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Focal plane wavefront sensing
Advantages 

• No NCPA or chromatic errors


• High sensitivity, incl. to phase 
discontinuities


• Simple opto-mechanically
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Disadvantages 
• High computational cost and/or 

limited to small aberration


• Intensity measurements result in 
phase ambiguity
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Figure 5
Wavefront maps (top) and corresponding point spread functions (bottom) in monochromatic light. A single pupil plane sine wave
aberration in phase creates a pair of focal plane speckles. Changing the phase of the sine wave aberration (180-deg change between
panels a and b) has little effect on the focal plane intensity image: Speckles change phase but their amplitude and location are left unchanged.
Upon close inspection of the two focal plane images, a small difference due to coherent interference between the speckles and the Airy
diffraction rings can be seen, resulting in a small difference between the focal plane images in panels a and b. In panel c, the aberration
amplitude is reduced, so the interference between the speckles and Airy rings is more pronounced (they have comparable amplitudes),
breaking the symmetry between the two speckles. Panel d illustrates the superposition approximation described by Equation 7.

intensity PSF can be written accordingly:

φ(u) =
∑

i

2πhi

λ
cos(2π fi u +ψi ) → I (α) ≈ I0(α)+

∑

i

(
πhi

λ

)2

(I0(α + fiλ) + I0(α − fiλ)) , 7.

where u is the 2D pupil plane spatial coordinate, α is the 2D angular sky coordinate on the focal
plane image (unit: rad), hi is the amplitude of each sine wave (unit: m), fi its spatial frequency (unit;
m−1), and ψi its phase. The unaberrated PSF, I0, is an Airy function in the Figure 5 example.

This approximation, or its continuous variant written as a Fourier transform, provides a con-
venient semianalytical framework for deriving ExAO performance by linking contrast to residual
wavefront errors (Guyon 2005, Kasper et al. 2010). As shown in Figure 5, the approximation is
only valid when speckles due to wavefront aberrations exceed the static diffraction features of the
image, a regime commonly encountered in ExAO systems.

3.3.2. Speckle lifetime (intensity). Under the frozen flow approximation, a fixed wavefront map
is moved across the beam by the wind velocity vector V⃗ . The sine wave wavefront correspond-
ing to a specific speckle is entirely moved out of the pupil within D/V . Numerical derivation
reveals that the speckle intensity coherence time is τI = 0.6D/V (Macintosh et al. 2005). In a
conventional nonpredictive AO control loop with performance dominated by time-lag error, the
residual wavefront error is a phase-shifted attenuated copy of the original incoming sine wave
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Sign ambiguity on even modes

Phase of sine wave difficult to infer

Guyon 2018➡ Moving the hardware complexity to the software



Focal plane wavefront sensing in astronomy
Two (selected) regimes
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NCPA AO

Aberration level 100-500nm rms 1-5µm rms

Correction timescale >1sec 1ms

Spatial frequency 
[number of modes]

~20 on a VLT

~100 on a ELT

~100 on 2-4m

~>400 on a 8m


> 4000 on a 40m

Expected residuals ~20nm rms ~100nm rms

Phase Sorting 
Interferometry Principles

Method of correction for NCPA in the image frame.

Utilises fast evolving speckles as a source of diversity to 
modulate the quasi-static speckles.

These unwanted, but inevitable, speckles interfere 
coherently with the static halo, exhibiting a sinusoidal 
variation in intensity.

This enables the measurement of the quasi static halo and 
application of a correction.

Because we are not inserting artificial probes, PSI has a 
superior duty cycle to other proposed methods as we lose 
no science frames.

There is also no requirement for additional hardware.

Courtesy to M. Willson 
@ULiege

High-contrast image

✴Also cophasing (JWST, ELT)

such as coronagraphs, Extreme Adaptive Optics (ExAO) and/or image post-processing. However, the perfor-
mance of these techniques have two instrumental limitations. Firstly there are Non-Common Path Aberrations
(NCPA) defined as the di↵erential aberrations between the ExAO system and the science detector. Indeed,
because the ExAO and the science optic paths are di↵erent, some aberrations on the science detector are not
seen by the wavefront sensor (WFS). Secondly there is the Island E↵ect that is caused by the presence of the
spiders. This Island e↵ect can be divided in two categories of cause for the wavefront degradations: on one
hand the spider-induced discontinuities of the pupil creates di↵erential pistons not well seen by the WFS and
therefore not well controlled (also named petalling or disconnectedness). On the other hand, the presence of the
spiders creates, under some circumstances described hereafter, the Low Wind E↵ect (LWE). Both instrumental
limitations constrain the achievable contrast, but we will focus here on the Low Wind E↵ect.

The LWE refers to a thermal e↵ect. The temperature di↵erential between the ambient air and the spiders
(Tspider < Tair) induces radiative exchanges: the air gets cooler near the spider. This creates a refractive index
gradient near the spiders that induces local delays of the wavefront. This phenomenon occurs especially when
the wind speed is low (typically below 3m/s), as the colder air is not blown away, and is to the best of our
knowledge not detected by traditional WFS such as the Pyramid or the Shack-Hartmann.

While the impact of the LWE on the Adaptive Optics system itself is currently unknown, the impact on
the Point Spread Function (PSF) of the telescope is clearly identified. Comparison of PSFs with and without
LWE on VLT/SPHERE1 acquired with the Di↵erential Tip Tilt Sensor (DTTS, by Sauvage et al.

2 - see Fig. 1)
showed that bright secondary lobes appear on the PSF in presence of the LWE (causing the degradation of high
contrast capabilities for coronagraphs).

Figure 1. From left to right: PSF without LWE (DTTS) - PSF with LWE (DTTS) - Pupil plane instensity measured by
ZELDA WFS on VLT/SPHERE. Source: Sauvage et al.2

Sauvage et al.
2 also performed a diagnostic of the pupil plane phase in presence of LWE using the ZELDA

WFS on VLT/SPHERE. Allowing to convert the pupil phase in an intensity map as shown on Fig. 1 (right image)
ZELDA showed that the e↵ect of the LWE plus its impact on the Adaptive Optics system creates di↵erential
Piston, Tip and Tilt errors in each quadrant of the pupil.

