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Abstract. Surface melt on the Greenland ice sheet has been
increasing in intensity and extent over the last decades due
to Arctic atmospheric warming. Surface melt depends on the
surface energy balance, which includes the atmospheric forc-
ing but also the thermal budget of the snow, firn and ice near
the ice sheet surface. The temperature of the ice sheet sub-
surface has been used as an indicator of the thermal state
of the ice sheet’s surface. Here, we present a compilation of
4612 measurements of firn and ice temperature at 10 m be-
low the surface (T10 m) across the ice sheet, spanning from
1912 to 2022. The measurements are either instantaneous
or monthly averages. We train an artificial neural network
model (ANN) on 4597 of these point observations, weighted
by their relative representativity, and use it to reconstruct
T10 m over the entire Greenland ice sheet for the period 1950–
2022 at a monthly timescale. We use 10-year averages and
mean annual values of air temperature and snowfall from
the ERA5 reanalysis dataset as model input. The ANN in-

dicates a Greenland-wide positive trend of T10 m at 0.2 ◦C
per decade during the 1950–2022 period, with a cooling dur-
ing 1950–1985 (−0.4 ◦C per decade) followed by a warm-
ing during 1985–2022 (+0.7 ◦ per decade). Regional climate
models HIRHAM5, RACMO2.3p2 and MARv3.12 show
mixed results compared to the observational T10 m dataset,
with mean differences ranging from −0.4 ◦C (HIRHAM) to
1.2 ◦C (MAR) and root mean squared differences ranging
from 2.8 ◦C (HIRHAM) to 4.7 ◦C (MAR). The observation-
based ANN also reveals an underestimation of the subsur-
face warming trends in climate models for the bare-ice and
dry-snow areas. The subsurface warming brings the Green-
land ice sheet surface closer to the melting point, reducing
the amount of energy input required for melting. Our compi-
lation documents the response of the ice sheet subsurface to
atmospheric warming and will enable further improvements
of models used for ice sheet mass loss assessment and reduce
the uncertainty in projections.
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1 Introduction

The Arctic is warming more than 4 times as fast as the global
average (Chylek et al., 2022; Rantanen et al., 2022). Conse-
quently, the Greenland ice sheet is exposed to an increase in
air temperature (e.g., Hanna et al., 2021; Zhang et al., 2022)
which is concurrent to an increase in anticyclonic, cloud-
free conditions in summer (Hofer et al., 2017; Ryan et al.,
2022). In the low-elevation bare-ice area of the ice sheet,
the warming atmosphere increases the sensible heat trans-
fer to the surface (e.g., Wang et al., 2021), while a reduction
in cloud cover increases the downward shortwave radiation,
both having resulted in melt increases since the late 1980s
(Hofer et al., 2017; Trusel et al., 2018; Ryan et al., 2022).
Enhanced melt in the bare-ice area initiates multiple feed-
back processes, such as snowline retreat (Noël et al., 2019;
Ryan et al., 2019) and algal growth (e.g., Stibal et al., 2017;
Cook et al., 2020), which lead to further expansion and dark-
ening of the bare-ice area and enhanced shortwave radiation
absorption. At higher elevations, increased surface melt also
triggers a melt–albedo feedback through which liquid water
within snow and grain coarsening decreases the snow albedo
and increases the absorption of solar radiation (e.g., Nolin
and Stroeve, 1997; Box et al., 2012). The increase in ice sheet
surface energy influx leads to an increase in surface melt
but also to an increase in subsurface temperatures through
heat conduction and refreezing of meltwater (Humphrey et
al., 2012; Polashenski et al., 2014; McGrath et al., 2013).
The subsurface temperature is therefore a key indicator of
how the Greenland ice sheet has been affected by recent
climatic changes. Furthermore, ice sheet subsurface warm-
ing brings the near-surface snow and firn (multi-year, com-
pressed snow) closer to the melting point and makes them
less efficient at refreezing and retaining meltwater (Pfeffer
et al., 1991; Vandecrux et al., 2020a). Subsurface warming
could also trigger thermal-regime shifts across the ice sheet
(Marshall, 2021) and increase the ice viscosity (Phillips et
al., 2010, 2013; Colgan et al., 2015), although with limited
impact on dynamic mass loss (Poinar et al., 2017).

