
SMOOTHIE: Efficient and Flexible Load-Balancing
in Data Center
Loïc Champagne, Benoit Donnet

Université de Liège, Montefiore Institute, Belgium

Abstract—In the context of contemporary data center networks
(DCNs), optimizing resource utilization and preventing conges-
tion are critical objectives. This paper introduces SMOOTHIE, a
dynamic path load balancer specifically designed for real-time
congestion management using Inband Network Telemetry (INT)
for collecting network state pieces of information and Segment
Routing Version 6 (SRv6) for rerouting traffic. Leveraging
the programmable nature of the P4 programming language,
SMOOTHIE effectively achieves its goals. Our experimental results
showcase SMOOTHIE’s superiority over conventional Equal-Cost
Multipath (ECMP) routing and its competitive performance
compared to other congestion-aware load balancing solutions.
We assert that these findings can be attributed to SMOOTHIE’s
proactive congestion response, which minimizes the necessity for
TCP congestion window resizing, and its ability to intelligently
reroute flows onto optimal paths, thereby substantially reducing
route flapping. These outcomes highlight SMOOTHIE’s potential
to significantly enhance network performance within DCNs.
Furthermore, SMOOTHIE offers enhanced manageability, ease of
maintenance, and simplified deployment through a centralized
controller, further underscoring its value.

I. INTRODUCTION

Modern Data Center Networks (DCNs) utilize multi-rooted
topologies like k-ary fat-trees [1] or spine-leaf setups [2],
[3]. These configurations ensure ample bisection bandwidth
for numerous servers in end racks, using cost-effective com-
modity switches. However, achieving optimal link bandwidth
utilization relies heavily on even distribution of network traffic
across available paths. Poor load balancing risks link over
subscription, leading to congestion and underutilized band-
width. Effective traffic distribution prevents a few switches
from bearing excessive traffic, reducing processing delays
and latency for end-users, while optimizing DCN resource
utilization.

Traditionally, equal-cost multi-path routing (ECMP) has
been the bedrock of load balancing strategies, employing
a static path selection method based on the 5-tuple flow
hash digest. This encompasses source and destination IP
addresses, source and destination ports, and the transport
protocol. However, ECMP has notable limitations, leading to
performance degradation in dynamic environments [4], [2],
[3]. To address these shortcomings, various load balancing
approaches have emerged. While centralized solutions like
B4 [5] and SWAN [6] offer adaptability, their universal ap-
plicability is constrained (i.e., optimized for WAN architec-
tures with path updates occurring at minute-scale intervals).
Conversely, Decentralized methods exemplified by CLOVE [2]
and HULA [3], swiftly re-balance traffic but strain network

SMOOTHIE CONGA CLOVE HULA B4

Reliability & cong. control 3 3 3 3 3
QoS 3 7 7 7 7
Ease of management 3 7 7 7 3
Convenient upgradability 3 7 (3) (3) 3
Use commodity switches 3 7 3 3 3
Universally applicable 3 (3) 3 3 7

TABLE I
COMPARISON OF 7 THE SERVICES NOT OFFERED, (3) PARTIALLY

AVAILABLE, AND 3 OFFERED BY SOLUTIONS.

resources by relying on switch memory and on additional
packets, potentially causing congestion. Additionally, innova-
tive solutions like MPTCP [7], [8] and CONGA [9] modify
network architecture but present their own challenges, such as
kernel stack modifications for MPTCP and the replacement of
network switches for CONGA.