In a very complete study of the Low Wind E↵ect, Milli et al.
3 presented a corrective solution. He showed

that radiative transfers between the spiders and ambient air can be strongly reduced by a new coating on the
spiders. This was implemented on the VLT and was very e�cient in reducing the LWE. From another point of
view, solutions requiring new software/hardware developments should also be investigated.

When the modification of the telescope spider coating is not possible, or if the hardware of an instrument
cannot be freely/easily modified, focal plane wavefront sensing seems to be the best solution to correct for
the LWE since near-focal images of any source taken by a camera show the wavefront degradation as we see
Fig. 1 (central image). The focal plane WFSs usually require minimal hardware modification since generally use
existing detectors in the focal plane, e.g. the science detector. Another benefit is that they can simultaneously
measure and correct NCPAs, another source of wavefront degradations.

As we explain in the first part of this paper, the instrument SCExAO on the Subaru Telescope is a unique
platform to test new instrument concepts and algorithms. Focal plane wavefront sensors were or are being
implemented on SCExAO to correct for the Low Wind E↵ect. The following of the paper is a presentation of

LWE, Vievard et al. 2019



Deep learning ?

Why deep learning ? 
• Handle the non-linear nature of the problem

• Inference speed (no iterative process)

• Robustness (no local optimum)


Deep learning can also mean in practice: 
• Lessens the need for a deep mathematical grasp / precise formulation

• Leverage modern hardware, GPUs
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Early work in 1990’s in astronomy

• Co-phasing (piston-tip-tilt) of 6 mirrors [1, 2]


• Adaptive optics [3]


• HST aberration [4]


Using a shallow multilayer perceptron with sigmoid 
activation function.


➜ limited in their learning capacity (vanishing gradient 
problem)

6

© 1991 Nature  Publishing Group

[1] Angel et al. 1990

[2] Lloyt-Hart et al. 1991

[3] Sandler et al. 1991

[4] Barrett & Sandler 1993



Convolutional Neural Networks
At the heart of all recent works 

CNN are composition of 

• convolution, 

• pooling layer,

• activation function (ReLU)

• Normalisation layers

• fully connected layer


Hierarchical composition provide a range of receptive fields 

Solutions to vanishing gradient allow training of deep networks (incl. automatic differentiation)


Rapidly evolving field since 2010 (beginning of the ImageNet contest)

7

Background

Convolutional neural network (CNN or ConvNet) considers another approach, they take
advantage of the hierarchical pattern in the images. The idea behind CNN is inspired by
a biological concept: the receptive field. The receptive field a portion of sensory space
which can trigger the activation of neuronal cell. It basically acts as a detector sensitive
to a particular type of stimuli. For instance, an edge or a color. Convolutional neural
networks approximates this biological function using the convolution operation.

Figure 2.11: Example of convolution operation for input data x 2 R1⇥5⇥5
and a

convolution kernel u 2 R1⇥3⇥3
. [Li Yin, Computer vision blog]

Let us consider an input x of size RC⇥H⇥W (e.g. 2 ⇥ 128 ⇥ 128) and a convolution
kernel u of receptive field RC⇥h⇥w (e.g. 2⇥ 3⇥ 3). The convolution operation consists
in sliding the kernel across the input image and sum the element-wise product between
the overlapping input elements and the kernel weights (u, b).

oi,j = bi,j +
C�1X

c=0

(uc ⇤ xc)[i, j] = bi,j +
C�1X

c=0

N�1X

n=0

M�1X

m=0

uc,n,mxc,n+i,m+j (2.44)

The output o has the dimension RC⇥(H�h+1)⇥(W�!+1). A multilayer convolutional neu-
ral network can then be built by repeating the convolution operation on the output.

Pooling layers

Along with the standard convolution layers, pooling layers are often used to down-sample
the feature map. It is mainly used to reduce the input dimension while preserving the
spatial organization. Considering an input tensor x 2 RC⇥(rh)⇥(sw) and pooling filter of

20

Background

size h⇥ w, the max pooling operation is defined as

oi,j = max
n<h,m<w

xc,ri+n,sj+m (2.45)

The output o has the dimension RC⇥r⇥s. Pooling layers also tends to decrease potential
over-fitting effects.

Figure 2.12: Max-pooling operation (kernel 2x2, stride 2x2) [20]

Batch normalization layers

Batch normalization layers [21] are also often used to control the output of the convolution
layers. During the training, the distribution of the activations is constantly changing
and tends to slow down the training as the layers must adapt themselves to changing
distributions. Batch normalization layers solve this issue by normalizing the input of
each layer. First the mean and the variance of the layers are computed over a batch

µB =
1

B

BX

b=1

xb (2.46)

�
2
B =

1

B

BX

i=b

(xb � µB)
2 (2.47)

Then, the input x is normalized, scaled and shifted

ob = �
xb � µBq
�
2
B
+ "

+ � (2.48)

� and � are parameters optimized during the learning.

21

Convolution Max pooling



CNN-based framework FPWFS
PSF-based approach 

‣ Laser communication (Guo et al. 2019)


‣ Co-phasing of JWST (Paine & Fienup  2018)


‣ WFS for AO in astronomy (Andersen et al. 2020)


‣ NCPA in astronomy and performance limit (Orban de Xivry et al. 2021)


But also:


‣ imaged-based (microscopy, e.g. Krishnan et al 2020, Wu et al. 2020)


‣ metric-based (Fourier-space metric that are object agnostic; Naik et al. 2020), 


‣ preconditioned intensity image (Nishizaki et al. 2019)


Mild accuracy, few Zernike modes, compact CNN and fast inference

8

Supervised learning. 

Labelled dataset used for training.