Over the last century, research teams have reported snow,
ice and firn subsurface temperatures of the Greenland ice
sheet. Of all depths measured, here we focus on measure-
ments at or close to the 10 m depth. The temperature at this
depth has been shown to be less affected by seasonal tem-
perature variation and more representative of the long-term
temperature and snowfall history at the surface (Dahl-Jensen
et al., 1998; McGrath et al., 2013; Kjær et al., 2021). This
makes it a convenient standard depth to compare temper-
atures from different periods and different sites. Here, we
compile a dataset of 4612 observations of firm and ice tem-
perature at 10 m below the surface (T10 m), spanning from
1912 to 2022, from published and unpublished sources. We
then use 4597 observations of T10 m within the current ice
sheet extent and the period 1950–2022 to train an artificial
neural network (ANN) model that can predict T10 m over the

entire ice sheet. For a given month and location, the ANN es-
timates T10 m based on 14 parameters derived from the ERA5
reanalysis (Hersbach et al., 2020) that represent the long-
term and recent history of air temperature and snowfall. Us-
ing our observational dataset of subsurface temperature, as
well as our ANN, we evaluate three regional climate mod-
els (RCMs) widely used to estimate the surface mass bal-
ance of the Greenland ice sheet: RACMO2.3p2 coupled to
an offline firn model IMAU-FDM v1.2G (hereafter RACMO,
Noël et al., 2019; Brils et al., 2022), MARv3.12 (hereafter
MAR, Fettweis et al., 2017, 2020) and HIRHAM5 (hereafter
HIRHAM, Langen et al., 2017). We then evaluate the ANN
and RCMs’ T10 m magnitudes and trends in the bare-ice, per-
colation and dry-snow areas of the ice sheet. Lastly, we dis-
cuss the impact of this subsurface warming on the ice sheet
mass balance processes.

2 Methods

2.1 Observed ice sheet subsurface temperature
compilation and interpolation

A total of 4612 T10 m observations were compiled from 48
sources (Fig. 1, Table 1). Each dataset is described in the
related reference in Table 1, except two yet undescribed
datasets. The first unpublished dataset was collected by the
late Konrad Steffen and his team and consists of two thermis-
tor strings: one at Swiss Camp, central western Greenland,
and another at Summit station, central Greenland, to comple-
ment the Greenland Climate Network (GC-Net) automated
weather stations (AWSs) at those sites (Steffen et al., 1996;
Steffen and Box, 2001). The 11 m long string at Swiss Camp
operated between 1992 and 2009 and was equipped with
UUB thermistors at 0.5, 0.75 and 1–11 m depth, with 1 m
spacing. The 10 to 15 m long string at Summit was equipped
with Campbell Scientific T107 thermistors and was active
during the periods 2000–2002 and 2007–2009. New sensors
were added to the Summit string over the years. The sensors’
depth and surface height evolutions could be recovered from
field notes, and these data are now presented for the first time.
The second unpublished dataset comes from 14 new AWSs
installed in 2021 and 2022 by the Geological Survey of Den-
mark and Greenland (GEUS) as a continuation of the GC-Net
sites (Steffen et al., 1996; Steffen and Box, 2001; Vandecrux
et al., 2023b). They are equipped with a GeoPrecision TNode
thermistor string with sensors installed at 0.5, 1, 1.5, 2, 2.5,
3, 4, 6, 8 and 10 m depth. These data are hosted on the same
dataset as the PROMICE AWS data (How et al., 2022).

We also post-processed two previously published datasets.
The data from Humphrey et al. (2012) were corrected for the
changing depth of the sensor below the surface as snow accu-
mulates or melts at the surface (Sect. S1 in the Supplement)
– similarly to the processing of the other time series. The
FirnCover dataset (MacFerrin et al., 2022) appeared to have

The Cryosphere, 18, 609–631, 2024 https://doi.org/10.5194/tc-18-609-2024



B. Vandecrux et al.: Recent warming trends of the Greenland ice sheet 611

a warm bias due to the use of uncalibrated resistance temper-
ature detectors instead of the conventional thermistor or ther-
mocouple instruments. Using firn temperature observations
reported by Samimi et al. (2021) and Heilig et al. (2018) at
DYE-2 as a reference, we built an ad hoc correction function
that was then applied at all sites within the FirnCover dataset.
The correction procedure is described in Sect. S2 and reduces
the FirnCover temperatures by 1.1 ◦C on average.

