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Focal plane wavefront sensing

Advantages
e No NCPA or chromatic errors

* High sensitivity, incl. to phase
discontinuities

* Simple opto-mechanically

Disadvantages

 High computational cost and/or
limited to small aberration

* |[ntensity measurements result in
phase ambiguity

= Moving the hardware complexity to the software

Sign ambiguity on even modes
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Phase of sine wave difficult to infer
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Focal plane wavefront sensing in astronomy

Two (selected) regimes

NCPA AO
Aberration level 100-500nm rms 1-5um rms
Correction timescale >1sec 1ms
Spatial frequency ~20 on a VLT ::fgoognz;gpn
[number of modes] ~100 on a ELT
> 4000 on a 40m
Expected residuals ~20nm rms ~100nm rms

*Also cophasing (JWST, ELT)

High-contrast image

Courtesy to M. Willson
@ULiege

LWE, Vievard et al. 2019



Deep learning ?

> Why deep learning ?
 Handle the non-linear nature of the problem
* Inference speed (no iterative process)
* Robustness (no local optimum)

> Deep learning can also mean in practice:
* | essens the need for a deep mathematical grasp / precise formulation
* | everage modern hardware, GPUs



Early work in 1990’s in astronomy
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Predicted phase (Zernike coefficients)
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 Co-phasing (piston-tip-tilt) of 6 mirrors [1, 2]
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» Using a shallow multilayer perceptron with sigmoid weights Wi,

activation function.
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Angel et al. 1990
Lloyt-Hart et al. 1991
Sandler et al. 1991
Barrett & Sandler 1993
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Convolutional Neural Networks

At the heart of all recent works

CNN are composition of
e convolution,
 pooling layer,
« activation function (RelLU)
 Normalisation layers
* fully connected layer
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» Hierarchical composition provide a range of receptive fields

Convoluted feature
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» Solutions to vanishing gradient allow training of deep networks (incl. automatic differentiation)

> Rapidly evolving field since 2010 (beginning of the ImageNet contest)




CNN-based framework FPWFS

Supervised learning.
Labelled dataset used for training.

PSF-based approach

> Laser communication (Guo et al. 2019)

> Co-phasing of JWST (Paine & Fienup 2018)
>  WEFS for AO in astronomy (Andersen et al. 2020)
>  NCPA in astronomy and performance limit (Orban de Xivry et al. 2021)

But also:

> imaged-based (microscopy, e.g. Krishnan et al 2020, Wu et al. 2020)

>  metric-based (Fourier-space metric that are object agnostic; Naik et al. 2020),

> preconditioned intensity image (Nishizaki et al. 2019)

> Mild accuracy, few Zernike modes, compact CNN and fast inference



CNN-based framework FPWFS

Enlarging dynamic range

Co-phasing of JWST (Paine & Fienup 2018) in two steps: 10t - l«—— Training Region ——s|
1. CNN to provide initial estimates

2. Gradient-based optimisation

7 Qreatly enlarge the capture range

Residual RMS WFE (waves)

* Gradient-based optimiser can use algorithmic differentiation 0> ;'C(;,elc',? RI\Z,,'S WZFES (Vfé?,ejs +0

(Jurling & Fienup 2014). Automatic differentiation provides —— Machine Learning
the gradients of your model for ‘free’ ~ = Random Starts (best residual RMS WFE)

----- Random Starts (best error metric value)
- = 1/10 Marechal Criterion

Paine & Fienup 2018



Setup explored by Andersen et al. 2020
* Realistic simulations (noise, star magnitude, bit depth, polychromaticity)
e D=3.6m, ro= 17cm, correction 36-66 Zernike
* Using in-focus and out-of-focus images

Single-shot wavefront sensing with ResNet-50:
* ~180nm rms WFE with 36 Zernike

Multishot WFS:

* Closed-loop, down to 150nm rms (~fitting error), sampling freq 50Hz
* Using RNN to improve the ResNet-50 Zernike estimate

* See also Allan+2020, SPIE, using GRU for the ZWFS
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FPWFS with ML

NCPA and performance of CNN

Simulation setup, Orban de Xivry et al. 2021 Distribution of WFE Example of PSF
Z20, 70nm /100, 70nm
Wave_length, tel. 2200nm, 10m )
Diameter
- ®
Input WFE 70-350nm rms (0.2-1 rad) |
# of modes 20 -100 ]
| Z20, 350nm Z100, 350nm 8?@
Pixel scale 0.2 MD (0.01”/pix) - | 0.10
FoV 28.5 /D (1 .4”) | 1 (8 0.05
Defocus diversity N4 _
| 0.00
2000 250 3000 350 400 450 500
Each Zernike coefficients is draw from a uniform distribution rms WFE [nm]

> Can CNN-based framework for FPWFS be applied to NCPA measurements?
> Performance limit, robustness of the approach ?
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Metrics

Fundamental limit for wavefront sensing

* Particular nature of light: photon noise

 Fisher information matrix [1] 0].2 > 1/(4Nph) per independent mode

« Most sensitive: Zernike wavefront sensor [2, 3] 0]-2 > 1/ (ZNph)

* Focal plane sensitivity is further reduced

N

Zern

GFP — [I‘ad]

nimgN photons

Paterson 2008, 2013
N’Diaye et al. 2013
Chambouleyron et al. 2021
] Guyon 2005

BN =
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ResNet-50 for 20 Zernike's

Results

Performance Iimit
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Theoretical limit 1 /

350nm rms WFE input
(Onm rms WEFE input |

350nm . rms. WEE...