CNN-based framework FPWFS

Co-phasing of JWST (Paine & Fienup 2018) in two steps:


1. CNN to provide initial estimates


2. Gradient-based optimisation


Greatly enlarge the capture range


• Gradient-based optimiser can use algorithmic differentiation 
(Jurling & Fienup 2014). Automatic differentiation provides 
the gradients of your model for ‘free'

9

which was matrix-multiplied into a single “hidden” vector,
which was then fed through a nonlinear sigmoid function
and matrix-multiplied to an output vector corresponding to
the Zernike polynomial coefficients. Models with this type
of architecture are known as perceptrons [12]. Another type
of model, the convolutional neural network (CNN), uses
learned convolutional kernels and downsampling methods to
perform machine learning tasks with images. CNNs are better
suited to image-based tasks than perceptrons, since they learn
based on groups of pixels rather than considering each
pixel independently [13]. They have been used recently to
attempt to recover phase maps from images for use in lenseless
computational imaging [14]. We intend to recover Zernike co-
efficients for building wavefront maps, which capture aberra-
tions. We examined the most accurate CNNs for ImageNet
classification and chose Google’s Inception v3 architecture,
which uses blocks with a variety of differently sized convolu-
tional kernels on the same input to determine important fea-
tures at different size scales [15]. We adapted their model to
perform regression analysis, which provides continuous values
as the output. The architecture of this model is shown in Fig. 1.

Since we already use a physical model to describe the propa-
gation and detection of light in an intensity plane, we can sim-
ply create and feed simulated PSFs into our CNN based on
Zernike coefficients. This approach assumes there are known
values of our model such as pupil amplitude, f-number, and
pixel pitch. For our case, we consider a uniformly illuminated
JWST aperture, shown in Fig. 2, which is zero-padded in an
array twice the width of the aperture to produce a PSF (image)
that is Nyquist sampled. We produced PSFs based on second-
through fifth-order global Zernike polynomials, and did not
include any per-segment errors. We ignored global piston
and did not include tip or tilt terms, as these can be estimated
rapidly using centroiding algorithms or other registration meth-
ods [16]. Centroiding algorithms can estimate the center of a
PSF to within 1 pixel, which is within the capture range of

nonlinear optimization using tip and tilt [17]. All PSFs were
normalized to have a maximum value of 1 before being fed into
the CNN.We used minibatch training with a minibatch size of
16 PSFs. A CNN’s learned parameters are updated through the
use of back-propagated gradients for each CNN operation.
Minibatch training updates the CNN’s parameters based on
the gradients from a minibatch of inputs rather than just a
single input, which increases convergence rate [18]. Machine
learning relies on stochastic gradient descent algorithms, where
updates are based on the gradient and a parameter known as the
learning rate [19]. The learning rate controls the step size of an
update, with a smaller learning rate indicating a smaller move
through the parameter space. For minimization, we used
Adam, a gradient-based stochastic optimization algorithm with
a learning rate that is adaptive, meaning it is initialized to a
user-defined value and then updated according to values of
the gradient [20]. Our CNN’s minimized loss function was
the RMS difference between predicted Zernike coefficients
and true Zernike coefficients. After updating parameters for
40 groups of 16 PSFs, we determined the average loss across
10 different groups of 16 PSFs, known as a validation stage.
Examining the validation loss in comparison to the training loss
informs us of overfitting in our CNN [21]. One round of train-
ing and validation consists of an epoch of training our CNN.

We initially trained the model on PSFs only with 2.3 RMS
waves of aberration (which is a quite large amount of aberra-
tion) for 5000 epochs, with an initial learning rate of 2 × 10−2,
which was halved every 1000 epochs. We then allowed the
PSFs to have anywhere from 1.0 RMS waves to 4.0 RMS waves
of aberration and trained for 20,000 epochs, starting the learn-
ing rate at 1 × 10−3 and lowering to 0.5 × 10−3 after the first
10,000 epochs. Finally, we included noise in our PSFs that in-
cluded Poisson noise and optionally included detector noise,
background noise, and dead pixels. An example of one mini-
batch of these input PSFs can be seen in Fig. 3. The peak pho-
tons and any additional noise parameters for each PSF were
chosen from a uniform random distribution, with low and high
values given in Table 1. These many noise options make our
CNN robust to a wide variety of noise that could be found
experimentally. We trained on these noisy PSFs for an addi-
tional 50,000 epochs, starting with a learning rate of 2.5 ×
10−3 and lowering to 1.0 × 10−3, 0.75 × 10−3, 0.5 × 10−3,
and 0.3 × 10−3, respectively, after every 10,000 epochs. After
this training, our validation loss was 0.373 waves of RMS dif-
ference between the predicted and true Zernike coefficients.
The residual RMS WFE grew monotonically within the train-
ing region, as shown in Fig. 4.

To determine the effectiveness of our CNN’s predictions,
we used a Monte Carlo analysis. We simulated PSFs made
up of only the Zernike coefficients predicted by our CNN.

Fig. 1. Adapted Inception v3 architecture [15] used to predict Zernike coefficients. The layers flow from left to right, where the input is fed to the
furthest left convolutional block, and the output comes from the furthest right fully connected block.

Fig. 2. JWST aperture function used for simulating PSFs.
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The noise in these simulated PSFs was generated in the same
way as for the training PSFs. We used values of total RMSWFE
varying from 0.25 waves up to 4.0 waves, in increments of 0.25
waves. For each amount of RMS WFE, we simulated 250
different PSFs. As a benchmark for each PSF, we used 30 ran-
dom starting guesses, each with the same RMSWFE as the true

wavefront. We performed nonlinear optimization using a
limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [22] with these random starting guesses. We kept track
of both the best error metric value and the lowest residual RMS
WFE for the solutions from these optimizations. In parallel, we
fed the PSF to our CNN and performed optimization using the
CNN’s predictions as our initial estimates.

We performed an initial Monte Carlo with 256 × 256 pixel
pupil and PSF arrays. We found that the high wavefront error
resulted in aliasing and PSF energy falling outside of our simu-
lated detector window. This resulted in some fits that were
correct inside of our simulated detector window, but diverged
from the true PSF outside of said window. We increased our
image array size to 512 × 512 pixels, knowing that to be rea-
sonable since the detectors on the JWST are at least 1024 ×
1024 pixels [23,24]. We doubled the sampling in the pupil
domain as well, in order to prevent aliasing. We also cropped
the PSF down to 256 × 256 pixels before feeding it to our
CNN. This meant we did not need to retrain our CNN,
and could use the larger array for optimization purposes. These
steps improved convergence in our analysis.