For the temperatures continuously recorded by thermis-
tor or thermocouple strings, the depths of each tempera-
ture sensor below the surface were calculated using installa-
tion depths and recorded surface height. Wherever necessary,
we interpolated the available temperature profiles linearly to
10 m depth and allowed linear extrapolation if at least two
measurements were available within 2 m of the 10 m depth.
The resulting T10 m values were then aggregated as monthly
means if they originated from continuous measurements, or
they were left as instantaneous values otherwise.

The measurements conducted by different scientific teams
at the same location allow for an assessment of the un-
certainty and reproducibility of local vertically interpolated
T10 m observations. From 10 sites where simultaneous mea-
surements are available, the median root mean square differ-
ence (RMSD) is 0.5 ◦C (Table S1 in the Supplement). Among
these 4612 T10 m observations, 15 measurements are either
outside of the current ice sheet extent as defined by the GIMP
ice sheet delineation (Howat et al., 2014) or outside of the
1950–2022 period we consider for our T10 m reconstruction.
There are therefore 4597 T10 m observations in our compila-
tion that can be used for the reconstruction of T10 m on the
ice sheet between 1950 and 2022.

2.2 The artificial neural network

Point observations of T10 m only give a partial description of
the subsurface temperature: they are discontinuous in space
and time. To describe the evolution of T10 m over the entire
ice sheet and over the last decades, one can train a machine
learning model that links T10 m to an input dataset which is
itself continuous in space and time and assumed to drive
changes in T10 m. Once the relationship between input and
T10 m is learned by the algorithm, the algorithm can be driven
by the entire input dataset to reconstruct the T10 m, even at
places where no observations are available.

Among machine learning algorithms, ANNs have proven
their ability to learn non-linear relationships between a tar-
get variable and a set of input variables in numerous glacio-
logical and meteorological applications (e.g., Steiner et al.,
2005; Braakmann-Folgmann and Donlon, 2019; Xu et al.,
2021). Given that our T10 m compilation, which will be used
to train the algorithm, does not encompass all possible ice
sheet conditions, we favor ANNs over tree-based algorithms
that can be limited when used beyond their training dataset
(e.g., Xiong et al., 2020; Liu et al., 2022). Finally, during our
search for the most straightforward ANN structure capable of

Figure 1. Spatial (a) and temporal (b) distribution of the T10 m ob-
servations in Greenland. Greenland surface classification according
to Vandecrux et al. (2019) based on firn density profiles and remote
sensing observations.

modeling our dataset, we ultimately chose a multi-layer per-
ceptron (Rumelhart et al., 1986). We want to highlight that
the choice of model structure, input parameters and training
strategy does not have a single optimal configuration. Some
of our choices are even decreasing the apparent performance
of the model in order to avoid overfitting and to increase
the model’s capacity to extrapolate outside of its training set.
The following sections describe selection of inputs; our en-
hancement of the dataset’s representativity; and eventually
the ANN structure, training and uncertainty assessment.

2.2.1 The input parameters

Our target variable, T10 m, is predominantly controlled by
(1) the surface temperature through molecular heat conduc-
tion, (2) the subsurface refreezing of meltwater through la-
tent heat release and (3) snowfall rates which determine
the vertical advection velocity in the firn column. The near-
surface air temperature can act as a proxy for both surface
temperature and surface melt in the absence of reliable es-
timates because they all interact within the surface energy
budget. The surface temperature itself depends on the near-
surface air temperature through turbulent heat fluxes and the
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Table 1. Overview of T10 m datasets used in this study.