Table I presents a comprehensive overview of the key
attributes of these network solutions, namely CONGA, CLOVE,
HULA, and B4, which encompass reliability and congestion
control. Table I also includes SMOOTHIE, our solution dis-
cussed in this paper for dealing with modern challenges in
load balancing traffic in DCNs. Notably, SMOOTHIE uniquely
achieves Quality of Service (QoS) by dynamically adapting
path selection to suit individual data flow requirements. It em-
phasizes QoS prioritization through the customization of the
p-INT parameter, enabling fine-grained monitoring of critical
flows. Additionally, our consideration extends to an expanded
iteration of SMOOTHIE which incorporates dedicated routing,
bandwidth reservation, and flow-specific enhancements. More-
over, utilizing flow-specific INT instructions to gather path-
related metrics enables precise adjustments tailored to each
flow’s distinct demands. Both SMOOTHIE and B4 offer ad-
vantages in terms of manageability and upgradability, owing to
their centralized architecture. Conversely, CLOVE and HULA
exhibit limitations in upgradability due to their reliance on
P4 [10] implementation only. Indeed, they are constrained by
their restricted network view and the limitations of the P4
language. CONGA suffers from a lack of applicability as it
is built upon custom Application-Specific Integrated Circuits
(ASICs). Finally, it is worth noting that B4 is only applicable
to Wide Area Network (WAN) environments.

From these observations, it becomes evident that an ef-
ficient load balancing strategy is needed to address the in-
creasing demands on modern network infrastructures. This
paper introduces SMOOTHIE, a dynamic path load balancer
designed to tackle these challenges. Leveraging Inband Net-



work Telemetry (INT) [11] and Segment Routing Version
6 (SRv6) [12], SMOOTHIE detects and responds to conges-
tion in real-time, enhancing traffic distribution. Developed
in the P4 programming language, SMOOTHIE capitalizes on
its programmability and flexibility, aligning with the rise of
programmable packet-processing pipelines [13], [14]. These
architectures offer configurable stateful packet processing at
line rates, allowing operators to adapt load balancing schemes
to their deployment needs and compile them for the hardware.
Although SMOOTHIE integrates P4, its use is optional as many
switch manufacturers already support INT and SRv6 [15], [16].
Its inclusion primarily aims to offer customization options to
prospective users.

This paper makes the following contributions:
• Introducing SMOOTHIE, a novel network load balancing

approach that utilizes standard network switches without
altering tenant virtual machines’ network stack. It offers
centralized management without introducing additional
network packets.

• We leverage the concept of “the power of two
choices” [17] to strike a balance between ideal and
rapid decisions when it comes to rerouting. We also
demonstrate that this approach significantly reduces the
occurrence of route flapping.

• Our experiments demonstrate that we are able to rival
state of the art load balancing while using an easier to
manage centralized load balancing strategy.

• We showcase an easy way to manage INT monitoring
granularity as well as showing the impact of heavy real
time monitoring on the network performance.

• Our source code is freely available to the research and
industrial community.

The remainder of this paper is organized as follows: Sec. II
provides the required background for the paper; Sec. III
discusses SMOOTHIE, our efficient load balancing technique;
Sec. IV explains the methodology we followed for evaluating
SMOOTHIE; Sec. V discusses the results we obtain; Sec. VI
positions SMOOTHIE with respect to the state of the art;
finally, Sec. VII concludes this paper by summarizing its main
achievements.

II. BACKGROUND

This section discusses the required technical background for
the remainder of the paper. In particular, Sec. II-A introduces
in-band telemetry (INT) and Sec. II-B focuses on Segment
Routing.

A. In-Band Telemetry

Inband Network Telemetry (INT) is a data plane framework
designed to autonomously gather and report network state
information, removing the need for control plane intervention.
Within this model, packets carry header fields as ’telemetry
instructions’ for network devices. These instructions, pro-
grammable within the data plane, can be tailored to specific
flows, dictating the network state information to collect.

The collected network state information can be sent directly
to a dedicated telemetry monitoring system or encapsulated
within packets traversing the network. Dedicated traffic sinks
handling INT retrieve and potentially report these results,
facilitating monitoring of the observed data plane state.

Traffic sink functionalities of INT include tasks such as
OAM (Operations, Administration, and Maintenance) [18],
real-time control loops for traffic engineering adjustments, and
immediate actions for urgent conditions like congestion or
data-plane violations.

This architectural model supports applications including
network troubleshooting, performance monitoring, congestion
control, advanced routing, and network data plane verifica-
tion. For further insights and evaluations, readers can explore
Jeyakumar et al. [19].

