (41). We compare
the analytical integral over a space of this new occurrence rate model to arrive at Fig. 2(b) which
shows identical occurrence rates in each of their counterparts’ grid spaces in Fig. 2(a). We now
append a semimajor axis “knee” to decay occurrence rates of larger a planets to 0, which results
in Eq. (42). We calculate the overall SAG13 exoplanet occurrence rate per planet (ηSAG13) by
performing the double integral over the entire a and R space as in Eq. (43). The SAG13 model
parameters in Table 1 are split at 3.4R�, so we use the notation i ¼ 0 for Rmin ¼ 0.666R� ≤
R < 3.4R� and i ¼ 1 for 3.4R� ≤ R < 17.086R� ¼ Rmax. An intermediate simplification of
the double integral in the calculation of ηSAG13 is

EQ-TARGET;temp:intralink-;e005;116;507ηSAG13 ¼
γ0K0

α0
½Rα0

max − ð3.4R�Þα0 � þ
γ1K1

α1
½ð3.4R�Þα1 − Rα1

min�; (5)

where γi, βi, and αi are constants from Table 1. The αi in the denominator and ðαi − 1Þ to αi
exponent are a result of the indefinite integral over R. The four R terms are the result of evalu-
ating the indefinite integral over Rmin to 3.4R� to Rmax. Finally, Ki is an intermediate calculation
representing the marginalization of Eq. (42) over a written as

EQ-TARGET;temp:intralink-;e006;116;420Ki ¼
Z

amax

amin

�
2π

ffiffiffiffiffi
a3

μ

s �ðβi−1Þ�
3π

ffiffiffi
a
μ

r �
exp

�
−

a3

aknee3

�
da: (6)

Here, μ is the gravitational parameter assuming a solar mass star. We use the same aknee ¼ 10AU
in the SAG13 planet population that we use for the Kepler-like planet population. The average
number of planets generated per star in the EXOSIMS implemented SAG13 universe over the
range specified is ηSAG13 ¼ 5.62.

In order to generate planets with R and a from the occurrence rate model, we still need a joint
probability density function fRp;a

ðR; aÞ as well as a single variable probability density function

and conditional probability density function. By normalizing Eq. (42) by ηSAG13, we get the joint
probability distribution in Eq. (44). From here, we calculate the probability distribution of R for
the SAG13 planet population by marginalizing Eq. (44) over a only. This gives us the planetary
radius distribution

EQ-TARGET;temp:intralink-;e007;116;250fRðRÞ ¼
γiKi

ηSAG13
Rðαi−1Þ: (7)

This probability density function inherits the parametric conditions of the joint probability den-
sity function. Since fRðRÞ is a marginalization over the joint probability density function, the
integral of fRðRÞ over the range Rmin ≤ R ≤ Rmax is 1. The distribution of generated planets in
R is shown in the right-side histogram of Fig. 1(b). We now calculate the conditional probability
distribution fajRðaÞ using fR;aðR; aÞ, fRðRÞ, and Bayes rule. The conditional probability dis-

tribution is a simple division of the joint probability density function by the marginalized prob-
ability density function to get

EQ-TARGET;temp:intralink-;e008;116;123fajRp
ðaÞ ¼ 1

Ki

�
2π

ffiffiffiffiffi
a3

μ

s �ðβi−1Þ�
3π

ffiffiffi
a
μ

r �
exp

�
−

a3

a3knee

�
: (8)

We now have the tools to sample semimajor axis and planetary radius.
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Fig. 2 We calculate the SAG 13 exoplanet occurrence rate cumulative distribution by integrating
over the linear occurrence rate model derived from Ref. 28 and included in Eq. (38) over R and P
of each bin in (a). The purple numbers in (a) represent 100× the per-bin per star exoplanet occur-
rence rate and can be directly compared to the planet occurrence rate grid per star in Ref. 28,
which shows good agreement with the largest deviation between implementations of 0.74%.
The total SAG 13 occurrence rate per star found using Eqs. (38) and (43) over the plot range
in (a) is 1.95 planets per star. The black percentages in (a) are calculated by dividing the
100× per bin occurrence (purple number) by the occurrence rate over the entire grid range and
represents the probability a single planet will be in that bin. The exoplanet occurrence rate cumu-
lative distribution in (b) is found using Eqs. (41) and (43) and integrating over theR and a ranges in
(b). The P range in (a) and the a range in (b) are mapped using Eq. (39) assuming a Sunmass star.
The 100× and percentage occurrence rates per bin between (a) and (b) are identical. We show the
joint probability distribution of R and a from Eq. (44) implemented in EXOSIMS in (c) which is
extrapolated beyond the range of (a) and includes the semimajor axis “knee.” The apparent differ-
ence in color gradient between (a) or (b) and (c) is due to the logarithmic scale of (c); the top right
bins are orders of magnitude larger in area than the bottom left bins.
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To generate a planet from the probability distributions in this section, we first sample Eq. (7)
using a single variable inverse transform sampler to get a set of planetary radius, Rp. We also use
a single variable inverse transform sampler to sample Eq. (8) and get a. The amin and amax used in
the SAG13 population are the same as in the Kepler-like planet population. SAG13’s a fre-
quency distribution is included above Fig. 1(b). The two-dimensional (2-D) contour plot and
associated grid values in Fig. 1(b) show R and a interdependence.

2.1.3 Planet eccentricity

We assume a Rayleigh distribution for orbital eccentricities in both the Kepler-like and SAG13
planet populations as done in Ref. 24, such that the eccentricity (ek) of the k’th simulated
planet is

EQ-TARGET;temp:intralink-;e009;116;463ek ¼ σe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln

�
exp

�
−e2min

2σ2e

�
− n

�
exp

�
−
e2min

2σ2e

�
− exp

�
−
e2max

2σ2e

�	
s
; (9)

where n is a uniform random variable between 0 and 1, σe is the Rayleigh parameter for eccen-
tricity, emin is the minimum allowed eccentricity, defined as 0, and emax is the upper 95th per-

centile for e. The mean eccentricity μe ¼ σe
ffiffiffiffiffiffiffiffi
π∕2

p
. In Ref. 24, the authors fit the Rayleigh

distribution to radial velocity-detected planets and found μe ≈ 0.225 to be a best fit with p-value
of 0.5. They additionally found 0.125 < μe < 0.25 has a p-value above 0.05 and placed strict
limits of μe < 0.35 and μe > 0.24 For this work, we use μe ¼ 0.175 (splitting the difference
between 0.225 and 0.125) as done in Ref. 19 and adopt their independence of star spectral type
assumption.

2.1.4 Planet Albedo from semimajor axis

In both the Kepler-like and SAG13 planet population, we calculate albedo (p), using a cubic 2-D
interpolant over metallicity and a using the V-band column from Table 4 of Ref. 30. The indi-
vidual values in Table 4 from Cahoy’s work are based on the atmospheric modeling of Jupiter
and Neptune at a from 0.8 to 10 AU over varying metallicity ranging from 1× solar abundances
to 30× solar abundances. To accommodate these restrictions for each pk interpolated, we use the
randomly generated ak truncated to be between 0.8 and 10 AU. This means any planets with
ak < 0.8 AU will be treated as having 0.8 AU in the interpolant and conversely and planets with
ak > 10 AU will be treated as having 10 AU in the interpolant. Jupiter at 0.8 AU in Cahoy’s
work were found to be cloud-free, resulting in a geometric albedo of 0.322 which is comparable
to Earth’s geometric albedo. We assume a uniform random planet metallicity multiplication
factor between 1× and 30×. Metallicity of a planet is a descriptor for the abundance of elements
heavier than hydrogen or helium in that planet. The least reflective planet would be a Neptune at
0.8 AU with 30× solar abundance metallicity, which is slightly larger than the geometric albedo
of Mercury and the Moon. The most reflective planet would be a Jupiter at 2 AU with 3× solar
abundance. Planets formed through different processes will have varying metallicity represen-
tative of the planet’s atmospheric metallic composition relative to solar abundances.

Table 1 Parametric fit parameters for the SAG13 planet
population implemented in EXOSIMS.28

Parameter ½i ¼ 0; i ¼ 1�

βi [0.26, 0.59]

αi ½−0.19;−1.18�

γi [0.38, 0.73]

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-8 Apr–Jun 2020 • Vol. 6(2)



2.1.5 Joint probability density function

The final remaining parameters needed to describe planets at the time of an observation are the
physical location of the planets relative to their host stars (rk∕i), which is defined by Eq. (1) in
Ref. 31. We assume that the direction of the orbit eccentricity vector is uniformly distributed in
space, so that the orbit inclination is sinusoidally distributed between 0 and π, while the remain-
ing Keplerian elements (longitude of the ascending node, argument of periapsis, and mean
anomaly) are all uniformly distributed from 0 to 2π.31

We sample all of the parameters aforementioned for each planet which is sufficient infor-
mation to calculate a projected planet–star separation ðskÞ and difference in magnitude between
the host star and the planet ðΔmagÞ. We calculate the projected planet–star separation as

EQ-TARGET;temp:intralink-;e010;116;607sk ¼
����rk∕i − rk∕i ·

ri∕SC
jri∕SCj

����: (10)

We calculate Δmagk using Eq. (4) from Ref. 7 and adopt their use of a Lambert phase function.
Sampling all of the parameters described above for Np ¼ 108 planets allows us to calculate

the joint probability density of projected separation and star–planet magnitude difference,
fs;Δmagðs;ΔmagÞ. As in Eq. (7) in Ref. 7, we assume independence between all parameters,

except for semimajor axis and planet radius in the SAG13 population as well as the planet albedo
dependence on planet radius. We bin these planets into a 1000 × 1000 grid and fit a rectilinear
bivariate spline to the resulting 2-D histogram. This rectilinear bivariate spline consists of
integrable high order polynomials with total volume under the surface of 1. The resulting
fs;Δmagðs;ΔmagÞ densities for the two populations are shown in Fig. 3.

2.2 Star Catalog

We need a list of target stars, along with their positions on the sky, distance (di), and apparent
brightness in B and V bands for our calculations of completeness and integration time. We derive
the list of targets stars from the EXOCAT-1 star catalog discussed in Ref. 32, which contains a
variety of targets out to a distance of ∼30 pc. Some of these stars are missing photometric values,
including the luminosity, absolute magnitude, V band bolometric correction, and the apparent
VBHJKmagnitudes, all of which we attempt to fill in by interpolating a table of standard stars by
spectral type in Ref. 33.

From the N ¼ 2396 targets, we have an initial set of target stars I which we pare down
through a series of filters. There are many stars in the EXOCAT-1 star catalog with “not a num-
ber” data entries which can propagate through our equations so we remove targets with these
kinds of data entries. Not all of these entries are absolutely necessary so some targets may have

(a) (b)

Fig. 3 Joint probability density functions of projected separation and Δmag based on (a) Kepler-
like and (b) SAG13 planet populations. The Kepler-like distribution produces larger orbital radii
(and therefore projected separations) than SAG13 for the same aknee values due to the use of
the quadratic and cubic semimajor axis rollover functions [see Eqs. (1) and (6)].
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been unnecessarily filtered. Some of these star systems are binary systems which we do not
account for in our equations so we omit them from I. In addition, some stars have low apparent
visual magnitudes so we filter any target stars we know would take excessively long to achieve
a reasonable Δmag on.

Missing data filter removes 429 targets with any fields containing a “not a number” value
within the set of IPAC fields {hip_name, st_spttype, parx, st_vmag, st_j2m, st_h2m, st_vmk,
st_dist, st_bmv, st_mbol, st_lbol, coords, st_pmra, st_pmdec, wds_sep} as well as whenever we
could not fill in a missing photometric value of a star.

Binary star filter removes 164 targets using the Washington Double Star catalog (filters
targets with companion stars within <10 arcsec).34

Integration time cut-off filter removes 1436 targets with integration times ti > 30 days,
where ti is calculated assuming local zodiacal light to be Z ¼ 23.0 mag arc sec−2, exozodiacal
light with magnitude EZ ¼ 22.0 mag arcsec−2, Δmag0 ¼ 22.5 [used on the tiðΔmagÞ equations
in Refs. 4 and 35], and a working angle WA0 ¼ 0.28 arcsec (see Sec. 7). This WA results in
reasonable core mean intensity and throughout combination based on inspection of the instru-
ment parameter files in Figs. 4(a) and 4(c).

After paring down I using a missing data filter, binary star filter, and integration time cut-off
filter, I is reduced down to 651 targets (the filters are not mutually exclusive). Our initial filtering
of target stars reduces the number of degrees of freedom in the optimization process and
increases computation time. Larger telescopes will result in larger target lists with less candidate
stars removed via the initial integration time filter. The statically optimized target list is included
in Table 7. This optimized target list contains mainly FGK-type stars and 8 A-type stars. All of
these targets are located within 20 pc.