Reference Start year End year Number of measurements

Koch and Wegener (1930) 1912 1913 5
Wegener (1940), Abermann et al. (2023), Sorge (1935) 1930 1930 8
Heuberger (1954) 1950 1950 2
Benson (1962) 1954 1955 59
Schytt (1955) 1954 1954 31
Nobles (1960) 1954 1954 7
Heuberger (1954) 1954 1954 1
Meier et al. (1957) 1955 1955 4
Griffiths (1960) 1955 1956 38
de Quervain (1969) 1957 1964 8
Ambach (1979) 1959 1959 2
Langway (1961) 1959 1959 14
U.S. Army Transportation Board (1960) 1960 1960 4
Davis (1954) 1960 1960 7
Davis (1967) 1962 1962 1
Mock (1965), Rinker and Mock (1967) 1964 1964 12
Mock and Ragle (1963), Ragle and Davis (1962) 1964 1964 31
Weertman et al. (1968) 1966 1966 1
Colbeck and Gow (1979) 1973 1973 3
Clausen et al. (1988) 1974 1985 11
Clausen and Hammer (1988) 1977 1977 1
Stauffer and Oeschger (1979) 1978 1978 3
Clement (1984) 1983 1983 4
Thomsen et al. (1991) 1990 1991 8
Ohmura et al. (1992) 1990 1990 3
GC-Net unpublished 1991 2010 170*
Braithwaite (1993) 1991 1992 12
Laternser (1994) 1992 1992 16
Schwager (2000) 1994 1994 1
Historical GC-Net: Steffen and Box (2001); Steffen et
al. (2023); Vandecrux et al. (2023b)

1995 2022 1662*

Giese and Hawley (2015) 2004 2008 47*
Humphrey et al. (2012) 2007 2009 57*
PROMICE:
Fausto et al. (2021); How et al. (2022)

2008 2022 1315*

Smeets et al. (2018) 2009 2016 160*
Harrington et al. (2015) 2010 2012 5
Hills et al. (2018) 2011 2017 109*
Charalampidis et al. (2016, 2022) 2012 2013 29*
Yamaguchi et al. (2014) 2012 2012 1
Miller et al. (2020) 2013 2017 68*
Polashenski et al. (2014) 2013 2013 2
Matoba et al. (2015) 2014 2014 1
MacFerrin et al. (2021, 2022) 2015 2019 311*
Kjær et al. (2021) 2015 2015 2
Heilig et al. (2018) 2016 2021 58*
Vandecrux et al. (2021); Colgan and Vandecrux (2021) 2017 2022 119*
Covi et al. (2022, 2023) 2017 2019 77
Law et al. (2021) 2019 2019 1
GC-Net continuation:
Fausto et al. (2021); How et al. (2022)

2021 2022 121*

Total 4612

* Monthly mean values derived from the original measurements
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surface energy budget. This relationship between air temper-
ature, snowfall and T10 m is notably non-linear. In regions
where surface melt is common, meltwater refreezing at depth
will lead to T10 m several degrees higher than the average
air temperature (e.g., Humphrey et al., 2012). On the other
hand, during periods of minimal or no melting (wintertime
or nighttime in the summer), the radiative imbalance at the
surface and the presence of a near-surface atmospheric tem-
perature inversion can cause the surface temperatures, and,
through conduction, the T10 m, to be several degrees lower
than the near-surface air temperature (e.g., Miller et al., 2017;
Steffen and Box, 2001). Additionally, snowfall affects the
subsurface temperature in several ways. In the ablation area,
the seasonal snowpack insulates the underlying ice. In the
accumulation area, snow accumulated at the surface is, after
some time, advected to greater depth, where it can act as ei-
ther a heat source or sink depending on its temperature at the
time of deposition.

Here, we use the air temperature and snowfall monthly
grids from the ERA5 reanalysis (Hersbach et al., 2020) to
derive our 14 input parameters. We use ERA5 Land at a
spatial resolution 0.1× 0.1◦ for 1950–2022 (Muñoz Sabater,
2019) and the original ERA5 (Hersbach et al., 2023) at
0.25× 0.25◦ resolution resampled linearly to 0.1× 0.1◦ for
1940–1950. Delhasse et al. (2020) showed that daily ERA5
near-surface air temperatures compare well with measure-
ments from ice sheet weather stations (mean bias of 0.01 ◦C,
root mean square error of 3.05 ◦C). Loeb et al. (2022) found
that ERA5’s precipitation had the best performance out of
three evaluated reanalysis datasets compared to weather sta-
tion observations in the Canadian Arctic and in Greenland.
Using airborne radar measurements of snow accumulation,
Ryan et al. (2020) found that ERA5’s annual snowfall in
Greenland was comparable to estimates from state-of-the-art
RCMs and outperformed satellite estimations.