Figure 5 shows the comparison of RMS WFE after optimi-
zation using our CNN’s predictions for the initial estimate and
using the best of 30 random starting guesses. The dashed lines
indicate the random starting guesses that gave the best residual
RMS WFE, while the dotted lines indicate the random starting
guesses that gave the best gain and bias-invariant NMSE value.
In a real situation, we would not have access to the true wave-
front, so we would choose the reconstruction with the best
error metric value from all the random starting guesses.
Even with the selection of the best residual RMS WFE from
the random starting guesses, we see that the median result of
the CNN’s predictions outperforms random starting guesses by
orders of magnitude for any true RMS WFE above 0.5 waves.
We also observed in most cases that the CNN’s prediction was
close enough that the optimization algorithm found a solution

Fig. 3. Example of a minibatch of input PSFs used to train CNN.
All PSFs are square-rooted to show dim features.

Table 1. Bounds on Peak Photons and Noise
Parameters Added to PSFs for Training and Monte Carlo
Simulation

Low Value High Value

Peak photons (photons) 4000 15,000
Read noise (e−) 10 100
Background noise (photons) 0.0 4.0
Fraction of bad pixels (%) 0.1 1.0

Fig. 4. Residual RMS WFE values for wavefronts synthesized from
CNN predicted coefficients compared to the true wavefront. The
shaded area represents the bounds of the 10th and 90th percentiles
of the residual RMS WFE from 100 trials, with the central black line
representing the median values of these trials.

Fig. 5. Residual RMS WFE values for optimizations based on
random starting guesses and the CNN’s predictions. The shaded area
represents the bounds of the 10th and 90th percentiles of the residual
RMSWFE, with the central black line representing the median values.
The dashed red line indicates 1/140 waves, or 1/10 of the Marechal
criterion.
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Enlarging dynamic range 

Paine & Fienup 2018
★Other examples :


- Zernike WFS and the Lyot-based low-order WFS (Allan+2020a, Allan+2020b)

- Reconstruction of PyWFS signal (Landman & Haffert 2020)



Neural networks for adaptive optics
Setup explored by Andersen et al. 2020

• Realistic simulations (noise, star magnitude, bit depth, polychromaticity)
• D=3.6m, r0= 17cm, correction 36-66 Zernike
• Using in-focus and out-of-focus images

Single-shot wavefront sensing with ResNet-50: 
• ~180nm rms WFE with 36 Zernike

Multishot WFS:
• Closed-loop, down to 150nm rms (~fitting error), sampling freq 50Hz
• Using RNN to improve the ResNet-50 Zernike estimate

10

16 all give a similar performance of the neural network. However, in a closed-loop system, the
PSFs will often be narrower, so the maximum number of photons in a pixel at the peak of the PSF
may easily be above 28, leading to loss of information in the faint part of a PSF. A radiometric
evaluation is needed for the actual case to determine the bit depth needed for the A/D-conversion
in a closed-loop system.

4.2 Kalman Filter

Variations in atmospheric seeing can be seen as “plant errors” and neural network errors as
“measurement errors.”30 A Kalman filter was set up using numerically determined covariance
matrices for plant noise and measurement noise, and taking the Zernike coefficients and their
time derivatives as state variables. The Zernike coefficients were determined running the NN3
neural network described in Sec. 3.2 together with time-correlated validation data generated
with the Skylight method and the atmosphere model with seven frozen layers. However, the
Kalman filter did not improve the estimates much because the neural network measurement
errors are not truly uncorrelated Gaussian but are correlated over time. We believe that better
results might be obtained using a plant model that includes the effect of frozen phase screens,
but such a Kalman filter would be highly complex and potentially slow. A major effort would
be needed to clarify whether the filter could work and whether computation time could be
made acceptable.

4.3 Recurrent Neural Network

We also looked into the possibility of using a recurrent neural network (RNN), which has
“memory” of previous estimates and inputs. The phase screens of the incoming light are corre-
lated over time, and it was thought that the neural network might be able to find the nature of
the correlation.

We used a ResNet50 network as the front end to the RNN as shown in Fig. 10. The task of
the RNN is then to improve the Zernike estimates from the ResNet50. We studied different
architectures and got the best results with the one shown. It has a direct Zernike feed from the
ResNet50 to the output, to which a correction is added by the RNN. We used the long short-term
memory (LSTM) RNN building block,31 which overcomes the vanishing gradient problem for
long input sequences. As an example, we looked back 16 s, taking a total of n ¼ 200 samples
from the past, including only every fourth sample over time. The guide star had a magnitude of 8,
and the time-correlated PSFs were the same as those used for the Kalman filter described above.
The input Zernikes were scaled to have a standard deviation of 1 for the network, and the output
Zernikes were rescaled accordingly. As can be seen in the example for Zernike no. 7 in the lower
part of in Fig. 11, there is indeed an improvement with respect to the ResNet50 estimates.

Fig. 10 Architecture of the recurrent network using NN3 as a building block. Here, Δt is the sam-
pling period of the network, n is the number of samples taken into account, and t0 is the time.

Andersen, Owner-Petersen and Enmark: Image-based wavefront sensing for astronomy. . .

J. Astron. Telesc. Instrum. Syst. 034002-12 Jul–Sep 2020 • Vol. 6(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 23 Feb 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

There has been some limited work related to image-based wavefront sensing.9–12 A recent
paper13 deals with some of the same topics as the present publication but focuses on laser com-
munication with monochromatic light and does not touch upon the issues of phase screen gen-
eration, noise, blurring by wide-band imaging, closed-loop operation, and bit depth, which all
are important for our application. Another recent article14 briefly describes an interesting image
sharpening approach using a neural network based on unsupervised learning.

As a beginning, we studied the possibility of image-based wavefront sensing. Telescopes
above 4 m almost all have adaptive optics, so our initial range of interest was for telescopes
in the 3- to 4-m class in the V-band. Narrow-band image-based wavefront sensing is easier than
wide-band sensing, but for astronomy, wide-band operation is attractive for reasons of light
economy even though an atmospheric dispersion compensator may be needed. With the advent
of even faster computers and, in particular, faster graphical processor units (GPUs), methods
could be applicable also for larger telescopes in the near future, not the least in the near-IR,
which is less demanding than the V-band. Although our motivation is primarily related to
real-time image sharpening, we also looked into the possibility of using image-based neural
network wavefront sensors in a conventional adaptive or active optics system.