B. Segment Routing
Segment Routing [12] (SR) is a source routing concept

that uses an ordered list of segments, defining specific packet
handling instructions. These segments can enforce topological
or service-related requirements. Over time, SR has found
applications in various areas like network monitoring, traffic
engineering, and failure recovery [20]. There are two primary
implementations: SR over MPLS (SR-MPLS)[21] and SR over
IPv6 (SRv6)[22].

SR features multiple segment types, with the most common
being node segments and adjacency segments. Node segments
represent the least cost path between routers and a prefix, while
adjacency segments signify a link between two routers.

In SR-MPLS, segments are identified by a unique 20-bit
label called Segment IDentifier (SID), implemented as MPLS
labels. Each label in the MPLS stack represents a segment,
guiding packet forwarding.

SRv6, however, uses 128-bit IPv6 addresses as SIDs, en-
abling deployment over non-MPLS networks or areas without
MPLS, such as data centers. This implementation simplifies
deployment as it only requires advertising IPv6 prefixes. SIDs
are encoded within the Routing Extension Header known as
SR Header [23] in SRv6.

III. SMOOTHIE

The overall functioning of SMOOTHIE is illustrated in
Fig. 1. SMOOTHIE has been designed to work on a private
domain, such as a datacenter, and is responsible to efficiently
and flexibly load balance traffic between the domain ingress
point and the domain egress. SMOOTHIE applies ECMP to
distribute flows across paths and adapts path assignments
based on network congestion.

SMOOTHIE is based on three main steps: first, SMOOTHIE
seamlessly collects telemetry data through INT (Sec. III-A) to
detect potential congestion. This telemetry data is exported, by
the egress switch, to the controller (Sec. III-B). The controller
is responsible to detect congestion and, to do so, maintain state
information about the network. Finally, once congestion has
been detected, the controller computes a new path for a flow
and the domain ingress is responsible to force traffic following
that new path through SRv6 (Sec. III-C).



Fig. 1. Routing evolution in SMOOTHIE. The initial path is [S1, S2, S4, S5] which is subsequently altered by the controller after processing telemetry data.
The new route, encoded through SRv6, becomes [S1, S3, S4, S5] and is illustrated as the red path. Queue occupancy, denoted as x/y (where x represents
the current occupancy and y is the queue size), is displayed below the switches.

A. InBand Network Telemetry with SMOOTHIE

First, SMOOTHIE operates by collecting telemetry data
through an inband approach (i.e., Inband Network Telemetry
– INT), seamlessly embedding real-time network performance
and traffic data into packets.

In INT version 2.1 [24], metadata plays a crucial role in
network monitoring and optimization. Elements like “Ingress
Interface Identifier” and “Node Identifier” help identifying
packet transit paths, aiding in diagnosing routing anomalies.
“Ingress” and “Egress timestamps” offer insights into packet
processing times, while metrics like “Interface Utilization”
streamline resource allocation. “Average Queue Length” as-
sists in buffer management, queue performance, and con-
gestion detection. These real-time insights enable prompt
automatic corrective actions to address network issues.

Nonetheless, the inclusion of such detailed pieces of in-
formation in all packets does introduce a notable overhead,
which can adversely impact both flow completion times and
application-level performance. In response to this concern,
we have introduced the Proportional INT (p-INT) monitoring
mechanism, enabling fine-grained control over monitoring
granularity. With p-INT, this granularity can be precisely
adjusted by selecting the proportion of packets to which
telemetry headers are appended.

Furthermore, INT provides an indispensable capability for
selectively gathering metrics tailored to specific flows within
a network infrastructure. Much akin to the concept of Quality
of Service (QoS), INT can be meticulously configured to focus
its monitoring efforts on critical flows, thereby providing en-
hanced visibility and granular insights into their performance.
This selective approach empowers network administrators to
prioritize the monitoring of mission-critical or high-priority
data streams, ensuring they receive the utmost attention and
resources. Concurrently, INT can curtail in-band overhead for
non-critical flows, alleviating unnecessary strain on network
resources. This fine-grained control over flow-specific metric
collection improves the allocation of monitoring resources,

elevating network efficiency and reliability to align closely
with the specific needs and priorities of the organization.