The 10-year average temperature (T2 m, 10 yr) and snowfall
(SF10 yr) were calculated for each cell and each month to rep-
resent the long-term conditions at a given time and place. Ad-
ditionally, for each grid cell and monthly time step, we calcu-
late the amplitude of the 2 m air temperature in the previous
year (T2 m, amp), as well as the average air temperature and
snowfall of the 5 previous years. This reflects the capacity
of the subsurface to respond not only to long-term changes
but also to recent changes in air temperatures and snowfall
(e.g., Polashenski et al., 2014). Lastly, to assist the ANN in
capturing the annual periodicity, we give as input the cosine
of the month (assigning 1 in January and −1 in July). For a
given time and location, the ANN therefore takes 14 inputs:
T2 m, 10 yr, SF10 yr and T2 m, amp; the 5 previous years of an-
nual snowfall; the 5 previous years of air temperature; and
the month’s cosine.

2.2.2 Weighting of the observations prior to ANN
training

Many machine learning algorithms, including ANNs, assume
that the training data are representative of the target area
(where the model is applied for predictions), i.e., that the data
are drawn from the same distribution. This assumption is vi-
olated in practice when applying the model to new spatial
domains that may contain local conditions not present in the
training data. Thus, the representativity of the training dataset
compared to the target area is critical for the robustness of
any machine learning model, i.e., how well the model gen-
eralizes to new and unseen data (Meyer and Pebesma, 2021;
Bjerre et al., 2022). The representativity of the 4597 observa-
tion sites (training data) compared to the entire Greenland ice
sheet where the ANN is applied (target area) was quantified
using histogram analysis (Fig. 2). For the three input param-
eters that define the climate at a given location (T2 m, 10 yr,
SF10 yr and T2 m, amp), here referred to as pi=1, 2, 3, we plot
the probability histogram of the parameter pi as it appears
in ERA5 at our observation locations: this is the observa-
tion histogram Ho(pi). We then plot, for that input param-
eter pi , the probability histogram of all the ice sheet pixels
and all time steps within the ERA5 dataset: this is the target
histogram Ht (pi). The observation histograms Ho(pi) rep-
resent the distribution the ANN will learn from, while the
target histograms Ht (pi) represent the values over which the
ANN will eventually be applied (Fig. 2). In an ideal scenario
where the observational dataset is representative of the pa-
rameter space where the ANN will be applied, Ho(pi) and
Ht (pi) should show similar distributions.

In practice, the available observations are not representa-
tive for the entire ice sheet, stemming from, e.g., monitor-
ing sites producing data continuously or western Greenland
being more accessible than eastern Greenland. To make the
training dataset more representative of the parameter space
in which the ANN will be used, we define for each obser-
vation a weight wobs as follows. For each observation and
for a given input parameter pi , wobs(pi) is equal to the ra-
tio of Ht (pi) and Ho(pi) for the bin where the observation
is located. Consequently, if, in a given bin, the observation
histogram is lower than the target histogram, meaning that
this bin is underrepresented in the observational dataset com-
pared to the target space, then the weight wobs(pi) will be
greater than 1. Inversely, the weight wobs(pi) will be less
than 1 if the observation histogram is greater than target his-
togram. Eventually, for each observation, we calculate the
overall weight wobs as the mean of wobs(p1),wobs(p2) and
wobs(p3). This overall weight wobs for each observation is
used to calculate the loss function (in our case the mean
squared error) minimized during the training of the ANN.
As a consequence, observations that are located in under-
represented regions of the parameter space will have overall
weights wobs > 1 and will be given more importance in the
training of the ANN. Inversely, observations located in un-
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derrepresented parts of the parameter space will have overall
weights wobs < 1 and will count less in the training of the
ANN.