(a) (b)

(c) (d)

Fig. 4 System throughput in the FWHM region of the planet PSF core (a) from /WFIRST_cycle6/
G22_FIT_565/G22_FIT_565_thruput.fits. Intensity transmission of extended background sources
such as zodiacal light including the pupil mask, Lyot stop, and polarizer (b) from /WFIRST_cycle6/
G22_FIT_565/G22_FIT_565_occ_trans.fits. Core mean intensity as a function of wavelength
and working angle. Black lines and dot represent detection mode wavelength (565 nm) and
IWA (0.3 arcsec) for integration time calculation (c) from /WFIRST_cycle6/G22_FIT_565/
G22_FIT_565_mean_intensity.fits. Area of the FWHM region of the planet PSF in arcsec2 (d) from
/WFIRST_cycle6/G22_FIT_565/G22_FIT_565_area.fits.
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2.3 Calculating Completeness

Completeness is calculated for the i’th target by integrating over the joint probability density
function of s and Δmag15

EQ-TARGET;temp:intralink-;e011;116;692ci ¼
Z

Δmagi

0

Z
smax;i

smin;i

fs;Δmagðs;ΔmagÞds dΔmag: (11)

The limits on the inner integrand are strictly obscurational. For star i, at a distance di from the
Sun, the minimum planet–star separation observable is smin;i ¼ IWAdi and the maximum
planet–star separation is smax;i ¼ OWAdi, where IWA and OWA are the instrument’s inner and
outer working angles, respectively. For the outer integrand, we use the fundamental lower limit
on Δmagmin;i ¼ 0 as opposed to the analytical lower bound in Eq. (18) of Ref. 7. The upper limit
on Δmag relates the completeness to the integration time. Typically, integration times (ti) are
defined as a function of a limiting Δmag and background flux levels, which are functions of the
assumed instrument operating characteristics (i.e., throughput, contrast, etc.).4,35 We invert the
integration time model based on Ref. 35 to find Δmag as a function of integration time to find

EQ-TARGET;temp:intralink-;e012;116;538ΔmagiðtiÞ ¼ −2.5 log10
SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cb;i

ti
þ C2

sp;i

q
CF 0

10−0.4νiðλÞTðλ;WAÞϵPC
: (12)

Here, νiðλÞ is the target star’s B–V color, implemented as an empirical fit to data from Ref. 33
(see Sec. 7), which is accurate to about 7% in the wavelength range 400 nm < λ < 1000 nm as
discussed in Ref. 36. SNR is the signal-to-noise ratio threshold chosen for determining planet
detections.3 ϵPC is the photon-counting efficiency of the system and is used to give the ideal
planet count rate. Tðλ;WAÞ is the instrument’s core throughput (see Sec. 7). T is a function
of WA, and by extension s so the integral over Δmag is not separable unless we assume a single
representative WA at which to evaluate each star. Assuming a WA substantially speeds up cal-
culations, but may not be representative of instruments with strong Δmaglim dependence on WA.
Cb;i is the net background count rate, and Csp;i is the net speckle residual count rate, including all
postprocessing assumptions. We use the calculations of Cp;i, Cb;i, and Csp;i from Ref. 35 and
include them in Sec. 7. The spectral flux density is given as

EQ-TARGET;temp:intralink-;e013;116;350CF 0
ðλÞ ¼ F 0ðλÞAΔλϵqðλÞϵinstϵsyst: (13)

Here, F 0 is the zero-magnitude flux calculated as in Eq. (23) of Sec. 7 and presented in Ref. 36,
A is the pupil area, Δλ is the spectral bandwidth, ϵqðλÞ is the detector quantum efficiency from
Fig. 5 in Sec. 7, ϵinst is the optical attenuation due to the science instrument, and ϵsyst is the optical
attenuation due to the coronagraph, treated separately since a single instrument can have multiple
coronagraphs. By integrating Eq. (11) with the limiting Δmagi from Eq. (12), we arrive at
a formulation for completeness as a direct function of integration time, ciðtiÞ.

The theoretical maximum completeness for the i’th target (c∞;i) is found by integrating
Eq. (11) to the upper limit of Δmagi at t∞ (this assumes an infinite observing time is available).
Using the WFIRST parameters, we see a universal upper limiting Δmagi of 23.137. It is impor-
tant to note that the inclusion of speckle residuals means that integrating past a certain point will
not produce any improvements in the achieved SNR, meaning there is a specific time for every
target past which it makes no sense to integrate further.

While the equations derived thus far are sufficient to perform continuous integration time
optimization, gradient-based solvers, such as the ones we employ as follows, all perform
significantly better with analytical gradient functions. To expedite the optimization process in
Sec. 2.4, we calculate the derivative of completeness with respect to integration time as a func-
tion of integration time. As in Ref. 15, the derivative of Eq. (12) with respect to time is

EQ-TARGET;temp:intralink-;e014;116;111

dΔmagi
dti

ðtiÞ ¼
5Cb;i

4 lnð10Þ
1

Cb;iti þ ðCsp;itiÞ2
; (14)

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-11 Apr–Jun 2020 • Vol. 6(2)



and the derivative of completeness with respect to integration time is therefore

EQ-TARGET;temp:intralink-;e015;116;500

dci
dti

����
ti

¼ d

dti

�Z
ΔmagiðtiÞ

0

Z
smax;i

smin;i

fs;Δmagðs;ΔmagÞds dΔmag

	����
ti

¼ d

dΔmagi

�Z
ΔmagiðtiÞ

0

Z
smax;i

smin;i

fs;Δmagðs;ΔmagÞds dΔmag

	
dΔmagi

dti

����
ti

¼
�Z

smax;i

smin;i

fs;Δmag½s;ΔmagðtiÞ�ds


dΔmagi

dti

����
ti

: (15)

We now have all the analytical expressions needed to optimize our planned observing schedule
and have filtered down the original >2000 deg of freedom represented by the required integra-
tion times for each star in the input catalog to 651 (see Sec. 2.2). Input decision variables t ¼ ti
∀ i ∈ I of 651 deg of freedom are still quite large and could take a long time to compute,
especially given the nonconvexity of the sigmoid-shaped ciðtiÞ curves. In order to ensure fast
convergence of the nonlinear optimization, we need to provide a feasible starting guess pref-
erably close to the final solution. We know from experimentation with AYO4 that an optimal
observation schedule will converge to a fixed ε ¼ dci∕dti ∀ i ∈ I. By combining Eq. (15) with
Eq. (12) and inverting, we can find integration time as a function of dci∕dti ≡ ε

EQ-TARGET;temp:intralink-;e016;116;277ti ¼
1

2εC2
sp;i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð10Þp �

−Cb;iε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð10Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cb;iεC2

sp;i þ C2
b;i lnð10Þε2

q 	
; (16)

which allows us to solve for integration time of all targets in a specific subgroup of I at ε.15

This provides us with everything we need to both formulate the optimization problem and
find a good initial solution, as described in the next section.

2.4 Optimization Process

Our goal is to maximize the number of unique detections throughout a blind-search survey.
We evaluate the reward potential of a target using the completeness metric and the cost as the
integration time required to achieve that completeness. In our optimization formulation, we seek
to maximize the summed completeness that fits within the rigid mission time constraints coupled
with an additional time cost per observation. Maximizing summed completeness with fixed over-
head per observation in a time constrained mission is the full nonlinear optimization problem
we aim to solve in this section.

Fig. 5 Quantum efficiency of the detector as a function of wavelength. White dot represents detec-
tion mode wavelength (565 nm). From /WFIRST_cycle6/QE/Basic_Multi2_std_Si.fits
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Our optimization process is broken down into three major steps:

The first is the calculation of an initial feasible solution via a BIP.

The second is a scalar minimization problem solving the target subset and collective deriva-
tive using Brent’s method wrapped around a BIP (similar to Ref. 9).

The third step uses the output from the first or second step depending on which produces
a higher summed completeness as an initial solution to optimize the solution by adding,
removing, and finely tuning integration times via SLSQP.

Both step 1 and step 2 enable the solving of the full nonlinear optimization problem in step 3.
Step 3 can be seeded with any “good” initial guess (an initial solution sufficiently close to an
optimal solution). A “good” initial guess for SLSQP can even be an infeasible solution (i.e., in
the case of an unexpected reduction in total observing time, we can seed step 3 with the previous
solution to step 3). Optimization step 3 is fundamentally important because it allows individual
adjustment of each ti, individual removal of targets, and individual addition of targets (something
Ref. 4 cannot do) while conforming to all time-related constraints of the full nonlinear optimi-
zation problem.

2.4.1 Mission time constraints

We formulate the summed completeness maximization problem to ensure any nonzero, frac-
tional, observation incurs the observatory overhead and instrument settling time costs of making
an observation. Settling time, Tsettling, is time required by the observatory to start a new obser-
vation. This includes waiting out transient vibrations from the slew, time needed to reach thermal
equilibrium, and time for the initial generation of the high-contrast region, either by “digging the
dark hole” for a coronagraph or by completing the precision alignment required by an external
starshade. Overhead time, TOH, on the other hand, is any additional time required by the observa-
tory during the science integration. This includes time reserved for momentum dumping and
orbit maintenance (if these operations will interrupt science data collection), dark hole main-
tenance for coronagraphs, and stationkeeping burns for starshades. The inclusion of Tsettling and
TOH makes it difficult to find an initial feasible solution in most cases, as the overhead time
required for observing every target in the target list is typically greater than the total amount
of mission time available. In the specific case of the WFIRST CGI explored here, we have over
650 days of overhead time associated with observing the full target list and <100 days of allotted
exoplanet observing time. This means that we cannot simply evenly distribute our available time
between targets to get an initial state for the optimization, as this would generate a constraint-
breaking total required time. In general, initializing gradient-based optimizations on nonlinear
and nonconvex search spaces (such as the completeness versus integration time sigmoids) leads
to poor optimizer performance and frequently results in no feasible solution being found.

2.4.2 Step 1: the binary integer program

Step 1 is designed to create a guaranteed initial feasible solution to the nonlinear optimization
problem and uses reasonable inputs. Step 1 uses an initial calculation of background count rate
(Cb0) and residual speckle count rate (Csp0) using fZ0, fEZ0, andWAint. fZ0 is the zodiacal light
surface brightness, in arcsec−2, calculated using

EQ-TARGET;temp:intralink-;e017;116;179fZ0 ¼ 10−0.4Z; (17)

where the default Z we use in step 1 is a static 23.0 mag arcsec−2.3 fEZ0 is the exozodiacal light
surface brightness in arcsec−2 calculated using

EQ-TARGET;temp:intralink-;e018;116;122fEZ0 ¼ 10−0.4EZ; (18)

where the default EZ we use in steps 1 to 3 is 22.0 mag arcsec−2.4 WAint is the working angle
used for calculating integration times (this sets the specific values of instrument contrast,
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throughput, and other angular-separation-dependent terms) and is 2 × IWA. We use 0.3 arcsec
for all targets in step 1 which is near a maximum balance of core mean intensity and throughput
at λ ¼ 565 nm based on Figs. 4(a) and 4(c). The aforementioned parameters are used to calculate
an initial c0 and t0. We additionally impose a constraint on the total time spent using Tmax as the
maximum amount of time to spend observing and TOH þ Tsettling as a fixed overhead time for
making any observation. We use the coin-OR branch and cut solver,13 as provided by Google
OR-Tools to solve our BIPs, as described in Algorithm 1. This gives us an initial feasible solution
of targets, denoted by x�1, with integration times, t0, and summed completeness, x�1c0.

2.4.3 Step 2: scalar minimization with group dc∕dt

In step 2, we reuse Cp0, Cb0, and Csp0 specifying a solution tolerance of 10−2 on a bounded
scalar minimization problem with bounds on ε of [0,7]. We know ε at t ¼ ∞ and t ¼ 0 is 0, but
we have determined from software experiments that seven work well as an upper bound in this
case. Realistically, this upper bound on ε should be max½dci∕dti ∀ i ∈ I�, but only one target
could achieve that value and the optimization fails so the upper bound on εmust be reachable by
multiple targets. This minimization in step 2 uses the Python implemented scipy “minimize
scalar” function, as described in Algorithm 2. Successful execution of this procedure produces

Algorithm 1 Binary integer program x �
1 ¼ BIPðc0; t0Þ.

Input: I, c0, t0, TOH, T settling, Tmax, and an optimization time limit maximum of 5 min

Output: x�1, the list of binary values signaling to keep (1) or remove (0) each target

EQ-TARGET;temp:intralink-;t002;156;432

x�1 ¼ min
x

−
XN−1

i¼0

x ic0;i

s:t:X
i∈I

x iðt0;i þ TOH þ T settlingÞ ≤ Tmax;

x i ∈ f0;1g; ∀ i ∈ I:

Algorithm 2 Bounded scalar minimization wrapping binary integer program.

Input: I, Cp0, Cb0, Csp0, TOH, T settling, Tmax, and an optimization time limit maximum of 5 min

Output: ε�, the value of dc∕dt evaluated for each target which maximizes yield

Output: t�, integration times for each target evaluated at ε�

Output: x�2, the list of binary values signaling to keep or remove each target

EQ-TARGET;temp:intralink-;t003;141;194

ε� ¼ min
ε

−
X
i∈I

BIPfci ðt�i ðε�ÞÞ; t �i ðεÞ; TOH; T settling; Tmaxgi ciðt�i ðε�ÞÞ

s:t:

ε ≤ 7

− ε ≤ 0

t�2⇐½t �i ðε�Þ; ∀ i ∈ I�
x�2⇐ðBIPfciðt�i ðε�ÞÞ; t �i ðε�Þ; TOH; T settling; Tmaxg; ∀ i ∈ IÞ:
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a separate, feasible solution, distinct from the solution arrived at in step 1. By varying the ε and
solving the BIP subproblem in Sec. 2.4.2, we achieve a different set of targets x�2 with integration
times t2.

2.4.4 Step 3: SLSQP minimization

In step 3, we formulate the SLSQP optimization process with an initial solution seeded with x�1t0
or x�2t

�
2, whichever produces a larger summed completeness. In practice, we could take any xt as

a good initial guess and resolve with new mission time constraints based on new information.
This seeded solution should prove sufficiently close to an optimal solution such that the cðtÞ
sigmoid-like inflection point is exceeded. We now replace our previous assumed fZ0 with a
more optimistic surface brightness. We calculate zodiacal light surface brightness every ≈1∕3
of a day for a year, interpolating the lookup tables from Ref. 37 as shown in Fig. 6. For our
optimization, we specifically use the per annum minimum, fZ;min for all targets excluding fZ;i in
keep-out regions shown in Fig. 7(a). This is crucial as the fZ;i intensity of targets with 0 deg
heliocentric ecliptic latitude, (b), has local zodiacal light minimum within 56 deg of the observ-
atory’s antisolar point (see Fig. 6), a region not visible to WFIRST due to solar panel pointing
requirements in Table 3 (Algorithm 3).