B. SMOOTHIE Controller

The second part of SMOOTHIE involves the controller,
responsible for finding alternative routes during network con-
gestion. The pseudo-code of the controller inner work can be
seen on Algo. 1. It detects congestion by monitoring idle
time between packets in various flows. Congestion is then
inferred when these intervals exceed a predefined threshold, τ ,
prompting the controller to choose an alternative path. Unlike
flowlet-based methods, we assess idle time at the egress, en-
abling proactive congestion management, which helps preempt
TCP congestion window resizing and ensures UDP protocol
compatibility. In terms of value, τ needs to balance between
being high enough to avoid false positives from bursts and
low enough for early congestion detection. Which is due to the
fact that τ can be exceeded in three scenarios: TCP congestion
window resizing (indicating packet loss or congestion), bursts
from other flows on the same path, or actual congestion.

Within the new path selection process, we harness the
concept of “the power of two choices” [17] in the realm of
randomized load balancing. This technique stems from the
intriguing observation that when distributing n balls randomly
into n bins, the maximum number of balls in any single
bin typically hovers around O(log n) with a high degree
of certainty. However, by employing a strategy of making
two random choices and directing the ball into the bin with
fewer balls, the maximum number drops significantly to
O(log log n). This “power of two choices” strategy effectively
ensures that the balls are more uniformly distributed among the
bins, significantly improving load balancing. By intelligently
selecting the bin with the fewest balls, we mitigate the risk of
any single bin becoming excessively crowded.

This paradigm, known as the “balls into bins” model, finds
natural applications [25], [26] in tasks such as scheduling, load
balancing, hashing, and other common problems. Remarkably,
despite its apparent simplicity, the use of two random choices



Algorithm 1 Receive and Process INT Report at the controller.
1: //Receive INT report from Egress
2: //Parse INT report into an object called report
3:
4: G ← the graph object representing the topology
5: src_host← G.get_host(report.src_ip)
6: dst_host← G.get_host(report.dst_ip)
7: for i, hop in report.hop_metadatas do
8: if i == 0 then
9: dst← hop.switch_id

10: continue
11: else
12: src← hop.switch_id
13:
14: //Update weights
15: G.edges[src, dst][w1]← hop.queue_occupency

hop.queue_size ÷
G.node_to_node_bw(src,dst)

G.max_bw
16:
17: dst← src
18:
19: //Indicates that the parameter τ has been exceeded
20: if report.update_path then
21: //Generate two paths of minimal length
22: paths← G.generate_paths(src_host, dst_host, 2)
23:
24: //Compare paths weights
25: if w_path(paths[0]) < w_path(paths[1]) then
26: p← paths[0]
27: else
28: p← paths[1]

29: if w_path(current_path) < w_path(p) + δ then
30: return
31: if "path already exported" then
32: return
33:
34: //Export p to the first switch on the path (i.e., ingress)
35: export_path(p, p[1])

proves to be highly effective. It is worth noting that, should
one opt for more than two choices (d > 2) when assigning
each ball, the potential for improvement diminishes, as the
maximum load can be approximated as O(log logn)

log d + O(1).
Encouraged by these findings, we have adopted this strategy
for route selection in the context of SMOOTHIE.

Therefore, the process of selecting a new path involves
randomly picking two paths of minimal length and then
selecting the one with the lowest weight. The path weight is
determined by the sum of the weights of its constituent links,
calculated as:

Link Weight =
QueueOccupancy

QueueSize
÷ LinkBandwidth

MaxBandwidth
.

Here, Queue Occupancy is obtained through INT telemetry
headers, and Max Bandwidth represents the network’s maxi-
mum capacity. After selecting the optimal routing path based

on these metrics, the chosen path is then communicated to the
ingress switch for further action.

Furthermore, the controller’s potential impact can be
assessed empirically by calculating the achieved average
throughput and dividing it successively by the average packet
length and the p-INT proportion. This calculation provides an
estimation of the average packet processing load anticipated
for the controller per second.