We studied whether neural networks can estimate the incoming wavefront from a natural
guide star on the basis of in-focus and out-of-focus point spread functions (PSFs). To characterize
the wavefront, we use Zernike polynomials. This is beneficial for subsequent wavefront-assisted
deconvolution because a finite Zernike representation has few high-frequency components.
Hence, our aim is to design a modal wavefront sensor, based upon a neural network, that takes
a PSF-pair as input and gives a vector of Zernike coefficients as output. Neural networks need to
be trained on a large amount of realistic data. Atmospheric optics is a well-developed discipline,
and it is relatively easy (albeit computationally intensive) to generate a large number of simulated
phase screens for the incoming light to the telescope after passing through the atmosphere.
We generated the corresponding in-focus and out-of-focus PSFs for training of neural networks
and decomposed the phase screens into Zernike terms.

Using Maréchals equation for the relation between the Strehl ratio and wavefront error15 and
Noll’s approach for the relation between the number of Zernikes included and the wavefront
error,16 the number of Zernikes needed to achieve a certain image quality can be estimated,
as shown in Fig. 1, for two different telescope diameters and for Fried’s parameter r0 ¼ 0.17 m,
representing typical seeing conditions at a good site. For a 3.6-m telescope, using between
36 and 66 Zernikes (up to radial degree 8 to 11) is a good choice.

Later, we aim to create a system using more than one guide star to get a larger field than the
isoplanatic patch. For such a system, a CMOS image sensor with 2k × 2k pixels, a frame rate of
50 fps, and 12- or 16-bit resolution is commercially available with science-grade specifications,
so we selected that frame rate for our study. With typical atmospheric layer characteristics,
this leads to temporal undersampling, so higher frame rates would be beneficial when working
only with bright guide stars.

A first, brief report was given in a previous article.17 Here, we go into more detail to dem-
onstrate the possibilities and limitations of the use of neural networks for image-based wavefront

Fig. 1 Number of Zernike terms (dash-dot green and solid blue) and RMSwavefront error (dashed
red) at the entrance pupil needed for a given Strehl ratio for two different primary mirror diameters
and Fried’s parameter r 0 ¼ 0.17 m.
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★See also Allan+2020, SPIE, using GRU for the ZWFS

36 Zernike modes is sufficient  
to reach diffraction limit
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Figure 2. Distribution of the rms WFE of one data set with a median of
350 nm.

to produce the corresponding PSFs, PSF(x, y),

PSF(x, y) ∝ |F [A(x, y) exp (iϕ(x, y))]|2, (1)

where A(x, y) is the pupil function. The pupil function considered here
is a simple uniformly illuminated circular pupil. The measurement,
i.e. the PSF, is finally affected by noise. Here, we limit ourselves
to photon noise, and disregard, for example, detector noises that are
technological in nature. Hence, the signal-to-noise ratio of our image
is SNR =

√
Nph, where Nph is the total number of photons in the

image.
The image sizes are fixed to 128 × 128 pixels. The PSFs are

sampled by 4.5 pixels over 1λ/D and the corresponding field of view
is ∼28.5λ/D. Such PSF sampling can be obtained, for instance, for
a wavelength of 2.2 µm, a pixel scale of 0.01 arcsec per pixel, and a
telescope diameter of 10 m. These parameters are representative of
existing instruments such as, e.g. NIRC-2 at the Keck Observatory.
Before being saved, the focal plane images are formatted in half-
precision (float 16 bits). This step ensures that the theoretical sign
ambiguity is perfectly reproduced numerically, i.e. that the PSFs
generated from phase maps that only differ by the sign of their odd
Zernike modes are numerically identical.

In this work, we consider median rms WFE of 70 and 350 nm at
a wavelength of 2.2 µm, thus 0.2 and 1 rad rms, respectively. For
convenience, we will often refer to these two levels as ‘low’ and
‘high’ aberration regime. We also consider two different numbers of
Zernike modes, 20 and 100. We have thus four different scenarios for
our following analyses. The resulting PSFs are illustrated in Fig. 3.
The introduced phase diversity for the second PSF is a defocus term
set to λ/4, i.e. 550 nm rms. The motivation to limit our training data
to those four regimes is two-fold. First, the number of modes and
the aberration level represent what is typically considered for NCPA
correction on 8–40 m class telescopes. Second, increasing the number
of modes and the aberration level increases the dimensionality
of the problem. Thus, defining different data sets (with different
dimensionalities), rather than a single one containing all the studied
cases, allows to better understand the performance obtained, i.e.
fundamental limit for wavefront sensing versus limitations of the
CNN models (e.g. generalization power or suboptimal training).
Nevertheless, in Section 3.4, we consider other appropriate data sets:
one drawn from a uniform rms WFE distribution, and several with
higher level of aberrations.

Figure 3. Illustration of the simulated PSFs with a square root stretch
and 99 per cent interval. The signal-to-noise ratio equals 1000. Aberrations
distributed over 20 (left) and 100 (right) Zernike modes. ‘Low’ (top) and
‘high’ (bottom) aberration levels.

2.2 Network architectures and training

We consider two approaches to our problem: one where the CNN
is trained to estimate Zernike coefficients and one where the CNN
is trained to do a direct phase map estimation. During the onset
of this work, we considered a number of architectures with good
ranking at ImageNet classification challenges: VGG-16, Inception
v3, ResNet-50, U-Net, and U-Net++. Eventually, and in this paper,
we only use ResNet-50 and U-Net, the other architectures either did
not work well for our application or do not add further insights to the
topics discussed here. It is worth noting, however, that Inception v3
has shown promising results in different simulation studies (Paine &
Fienup 2018; Andersen et al. 2019).

Residual neural networks (He et al. 2016), or ResNet, are very
deep networks where skip connections are introduced to improve
gradient flow during the training steps. We use ResNet-50, which is
50 layers deep, and we initialize it with the parameters pre-trained
on ImageNet. In order to adapt the architectures to the prediction
of Zernike coefficients, the softmax activation and the last fully
connected layers were replaced to match the output requirements.