As an illustration, let us consider a T10 m observation from
a site and time that has T2 m, 10 yr =−28 ◦C. Figure 2a in-
dicates that only ∼ 10 % of our observation sites have such
an average temperature compared to ∼ 23 % of the ice sheet
pixels in ERA5; i.e., this sample comes from an underrep-
resented temperature range. Following our procedure, we al-
locate to this observation wobs(p1)= 0.23/0.1= 2.3 to in-
crease its final weight wobs, which also considers the obser-
vation’s representativity with regard to SF10 yr and T2 m, amp.
Inversely, 25 % of our observations have T2 m, 10 yr =−18 ◦C,
while only 10 % of the ice sheet (according to ERA5) has
such an average temperature (Fig. 2a). Consequently, an ob-
servation having such T2 m, 10 yr will receive a wobs(p1)=

0.1/0.25= 0.4 and will weigh less in the training of our
ANN.

To verify that our weighting procedure increases the sim-
ilarity between Ho(pi) and Ht (pi), we evaluate the distance
between two histograms H1 and H2 calculated on the same n

bins with the Canberra distance (Lance and Williams, 1966;
Emran and Ye, 2002):

dCanberra(H1,H2)=
∑n

k=1

(
|H1(k)−H2(k)|

H2(k)

)
,

where Hi=1, 2 (k) is the value of histogram Hi=1,2 at bin k.
The smaller the Canberra distance dCanberra(Ho(pi),Ht (pi)),
the more Ho(pi) and Ht (pi) are similar. The Canberra dis-
tance between the observational and target histograms for
T2 m, 10 yr,SF10 yr and T2 m, amp decreased from 22.7, 12.2 and
14.3 to 11.1, 7.5 and 5.3 when weighing the observations
based on their representativity (Fig. 2). Another confirmation
that the weights increase the similarity between the observa-
tion and target histograms is the smaller difference between
the observation and target distributions’ median values once
the weights are applied: from 4.9 ◦C, 6.0 mm w.e. and 2.4 ◦C
with equal weights (Fig. 2a–c) to 2.1 ◦C, 1.4 mm w.e. and
0.4 ◦C with weights (Fig. 2d-f) for T2 m, 10 yr,SF10 yr and
T2 m, amp respectively.

2.2.3 ANN structure and training

Multilayer perceptron ANNs are typically composed of an
input layer, with as many nodes as input variables; multiple
hidden layers containing several nodes; and an output layer.
Each node in the hidden layers (i) makes the weighted sum
of the outputs of all nodes from the preceding layer and adds
a node-specific bias; (ii) applies a simple, layer-specific acti-
vation function to the result; and (iii) passes the output of the
activation function to all the nodes of the next layer and so
forth. During the training of the model, all the weights and
biases from all the nodes are optimized to minimize a loss
function. This is done iteratively by (i) passing part of the
training set through the ANN, (ii) evaluating the difference

between the ANN output and the expected result using the
loss function, and (iii) updating the weights and biases to re-
duce the error in the next iteration (a.k.a. backpropagation).
This general ANN structure can be adapted in many ways to
the dataset and problem it is applied to. Here, we adjust four
of the most important hyperparameters of the ANN: the batch
size, i.e., which fraction of the sample is given to the ANN
for every training cycle; the number of epochs (or training cy-
cles); the number of layers; and the numbers of nodes within
those layers. We use the Adam optimizer (Kingma and Ba,
2014), rectified linear unit activation function (0 if the in-
put is below 0 and f (x)= x if the input x is above 0) and
mean squared error as loss functions. Those three settings
have been used widely in regression problems (Braakmann-
Folgmann and Donlon, 2019; Liu et al., 2022; Lorentzen et
al., 2022).