C. Flow Redirection

To facilitate efficient packet forwarding along the chosen
route, our network switches employ Segment Routing v6
(SRv6). SRv6 has emerged as the preferred choice for traffic
steering in our network due to its innate support for network
functions and its seamless integration capabilities with cloud
services [27].

Once the controller has selected the most suitable path, it is
encoded as a node segment (i.e., the list of all hops to traverse)
using SRv6.

It is worth noting that our routing information (i.e. SRv6
path) is exported to the ingress switch via industry-standard
communication protocols such as Thrift or gRPC, ensuring
seamless integration within our network ecosystem and com-
patibility with various network management tools.

IV. METHODOLOGY

We conduct experiments using the P4utils [28] framework
and Mininet [29]. The setup uses a host with a 16-core Intel
Xeon Processor E5-2683 v4 and 64 GB of RAM. As for the
chosen topology, it is a spine-leaf with 12 switches, connecting
8 clients and 8 servers.

CLOVE and ECMP have both been implemented using the
implementation provided on the P4learning GitHub reposi-
tory [30]. Furthermore, in order to ensure consistency with
SMOOTHIE, both CLOVE and ECMP implementations have
been adapted to support IPv6. Specifically, for CLOVE,
the congestion-aware load balancing implementation from
P4learning has been carefully modified to align as closely as
possible with the CLOVE-Int variant [2], which serves as a
relevant baseline for our comparative analysis. This adaptation
process involved, among others, the integration of IPv6 support
while preserving the core principles and functionality of the
original CLOVE implementation.

To replicate authentic network traffic patterns, we utilize
a web search workload derived from operational DCNs at
Microsoft [31]. Our experiments follow a simple client-server
communication model, where each client randomly selects a
server and initiates a persistent TCP connection. The size of
data flows sent by clients is determined by sampling from
the empirical Cumulative Distribution Function (CDF) of the
web search workload. The inter-arrival rate of flows on a
connection follows an exponential distribution, with the mean
adjusted to control the desired network load.

Cognizant of perturbations introduced by concurrent pro-
cesses and external factors, each experiment underwent ten it-
erations with a consistent random seed. Our reported outcomes



10 20 30 40 50 60 70 80 90 100
Load (%)

0

20

40

60

80

100
A

v
er

ag
e

F
C

T
(s

ec
.)

Smoothie (1/10)

Smoothie (1/20)

Ecmp

Smoothie (1/70)

Clove

Smoothie (1/50)

Fig. 2. Comparison of SMOOTHIE with CLOVE and ECMP with respect to
average flow completion time over different load. The threshold τ has been
fixed to four RTTs. SMOOTHIE is tested with different p-INT values.

1 RTT 2 RTTs 3 RTTs 4 RTTs 5 RTTs 6 RTTs
τ value

1/10

1/20

1/30

1/40

1/50

1/60

1/70

1/80

1/90

1/100

P
IN

T
va

lu
e

1.8

2.0

2.2

2.4

2.6

2.8

3.0

A
ve

ra
ge

F
C

T
(s

ec
.)

×107

Fig. 3. SMOOTHIE results with respect to parameters τ and p-INT variation.
Lighter colors represent superior results, highlighting ideal parameter combi-
nations. This analysis informs refined configurations, ensuring efficient load
balancing in dynamic network environments.

represent the averaged results from these runs. Employing a
fixed seed across multiple trials mitigates random variance,
ensuring consistent initial conditions and stabilizing our find-
ings. This method bolsters the reliability and robustness of our
study, yielding a more steadfast and indicative estimation of
the system’s behavior, immune to stochastic influences.

In line with prior research [2], [3], we assess the overall
performance using the average Flow Completion Time (FCT).
This metric ensured that all flows, including the majority of
smaller flows, received equal consideration.