For the direct phase estimation approach, we focused on an
architecture initially developed for biomedical image segmentation:
U-Net (Ronneberger, Fischer & Brox 2015). The overall network
structure follows a U-shaped geometry. The encoding part is made
of successive 3 × 3 convolution layers followed by 2 × 2 max pooling
layers. The input PSF images are thus progressively downsampled
while the most relevant features are extracted. The contracting
part is followed by an expansion part replacing pooling operators
by upsampling operators. Importantly, there are skip connections
combining features from the contracting path with the upsampling
part. Since we perform regression rather than segmentation, the last
softmax layer was removed. In our implementation, the input PSF
images and the output phase maps have the same grid sizes.

For the optimization, we used Adam (Kingma & Ba 2015) with
an initial learning rate of 10−3 and a scheduler dividing the learning
rate by two every 75 epochs. Our typical training procedure consists
of a data set of 100 000 entries, each consisting of two focal plane
images and one phase map. Before being fed into the CNN, photon
noise is added to the images, a square root stretch is applied, and
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Wavelength, tel. 
Diameter 2200nm, 10m

Input WFE 70-350nm rms (0.2-1 rad)

# of modes 20 - 100

Pixel scale 
FoV

0.2 λ/D (0.01’’/pix)

28.5 λ/D (1.4’’)


Defocus diversity λ/4

Simulation setup, Orban de Xivry et al. 2021 Distribution of WFE

Each Zernike coefficients is draw from a uniform distribution

NCPA and performance of CNN

Example of PSF

‣ Can CNN-based framework for FPWFS be applied to NCPA measurements?

‣ Performance limit, robustness of the approach ?



Metrics
Fundamental limit for wavefront sensing

• Particular nature of light: photon noise


• Fisher information matrix  [1]                                 per independent mode j                   


• Most sensitive: Zernike wavefront sensor  [2, 3]     


• Focal plane sensitivity is further reduced  


  [rad]

σ2
j ≥ 1/(4Nph)

σ2
j ≥ 1/(2Nph)

σFP =
Nzern

nimgNphotons
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[1] Paterson 2008, 2013

[2] N’Diaye et al. 2013

[3] Chambouleyron et al. 2021

[4] Guyon 2005
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Results
Performance limit

✴ Every point uses a different model


✴ Evaluation on 100 entries


✴ ‘Excess' error for larger level of aberrations 
and large flux: numerical limitation


✴ Implicit regularisation at low flux level (due 
to data distribution)
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Results
Dynamic range

✓ Below training : constant accuracy 


~ Above training : quickly increasing
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Trained around here

Input = residual error



Results
Dynamical range: application in closed-loop
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~1µm rms WFE input

~320nm rms WFE input

Input

Input After 20iter

After 20iter

Works well beyond training range


Other strategy would imply to train on a larger range of 
aberrations or use different network architectures
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★Using automatic differentiation for phase retrieval

 - (Jurling & Fienup 2014), 

- Peng et al. 2020

-  Wong A. et al. 2021


★ See also MORPHINE on Github (Pope B et al.)



Practical consideration
Computational cost
✦ Typical training set size: 100,000 


✦ Training time : several hours to days


✦ Typical inference time of typical architecture


~ several ms (with 1 x RTX2080Ti)


✦ But should only be seen as upper bound:


✦ Faster training and inference (<1ms) with lighter 
architecture, and downsampling # of pixels. 


✦ Compression technique, pruning, etc.

17

Architectures
Number of 
parameters 

(M)
FLOP (G) Model size 

(MB)

ResNet-50 23.71 8.22 91

U-Net 13.40 15.54 52

For 128x128 gridsizes and 100 Zernike’s

★See also Weinberger et al 2020



In practice
Application to lab data on SCExAO

• Training on lab data — see Kyohoon’s talk


• Transfer learning / fine-tuning of model using real data — see Maxime’s talk
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Subaru/SCExAO datasets

• SCExAO instrument: for science and
technology development.

• Labelled datasets: PSFs & phase
applied to the DM.

Experimental PSFs:

Simulated PSFs:

Credits: NAOJ

Maxime Quesnel Montefiore & STAR Institutes

Focal plane wavefront sensing using deep learning 14

Aug. 2nd 2021 SPIE Optics + Photonics – Techniques and Instrumentation for Detection of Exoplanets X

⮚ VAMPIRES (Visible Aperture Masking Polarimetric Imager for Resolved Exoplanetary 
Structures)
⮚ Visible PDI module that can be combined with aperture 

masking interferometry
⮚ It operates from 600-800 nm and allow for sub-diffraction 

limited imaging of post AGB star Mira (omi Cet) and disks

Science Modules : VAMPIRES

9

➔PDI on omi Cet

Capella @ 750nm
(~40mas sep.)



Lifting the sign ambiguity
Selected approaches

• Vortex coronagraph : see Maxime’s  talk


• Asymmetric pupil : LWE [1,2], FPWFS with the vAPP [3]


• Using the WFS telemetry as known diversity probes introduced by the turbulence : PSI [4]


• Sequential diversity using the DM telemetry [5, 6, 7]


• Measure the phase: All-photonic WFS [8]
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[1] Martinache 2013

[2] Vievard et al. 2019

[3] Bos et al. 2019

[4] Codona & Kentworthy 2013

[5] Gonsalves 2002

[6] Bos et al. 2020

[7] Cranney et al. 2021, this workshop

[8] Norris et al. 2020

Results
Numerical simulation and theory. Since the modes excited
within a MMF are a function of the electric field at the input, by
measuring the relative power in each mode at the fibre’s output it
is in principle possible to reconstruct spatial information
describing the input beam. Although power mixes between the
various modes of the fibre as it propagates, as long as the fibre
remains unperturbed (e.g. by strain or temperature) then the
relationship between the input and output mode fields can be
determined. This principle has allowed the development of basic
imaging applications, wherein an image projected into the input
face of the fibre is reconstructed by imaging the output mode
field29. Although a simple intensity image of the PSF does not
contain the necessary information to reconstruct the wavefront,
the combination of modes excited within a MMF is a function of
both the phase and the amplitude of the incoming light. Hence if

the power in each mode of the fibre is known, it should be
possible to infer the complex wavefront of an injected PSF.