The output t�3 is an optimal allocation of integration times to each target accounting for the
nonlinear overhead time assignment. This optimal allocation encodes our observation priority
over all possible targets and means each target in the target list is equivalently important to
observe to achieve the expected summed completeness. In the validation section, we choose
the minimum zodiacal light intensity target selection metric to complement our optimization
assumptions. The drawback is, if variations occur in the total mission time for any reason, high
reward targets might not be observed. There are technically infinite “near-optimal” solutions.
Equivalent maximum summed completeness target lists can be achieved for a range of different
numbers of target stars. This is directly caused by the increasing number of approximately equiv-
alent target stars at further stellar distances. These integration times are used as inputs to our
validation process discussed in Sec. 2.5 and implemented in EXOSIMS, which runs a Monte
Carlo of full mission survey simulations, observing each target for the integration times pre-
scribed in t�3 and bookkeeping all dynamic aspects of the mission.

Fig. 6 Local zodiacal light intensity interpolant [f Z ðl ; b; λÞ of Eq. (19)] at target star-spacecraft
heliocentric ecliptic longitude [lðr̂ i∕SCÞ] relative to the Sun-spacecraft heliocentric ecliptic longitude
[lðr̂⊙∕SCÞ] and target star heliocentric ecliptic latitude [bðr̂ i∕SCÞ] relative to spacecraft heliocentric
ecliptic latitude [bðr̂⊙∕SCÞ] and λ ¼ 565 nm. The minimum zodiacal light intensity [f Z ;minðbÞ] for
each b is indicated by densely packed red squares, which appear to form lines caused using
a linear interpolant and the coarseness of the underlying datapoints. Our implementation makes
observations only when target stars are coincident with black squares, the minimum f Z with keep-
out restrictions (b < 37 deg). Note Ref. 37 is significant to three decimal places but the interpolant
introduces machine precision numbers, the red and black dots have functionally equivalent values
for b > 37 deg. Only one quadrant is shown as the data are assumed to be reflection symmetric.
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2.4.5 Optimization performance

By breaking our optimization problem into three distinct parts, we see some benefits from each
part. The BIP guarantees an optimal solution based on the input and has a subsecond solve time.
The scalar minimization problem solves within a few seconds and achieves ≈99% of the maxi-
mum completeness we achieve. The SLSQP part on WFIRST seeded with the scalar minimi-
zation solution marginally improves the summed completeness and takes a little over a minute.
The solution arrived at by SLSQP is almost certainly a local minimum and not a global optimum.

In this paper, rows 1, 2, and 3 in Table 2 are how we solved for the optimal observation target
list and integration times, using fZ;0 as input to 1 and 2 of the optimization problem. We contrast
optimizing with fZ;0 to fZ;min in rows 4, 5, and 6 of Table 2 which causes a marginal decrease in
summed completeness for the BIP and scalar minimization problems. Row 7 is optimization
seeded with t�3 from row 6 and a slightly longer total observing time which solves in a shorter
time than from the scratch optimization process. Rows 8, 9, 10, 11, and 12 are based on a sub-
stantially larger telescope which is reflected in the higher overall summed completeness. Solve
times are strictly larger on the Big Telescope than for WFIRST, but we see rows 11 and 12, which
are seeded with the optimal solution from row 10 have substantially shorter solve times than
row 10.

Algorithm 3 SLSQP optimization.

Input: I, fZ , t, TOH, T settling, and Tmax

Output: t�3, the integration times to spend on each star

EQ-TARGET;temp:intralink-;t004;196;435

t� ¼ min
t

−
XN−1

i¼0

ci ðt i Þ

s:t:

t i < Tmax; ∀ i ∈ I

−t i < 0; ∀ i ∈ IX
i∈I

x iðTOH þ T settlingÞ þ t0;i < Tmax:

(a) (b)

Fig. 7 Keep-out map of WFIRST/targets over the first mission year showing visible times of
targets (white) and different sources of keep-out occlusion including the Sun (yellow), Earth (blue),
Moon (gray), and Mercury/Venus (red). The horizontal histogram shows percentage of time each
target is visible (a). The keep-out map filter is implemented in EXOSIMS at the step 2 shown in
Fig. 8. The histogram and cumulative distribution of visibility of all targets is shown (b). Minimum
target visibility is 28%.38,39
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2.5 Validation

We validate the ability to schedule our optimized integration times from Sec. 2.4 and listed in
Table 7 of Sec. 8, via a Monte Carlo of full survey simulations using the EXOSIMS code base,
detailed in Ref. 16. This software allows us to bookkeep dynamic aspects of the mission while
scheduling observations on randomly generated planetary systems about a real set of target stars.
Using EXOSIMS, we account for exoplanet, solar system planet, and observatory orbit propa-
gation as well as recalculating look vectors, keep-out regions, and local zodiacal light noise.

At the start of each survey simulation, we randomly generate planets around stars; drawn
from the Kepler-like or SAG13 planet populations discussed in Sec. 2.1 using sampling methods
described in Ref. 16. To define the observable times of individual stars, we combine solar system
planet locations with instrument-specific keep-out angles and observatory look vectors for each
target in the star catalog throughout the duration of the mission. These solar system planet
locations are taken from the Horizons Ephemeris System furnished by NASA’s Navigation
and Ancillary Information Facility (NAIF)40,41 based on an assumed mission start modified
Julian date (60,634 for WFIRST). The EXOSIMS framework default observatory orbit is
a quasiperiodic, stable, halo orbit at the second Earth–Sun Lagrange point with period of
≈180 days based on Ref. 42. We stitch the observatory position along the orbit using a one-
dimensional (1-D) spline interpolant and propagate the observatory along the interpolant
throughout MET assuming a general observatory start location on the Halo orbit when the
Earth is at the Earth–Sun equinox (60,575.25 MJD for WFIRST). The starting location of the
observatory for a single-visit blind search survey coronagraph mission has negligible impact on
yield. We discuss the calculation of keep-out regions in Sec. 2.5.1. In each simulation, we incre-
mentally filter available targets, simulate observations and their outcomes, and propagate orbits
as shown in Fig. 8.

At the start of each main loop shown in Fig. 8 (steps 1 to 9), filters remove targets with too
long of integration times (ti > 30 day); targets currently in keep-out regions of planetary bodies;
previously observed stars not currently scheduled for revisits; and filters targets not observable
within the nearest time constraint. In this paper, we do not revisit targets, so we filter out
any targets that have been observed during the mission. We then use an intelligent method of

Table 2 Optimization method solves times and summed completeness for WFIRST using differ-
ent input zodiacal lights and solving with different maximum mission times.

Opt. method Solve time (s)
P

xi ci f Z Tmax

WFIRST 1 BIP 0.019 1.92 f Z ;0 Tmax

2 Scalar min. 5.468 2.33 f Z ;0 Tmax

3 SLSQP 70.16 2.35 f Z ;min Tmax

4 SLSQP 16.88 2.33 f Z ;min 0.9 × Tmax

5 SLSQP 9.432 2.35 f Z ;min 1.1 × Tmax

WFIRST 6 BIP 0.109 1.89 f Z ;min Tmax

7 Scalar min. 5.739 2.31 f Z ;min Tmax

8 SLSQP 65.34 2.35 f Z ;min Tmax

Big telescope 8 BIP 0.929 105.79 f Z ;min Tmax

9 Scalar min. 7.23 179.21 f Z ;min Tmax

10 SLSQP 638.7 180.36 f Z ;min Tmax

11 SLSQP 258.8 183.29 f Z ;min 1.1 × Tmax

12 SLSQP 182.0 180.05 f Z ;min 0.9 × Tmax
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choosing the next target at the current mission time, tc. Several selection metrics have been
studied in Refs. 15, 17, and 43, but we choose to observe targets at their minimum zodiacal
light intensity. Here, our method of selecting targets for observation advances time by the small-
est amount minðtc − tfZ;min

Þ. tfZ;min
are the mission times when targets in I have their next local

zodiacal light minimum, fZ;min. This identifies target star i which we proceed to observe for the
precalculated time ti from the method described in Sec. 2.4. We divide the observations into
discrete time intervals and calculate the signal and noise at each interval, calculate the total
achieved SNR, and propagate planets around the star as well as the observatory and solar system
planets. Splitting up observations into time intervals enables us to approximate the achieved SNR
via Riemann sum using the new location of the observatory, planets, and simulated exoplanets
along with the associated zodiacal light, planet phase angle, and planet position in the instrument
working angle. We divide our observations into two equal intervals over the duration of the
integration time, ti, which are all strictly <2 days in this case. We then advance the mission
time by ti þ TOH þ Tsettling and check if the mission is over.

The EXOSIMS framework relies upon probabilistic planet generation and random draws.
However, our Python implementation is capable of not only replicating results but also fully
reproducing each survey simulation run by resetting the simulation from the simulation’s
random seed. EXOSIMS also keeps track of all inputs required to replicate the simulation.

FALSE

t Filter

Observation Detection:
 
 
 
 
 
Check for False Detection
Schedule Revisits

Calculate Integration Times

Keepout Filter

*

Revisit Filter
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Fig. 8 EXOSIMS survey simulation simplified flowchart depicting major filtering steps discussed in
Sec. 2.2, calculating integration time, selecting the next target, making the detection observation,
making the characterization observation under conditions outlined in Sec. 7, and advancing time.
EXOSIMS is additionally capable of strictly adhering to predefined observing blocks, but this func-
tionality was not used for the results presented here.
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2.5.1 Keep-out regions

WFIRST has keep-out regions specified in Table 3. We define these keep-out regions as a subset
of the sky which cannot be entered by the telescope look vector throughout an observation. Our
strict accounting for time and geometry in simulations enables us to ensure any observation’s
look vector (ri∕SC) does not start, stop, or pass through a keep-out region. Nominally, each solar
system body in Table 3 has a minimum keep-out region the telescope cannot look within. The
Sun has a maximum keep-out region of 124 deg the telescope cannot look outside of. This is set
by the minimum incidence angle of light on the spacecraft’s solar panels to power the observa-
tory and CGI. The bore-axis vector of WFIRST cannot point farther than 124 deg away from
the spacecraft Sun vector (r⊙∕SC) in order to meet spacecraft power requirements. There is an
additional minimum solar panel keep-out angle at 56 deg which was not modeled. Since our
implementation in EXOSIMS in this specific case enforces observations at local zodiacal light
minimum indicated by the black squares shown in Fig. 6, these observations either occur near
the spacecraft antisolar point or edge of the maximum solar panel keep-out region.

We cache a keep-out map to substantially increase simulation speed. This keep-out map
spans the duration of the mission and is discretized into small time bins (1 day in this paper)
and encodes the visibility of each star in the catalog. The keep-out map encodes the visibility
status of targets at each point in time by calculating the angular distance between ri∕SC ∀ i ∈ I
and the observatory to planet vectors. If the formed angle is less than the minimum keep-out
angle or greater than the maximum keep-out angle for that body, the target star is marked as not
visible. In Fig. 7(a), we see the target visibility for 100 stars in the star catalog ordered by right
ascension with their visible times (white) and obstructing bodies. The Sun (yellow) is the major
contributor to keep-out regions with the Earth (blue) being the second largest contributor. Star
occultation by Mars, Venus, or Jupiter keep-out regions is nearly negligible. Figure 7(b) also
shows some targets are visible <28% of the time while others are visible all of the time. We can
conclude from these plots that increasing WFIRST’s maximum solar keep-out angle or decreas-
ing the minimum keep-out angle can increase the amount of time a target is visible by maximally
≈2 day per change in degree.

2.5.2 Local zodiacal light

The local zodiacal light intensity (fZ;i) is the largest, known, time varying noise source we
account for and manifests itself in the background noise count rate introduced in Eq. (12) and
explicitly written in Sec. 7. Variations in local zodiacal light can vary the summed completeness
by up to 10%.17,43,44

In Sec. 2.4, for step 1 for our integration time optimization, we use a static Z0 of 23.0 mag
arcsec−2 as done in Ref. 4. However, in step 3, we optimize our final integration times using
fZ;min (or equivalently Zmax) which implies specific times of the year when these observations
can be made, as shown by the black lines in Fig. 6. The black points in Fig. 6 are curved at low l,
and this is directly caused by the large anti-solar keep-out region which marginally inhibits
observation at fZ;min.

Table 3 Keep-out regions for WFIRST defined as the (minimum angle
between rBody∕SC and r i∕SC , maximum angle between rBody∕SC and r i∕SC ).

Body Keep-out angle (deg)

Earth 45

Moon 45

Sun 45

Small bodies 1

Solar panels 1242
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There is a distinction between the fZ;i used in the integration time optimization and the fZ;i
used in the Monte Carlo validation. When we evaluate whether a detection has been made at the
top of step 7 in Fig. 8, we calculate the planet SNR using fZ;i based on ri∕SCðtcÞ where tc is the
current time in the simulation. We calculate the interpolant in Fig. 6 using Eq. (19), a 2-D linear
interpolation of intensity from Table 17 of Ref. 37 [fβðl; bÞ], a quadratic interpolation of wave-
length dependence from Table 19 in Ref. 37 {fλ½log10ðλÞ�} and applying a Sun color correction
of F 0ðλÞ to get

EQ-TARGET;temp:intralink-;e019;116;649fZðl; b; λÞ ¼
fλ½log10ðλÞ�fβðl; bÞ

hc 0F 0ðλÞ
: (19)

Here, h and c 0 are the Planck’s constant and speed of light in a vacuum, and fλ½log10ðλÞ� is a
quadratic 1-D interpolant of Ref. 37 data in Fig. 9 of Sec. 7. Since the Table 17 from Ref. 37 is in
the geocentric ecliptic coordinates, but the spacecraft will physically be located on an Earth–Sun
L2 orbit, we assume the table’s b ¼ 0 deg and l ¼ 0 deg is coincident with r⊙∕SC, and the
additional distance of the spacecraft from the Sun has no effect. Further discussion of these two
assumptions is included in Sec. 7.

Since the statically optimized integration time assumes a fixed zodiacal light, which coin-
cides with a specific time of year and our actual observation takes into account the local zodiacal
light conditions, our target selection method has an impact on the zodiacal light of the target
we observe. In previous work, we tested different target selection metrics incorporating
completeness, integration time, and deviations from the maximum or minimum zodiacal light
intensity.15,17,42 For a statically optimized target list, we found the strategy observing at minimum
zodiacal light to be most effective. However, this assumes we have all the observing time allot-
ted. If we included instrument degradation due to radiation or possibly early mission termina-
tions, other selection metrics which preferentially select higher performing targets may become
more attractive.