V. RESULTS

In Fig. 2, we delve into the sensitivity of SMOOTHIE to
variations in monitoring granularity, highlighting the crucial
necessity of meticulous parameters (p-INT and τ – see Sec. III)
tuning for its effective operation. As illustrated in Fig. 2 and
3, the choice of parameters can exert a significant influence
on the performance and outcomes of the load balancer.

To tackle this challenge and efficiently optimize our parame-
ters, we adopted a Grid-search approach, as depicted in Fig. 3.
Grid-search is a systematic method for parameter tuning that
involves exhaustively testing combinations of parameter values
within predefined ranges. Additionally, we leveraged insights

gleaned from the experiences of our peers, as documented in
CLOVE [2] and HULA [3]. These insights served as a valuable
starting point in our quest for the optimal configuration of
SMOOTHIE’s parameters.

Fig. 3 displays SMOOTHIE’s sensitivity to p-INT and τ
parameters. The X-axis represents τ , the idle time threshold
between packets for congestion detection in round-trip times
(RTT). The Y-axis indicates p-INT values, the proportion of
packets with appended telemetry headers. The color bar in
Fig. 3 signifies average FCT (measured in seconds) across
multiple iterations, with lighter shades denoting better perfor-
mance.

The main parameter to configure is τ congestion threshold,
which should be chosen to be small enough in order to
alleviate congestion at its early onset. The smaller it is, the
sooner we could be avoiding severe congestion episodes, but
the more rerouting false alarms we might be getting and
it might increase packet reordering at the receiver. τ , as
recommended in previous works [9], [32], [2], should be set
between one and five RTTs.

Furthermore, Fig. 3 reveals that lower p-INT values drive
SMOOTHIE closer to behavior resembling ECMP routing. In
this context, SMOOTHIE maintains initial route assignments
akin to ECMP, displaying insensitivity to network conditions
and refraining from flow rerouting (see Sec. III for details).
Notably, performance deterioration is evident when p-INT
exceeds 1/70.

Selecting optimal parameters in systems like SMOOTHIE is
intricate, influenced by traffic patterns, network architecture,
switch configurations, and broader network objectives. Preci-
sion in these settings is vital for efficient load balancing and
traffic management, adapting to the network’s nuances and
evolving requirements through real-time data and performance
objectives.

In conclusion, Fig. 3 shows that the ideal range for τ falls
within the range of 1 to 5 Round Trip Time(s) (RTTs), while
the ideal range for p-INT appears to be between 1/40 and 1/70.
In the subsequent experiments, we used a value of τ which is
four RTTs.

In our study, as illustrated in Fig. 2, we present compelling
empirical findings that highlight the performance advantages
of the SMOOTHIE algorithm over both ECMP and CLOVE.
Notably, SMOOTHIE demonstrates superior load balancing
performance when compared to ECMP. Moreover, even when
pitted against the sophisticated CLOVE algorithm, SMOOTHIE
maintains a high level of competitiveness, outperforming
CLOVE, particularly in scenarios characterized by a 100%
workload.

In Fig. 4, we can observe that SMOOTHIE employs in-
telligent congestion flow rerouting strategies, as opposed to
the random rerouting methods employed by CLOVE. Notably,
SMOOTHIE reroutes a flow at most twice before achieving
convergence, while CLOVE, in 27% of cases, needs to reroute
flows more than five times to achieve the same outcome.
Additionally, it is worth noting that in the worst-case sce-
nario, CLOVE had to reroute flows a staggering 37 times



1 2 3 4 5 ≥6
Number of rerouting

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

o
rt

io
n

Smoothie

Clove

Fig. 4. After rerouting a flow, we assess the route flapping prior to achieving
convergence. As depicted in this Figure, our analysis reveals that, in the case
of SMOOTHIE, a specific flow experiences at most two reroutes. This finding
underscores the superior path selection optimization of SMOOTHIE compared
to CLOVE, in the context of route flapping quantification.

before achieving convergence. This observation underscores
the importance of mitigating route flapping, which can dis-
rupt network stability and performance [33]. Route flapping,
characterized by frequent and unpredictable changes in net-
work paths, can lead to increased latency, packet loss, and
overall network instability, which are detrimental to network
performance. It is the reduction of route flapping that plays
a pivotal role in explaining why SMOOTHIE outperforms its
counterparts, especially in high workload scenarios.