In standard astronomical fibre-based spectroscopy, the PSF of
the telescope while observing a star is indeed injected into a
MMF. However reconstructing the complex wavefront by simply
imaging the output of the MMF is difficult for a number of
reasons. Firstly, the relationship between the modes at the input
and output (the transfer function) is not constant, since the fibre,
existing in the relatively hostile environment of a working
observatory, will be subjected to various changes in strain and
temperature. Secondly, in astronomical applications the light
levels involved are extremely low, and so imaging the output
mode field onto the many (read-noise limited) pixels of a CCD or
CMOS detector—operated at 1000s of frames/second—is proble-
matic. Thirdly, the decomposition of a mode field image into a set
of coefficients of each mode is a complicated, computationally
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Fig. 1 Non-degenerate response of the photonic lantern wavefront sensor to focal plane phase. a Schematics of a multi-core photonic lantern showing
how the phase and intensity of the input field into the multimode fibre end-face evolve into an array of uncoupled single-mode cores with different
intensities. b The results of three RSoft simulations demonstrating the concept of the photonic lantern wavefront sensor, and its ability to measure both
amplitude and phase. The first column shows the phase of the wavefront, and the second and third columns show the intensity and phase of the resulting
PSF respectively. The fourth column shows the intensities of the 19 single-mode outputs of the photonic lantern, when the corresponding PSF is injected. In
the first example (first row) a flat wavefront is used. In the second and third rows, astigmatism with an amplitude of 0.8 radians, but with opposite signs, is
introduced. This results in identical intensity structure in the image plane (2nd column), and so could not be distinguished with an imaging sensor.
However the (usually un-measured) phase in the focal plane (3rd column) shows the difference between the two astigmatism terms, which is successfully
measured by the photonic lantern (as shown by the different set of outputs from the lantern, in the 4th column). Simulations are performed at a
wavelength of 1550 nm. Intensities are plotted with a square-root stretch to better show faint detail.
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Numerical simulation and theory. Since the modes excited
within a MMF are a function of the electric field at the input, by
measuring the relative power in each mode at the fibre’s output it
is in principle possible to reconstruct spatial information
describing the input beam. Although power mixes between the
various modes of the fibre as it propagates, as long as the fibre
remains unperturbed (e.g. by strain or temperature) then the
relationship between the input and output mode fields can be
determined. This principle has allowed the development of basic
imaging applications, wherein an image projected into the input
face of the fibre is reconstructed by imaging the output mode
field29. Although a simple intensity image of the PSF does not
contain the necessary information to reconstruct the wavefront,
the combination of modes excited within a MMF is a function of
both the phase and the amplitude of the incoming light. Hence if

the power in each mode of the fibre is known, it should be
possible to infer the complex wavefront of an injected PSF.

In standard astronomical fibre-based spectroscopy, the PSF of
the telescope while observing a star is indeed injected into a
MMF. However reconstructing the complex wavefront by simply
imaging the output of the MMF is difficult for a number of
reasons. Firstly, the relationship between the modes at the input
and output (the transfer function) is not constant, since the fibre,
existing in the relatively hostile environment of a working
observatory, will be subjected to various changes in strain and
temperature. Secondly, in astronomical applications the light
levels involved are extremely low, and so imaging the output
mode field onto the many (read-noise limited) pixels of a CCD or
CMOS detector—operated at 1000s of frames/second—is proble-
matic. Thirdly, the decomposition of a mode field image into a set
of coefficients of each mode is a complicated, computationally
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Fig. 1 Non-degenerate response of the photonic lantern wavefront sensor to focal plane phase. a Schematics of a multi-core photonic lantern showing
how the phase and intensity of the input field into the multimode fibre end-face evolve into an array of uncoupled single-mode cores with different
intensities. b The results of three RSoft simulations demonstrating the concept of the photonic lantern wavefront sensor, and its ability to measure both
amplitude and phase. The first column shows the phase of the wavefront, and the second and third columns show the intensity and phase of the resulting
PSF respectively. The fourth column shows the intensities of the 19 single-mode outputs of the photonic lantern, when the corresponding PSF is injected. In
the first example (first row) a flat wavefront is used. In the second and third rows, astigmatism with an amplitude of 0.8 radians, but with opposite signs, is
introduced. This results in identical intensity structure in the image plane (2nd column), and so could not be distinguished with an imaging sensor.
However the (usually un-measured) phase in the focal plane (3rd column) shows the difference between the two astigmatism terms, which is successfully
measured by the photonic lantern (as shown by the different set of outputs from the lantern, in the 4th column). Simulations are performed at a
wavelength of 1550 nm. Intensities are plotted with a square-root stretch to better show faint detail.
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Summary

Maxime Quesnel Montefiore & STAR Institutes
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A)

B)

Fig. 4. Decomposition of the pupil-plane phase and amplitude into their
even and odd constituents for the two APP designs in Fig. 3b. (a): APP
designed for a symmetric aperture. (b): APP designed for an asymmetric
aperture.

fractional strength of the leakage PSF integrated over the spec-
tral band L. These parameters are summarized in Table 2. The
estimation of the phase aberrations is more conveniently per-
formed by minimizing L(↵,Np,Nb, v, L|D), which is the nega-
tive logarithm of the likelihood function (L(↵,Np,Nb, v, L|D) =
� ln[p(↵,Np,Nb, v, L|D)]:

↵̂, N̂p, N̂b, v̂, L̂ = arg min
↵,Np,Nb,v,L

L(↵,Np,Nb, v, L|D). (19)

Parameters ofL that have been estimated are denoted with a hat.
The objective function L is given by

L(↵,Np,Nb, v, L|D) =
X

x

1
2�2

n

(D � M(↵,Np,Nb, v, L))2 + R(↵),

(20)

with D(x) the 2D image containing the data and M(↵,Np,Nb,
V, L) the 2D model of the vAPP PSF, which is discussed in
the next subsection. The algorithm fits the model to the entire
image and thus does not exclude any regions in D(x). The sum
over x is over all spatial pixels. The algorithm is be applied to
long-exposure images that have high photon numbers, which
can be approximated to contribute spatially changing Gaussian
noise (�2

p), and detector noise (�2
d), assumed to be white Gaus-

sian noise. Therefore, the total noise is Gaussian and the vari-
ance is the sum of variances of the two independent processes
(�2

n
= �2

p + �
2
d). Prior information on the phase aberrations is

Table 2. Parameters presented in Sect. 3.