Using the 2-D interpolation of Fig. 6 combined with instrument specific filters in Sec. 3 and
optimization process in Sec. 2.4, we can plot the histogram of minimum (black dots in Fig. 6)
and maximum (at edge of solar keep-out) local zodiacal light intensity in Fig. 10. Depending on
the time of year observations are made, the variation in zodiacal light intensity changes (exclud-
ing when targets are in keep-out) by upward of two magnitudes. We also see using an estimated
Z0 of 23.0 mag arcsec−2 is an overly optimistic approximation of the local zodiacal light noise.
Realistically, for our filtered set of target stars, the appropriate μZmin

≈ 22.79 mag arcsec−2 and
μZmax

≈ 21.59 mag arcsec−2. Since fZ;min and fZ;max in Fig. 10 include the instrument-specific

Fig. 9 Local zodiacal light correction factor from Table 19 of Ref. 37 with region of high accuracy
between 200 nm (red dashed line) and 2.0 μm (blue dashed line) and decreasing accuracy at
larger wavelengths due to infrared and scattering parity in contribution.
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keep-out regions for WFIRST, increasing the maximum solar keep-out could decrease fZ;min and
decreasing the minimum solar keep-out angle would increase fZ;max.

2.5.3 Detection and characterization observations

When making a detection observation of a planet, we do not use the same parameters as in the
optimization process. Our algorithm for confirming a detection is also different. In a survey
simulation, we define a planet as being detected when the collected SNRk > 5. We calculate this
SNR using Nemati’s SNR model from Ref. 35 discussed further in Sec. 7. The planet signal is

EQ-TARGET;temp:intralink-;e020;116;370S ¼ Cpti∕Ndt; (20)

and the noise is

EQ-TARGET;temp:intralink-;e021;116;326N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cbti∕Ndt þ C2

spðti∕NdtÞ2
q

: (21)

These equations are treated as a Riemann summation over the whole integration time (ti) broken
into Ndt ¼ 2 segments. The Riemann summation approximates variations in local zodiacal light,
exozodiacal light, planet phase angle, and changes in planet WA as well as the new resulting
Tðλ;WAÞ, Γðλ;WAÞ, Ψðλ;WAÞ, and γðλ;WAÞ. The count rates we calculate here, Cp, Cb, and
Csp, use the same equations in Sec. 2.3 but with inputs specific to the planet.WAk is updated based
on the planet position at the current time propagated using the Kepler-state transition matrix. The
new, physical, Δmagk is calculated using Eq. (4) from Ref. 7 and the new planet phase angle
calculated from a Lambert phase function. fZ;i is updated based on the new observatory position
along the halo orbit. We use a different calculation of fEZ following from Ref. 45, where

EQ-TARGET;temp:intralink-;e022;116;176fEZ;k ¼ 2 × 10−0.4ðVmag;i−4.83þEZÞ½2.44 − 0.0403suppðIkÞ þ 0.00269suppðIkÞ2�∕krk∕ik2: (22)

Here, EZ is the visual magnitude of the exozodiacal light scaled relative to the Sun. suppðIkÞ is
the supplementary angle to the planet’s orbital inclination (in degrees) resulting in a range from
[0 deg, 90 deg] and is mirrored in the range [90 deg, 180 deg] based on Ref. 46. In multiplanetary
systems, we assume the exozodiacal light of each planet has the inclination of each planet. The
inverse krk∕ik2 term accounts for the decreasing exozodiacal light contribution with increasing
distance from the planet and star, as discussed in Ref. 4.

Fig. 10 A histogram of zodiacal light intensity in mag arcsec−2 (Z ), for stars at the minimum
observed intensity (Zmax), and stars at maximum observed intensity (Zmin), taking into account
WFIRST keep-out regions. Z 0 corresponds to the optimistic zodiacal light intensity in mag
arcsec−2 used by Stark in Ref. 4 and Brown in Ref. 3. Dashed lines represent target list μZmin

¼
22.79 mag arcsec−2 and μZmax

¼ 21.59 mag arcsec−2.
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We include spectral characterization observations in our survey simulations but not in our
optimization process. This is due to both the rarity in finding a strong enough planet signal to
make characterization of with WFIRST and the high mission value placed on acquiring spectral
characterizations. We do not model characterizations in our optimization process because it adds
complexity and we have no good method of weighting new planet detections to spectral char-
acterizations. We attempt to immediately perform a spectral characterization upon successfully
detecting any new exoplanet. We calculate integration times for this characterization observation
using the measured Δmagk, WAk, fEZ;k, and fZ;i at the current time as well as the characteri-
zation mode parameters in Sec. 7. We check if the new integration time plus overhead would
exceed the total mission time, would enter into a keep-out region, or would exceed the 30-day
integration cutoff filter. In the vast majority of cases, an SNR of 10 is not achievable given what
we know about the exoplanet from a single detection. In addition, we make observations at local
zodiacal light minimum immediately before a planet enters keep-out or immediately after a
planet exits keep-out causing approximately half of the successfully detected planets to enter
keep-out immediately following their observation.

2.5.4 Convergence

We determine the required number of simulations to ensure the accuracy of our results by
executing 10,000 simulations of a generic input specification similar to that used in Sec. 3. By
assuming the true mean yield is equivalent to the mean yield over 10,000 simulations (μdet;10;000),
we can demonstrate convergence of μdet;i to μdet;10;000, where i in this section is the number of
simulations in the ensemble. We calculate the mean yield from a subset of ensembles incremen-
tally for each i using Eq. (38) from Ref. 47. We then calculate the percent deviation between μdet;i
and μdet;10;000 shown in Fig. 11. Figure 11 shows the mean number of unique detections
converges for a sufficiently large number of simulations.

By assuming the mean number of detections per run are normally distributed, we show the
1σ, 2σ, and 3σ confidence intervals of the mean in Fig. 11. In reality, the ensembles are some
form of gamma distribution because the numbers are all positive and priors are exponentially
distributed. This normal distribution assumption fits better for high yield telescopes. The abso-
lute percent errors for varying confidence intervals for 100 and 1000 simulations are presented in
Table 4. Absolute percent errors represent the uncertainty in the mean number of unique detec-
tions. Excluding Table 4 and Fig. 11, all results in this paper are derived from single simulations
or ensembles of 1000 simulations. We use the 3σ confidence interval to make comparisons and
determine whether a result is significant. We can say a general mean number of unique detections
is accurate to within �3.19% at 3σ for 1000 simulations.

Fig. 11 Absolute percent error from μdet10;000 convergence combined with 1σ, 2σ, and 3σ confi-
dence intervals.

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-22 Apr–Jun 2020 • Vol. 6(2)



3 WFIRST Results

The results in this section are generated using all previously discussed assumptions and param-
eters as well as the parameters in Table 6 of Sec. 7 based on the cycle 6 description of the CGI.18

3.1 Completeness and Planned Observations

By applying the optimization process from Sec. 2.4 to the target list filtered in Sec. 2.2 and
assuming a Kepler-like planet population with per observation TOH ¼ Tsettling ¼ 0.5 day and
maximum observing time of Tmax ¼ 91.3125 day (3 months), we get the integration times in
Table 7 in Sec. 8. The planned summed completeness of this target list is

P
ciðt3;iÞ ¼ 2.35.

Since completeness is the probability of detecting planets from a population around a star, multi-
plying

P
ci by the population occurrence rate (ηKL from Sec. 2.1) gives the expectation value of

planets detected, in this case equal to 5.58 detections. We calculate the ultimate completeness10

for all 651 potential targets by evaluating
P

ci at an infinite integration time (t∞) to getP
ciðt∞Þ ¼ 9.01 and an expectation value of 21.40 exoplanets detected. We note here that the

theoretical maximum summed completeness, if there were no Δmag or WA constraints, for
all 651 target stars is 651. The summed ultimate completeness of only the targets in Table 7
is

P
ci ∀ i ∈ I ¼ 2.99 with an expectation value of 7.10 exoplanets detected. The ratio

2.35∕9.01 × 100 ¼ 26.1% is a measure of planned target list yield to the maximum theoretical
summed completeness observing all 651 targets with t∞. The ratio 2.35∕2.99 × 100 ¼ 78.6% is
a measure of the summed completeness of the planned target list to the maximum theoretical
summed completeness of only the target stars observed with t∞. These ratios represent the frac-
tion of planet phase space about all scheduled targets that could be probed in the assumed, finite,
total mission time. We can conclude from these results that, in the short amount of time allocated
for WFIRST, our optimized target list is capable of observing 78.6% of the summed ultimate
completeness it could possibly gather.

There is a non-negligible difference between the planned completeness, c3;i, and the com-
pleteness actually observed ctobs;i. The planned observations and Monte Carlo simulations
entirely based on the Kepler-like population are shown in Fig. 12. Note the loss of one obser-
vation between the planned and actual observations, which we attribute to accumulation of
machine precision errors and our strict adherence to the Tmax upper bound on observing time
as well as the allowance of characterizations in the implemented survey. The loss of an obser-
vation is evident by the single red square without an associated blue circle in Fig. 12. The

P
ci

actually observed in this particular simulation of the Monte Carlo was 2.33. For each observation
made in a survey simulation, observed completeness (blue circles) coincident with planned com-
pleteness (red squares) indicates each simulated observation occurs under optimal conditions for
a single visit. Because we are observing targets solely at the local zodiacal light minimum and
do not modify integration times, all observations made are optimal. If targets were observed at
suboptimal zodiacal light levels, the ctobs;i would be below the c0;i as shown in Ref. 17.

Table 4 Absolute percent error confidence intervals for 100 and 1000 simulations. This table
references data created using runs from Dean22May18RS09CXXfZ01OB01PP01SU01 and file
convergenceDATA_Dean22May18RS09CXXfZ01OB01PP01SU01_2019_04_09_01_23_.txt.

# Sims Confidence interval Absolute percent error (%)

1000 1σ 1.16

1000 2σ 2.33

1000 3σ 3.19

100 1σ 3.45

100 2σ 6.95

100 3σ 9.58
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From the combined time varying limit in Eq. (12) applied to Eq. (11), we get the black sig-
moid-like lines in Fig. 12, specifically plotting ciðtiÞ for the top 10, median, and lowest com-
pleteness optimized targets in the target list. The median and lowest ciðtiÞ lines are characteristic
for the majority of similar low completeness targets and the addition of targets will typically be
below the lowest completeness target in this list. The ciðtiÞ and completeness side histogram
shows a clustering of targets at lower completeness values, which can be attributed to the
increased number of targets at larger di. The upper limit of completeness lines is consistent with
the theoretical maximum completeness values.

Demonstrating the importance of including overhead and settling times in observations are
the max ci∕ti diamonds in Fig. 12. These are universally located at some small integration time
(ti < 10−3 day, ∀ i ∈ I) and small completeness meaning any optimized target list maximizingP ciðtiÞ

ti
without overhead constraints will have strictly nonzero ti > 0, ∀ i ∈ I. This means opti-

mizing summed completeness without TOH and Tsettling results in an observation target list of
length N (651 in the case of WFIRST), which cannot be executed under realistic conditions.
Similarly, observing at Δmaglim would result in suboptimal individual target completeness and
also leaves a substantial amount of unobserved phase space around each target.

Calculating completeness using the SAG13 planet population shows the summed ultimate
completeness of all 651 targets is 13.538. The summed ultimate completeness of the observed
targets is 3.641. The minimum completeness of these targets has increased due to the increased
likelihood of larger Δmag planets at larger s in the SAG13 distribution in Fig. 3(b). As in the
Kepler-like optimized target list, we see a single target is not being observed due to strict enforce-
ment of observing time constraints. The major difference from Figs. 12 and 13 is the change in
shape of the ciðtÞ lines. The SAG13 ciðtÞ lines have a lower ultimate completeness, but more
targets have this limit. In addition, each of these targets is observed for shorter integration times,
which mostly have a higher theoretical maximum completeness and general shift toward higher
completeness at lower integration times. There is additionally a larger separation of lower com-
pleteness targets in Fig. 13 compared to Fig. 12. In general, completeness calculated using the
SAG13 population is larger than completeness calculated using the Kepler-like population.

Fig. 12 Completeness as a function of integration times calculated using the Kepler-like distribu-
tion, EXOCAT-1 star catalog, Nemati SNRmodel,35 and Leinert Table Zodiacal Light.37 Black lines
show completeness versus integration time for the 10 highest planned completeness targets, the
median completeness target, and the lowest completeness target. Red squares indicate planned
integration time and planned completeness based on ε maximizing summed completeness. Blue
dots indicate observation integration time and observation completeness of the simulated obser-
vation. White dots represent completeness at Δmaglim and are plotted for the 10 highest, median,
and lowest completeness planned targets. Blue diamonds show the completeness and integration
time of the maximum ci∕t i point for the 10 highest, median, and lowest completeness targets.
This plot references data generated using C0vsT0andCvsTDATA_WFIRSTcycle6core_CKL2_
PPKL2_2019_10_07_11_58_.txt with specific target stars, integration times, and completeness
included in Table 7.
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3.2 Sky Distribution of Completeness, Integration Times, and Targets

We are able to take the optimized target list included in Table 7 and bin the heliocentric ecliptic
coordinates ðl; bÞ of each target, into triangular regions of approximately equivalent size and
approximately isotropic distribution on the sky. When we sum integration time for all targets
in each bin and normalize by bin area, we get the skymap distribution shown in Fig. 14. Since
Fig. 12 shows all integration times are between 0.1 and 2 days, we can conclude the ðl; bÞ ¼
ð−140 deg; 0 degÞ and ðl; bÞ ¼ ð20 deg; 50 degÞ bins have the highest concentrations of
observing time. By summing the bins over heliocentric ecliptic latitudes (b), we see a large
disparity in

P
ti versus l, target count versus l, and

P
ci versus l. Since WFIRST is planned

to be on an L2 halo orbit and has a Sun-orbital period of ∼365.25 days, the Leinert local zodiacal
light37 is fixed in this rotating frame, and the time-distribution of stars is uneven, the optimally
scheduled mission will have preferential observing times consistent with the distribution in
Fig. 14. This result is important for optimally distributing limited CGI time under the constraints
of a 5-year mission shared with multiple other instruments. Using this distribution, we can create
preferentially distributed observing blocks for the CGI.