Our thorough analysis strongly supports SMOOTHIE as the
preferred load balancing solution for contemporary networks.
Its advantages, including centralized management simplifying
configuration, and reduced monitoring impact using innovative
INT signaling instead of header-heavy feedback packets, are
key. SMOOTHIE’s capacity to make informed decisions based
on comprehensive network state suits dynamic architectures.
Its impressive ability to mitigate route flapping reduces net-
work instability and disruptions, solidifying its position as
an ideal load balancing solution. Compared to decentralized
alternatives, SMOOTHIE efficiently offloads processing burden
from switches, prioritizing their core function of packet for-
warding.

VI. RELATED WORK

Traditionally, the equal-cost multi-path routing (ECMP)
technique has been the cornerstone of load balancing strate-
gies. ECMP operates on a static path selection method, where
the decision to route traffic is primarily based on the 5-tuple
flow hash digest, encompassing source and destination IP
addresses, source and destination ports, and the transport pro-
tocol. However, ECMP exhibits limitations, including perfor-
mance degradation [4], [2], [3] under a dynamic environment.

To address these limitations, alternative load balancing
strategies have emerged. Systems like HEDERA [4] and B4 [5]
adopt a centralized control paradigm. These solutions continu-
ously monitor the network’s state and periodically update load-
balancing decisions in response to changing conditions. While
these approaches excel in specific network topologies and
operational contexts, they may not be universally applicable

(i.e., optimized for WAN architectures with path updates
occurring at minute-scale intervals).

In contrast, decentralized load-balancing mechanisms like
CLOVE [2] and HULA [3] have gained popularity for their
rapid traffic re-balancing. However, these approaches use
switch memory to store network-wide state information, poten-
tially straining resources in large deployments. Additionally,
these solutions rely on active probes and feedback mech-
anisms which introduce extra packet overhead, potentially
contributing to congestion. Moreover, they often lack the
path decision flexibility of centralized counterparts, relying on
limited information for routing decisions.

Ultimately, a final classification of load balancers emerges,
denoting those that intricately alter the network architecture,
either at the host level, exemplified by MPTCP [7], [8], or at
the switch level, typified by CONGA [9].

VII. CONCLUSION

This paper introduced SMOOTHIE, a novel load balancing
solution tailored for private domains such as datacenters.
Leveraging Inband Network Telemetry (INT), SMOOTHIE
facilitates real-time network performance monitoring, en-
abling proactive congestion management. The p-INT parameter
provides fine-grained monitoring control, prioritizing criti-
cal flows and reducing overhead for non-critical ones. Us-
ing a “power of two choices” strategy for route selection,
SMOOTHIE enhances load balancing and congestion control
while reducing computation overhead.

In comparison to traditional ECMP and the advanced CLOVE
algorithm, SMOOTHIE consistently outperforms them, espe-
cially in high-load scenarios. This advantage primarily arises
from SMOOTHIE’s ability to minimize route flapping, opti-
mizing resource usage and minimizing packet reordering at
receivers.

Overall, SMOOTHIE stands out as a promising load bal-
ancing solution for modern networks. Offering centralized
management, reduced monitoring overhead, and dynamic con-
gestion control, it adapts to diverse network architectures,
leveraging holistic network state for informed decision mak-
ing. A valuable addition to private domain networks like
datacenters.

SOFTWARE ARTEFACTS

All the code discussed in this paper (i.e., SMOOTHIE,
mininet topologies, experiments) is freely available on https:
//github.com/Advanced-Observability.

ACKNOWLEDGMENTS

This work is supported by the CyberExcellence project
funded by the Walloon Region, under number 2110186.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM, August 2008.

[2] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aware load balancing at the virtual
edge,” in Proc. ACM CoNEXT, November 2017.



[3] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc.
Symposium on SDN Research (SOSR), March 2016.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Proc.
USENIX Conference on Networked Systems Design and Implementation
(NSDI), April 2010.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: Experience with a
globally-deployed software defined WAN,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, October 2013.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, August 2013.