We set the hyperparameters of our ANN in three steps.
First, we define a validation set made of 633 observations
(14 % of the training dataset) from four sites representing
different areas of the ice sheet: NASA-E for the dry-snow
area, NASA-SE for the percolation area, and Swiss Camp
and KAN_M for the bare-ice area; we use these data as a
validation set. Secondly, we train an ensemble of ANNs with
two layers of 32 nodes each with batch sizes varying from
100 to 5000 (18 irregular steps) and with between 10 and
1000 epochs (8 irregular steps). Each of the 144 settings are
run 10 times to account for the stochastic processes within
model training, resulting in a total of 1440 ANNs. We as-
sess the average learning curve for each setting: the mean
difference (MD) and root mean squared difference (RMSD)
of the trained ANN on the training and validation data as
a function of epoch numbers (Fig. S1 in the Supplement).
We conclude that (i) small batch sizes (< 1000) lead to un-
stable learning curves (Fig. S1a–d), and (ii) large batch sizes
(e.g., 5000) cause slightly slower convergence and similar re-
sults as batch sizes of 3000 and 4000 (Fig. S1i–n). From our
analysis and as a compromise between stability, rapidity of
convergence and potential overfitting, we use a batch size of
4000 over 150 epochs for all ANNs trained henceforth. In the
third and last step of our hyperparameter tuning, we use the
optimal batch size and number of epochs to train 180 ANNs
with one, two and three layers of 8, 16, 32, 64, 128 and 256
nodes each (all layers with same number of nodes, each set-
ting repeated 10 times). We see clear improvements (lower
RMSD) when moving from a single layer to two layers and
from 8 nodes to 64 nodes (Fig. S2). The improvement mov-
ing from two to three layers and from 64 to 128 or 256 nodes
is marginal and within the stochastic uncertainty (overlap-
ping standard deviations in Fig. S2c–f). To keep the model
design as simple as possible, we henceforth use two layers of
64 nodes each.

Additionally, a Gaussian noise layer that adds random
noise to the observations is added after the input layer to fur-
ther prevent overfitting (e.g., An, 1996). Note that both the
addition of Gaussian noise and the assignment of weights
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Figure 2. Histograms of the input parameters: 10-year average 2 m air temperature, 10-year average snowfall and annual amplitude of
monthly 2 m air temperature. The blue histograms are parameter values as they appear at the observation sites, meaning the training data for
the ANN, either with all observations weighing the same (a, b, c) or with weights assigned to each observation based on its representativity (d,
e, f). The orange histograms are parameter values as they appear in the ice sheet pixels of ERA5, meaning the target data for the ANN. For
each pair of target and observation histograms, we calculate the Canberra distance (dCanberra) as a measure of similarity.

to the observations will tend to decrease the apparent per-
formance of the ANN (e.g., MD or RMSD from the non-
weighted observational dataset) but will produce a more ro-
bust output and prevent overfitting. Considering the limited
number of observations relative to the target area, the entire
Greenland ice sheet, we train our best model using all the
available observations weighted according to their represen-
tativity. Consequently, there is no hold out or unseen data
for model validation. Alternatively, we use a spatial cross-
validation approach to measure the performance and uncer-
tainty of the ANN.

2.2.4 Uncertainty estimation of the ANN with spatial
cross-validation

Spatial cross-validation is considered the best-practice ap-
proach for evaluating the uncertainty of ANNs when deal-
ing with spatial data (e.g., Brenning, 2012). For this pur-
pose, we separated the Greenland ice sheet into 10 regions
(Fig. 3c) after Zwally et al. (2012). Each of the 10 regions
contain between 95 and 1298 observations, corresponding to

2 % and 28 % of all observations. For 10 iterations, we hold
out the observations located in a different region and train
an ANN on the remaining observations. We save these 10
models, and, for any new set of input parameters, we use the
standard deviation of the 10 models’ predictions as a mea-
sure of the uncertainty. This uncertainty is never allowed to
be below 0.5 ◦C, which is the measurement uncertainty de-
rived in Sect. 2.1. The monthly grids of ANN uncertainty are
provided along with our best estimation of T10 m, which is
produced by an ANN trained on all available observations.

For a fair evaluation of our ANN against our observational
dataset, we first compare our best ANN model, trained on
all T10 m observations, to these same T10 m observations. This
evaluation does not show how the model would perform on
new, unseen data or regions and consequently leads to an
overestimation of the ANN performance. We then compare
each T10 m observation to the corresponding T10 m predicted
by the one cross-validation model that did not use this ob-
servation for training. This second evaluation illustrates how
the cross-validation ANNs perform on data that were not in-
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cluded in the training set. It contrasts with the first assess-
ment because it evaluates models that were trained only on
part of the observation dataset, and it is therefore a conserva-
tive estimate of the performance of the best model trained on
all T10 m observations.