3.3 Detected Planet Properties

From our ensembles of survey simulations, we can look at how a and R of the detected planets
are distributed. The top row of Fig. 1 is the average distribution of R and a for all generated
planets in a universe. In each subplot of Fig. 1, the top left and bottom right show the number of
simulations used to generate the resulting distribution. Each 2-D contour plot is normalized such
that the integral over the area is 1 for the individual ensemble so the color scale can be shared.
The white number in each gridded region shows the average number of planets generated or
detected per simulation in that bin over the ensemble of simulations. The number in the top
right of Figs. 1(a) and 1(b) is the sum total of all planets generated in the ensemble of universes.
Subplots of Figs. 1(c)–1(f) show the average distribution of detected planets over an ensemble.
The number in the top right of Figs. 1(c)–1(f) is the sum total of all planets detected in the
ensemble. These summations have been tabulated as average yields in Table 5. Subplots of

Fig. 13 Completeness as a function of integration times calculated using the SAG13 distribution,
EXOCAT-1 star catalog, Nemati SNR model,35 and Leinert Table Zodiacal Light.37 Black lines
show completeness versus integration time for the 10 highest planned completeness targets, the
median completeness target, and the lowest completeness target. Red squares indicate planned
integration time and planned completeness based on ε maximizing summed completeness. Blue
dots indicate observation integration time and observation completeness of the simulated obser-
vations. White dots represent completeness at Δmaglim and is plotted for the 10 highest, median,
and lowest completeness planned targets. Blue diamonds show the completeness and integration
time of the maximum ci∕t i point for the 10 highest, median, and lowest completeness targets. This
plot references data generated using C0vsT0andCvsTDATA_WFIRSTcycle6core_CSAG13_
PPSAG13_2019_10_07_14_29_.txt.
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(a)

(b)

(c)

(d)

Fig. 14 The distributions of a Kepler-like optimized target list including (a) a skymap divided into
approximately evenly sized triangular bins with isotropic sky distribution showing the time/area
density of observations, (b) a histogram of total sky time versus heliocentric ecliptic longitude
(l), (c) a histogram of target counts versus l , and (d) a histogram of summed completeness
versus l .

Table 5 Summary of overfitting average unique detection yield and average characterizations
from four Monte Carlo ensembles with optimized target list integration times calculated for
different planet populations observing universes of different planets WFIRSTCompSpecPriors_
WFIRSTcycle6core_3mo_405_19.

Planet population

Completeness Kepler-like SAG 13

Average yield Kepler like 5.484 16.117

SAG13 5.206 16.266

Average characterizations Kepler-like 0.214 1.003

SAG13 0.217 0.718
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Figs. 1(c) and 1(d) use a target list optimized for the Kepler-like planet population to observe
universes of Kepler-like and SAG13 simulated planets. Similarly, subplots of Fig. 1(e) and 1(f)
use a target list optimized for the SAG13 planet population to observe universes of Kepler-like
and SAG13 simulated planets.

We can do an analysis on the kinds of planets WFIRST is expected to detect in a blind search
survey. Since our universe is randomly generated, we show the distribution of generated R versus
a planets for all stars for the Kepler-like and SAG13 planet populations in Fig. 1. The imple-
mented planet generation rate for the universe of the Kepler-like planets is ηKL ≈ 2.377, con-
sistent to two decimal places with the planet population model in Sec. 2.1. Here, η is simply
calculated by dividing the sum total of planets in the ensemble of universes by the number of
simulations in the ensemble (1000 from Sec. 2.5.4) and number of target stars (651 from
Sec. 2.2). The ηSAG13 ≈ 5.618 for SAG13 is also consistent to within two decimal places with
the model in Sec. 2.1. The generated planet populations are consistent with the limits presented
in Sec. 2.1. In Sec. 2.1, we showed the smallest observable planet–star separation observable to
be 0.292 AU and each of the four detected planets plots shows all planets detected have a >
0.292 AU. A distinctive feature of the planet a generation is the “knee” applied at 10 AU which
can be seen by the sharp drop-off in both populations.

There is a marginal difference in the y axis of the contour plots between Kepler-like and
SAG13 populations, as SAG13 generates smaller planet radii than Kepler-like, so direct com-
parisons cannot be made between individual gridspace averages across universes. We also note
the SAG13 universe generates an order of magnitude more large R and large a planets as indicated
by the 24.29 and 221.19 grids from Kepler-like and SAG13, respectively [Figs. 1(a) and 1(b)
gridspace (4,4)]. Comparisons between planet populations used to calculate completeness observ-
ing the same planet population universe indicates that optimizing with the Kepler-like population
results in marginally smaller planet R detections. Specifically for the Kepler-like universe’s largest
average detection bin, we see that optimizing with the Kepler-like planet population results in
1.35 detected exoplanets on average and optimizing with the SAG13 planet population results in
1.11 detected exoplanets on average, which is significant, given our convergence results above.
For the SAG13 universe’s largest averaged detection bin, we see optimizing with the Kepler-like
planet population results in the 3.51 detections and optimizing with SAG13 yields 3.55 detec-
tions but scaling by the number of detected planets gives 3.54 ¼ 3.51 × 16.266∕16.101 which is
nearly identical. From these observations, we can conclude observing a universe of SAG13 plan-
ets with integration times optimized using completeness from a Kepler-like planet population
result in more detections of small R planets. Each gridspace in the bottom two rows of Fig. 1(d) is
greater than or equal to each gridspace in the bottom two rows of Fig. 1(f). We can specifically
point to the 0.81 and 0.69 grid spaces that most evidently confirms this observation.

We can draw several conclusions by inspecting the average population of planets detected.
Our simulations show WFIRSTwill not detect planets with a < amercury. We also see WFIRST is
not capable of detecting planets with R < R�. We also note that WFIRST is not sensitive to
planets beyond asaturn. The majority of planets detectable by WFIRST are cold-Jovians and
Super Earths. Based on Fig. 1, we can conclude that optimizing integration times with the more
pessimistic Kepler-like planet population universally biases detections toward smaller planets.

3.4 Overfitting

We have chosen to use the Kepler-like and SAG13 planet populations to optimize target lists in
this paper, both of which are created based on the known population of exoplanets. Since a
motivation for the WFIRST CGI is to observe new exoplanets in an unexplored region of space,
we must investigate how yield for a target list of integration times optimized for one planet pop-
ulation changes when observing a universe full of planets based on another planet population.

Optimizing a target list using completeness based on a planet population and observing that
same planet population results in the highest yield in given in Table 5. However, observing a
universe of Kepler-like planets with a target list optimized for SAG13 planets results in a 5.06%
decrease in exoplanets detected, a greater decrease than observing SAG13 planets with a target
list optimized using Kepler-like planets (a 1.01% decrease). A possible explanation for this dif-
ference is our inclusion of the rare characterization. The characterization part of Table 5 does not

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-27 Apr–Jun 2020 • Vol. 6(2)



indicate this is the case and shows more planets are characterized on average when optimized
with the wrong planet population range. A characterization observation is triggered whenever
a planet is detected with sufficiently small Δmag and separation such that the immediate
reobservation could achieve an SNR > 10 with a newly calculated ti < 30 days and all other
detection observation filters in Sec. 2.5. Since the observation would be carried out with a differ-
ent instrument, the changed parameters are included in Sec. 7.

The conclusion we can draw from this exercise in overfitting is that optimizing with the more
pessimistic Kepler-like planet population yields more robust detections and more characteriza-
tions if the planet population is actually SAG13. This warrants reinvestigation with varying
margins placed on tobs;i.

4 Conclusions

In this work, we presented our method of optimizing integration times and validating the
optimized target list in a Monte Carlo of survey simulations using the EXOSIMS code base.
We presented our implementation of a Kepler-like and SAG13-based planet populations and
our associated methods for calculating completeness and simulating universes of planets. We
presented our generalized target list integration time optimization process accommodating
per observation overhead time constraints for a blind search single-visit survey and showed how
the inclusion of overhead times is necessary when optimizing surveys. We discussed how
EXOSIMS book-keeps all time varying aspects of a survey mission including keep-out regions
of the Sun and major planets using ephemeridis, the observatory’s position on an L2 halo orbit,
local zodiacal light for each target, positions of the target stars, positions of simulated planets
around target stars, and our strict enforcement of total observing time. Under WFIRST’s con-
straints, we show the optimal heliocentric ecliptic longitudes for target observation based on
local zodiacal light intensity as well as more realistic local zodiacal light average minimum and
average maximum magnitudes of 22.79 and 21.59 mag arcsec−2, respectively. The strictness of
WFIRST’s keep-out regions causes the visibility of some targets to drop below 28% which
severely constrains both single visits and would constrain revisits. Making telescopes less sen-
sitive to solar panel-based and planet-based keep-out regions keep-out regions enable observing
at more ideal local zodiacal light conditions, increase the total target visibility, and will prevent
aliasing of similar period planets when considering revisits. By making only optimal observations
in our Monte Carlo survey simulations, we see the WFIRST optimized target list’s preferential
observing times are unevenly distributed on the sky and across heliocentric ecliptic longitudes,
but these longitudes do not necessarily line up with the completeness longitude distribution. The
observed mismatch between the observing time distribution across the sky and the completeness
distribution across the sky means observation at specific times of year will be more valuable than
others throughout the mission. Most importantly, it means that in the case where a mission is
designed with preallocated observing blocks, blocks reserved for exoplanet imaging must take
into account both the integration time and completeness distributions over ecliptic longitudes.

We validated our WFIRST optimized target list’s summed completeness of 2.35 by perform-
ing a Monte Carlo of survey simulations on the Kepler-like planet population, achieving an
observed summed completeness of 2.33 using our model of WFIRST. We have also demon-
strated the convergence of the mean number of detected exoplanets from Monte Carlo of
1000 simulations to have 3.19% error at 3σ, giving additional confidence in the Monte Carlo
results. Our Monte Carlo simulations also indicate that the WFIRST CGI detects 5.48 exoplanets,
on average, when observing the Kepler-like planet population and 16.26 exoplanets on average
when observing the SAG13 distribution. The vast majority of the WFIRST detectedable planets
range in size from Super-Earths to Jovians at semimajor axes from 0.4 to 6 AU. Observing a
population of the Kepler-like planets with a target list optimized for a SAG13 population of
planets results in a yield decrease in detections of >5% whereas the inverse indicates a yield
decrease <1% indicating the Kepler-like planet population optimized target list is less sensitive to
variations in the underlying planet populations and should be used to optimize CGI target lists.
We also see that optimizing with a more pessimistic planet population universally results in more
detection of small radius planets. The simulation inputs and results included in this paper are
publicly available via Cornell’s eCommons service at: https://doi.org/10.7298/90n2-5j40.
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5 Future Work

There are many improvements to be made in the input assumptions and underlying models used.
We can likely improve yield by increasing the number of targets available to use in optimization
by filtering stars missing only the parameters we use in our calculations instead of the blanket
missing data filter we use currently. WFIRST might not be able to detect small planets, but
improving our planetary albedo interpolant for small rocky bodies would be useful for larger
and more capable telescopes. The local zodiacal light model used is realistically only suitable for
Earth and L2-based telescopes and does not show the high-resolution structure other missions
have found. A randomly generated star inclination could also be used for calculating the
exozodiacal light at the planet. There are better exozodiacal light models we could use when
simulating detection observations as well as better estimates for assuming fEZ in the initial opti-
mization step. We could also use a prediction of the planets angular separation to predict the
fEZ;k at the next observation. A newer version of Nemati’s SNR model with more parameters
could more realistically model WFIRST and other future telescopes. We specifically omit the
effects of radiation in Nemati’s model in order to ensure we can calculate ΔmagðtiÞ. Including
this (or instrumentation faults) would incentivize us to select a selection metric with some pref-
erence toward higher completeness targets early on in the mission.

WFIRST is limited by not only keep-out regions and but also observing blocks. The solar
panel power keep-out region of WFIRST is substantial and, while not significantly impacting
single-visit direct detection yield, will greatly impact revisit yield and orbit characterization of
planets with orbital period similar to Earth. An analysis on the subspace of the Earth-like planets
unobservable caused by the selection of an orbit with an Earth-like period should be conducted.
In our implementation, we make observations at local zodiacal light minimums, but some targets
have two local zodiacal light minimums. Our first observation of a target should preferentially be
made when targets exit keep-out so subsequent detection or characterization observations can be
made in that observing block. Our scheduling process does not assume the existence of observ-
ing blocks, which would further limit visibility of some targets and could force observations at
suboptimal observing times.

Since our survey simulation is allowed to make characterization observations and our opti-
mization does not account for characterizations or revisits, adding some heuristic describing the
expected time making orbit characterizations or spectral characterizations can improve overall
yield of a survey. WFIRST is not particularly sensitive to this issue because of a relatively short
CGI mission time with a lower throughput resulting in a target-starved environment and less
characterization candidates. Running SLSQP on larger, more capable observatory designs such
as HabEx and LUVOIR result in unplanned characterizations at nearly every star which con-
sumes a large portion of mission time and many planned detections are not made.

The multiplanetary systems simulated around stars are statistically consistent with the
Kepler-like or SAG13 planet population occurrence rates, but these planets do not share the
same ecliptic plane and are likely in unstable orbits. Simulating a random inclination for each
target star and then randomly generating planet deviations from the star’s inclination would be
more useful and more representative of real star systems. This could enable the estimation of
some orbital properties from images of stars with multiple planets. By simulating real planetary
systems, it could be possible to determine whether a planet could exist in the habitable zone
merely by characterizing the orbit of a Jupiter-like planet. Applying some simple star system
stability filters on subsets of planets around stars would enable us to generate more realistic star
systems and even help in fitting orbits of multiplanetary systems.