[7] C. Raiciu, S. Barré, C. Plunkte, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM, August 2011.

[8] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, “TCP extension
for multipath operation with multiple addresses,” Internet Engineering
Task Force, RFC 6824, January 2013.

[9] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, and N. Yadav, “CONGA:
Distributed congestion-aware load balancing for datacenters,” in Proc.
ACM SIGCOMM, August 2014.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. Wobker, “In-
band network telemetry via programmable dataplanes,” August 2015.

[12] C. Filsfils, S. Previdi, L. Ginsberg, b. Decraene, S. Litkowski, and
R. Shakir, “Segment routing architecture,” Internet Engineering Task
Force, RFC 8402, July 2018.

[13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” August
2013.

[14] INTEL, “Intel® tofino™,” see https://www.intel.com/content/www/us/
en/products/details/network-io/intelligent-fabric-processors/tofino.html.

[15] “Int support on nx-os,” see https://www.cisco.com/c/en/us/td/
docs/switches/datacenter/nexus9000/sw/92x/programmability/guide/
b-cisco-nexus-9000-series-nx-os-programmability-guide-92x/
b-cisco-nexus-9000-series-nx-os-programmability-guide-92x_chapter_
0100001.html.

[16] “Int support on junos os,” see https://www.juniper.net/documentation/
us/en/software/paragon-insights/data-ingest-guide/topics/concept/
pi-inband-telemetry-overview.html#:~:text=Inband%20Network%
20Telemetry%20(INT)%20is,new%20ports%20in%20flow%20paths.

[17] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, October 2001.

[18] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, “An
overview of operations, administration, and maintenance (OAM) tools,”
Internet Engineering Task Force, RFC 7276, June 2014.

[19] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network
programming and visibility,” in Proc. ACM SIGCOMM, August 2014.

[20] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
c. Filsfils, P. Camarillo, and F. Clad, “Segment routing: A comprehensive
survey of research activities, standardization efforts, and implementation
results,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.
182–221, november 2020.

[21] A. Farrel and R. Bonica, “Segment routing: Cutting through the hype
and finding the IETF’s innovative nugget of gold,” IETF Journal, vol. 13,
no. 1, July 2017.

[22] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and z. Li,
“Segment routing over IPv6 (SRv6) network programming,” Internet
Engineering Task Force, RFC 8996, February 2021.

[23] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer,
“IPv6 segment routing header (SRH),” Internet Engineering Task Force,
RFC 8754, March 2020.

[24] The P4.org Applications Working Group, “Int v2.1 specification.”
November 2020, see https://p4.org/p4-spec/docs/INT_v2_1.pdf.

[25] S. Lumetta and M. Mitzenmacher, “Using the power of two choices to
improve Bloom filters,” Internet Mathematics, vol. 4, no. 1, pp. 17–33,
2007.

[26] C. Cooper, R. Elsässer, and T. Radzik, “The power of two choices
in distributed voting,” in Proc. International Colloquium on Automata,
Languages, and Programming (ICALP), July 2014.

[27] S. Koutstaal, “Bright future of SRv6,” May 2023, last Accessed: Sept.
14th, 2023. [Online]. Available: https://tinyurl.com/3xtmb998

[28] ETH Networked Systems Group, “P4utils,” https://github.com/nsg-ethz/
p4-utils.

[29] K. Kaur, J. Singh, and N. Ghumman, “Mininet as software defined
networking testing platform,” in Proc. International Conference on
Communication,Computing & Systems (CCCS), August 2014.

[30] “p4learning,” see https://github.com/nsg-ethz/p4-learning/tree/master.
[31] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proc. ACM SIGCOMM, August 2010.

[32] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51–62, 2007.

[33] H. woo Park, I. Y. Yeo, H. Jang, and N. Kim, “Study on the impact of
big data traffic caused by the unstable routing protocol,” Indian Journal
of Science and Technology, vol. 8, p. 59, 2015.