Variable Description

↵ Vector containing the modal coe�cients ↵i.
↵̂ Estimation of ↵ by algorithm.
� Assumed power spectrum in the regularization term.
✓ j Pupil-plane phase of PSF j (aberration+ vAPP).
✓APP Pupil-plane phase of the vAPP.
�2

d Variance of detector noise.
�2

n Total noise variance (�2
n =�

2
p +�

2
d).

�2
p Variance of photon noise.
�i Pupil-plane phase of aberration mode i.
a j Relative intensity PSF j, see Eqs. (23)–(25).
A Pupil-plane amplitude.
C{ ·} Fraunhofer propagator (Goodman 2005).
Epup Pupil-plane electric field.
D Image used for wavefront sensing.
Ifoc, j PSF j, see Eq. (26).
L Fractional strength of leakage PSF.
L̂ Estimation of L by algorithm.
L Objective function, see Eq. (20).
M PSF model of vAPP, see Eq. (22).
Np Total number of photons in image.
N̂p Estimation of Np by algorithm.
Nb Background level in image.
N̂b Estimation of Nb by algorithm.
R Regularization term, see Eq. (21).
v Fractional degree of circular polarization.
v̂ Estimation of v by algorithm.

taken into account explicitly by adding a term R(↵) to the objec-
tive function, which is given by

R(↵) =
1
2

NX

k=1

↵2
k

k�
, (21)

with ↵k the modal coe�cients and � the assumed power spec-
trum. This term penalizes high spatial frequency modes accord-
ing to assumptions on or measurements of the spatial power
spectrum. Implicitly, we also regularize by using a truncated
mode basis.

We minimizeL using the bounded limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B; Byrd et al.
1995), which is a quasi-Newton optimization algorithm that
assumes a di↵erentiable scalar objective function. The algorithm
accepts analytically calculated gradients to increase the speed and
accuracy. The analytical expressions of the gradients of Eq. (20)
are given in Appendix C. The algorithm also requires a start posi-
tion for the estimated parameters. Generally, Np,Nb, v, and L can
be easily estimated from the data, as is shown in Sect. 5. From
experience, setting ↵ = 0 (i.e., no aberration) works best when
there is no initial guess available for the aberrated wavefront.

3.2. Coronagraph model

The vAPP is a half-wave retarder with a spatially varying fast-
axis; these spatial variations induce geometric phase on the cir-
cular polarization states. Opposite circular polarizations receive
the opposite phase, creating two similar but mirror-imaged coro-
nagraphic PSFs (see Fig. 1). Additionally, as the optic is not
perfectly half-wave, part of the light does not receive the desired
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NN coupled with physical model
Backward approach

Faster inference (generalisation), more insight on the optical system
Still a supervised framework
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Courtesy to Maxime Quesnel

★See also Peng at al. 2020, 

for a somewhat similar implementation applied to holography 



NN coupled with physical model
Forward “auto-encoder” approach

• Provides an unsupervised framework 

• Possible application: trained or untrained


• Possibility to parametrised the physical model ?
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Courtesy to Maxime Quesnel

★ See also 
• Fei Wang el al. 2020, Phase imaging with an untrained neural 

network

• Liaudat Tobias et al., 2021, Instrument response for Euclid

• Emrah Bostan et al. 2020, Phase microscopy


★ Other application of autoencoder:

• Pou et al. 2020, denoising of WFS images



Focal-plane decomposition 

22

aberration coefficients. Compared to the conventional iterative phase retrieval approaches, 
this approach can directly output the aberration coefficients of the optical system without the 
need for the time-consuming iterative transformation or optimization process. Compared to 
the current intensity-based neural-network approaches, this feature-based approach has a far 
low computational load on the hardware. The neural network with the image features serving 
as the input has a simple structure and is very convenient to train and implement. 

 

Fig. 3. Sketch map of the feature-based phase retrieval wavefront sensing approach using 
machine learning. 

Note that in this approach, a pair of PSF images obtained at different focal planes are also 
needed, for the mathematical mapping from the set of all possible pupil phase screens to the 
set of all possible intensity distributions is a many-to-one mapping. Therefore, to invert this 
mapping and guarantee the uniqueness of the solution for wavefront phase, a pair of PSF 
images with a known defocus diversity between them are needed here. 

The application procedure of the feature-based phase retrieval wavefront sensing approach 
is presented below (also illustrated in Fig. 4): 

(1) Determine the system parameters needed in phase retrieval wavefront sensing, mainly 
including wavelength, aperture size, focal length, pixel size of the detector, and the 
defocusing length (used to obtain a pair of PSF images at different focal planes). The 
geometric of the pupil should also be precisely determined. These parameters are the 
premise for us to generate the data set needed for training the network. 

(2) Generate the data set for training the neural network under the specified system 
parameters. Specifically, within certain range of the wavefront aberration 
coefficients, a set of aberration coefficients is randomly introduced; a pair of in-
focus and defocus PSF images can be generated using this set of aberration 
coefficients according to the principle of Fourier optics. An error in the defocus 
distance is considered in this process to simulate the actual defocus error and a 
proper level of noise is introduced to the generated PSF images to simulate the 
practical noisy condition. After appropriate pretreatment, the discrete orthogonal 
Tchebichef moments of the pair of PSF images are extracted. The extracted features 
serve as one column of input matrix and the corresponding aberration coefficients 
serve as one column of the output matrix. This process is illustrated in Fig. 4. After a 
large number of the repetition of the above process, the input data set and output data 
set can be generated. 

(3) Properly select the number of neurons in each layer and train the neural network with 
the input data set and the corresponding output data set. 
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1. Decomposition of the PSF in a set of features -> compression of 
PSF image


2. Use a NN to map the image-plane coefficients to the pupil-plane 
coefficients


Image decomposition techniques, e.g.:

- via PCA [1]

- Nijboer-Zernike basis [2, 3, 4]

- Tchebichef moment features [5]


Alternative : use an auto-encoder ?

Ju G. Et al. 2018
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Conclusions

• CNN-based FPWFS is a viable option, being confirmed experimentally


• Other - promising and rather uncharted - approaches:


• Physics-based frameworks


• Exploit sequential data via RNN (residual minimisation)


• Coupling linear model with NN for modelling non-linearity


• And beyond…
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