Science reward for various images and discoveries needs to be enumerated, categorized, and
weighted to accommodate more than single-visit unique detections.48 Future survey mission
optimization and planning will require orbital characterizations in addition to spectral character-
izations and will heavily weight exo-Earths. If the only discovery of scientific value is a specific
type exoplanet with full orbital and spectral characterization, then incremental metrics and
probabilities need to be created informing a mission optimizer or operator the probability (after
subsequent images) that a potential Earth-like exoplanet is indeed an Earth-like exoplanet. The
first step in this is determining the probability a detected planet with a sk and Δmagk is of a
specific exoplanet type based on the planet binning scheme in Ref. 21. In addition, the reward

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-29 Apr–Jun 2020 • Vol. 6(2)



associated with revisits needs to be separated by planet into some set of orbital parameters, and
planet properties as well as new planet detection potential. With these newly formulated metrics,
it will be possible to construct a dynamic program which calculates the incremental expected
value from new observations at each step of the mission to maximize orbital and spectral char-
acterizations of Earth-like exoplanets.

6 Appendix A

6.1 Symbols

Throughout this paper, we use some common subscript conventions and notation discussed here.
We use a generic variable X to describe these conventions. The subscript k, such as in Xk or Xx;k,
is referring to a X or Xx of an individual planet. The subscript i, such as in Xi or Xx;i, is referring
to a X or Xx of a individual target star. The subscript min, such as in Xmin or Xx;min, describes that
this parameter is a minimum of X or Xx; this extends to the max subscript. We use bold variables
such as X when we are referring to a set or collection of something. We use underlines such as X
to identify position vectors and X̂ to identify unit vectors.

We make use of common variables differentiated by their subscript or boldness to differen-
tiate between what they specifically refer to. All ϵ parameters are related to efficiency of some-
thing. Lower case a refers to a semimajor axis-related parameter. Lower case p refers to an
albedo-related parameter. Lower case c refers to a completeness. Lower case r refers to a direc-
tion or position vector. t variables are all time related. s refers to a planet–star separation related
value. a refers to a semimajor axis-related value. R refers to a planet radius-related value.

7 Appendix B

This appendix contains functions and interpolants used in the calculation of Δmag in Eq. (12),
including expressions for the zero-magnitude flux, star apparent V magnitude, throughput, inten-
sity transmission of extended background sources, core mean intensity, core area, and quantum
efficiency.

7.1 Zero-Magnitude Flux

The zero-magnitude flux, F 0, used in the calculation of spectral flux density, CF 0
, in Eqs. (12),

(13), and (19), is given as

EQ-TARGET;temp:intralink-;e023;116;310F 0ðλÞ ¼ 104 × 10

�
4.01−λ−550 nm

770 nm


ph∕s∕m2∕nm; (23)

from Ref. 36.

7.2 Star Apparent V Magnitude

The calculation of Δmagi relies upon the star’s color-adjusted visual magnitude, νiðλÞ, given by
the parametric equation from Ref. 36:

EQ-TARGET;temp:intralink-;e024;116;209νi ¼
�
Vmag;i þ 2.20BVið1∕λ − 1.818Þ λ < 550 nm

Vmag;i þ 1.54BVið1∕λ − 1.818Þ λ ≥ 550 nm
: (24)

Vmag;i is the V-band apparent magnitude of the i’th target star and is taken from EXOCAT star
catalog used in Ref. 32. BVi is the color of the star as measured by the difference between B and
V bands (in magnitudes). The parameters for the target stars used in the final target list are
included in Table 7 in Sec. 8.

7.3 WFIRST Cycle 6 Parameters

This section presents the WFIRST cycle 6 parameters18 in Table 6 used to calculate completeness
and integration times.
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Table 6 WFIRST cycle 6 input parameters18 as defined by the EXOSIMS11 JSON input script.

Subgroup Description Value
EXOSIMS
JSON name

INST Clock-induced charge 0.01 CIC

INST Excess noise factor 1.0 ENF

INST Field of view 9.5 arcsec FoV

INST Photon-counting efficiency 0.8 PCeff

INST Quantum efficiency Figure 5 QE

INST Spectral resolving power (specific to spectrometers) 1 Rs

INST Detector f -number 60.977 fnumber

INST Focal length 144.515 m focal

INST Dark current per pixel 0.000114 s−1 idark

INST Lenslet sampling, number of pixel per lenslet rows or
cols (specific to spectrometers)

1.0 lenslSamp

INST Attenuation due to optics specific to the science instrument 0.518018 Optics

INST Detector array format, # of pixels per detector 1024 PixelNumber

INST Pixel scale in arc sec per pixel 0.01855469
arcsec

PixelScale

INST Pixel pitch 1.3e-5 m pixelSize

INST Detector effective read noise per frame per pixel 0 sread

INST Exposure time 100 s texp

SYST Bandwidth fraction 0.1 BW

SYST Inner working angle 0.15 arcsec IWA

SYST Outer working angle 0.428996
arcsec

OWA

SYST Area of FWHM region of planet PSF, in arcsec2 Figure 4 core_area

SYST Mean starlight residual normalized intensity per pixel,
required to calculate total core intensity as Ψ × Npix

Figure 4 core_mean_
intensity

SYST Core platescale 0.3 core_platescale

SYST System throughput in the FWHM region of
the planet PSF core

Figure 4 core_thruput

SYST Bandwidth 56.5 nm deltaLam

SYST Central wavelength 565 nm lam

SYST Coronagraph name HLC-565 name

SYST Intensity transmission of extended background
sources such as f Z . Includes pupil mask, occulter,
Lyot stop, and polarizer

Figure 4 occ_trans

SYST Overhead time 0.5 day OhTime

SYST Attenuation due to optics specific to the CGI,
e.g., polarizer, Lyot stop, extraflat mirror

0.983647 optics
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7.4 Characterization Parameters

In this work, we include characterization observations, which slightly detract from executing the
planned observation schedule in Table 7 of Sec. 8. These characterization observations immedi-
ately follow the detection of a planet so long as the star ri∕SC is not obstructed by a keep-out
region, is not filtered by integration time, and there is sufficient time to make the observation
before the target enters a keep-out region. A detected planet is considered for characterization if
SNR > 10. These characterization observations use slightly modified set of parameters.

Our characterization observation integration time is calculated using SNR ¼ 10, at λ ¼
660 nm, PPL ¼ 4.0, ϵsyst ¼ 0.46584, Npix ¼ 76, PS ¼ 0.02631, and Rs ¼ 50. Rs, the spectral
resolving power specifically changes the Δλ to λ∕Rs.

7.5 WFIRST Cycle 6 Derivative 2-D Interpolants

The fits files used for 2-D interpolants of core throughput Tðλ;WAÞ, intensity transmission of
extended background sources γðλ;WAÞ, core mean intensityΨðλ;WAÞ, core area Γðλ;WAÞ, and
quantum efficiency ϵq are derivative of Refs. 18, 49, and 50.

7.6 Electron Count Rates

This section lays out Nemati’s SNR equation and all subcomponents from Ref. 35. The SNR
equation used in this paper is

EQ-TARGET;temp:intralink-;e025;116;217ti ¼
SNR2 × Cb;i

C2
p;i − ðSNR × Csp;iÞ2

: (25)

This uses Cp;i, Cb;i, and Csp;i which are the planet signal, background signal, and residual
speckle spatial structure in electron count rates in s−1, respectively.

We calculate Cp;i using

EQ-TARGET;temp:intralink-;e026;116;132Cp;i ¼ CF 0
× 10−0.4ðνiþΔmagiÞ × Tðλ;WAÞ × ϵPC × NCTE: (26)

NCTE is the net charge transfer efficiency.

Table 6 (Continued).

Subgroup Description Value
EXOSIMS
JSON name

SYST SNR threshold 5 SNR

Observatory Anti-solar keep-out region 124 deg koAngleMax

Observatory Maximum time past mission start an observation
can be made

6 yr missionLife

Observatory Fraction of mission life spent observing 0.04166 missionPortion

Observatory Settling time after repoint 0.5 d settlingTime

— Postprocessing efficiency 0.1 ppFact

Technical Δmag used to calculate minimum integration times
for inclusion in target list

22.5 dMag0

Technical Maximum allowed integration time in units of day 30 days intCutoff
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We calculate Cb;i using

EQ-TARGET;temp:intralink-;e027;116;723Cb;i ¼ ENF2 × ðCsr;i þ Cz;i þ CezÞ þ ½ENF2 × ðCdc þ CccÞ þ Crn�: (27)

Csr;i, Cz;i, Cez, Cdc, Ccc, and Crn are electron count rates with units of s−1 for starlight residual,
zodiacal light, exozodiacal light, dark current, clock-induced charge, and readout noise, respec-
tively. ENF is an excess noise factor.

We calculate the starlight residual count rate, Csr;i, for each target star i as

EQ-TARGET;temp:intralink-;e028;116;637Csr;i ¼ CF 0
× 10−0.4×νi × Ψðλ;WAÞ × Npix; (28)

where Npix is the number of pixels in the photometric aperture [Γðλ;WAÞ∕θ2] calculated as

EQ-TARGET;temp:intralink-;e029;116;587Npix ¼ PPL ×
Γðλ;WAÞ

PS2
; (29)

where PPL is the number of pixels per lenslet and is simply the lenslSamp2, a parameter speci-
fied in Table 6, where PS is the detector pixel scale in arcsec per pixel. Ψðλ;WAÞ is the core
mean intensity from Fig. 4 in Sec. 7. νi is given by Eq. (24) in Sec. 7.

We calculate the zodiacal light count rate, Cz;i, using

EQ-TARGET;temp:intralink-;e030;116;492Cz;i ¼ CF 0
× fZ;i × Γðλ;WAÞ × γðλ;WAÞ; (30)

where γðλ;WAÞ comes from Fig. 4 in Sec. 7.
We calculate the exozodiacal light attributed count rate, Cez, as

EQ-TARGET;temp:intralink-;e031;116;432Cez ¼ CF 0
× fEZ × Γðλ;WAÞ × Tðλ;WAÞ: (31)

We calculate the dark current count rate, Cdc, as

EQ-TARGET;temp:intralink-;e032;116;384Cdc ¼ Npix × idark; (32)

where idark is the dark current per pixel.
We calculate clock-induced charge count rate, Ccc, as

EQ-TARGET;temp:intralink-;e033;116;324Ccc ¼ Npix × CIC∕texp; (33)

where CIC is the clock-induced charge per pixel and texp is the exposure time.
We calculate the readout noise count rate, Crn, as

EQ-TARGET;temp:intralink-;e034;116;263Crn ¼ Npix × sread∕texp; (34)

where sread is the readout noise per pixel.
We calculate Csp;i using

EQ-TARGET;temp:intralink-;e035;116;202Csp;i ¼ Csr;i × ϵpp; (35)

where ϵpp is the post-processing efficiency.
Using these photon count rate models in applied to HIP 25278, a fifth magnitude star assum-

ing fZ;0, fEZ;0, with a planet at WA ¼ 0.28 arcsec and Δmag ¼ 22.5, at λ ¼ 565 nm, using
the instrument parameters in Fig. 4, we get the photon count rates Cp ¼ 0.00174175 s−1,
Cb ¼ 0.00646741 s−1, and Csp ¼ 0.00016929 s−1.
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7.7 Local Zodiacal Light

Calculation of local zodiacal light is broken down into two major components: an intensity
wavelength dependence correction factor, fλðλÞ, and intensity at the spacecraft centered look
vector, fβðri∕SCÞ.

For fβ, we know the zodiacal dust cloud has structure, but the degree to which structure and
phase/scattering properties contribute to the zodiacal light intensity from a general observer loca-
tion in space is currently uncertain (although missions have been proposed to model such a dust
cloud51). Knowing the degree of contribution determines whether the antisolar point of Table 17
of Ref. 37 should be modeled as fixed relative to the Earth or fixed relative to the observer.
To simplify our work, we assume the latter so λ − λ0 ¼ 0 deg when ri∕SC ¼ r⊙∕SC and the
corresponding antisolar point is when ri∕SC ¼ rSC∕⊙ and λ − λ0 ¼ 180 deg.

To calculate local zodiacal light, we first find the position of the observatory in the helio-
centric ecliptic frame rSC∕⊙ðtcÞ. We then calculate

EQ-TARGET;temp:intralink-;e036;116;568lSC∕⊙ðtcÞ ¼ sgnðrSC∕⊙ðtcÞ · ŷÞcos−1
�
rSC∕⊙ðtcÞ · x̂
jrSC∕⊙ðtcÞj

	
: (36)

We get the longitude of the Sun relative to the spacecraft in the heliocentric frame l⊙∕SC ¼
ðlSC∕⊙ þ 180Þ%360. We find the position vector describing the star position in the heliocentric
true ecliptic frame ri∕⊙ and calculate the star position with respect to the observatory
ri∕SC ¼ ri∕⊙ − rSC∕⊙ðtcÞ. We then transform ri∕SC into spherical coordinates using Astropy’s
SkyCoord and extract the target star’s latitude (bi∕SC) and longitude (li∕SC) relative to the space-
craft. We then convert to absolute values for interpolation in the latitude and longitude range of
Fig. 6 (0 deg < bi < 90 deg and 0 deg < l < 180 deg) by bi ¼ jbi∕SCj and li ¼ j½ðli∕SC þ
180 degÞmod 360 deg� − 180 deg j, respectively. This l and b are used in fβðl; bÞ, a linear
gridded interpolation of Table 17 in Ref. 37 and by extension fZðl; b; λÞ in Eq. (19).