Onm.rms. WEE...
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Flux [Nph]
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107

| >k Implicit

for Ti = 1sec

X Every point uses a different model
X Evaluation on 100 entries

X ‘Excess' error for larger level of aberrations
and large flux: numerical limitation

at low flux level (due
to data distribution)

'*ﬁ Theoretical accuracy
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Results

Dynamic range

v Below training : constant accuracy i
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Results

Dynamical range: application in closed-loop

~320nm rms WFE input

2000 After 20iter

= o
- -
- -]
input rms WFE [nm]

~1pym rms WFE input

Training range 300 After 20iter

- — | I-600

>

6 8 10 12 14 16 18 20
[terations

2Works well beyond training range

2 Other strategy would imply to train on a larger range of

aberrations or use different network architectures .



Comparison

With Gerchberg-Saxton phase retrieval &

Gradient-based optimisation with automatic differentiation

Parallel Gerchberg-Saxton
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* Using automatic differentiation for phase retrieval

- (Jurling & Fienup 2014),
- Peng et al. 2020
- Wong A. et al. 2021

* See also MORPHINE on Github (Pope B et al.)
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Practical consideration

Computational cost

4 Typical training set size: 100,000
4 Training time : several hours to days
4 Typical inference time of typical architecture

~ several ms (with 1 x RTX2080Ti)

4 But should only be seen as upper bound:

4 Faster training and inference (<1ms) with lighter
architecture, and downsampling # of pixels.

4 Compression technique, pruning, etc.

ResNet-50

23.71

8.22

91

U-Net

13.40

15.54

52

For 128x128 gridsizes and 100 Zernike’s

* See also Weinberger et al 2020
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In practice
Application to lab data on SCExAO

 TJraining on lab data — see Kyohoon’s talk

* Transfer learning / fine-tuning of model using real data — see Maxime’s talk

Experlmental PSFs:

out-of-focus

Simulated PSFs:
i cus out-of-focus

18



Martinache 2013

Vievard et al. 2019

Bos et al. 2019

Codona & Kentworthy 2013
Gonsalves 2002

Bos et al. 2020

Cranney et al. 2021, this workshop
Norris et al. 2020

Lifting the sign ambiguity

Selected approaches

O N OO WN

 \Vortex coronagraph : see Maxime’s talk

* Asymmetric pupil : LWE [1,2], FPWFS with the vAPP [3] f /
 Using the WFS telemetry as known diversity probes introduced by the turbulence : PSI [4]
 Sequential diversity using the DM telemetry [5, 6, 7]

 Measure the phase: All-photonic WFS [8]

Multimode fibre Photonic lantern transition Multi-core fibre

19



NN coupled with physical model

Backward approach

Inverted optical
propagation

(IFFT)

Phase

Focal plane Pupil plane

Courtesy to Maxime Quesnel

2 Faster inference (generalisation), more insight on the optical system
2 Still a supervised framework

* See also Peng at al. 2020,
for a somewhat similar implementation applied to holography
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NN coupled with physical model
Forward “auto-encoder” approach

g during inference

| o) Optical
, g | i propagation
- (FFT) PSF
PSF :
\ - J \ :

- Phase (reconstructed)
J

Y Y
Focal plane Pupil plane Focal plane

Courtesy to Maxime Quesnel

 Provides an unsupervised framework
 Possible application: trained or untrained

* Possibility to parametrised the physical model ? * See also
* Fei Wang el al. 2020, Phase imaging with an untrained neural
network
* Liaudat Tobias et al., 2021, Instrument response for Euclid
* Emrah Bostan et al. 2020, Phase microscopy
* Other application of autoencoder:
* Pou et al. 2020, denoising of WFS images

21



Focal-plane decomposition

1. Decomposition of the PSF in a set of features -> compression of

PSF image
2. Use a NN to map the image-plane coefficients to the pupil-plane
coefficients
PSF images Neural network Image decomposition techniques, e.g.:

Input
(image features)

Output - via PCA [1]
(aberrations )
- Nijboer-Zernike basis [2, 3, 4]

/ ‘
v - Tchebichef moment features [5]
SRR >o—>() Alternative : use an auto-encoder ?
Feature
extraction
e @ Terreri et al. 2019, WFS4ELT
Input layer Output layer Magette 2010,

Riaud et al. 2012a, b
Antonello, Verhaegen, 2015
]Ju G. et al. 2018

Hidden layer

OB WN —

Ju G. Et al. 2018



Conclusions

 CNN-based FPWEFS is a viable option, being confirmed experimentally
* Other - promising and rather uncharted - approaches:

* Physics-based frameworks

* Exploit sequential data via RNN (residual minimisation)

* Coupling linear model with NN for modelling non-linearity

 And beyond...