To assess the validity of our spacecraft centered versus geocentric ecliptic frame, we need to
assess how much the angular position of zodiacal light intensity interpolant inputs would differ.
Since WFIRST is on an L2 Halo orbit, its out of ecliptic motion is <0.004 AU and orbital
distance from the Sun is ≈1.010 AU, resulting in a geocentric ecliptic frame interpolation input
deviation of Δb < 0.22 deg. When ri∕SC is 180 deg or 0 deg from r⊙∕SC, the l and b used for
interpolation are correct. However, interpolating for a target at say l ¼ 90 deg has the value
somewhere between 89 deg < l < 90 deg due to the actual position of the spacecraft at the
L2 Halo orbit and not Earth. We expect Δl < 1 deg for a Sun–Earth L2 orbit. We now make
note that the smallest griddspacing of the input data is 5 deg meaning Δl and Δb are within these
bounds. It is also important to note the accuracy of this zodiacal light model is, at best, 10%.37

The final component necessary to complete Eq. (19) is fλðλÞ, a wavelength correction factor,
which has a detailed explanation in Ref. 37.

7.8 SAG 13 Occurrence Rate Derivation

At some point, we need to convert occurrence rate models from period (P) space into semimajor
axis (a) space. We chose to do this at the probability distribution level so we may arrive at a
distribution of Δmag versus s, which will be a function of a. In this section, we convert the joint
probability density function of planet occurrence rate in lnP and ln R space from the study
analysis group 13 model in Ref. 28 to a and R space. The parametric fit exoplanet occurrence
rate model they present is

EQ-TARGET;temp:intralink-;e037;116;152

∂2ηðR;PÞ
∂ ln R∂ ln P

¼ γiRαiPβi ¼

8><
>:

γ0Rα0Pβ0 R ≤ 3.4R�
γ1Rα1Pβ1 R > 3.4R�
0 else

: (37)

Here, P refers to the planet period in years which is defined in the SAG 13 model over the range
10 ≤ P ≤ 640 days. R must be in units of R� and P must be in units of years. The constants γi,
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αi, and βi all refer to constants from Ref. 28 included in, where i in this instance refers to whether
i ¼ 0 or i ¼ 1 is used. We would like to transform this occurrence rate distribution into linear
functions of R and a.

We first need to convert this parametric model fit from log-scaled distributions such as ∂ ln R
and ∂ ln P to linear scale distributions of the form ∂R and ∂P. The general expression y ¼ ln x
has derivative xdy ¼ dx which we can apply to both of these separable parameters since the γi,
αi, and βi terms are all constant. We arrive at the linear distribution of occurrence rates over R and
a as

EQ-TARGET;temp:intralink-;e038;116;640

∂2ηðR; PÞ
∂R∂P

¼ γiRαi−1Pβi−1 ¼

8><
>:

γ0Rα0−1Pβ0−1 R ≤ 3.4R�
γ1Rα1−1Pβ1−1 R > 3.4R�
0 else

: (38)

We now need to convert from an occurrence rate model in terms of P to a. This conversion exists
in Ref. 52 as

EQ-TARGET;temp:intralink-;e039;116;551P ¼ 2π

ffiffiffiffiffi
a3

μ

s
: (39)

Here, μ ¼ GMs whereMs is the mass of the Sun and G is the gravitational constant.Ms is close
to the average mass of G spectral type stars, the spectral type the SAG 13 occurrence rate model
is defined for. We assume the SAG 13 model extends to stars of all spectral types. To replace ∂P
we calculate the partial derivative of Eq. (39) with respect to a as

EQ-TARGET;temp:intralink-;e040;116;452∂P ¼ ∂
�
2π

ffiffiffiffiffi
a3

μ

s �
¼ 3π

ffiffiffi
a
μ

r
∂a: (40)

Substituting this into the linear occurrence rate model in Eq. (38) gives the linear SAG 13 occur-
rence rate model in terms of R and a of

EQ-TARGET;temp:intralink-;e041;116;377

∂2ηðR;aÞ
∂R∂a

¼ γiRαi−1
�
2π

ffiffiffiffiffi
a3

μ

s �βi−1�
3π

ffiffiffi
a
μ

r �
¼

8>>>>><
>>>>>:

γ0Rα0−1
�
2π

ffiffiffiffi
a3
μ

q �
β0−1

�
3π

ffiffi
a
μ

q �
R ≤ 3.4R�

γ1Rα1−1
�
2π

ffiffiffiffi
a3
μ

q �
β1−1

�
3π

ffiffi
a
μ

q �
R> 3.4R�

0 else

:

(41)

The Keck Planet Search used radial velocity observations of exoplanets to describe an occur-
rence rate as a power-law in planet mass and orbital period, but was limited to planets with P <
2000 days (a < 14.4 AU).23 However, subsequent direct imaging surveys by the Gemini Planet
Imager discovered the power-law did not extend throughout the entirety of the instrument’s
sensitivity range and supports that planet occurrence rates approach 0 between 10 and 100 AU.25

Reference 26 introduces a period break to describe giant planet occurrence turnover in radial
velocity data and presents many possible knee values ranging from ≈7 to ≈15 AU, depending on
the model fit being used. We transform their period break into a similar semimajor axis knee
value of aknee ¼ 10 AU making the adjusted SAG 13 exoplanet occurrence rate model

EQ-TARGET;temp:intralink-;e042;116;164

∂2ηðR; aÞ
∂R∂a

¼ γiRαi−1
�
2π

ffiffiffiffiffi
a3

μ

s �βi−1�
3π

ffiffiffi
a
μ

r �
exp

�
−

a3

a3knee

�
: (42)

The total planet occurrence rate (ηSAG13) over an assumed planet range is given by marginalizing
over both parameters of the SAG 13 occurrence rate model with the appended aknee to get
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EQ-TARGET;temp:intralink-;e043;116;735ηSAG13 ¼
Z

Rmax

Rmin

Z
amax

amin

∂2ηðR; aÞ
∂R∂a

da dR: (43)

It is important to note that a cubic form of the roll-off on the semimajor axis distribution is used,
rather than the quadratic form from the Kepler-like case [c.f., Eq. (1)]. This is motivated by recent
limits placed on wide-separation planets by direct imaging and longer-baseline radial velocity
data.26 We now calculate the joint probability density function of a and R by normalizing based
on the integral over the occurrence rate parametric model to arrive at

EQ-TARGET;temp:intralink-;e044;116;639

fRp;a
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0 else

: (44)

The integral of this joint probability distribution over the a and R range is 1.
Previous work in Ref. 22 that originally derived the equations in this section showed that

independently sampling R and sampling a marginalization over R of Eq. (44) could achieve less
biased sampling of the exoplanet distribution. We marginalize Eq. (44) over a to arrive at an
intermediate constant

EQ-TARGET;temp:intralink-;e045;116;493Ki ¼
Z
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�
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a3

a3knee

�
da: (45)

We use Ki to find the probability density function of semimajor axis conditional on R of

EQ-TARGET;temp:intralink-;e046;116;424
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0 else

: (46)

We can independently sample the planetary radius distribution and subsequently sample the
probability density function of semimajor axis conditional on the sampled R.

We demonstrate the similitude and differences between our EXOSIMS implementation of the
SAG 13 model from Ref. 28 in Fig. 2. In Fig. 2(a), we directly replicate linear exoplanet occur-
rence rate model around G spectral type stars from Ref. 28 included in Eq. (38). The purple
numbers represent 100× the double integral over their respective bin areas. The largest absolute
difference of these numbers from those in Ref. 28 is 0.74 in the range of 2.2 ≤ R < 3.4 and
320 ≤ P < 640. The largest percent difference of these numbers is 13.8% in the range of 11 ≤
R < 17 and 20 ≤ P < 40. We transformed these into percentages which sum to 100% over the
whole grid. The occurrence rates and percentages of Fig. 2(b) are calculated by integrating over
the transformation of the SAG 13 grid to a space with Eq. (41). The integrated values in each bin
are identical to their counterpart in Fig. 2(a). Finally, Fig. 2(c) is the probability density function
used in EXOSIMS with the “knee” included. The coloring difference between (c) and (a) or (b) is
because (c) is a per bin area density and the bin areas of the top right bin is several orders of
magnitude larger than the bottom left bin in both (a) and (b).

8 Appendix C

Using the SLSQP optimization method presented in Sec. 2.4 on the planet population discussed
in Sec. 2.1, we arrived at the planned observation target list in Table 7.
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Table 7 Planned observation target list optimized using the Kepler-like planet population. sInd
refers to the index of the planet in the filtered, initial target list of 651 targets. Name refers to the
Hipparcos star catalog name of the target star. Vmag refers to the visual magnitude of the target
star. di is the distance from the Sun to the host star. BV is the color of the star as measured by
the difference in B and V bands (in magnitudes). tobs;i is the observing time planned by the opti-
mization algorithm. ci ðtobsÞ is the expected completeness reward for making an observation of
this star for the prescribed integration time. The “known planet” column in Table 7 was generated
by taking all target star names in the optimized target list derived from the EXOCAT-1 star catalog,
and cross-referencing them using a list of aliases from SIMBAD and the NASA Exoplanet Archive.
In total, 9 of the 60 planned targets already have known exoplanets. The final column contains
each target star’s spectral type. Data in this table are taken from C0vsT0andCvsTDATA_
WFIRSTcycle6core_CKL2_PPKL2_2019_10_07_11_40_.txt.

sInd Name V mag B–V di (pc) tobs;i (d) ci ðtobs;i Þ
Known
planet

Spectral
type

1 HIP 746 2.26 0.36 16.78 0.157 0.016 0 F2III-IV

9 HIP 1599 4.23 0.58 8.59 0.860 0.049 0 G0V

12 HIP 2021 2.82 0.62 7.46 0.483 0.067 0 G1IV

25 HIP 3765 5.74 0.89 7.45 0.806 0.025 0 K1V

46 HIP 7513 4.09 0.54 13.49 0.459 0.021 1 F8V

51 HIP 7918 4.96 0.62 12.74 0.481 0.017 0 G2V

52 HIP 7981 5.24 0.84 7.53 1.232 0.039 0 K1V

53 HIP 8102 3.49 0.73 3.65 0.740 0.097 1 G8.5V

54 HIP 8362 5.63 0.8 10.07 0.576 0.019 0 K0V

70 HIP 10644 4.86 0.61 10.78 0.736 0.026 0 G0V

79 HIP 12777 4.1 0.49 11.13 0.640 0.032 0 F7V

80 HIP 12843 4.47 0.48 14.22 0.419 0.016 0 F5/6V

90 HIP 14632 4.05 0.6 10.54 0.672 0.036 0 G0V

97 HIP 15457 4.84 0.68 9.14 0.995 0.036 0 G5V

98 HIP 15510 4.26 0.71 6.04 1.059 0.072 1 G8.0V

100 HIP 16537 3.71 0.88 3.21 0.809 0.099 1 K2.0V

101 HIP 16852 4.29 0.58 13.96 0.432 0.018 0 F8V

104 HIP 17378 3.52 0.93 9.04 0.607 0.050 0 K0IV

136 HIP 22449 3.17 0.46 8.07 0.576 0.060 0 F6V

153 HIP 24813 4.69 0.61 12.63 0.525 0.019 0 G0V

165 HIP 27072 3.59 0.48 8.93 0.630 0.051 0 F7V

176 HIP 28103 3.71 0.34 14.88 0.334 0.018 0 F1V

199 HIP 32349 −1.44 0.01 2.63 0.066 0.113 0 A1.0V

229 HIP 37279 0.4 0.43 3.51 0.163 0.105 0 F5IV-V

233 HIP 37826 1.16 0.99 10.36 0.178 0.046 1 K0IIIvar

270 HIP 44127 3.1 0.21 14.51 0.295 0.021 0 A7IV

280 HIP 46853 3.16 0.47 13.48 0.338 0.025 0 F6IV
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Table 7 (Continued).

sInd Name V mag B–V di (pc) tobs;i (d) ci ðtobs;i Þ
Known
planet

Spectral
type

288 HIP 49908 6.6 1.34 4.87 0.663 0.020 0 K7.0V

295 HIP 51459 4.82 0.54 12.78 0.505 0.018 0 F8V

311 HIP 54872 2.56 0.13 17.91 0.165 0.013 0 A4V

318 HIP 56997 5.31 0.72 9.61 0.798 0.026 0 G8Vvar

319 HIP 57443 4.89 0.66 9.22 0.978 0.036 1 G3/5V

321 HIP 57632 2.14 0.09 11 0.280 0.040 0 A3Vvar

322 HIP 57757 3.59 0.52 10.93 0.561 0.036 0 F9V

328 HIP 59199 4.02 0.33 14.94 0.362 0.016 0 F0IV/V

341 HIP 61317 4.24 0.59 8.44 0.892 0.050 0 G0V

353 HIP 64394 4.24 0.57 9.13 0.841 0.045 0 G0V

372 HIP 67927 2.68 0.58 11.4 0.340 0.037 0 G0IV

376 HIP 68933 2.06 1.01 18.03 0.131 0.013 0 K0IIIB

385 HIP 70497 4.04 0.5 14.53 0.377 0.018 0 F7V

398 HIP 71908 3.16 0.26 16.57 0.231 0.015 0 APSREU(CR)

429 HIP 77257 4.41 0.6 12.12 0.603 0.025 0 G0Vvar

433 HIP 77952 2.81 0.32 12.38 0.329 0.031 0 F0III/IV

434 HIP 78072 3.85 0.48 11.25 0.574 0.033 0 F6V

488 HIP 86974 3.41 0.75 8.31 0.599 0.057 0 G5IV

508 HIP 91262 0.03 0 7.68 0.122 0.069 0 A0Vvar

527 HIP 95501 3.36 0.32 15.53 0.279 0.017 0 F2IV

529 HIP 96100 4.67 0.79 5.75 1.295 0.070 0 G9.0V

540 HIP 97649 0.76 0.22 5.12 0.195 0.092 0 A7IV-V

543 HIP 98036 3.71 0.86 13.7 0.399 0.022 0 G8IVvar

557 HIP 99240 3.53 0.76 6.11 0.728 0.076 0 G8.0IV

561 HIP 99825 5.72 0.91 8.91 0.573 0.019 1 K3V

571 HIP 102422 3.41 0.91 14.27 0.324 0.021 0 K0IV

581 HIP 105199 2.43 0.24 15.04 0.209 0.021 0 A7IV-V

585 HIP 105858 4.22 0.47 9.26 0.812 0.044 0 F7V

594 HIP 107556 2.85 0.3 11.87 0.370 0.034 0 A5mF2 (IV)

602 HIP 109176 3.77 0.44 11.73 0.527 0.031 0 F5V

623 HIP 113368 1.23 0.14 7.7 0.223 0.068 1 A3V

642 HIP 116727 3.21 1.03 14.1 0.309 0.023 1 K1IV

645 HIP 116771 4.13 0.51 13.71 0.453 0.019 0 F7V

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-38 Apr–Jun 2020 • Vol. 6(2)



Acknowledgments

This research has made use of NASA’s NAIF planetary data system kernels. This research has
made use of theWashington Double Star Catalog maintained at the U.S. Naval Observatory. This
work was supported by the NASA Space Grant Graduate Fellowship from the New York Space
Grant Consortium, NASA Grant Nos. NNX14AD99G (GSFC), NNX15AJ67G (WFIRST
Preparatory Science), and NNG16PJ24C (WFIRST Science Investigation Teams). This research
made use of astropy, a community-developed core Python package for Astronomy (Astropy
Collaboration, 2018) and OR-Tools, an optimization utility package made by Google Inc. with
community support. This research has made use of the Imaging Mission Database, which is
operated by the Space Imaging and Optical Systems Lab at Cornell University. The database
includes content from the NASA Exoplanet Archive, which is operated by the California Institute
of Technology, under contract with the National Aeronautics and Space Administration under the
Exoplanet Exploration Program, and from the SIMBAD database, operated at CDS, Strasbourg,
France.

References

1. National Research Council, “Panel reports: new worlds, new horizons in astronomy and
astrophysics,” National Academies Press, Washington, DC (2011).

2. D. Spergel et al., “Wide-field infrarred survey telescope-astrophysics focused telescope
assets WFIRST-AFTA 2015 report,” arXiv:1503.03757 (2015).

3. R. A. Brown, “Single-visit photometric and obscurational completeness,” Astrophys. J. 624,
1010–1024 (2005).

4. C. C. Stark et al., “Maximizing the exoearth candidate yield from a future direct imaging
mission,” Astrophys. J. 795(2), 122 (2014).

5. Jet Propulsion Laboratory, “HabEx interim report,” Technical Report (2018).
6. Goddard Space Flight Center, “LUVOIR interim report,” Technical Report (2018).
7. D. Garrett and D. Savransky, “Analytical formulation of the single-visit completeness joint

probability density function,” Astrophys. J. 828, 20 (2016).
8. D. Garrett, D. Savransky, and B. Macintosh, “A simple depth-of-search metric for exoplanet

imaging surveys,” Astronom. J. 154(2), 47 (2017).
9. S. L. Hunyadi, S. B. Shaklan, and R. A. Brown, “The lighter side of TPF-C: evaluating

the scientific gain from a smaller mission concept,” Proc. SPIE 6693, 66930Q (2007).
10. R. A. Brown and R. Soummer, “New completeness methods for estimating exoplanet

discoveries by direct detection,” Astrophys. J. 715, 122–131 (2010).
11. D. Savransky, C. Delacroix, and D. Garrett, “EXOSIMS: Exoplanet open-source imaging

mission simulator,” Astrophysics Source Code Library, https://ui.adsabs.harvard.edu/abs/
2017ascl.soft06010S/abstract (2017).

12. R. W. Farquhar, “The utilization of halo orbits in advanced lunar operations,” NASA
Technical Note, pp. 1–99 (1971).

13. R. Lougee-Heimer, “The common optimization interface for operations research: promoting
open-source software in the operations research community,” IBM J. Res. Dev. 47, 57–66
(2003).

14. P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta Numer. 4, 1–51 (1995).
15. D. Savransky, C. Delacroix, and D. Garrett, “Multi-mission modeling for space-based

exoplanet imagers,” Proc. SPIE 10400, 104001L (2017).
16. D. Savransky and D. Garrett, “WFIRST-AFTA coronagraph science yield modeling with

EXOSIMS,” J. Astron. Telesc. Instrum. Syst. 2, 011006 (2015).
17. D. Keithly et al., “Scheduling and target selection optimization for exoplanet imaging space-

craft,” Proc. SPIE 10698, 106985I (2018).
18. J. Krist, B. Nemati, and B. Mennesson, “Numerical modeling of the proposed WFIRST-

AFTA coronagraphs and their predicted performances,” J. Astron. Telesc. Instrum. Syst.
2(1), 011003 (2015).

19. F. Fressin et al., “The false positive rate of Kepler and the occurrence of planets,” Astrophys. J.
766, 81 (2013).

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-39 Apr–Jun 2020 • Vol. 6(2)

https://doi.org/10.1086/apj.2005.624.issue-2
https://doi.org/10.1088/0004-637X/795/2/122
https://doi.org/10.3847/0004-637X/828/1/20
https://doi.org/10.3847/1538-3881/aa78f6
https://doi.org/10.1117/12.733454
https://doi.org/10.1088/0004-637X/715/1/122
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://ui.adsabs.harvard.edu/abs/2017ascl.soft06010S/abstract
https://doi.org/10.1147/rd.471.0057
https://doi.org/10.1017/S0962492900002518
https://doi.org/10.1117/12.2274098
https://doi.org/10.1117/1.JATIS.2.1.011006
https://doi.org/10.1117/12.2311717
https://doi.org/10.1117/1.JATIS.2.1.011003
https://doi.org/10.1088/0004-637X/766/2/81


20. D. Savransky, “Space mission design for exoplanet imaging,” Proc. SPIE 8864, 886403
(2013).

21. R. K. Kopparapu et al., “Exoplanet classification and yield estimates for direct imaging
missions,” Astrophys. J. 856, 122 (2018).

22. D. Garrett and D. Savransky, “Building better planet populations for EXOSIMS,” in AAS
Meeting #231, American Astronomical Society, id.#246.04, Vol. 231 (2018).

23. A. Cumming et al., “The Keck planet search: detectability and the minimum mass and
orbital period distribution of extrasolar planets,” Publ. Astron. Soc. Pac. 120, 531–554
(2008).

24. A. V. Moorhead et al., “The distribution of transit durations for Kepler planet candidates and
implications for their orbital eccentricities,” Astrophys. J. Suppl. Ser. 197, 1 (2011).

25. E. L. Nielsen et al., “The Gemini planet imager exoplanet survey: giant planet and brown
dwarf demographics from 10 to 100 AU,” Astronom. J. 158(1), 13 (2019).

26. R. B. Fernandes et al., “Hints for a turnover at the snow line in the giant planet occurrence
rate,” Astrophys. J. 874, 81 (2019).

27. A. Howard et al., “The occurrence and mass distribution of close-in super-Earths, Neptunes,
and Jupiters,” Science 330(6004), 653–655 (2010).

28. R. Belikov et al., “Exoplanet occurrence rates and distributions,” Technical Report (2017).
29. D. Garrett, D. Savransky, and R. Belikov, “Planet occurrence rate density models including

stellar effective temperature,” Publ. Astron. Soc. Pac. 130(993), 114403 (2018).
30. K. L. Cahoy, M. S. Marley, and J. J. Fortney, “Exoplanet albedo spectra and colors as a

function of planet phase, separation, and metallicity,” Astrophys. J. 724, 189–214 (2010).
31. D. Savransky, E. Cady, and N. J. Kasdin, “Parameter distributions of Keplerian orbits,”

Astrophys. J. 728(7), 66 (2011).
32. M. C. Turnbull, “ExoCat-1: the nearby stellar systems catalog for exoplanet imaging

missions,” arXiv:1510.01731 (2015).
33. M. J. Pecaut and E. E. Mamajek, “Intrinsic colors, temperatures, and bolometric corrections

of pre-main-sequence stars,” Astrophys. J. Suppl. Ser. 208(22), 9 (2013).
34. G. L. Wycoff, B. D. Mason, and S. E. Urban, “Data mining for double stars in astrometric

catalogs,” Astronom. J. 132(1), 50–60 (2006).
35. B. Nemati, “Detector selection for the WFIRST-AFTA coronagraph integral field spectro-

graph,” Proc. SPIE 9143, 91430Q (2014).
36. W. A. Traub et al., “Science yield estimate with the wide-field infrared survey telescope

coronagraph,” J. Astron. Telesc. Instrum. Syst. 2, 011020 (2016).
37. C. Leinert et al., “The 1997 reference of diffuse night sky brightness,” Astron. Astrophys.

Suppl. Ser 127, 1–99 (1998).
38. G. Soto et al., “Parameterizing the search space of starshade fuel costs for optimal obser-

vation schedules,” J. Guid. Control Dyn. 42(2), 1–6 (2018).
39. G. Soto et al., “Optimal starshade observation scheduling,” Proc. SPIE 10698, 106984M

(2018).
40. C. H. Acton, “Ancillary data services of NASA’s navigation and ancillary information

facility,” Planet. Space Sci. 44, 65–70 (1996).
41. C. Acton et al., “A look towards the future in the handling of space science mission geom-

etry,” Planet. Space Sci. 150, 9–12 (2018).
42. E. Kolemen, N. J. Kasdin, and P. Gurfil, “Quasi-periodic orbits of the restricted three-body

problem made easy,” AIP Conf. Proc. 886, 68–77 (2007).
43. D. Keithly et al., “WFIRST: exoplanet target selection and scheduling with greedy optimi-

zation,” in AAS Meeting #231, American Astronomical Society, id. 246.06, Vol. 231 (2018).
44. D. Keithly et al., “Blind search single-visit exoplanet direct imaging yield for space based

telescopes,” in AAS Meeting #233, American Astronomical Society, id.140.40, Vol. 233
(2019).

45. D. Savransky, N. J. Kasdin, and E. Cady, “Analyzing the designs of planet finding
missions,” Publ. Astron. Soc. Pac. 122(890), 401–419 (2010).

46. Lindler, personal communication (2008).
47. D. Savransky, “Sequential covariance calculation for exoplanet image processing,”

Astrophys. J. 800, 100–119 (2015).

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-40 Apr–Jun 2020 • Vol. 6(2)

https://doi.org/10.1117/12.2023413
https://doi.org/10.3847/1538-4357/aab205
https://doi.org/10.1086/528885
https://doi.org/10.1088/0067-0049/197/1/1
https://doi.org/10.3847/1538-3881/ab16e9
https://doi.org/10.3847/1538-4357/ab0300
https://doi.org/10.1126/science.1194854
https://doi.org/10.1088/1538-3873/aadff1
https://doi.org/10.1088/0004-637X/724/1/189
https://doi.org/10.1088/0004-637X/728/1/66
https://doi.org/10.1088/0067-0049/208/1/9
https://doi.org/10.1086/504471
https://doi.org/10.1117/12.2060321
https://doi.org/10.1117/1.JATIS.2.1.011020
https://doi.org/10.1051/aas:1998105
https://doi.org/10.1051/aas:1998105
https://doi.org/10.2514/1.G003747
https://doi.org/10.1117/12.2311771
https://doi.org/10.1016/0032-0633(95)00107-7
https://doi.org/10.1016/j.pss.2017.02.013
https://doi.org/10.1063/1.2710044
https://doi.org/10.1086/652181
https://doi.org/10.1088/0004-637X/800/2/100


48. N. S. Budden and P. D. Spudis, “Evaluating science return in space exploration initiative
architectures,” Technical Report, Houston (1993).

49. B. Nemati, J. E. Krist, and B. Mennesson, “Sensitivity of the WFIRST coronagraph per-
formance to key instrument parameters,” Proc. SPIE 10400, 1040007 (2017).

50. J. E. Krist, “End-to-end numerical modeling of AFTA coronagraphs,” Proc. SPIE 9143,
91430V (2014).

51. G. Soto et al., “Optimization of high-inclination orbits using planetary flybys for a zodiacal
light-imaging mission,” Proc. SPIE 10400, 104001X (2017).

52. D. A. Vallado, Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press,
Hawthorne (2013).

Dean R. Keithly is currently a PhD candidate in the Sibley School of Mechanical and Aerospace
Engineering at Cornell University. He received his bachelor’s degree in mechanical engineering
from Michigan Technological University, where he built the Oculus-ASR satellite thermal con-
trol subsystem. He received his master’s degree in systems engineering from Cornell University,
working on projects funded by the NASA Institute of Advanced Concepts. His primary research
focus is on spacecraft modeling, specifically for optimizing exoplanet direct imaging missions.

Dmitry Savransky is an assistant professor in the Sibley School of Mechanical and Aerospace
Engineering at Cornell University and PI of the Space Imaging and Optical Systems Laboratory.
He received his PhD from Princeton University in 2011, and he was a postdoctoral researcher at
Lawrence Livermore National Laboratory, where he worked on integration, testing and commis-
sioning of the Gemini Planet Imager. His research focuses on the optimization of ground and
space-based exoplanet imaging surveys, control of autonomous optical systems, and advanced
image processing.

Daniel Garrett: Biography is not available.

Christian Delacroix is a postdoctoral research scholar at the University of Liège, Belgium. He
earned his PhD in astrophysics in 2013, followed by postdoctoral research appointments at
Cornell University and Princeton University. He specializes in coronagraph design and adaptive
optics instrumentation, and is currently involved in the ELT/METIS instrument as Liege’s local
system engineer.

Gabriel Soto is an aerospace engineering PhD candidate for 2020 at Cornell University, con-
centrating on dynamics and control. He received his BS degree in aerospace engineering and
physics from the University of Miami in 2015 and his MS degree from Cornell University in
2018. He has worked in the Space Imaging and Optical Systems (SIOS) Lab since 2015 on fuel
cost heuristics, formation flying, and trajectory design of spacecraft, notably starshades in exo-
planet direct imaging missions.

Keithly et al.: Optimal scheduling of exoplanet direct imaging single-visit observations. . .

J. Astron. Telesc. Instrum. Syst. 027001-41 Apr–Jun 2020 • Vol. 6(2)

https://doi.org/10.1117/12.2274396
https://doi.org/10.1117/12.2056759
https://doi.org/10.1117/12.2274069