2.3 Regional climate models

We evaluate 10 m subsurface temperatures from three re-
gional climate models: MARv3.12 (Fettweis et al., 2017,
2020), RACMO2.3p2 (Noël et al., 2019) with the updated
IMAU-FDMv1.2G (Brils et al., 2022) and HIRHAM5 (Lan-
gen et al., 2017). We calculate the MD and RMSD be-
tween the observed and simulated 10 m subsurface temper-
atures. For this study, the outputs from MAR, RACMO and
HIRHAM are available over the periods 1950–2020, 1958–
2020 and 1980–2016, respectively. We compare each model
to the measurements within the common 1980–2016 period
for which all three model outputs are available, as well as
against all observations.

All three models use a multilayer snow, firn and ice model
to calculate subsurface temperature. In addition to differ-
ences in surface forcing in the three models (e.g., in snowfall,
rainfall, melt and energy fluxes), the models also differ in
the way they calculate the subsurface characteristics that im-
pact the subsurface temperature. Both MAR and HIRHAM
estimate firn densification using the overburden pressure, re-
spectively from Brun et al. (1989) and Vionnet et al. (2012),
while RACMO uses a compaction law that was derived for
steady-state firn (Arthern et al., 2010) and empirically fit-
ted to observations (Ligtenberg et al., 2011; Brils et al.,
2022). RACMO’s offline run with IMAU-FDMv1.2G uses
the thermal conductivity parameterization from Calonne et
al. (2019), while HIRHAM and MAR use the parameter-
ization by Yen (1981). The three models treat the release
of latent heat during the refreezing of meltwater in a simi-
lar manner, but the meltwater infiltration is calculated differ-
ently. Both MAR and RACMO use a bucket scheme: melt-
water infiltrates downward unless the water is refrozen or
retained through capillary forces, and ice layers are consid-
ered permeable at the model scale (Ligtenberg et al., 2018).
In HIRHAM, the use of a parameterization of Darcy flow
(Hirashima et al., 2010) and accounting for the decrease of
the layer permeability due to ice content (Colbeck, 1975)
lead to shallower infiltration than in RACMO (Vandecrux
et al., 2020b). Another model detail that impacts the calcu-
lated subsurface temperature is the boundary condition at the
bottom of the model domain. HIRHAM uses a temperature
scheme that requires a fixed temperature at the lowermost firn
layer which is set, for each pixel, to the long-term air temper-
ature average (Langen et al., 2017). Both MAR and RACMO
use the Neumann boundary condition at the bottom layer of
the firn model, which implies no heat flux through the lower
boundary of the model. In the ablation area, new material
needs to be provided to the bottom layer of the model as sur-

face ablation melts ice away. In MAR, as soon as the model
column height is lower than 29 m, a 1 m thick layer composed
of ice is added at the bottom of the model column. MAR
then uses a simple assumption that the underlying ice would
always be cooler than the ablating, near-surface ice. Conse-
quently, the temperature of the 1 m layer added at the bot-
tom of the model was fixed to be 1 % lower (when calculated
in Kelvin) than the temperature of the lowermost layer left
in the model. The differences between RCM-simulated sub-
surface temperatures are partly due to these different mod-
eling approaches for the subsurface processes. This can be
illustrated when different subsurface models are forced with
similar surface data (Lundin et al., 2017; Vandecrux et al.,
2020b). Another source of discrepancy is the difference in
surface climate that is simulated in each of these three mod-
els. More information about the accuracy of the simulated
surface climate within each RCM can be found in Fettweis et
al. (2020), Langen et al. (2017) and Noël et al. (2019).

3 Results

3.1 Performance of the ANN

When comparing the best ANN model to the T10 m obser-
vations it was trained on, we find an MD of 0.0 ◦C and
an RMSD of 1.6 ◦C (Fig. 3a). However, when evaluating
the cross-validation models against their respective unseen
data, we find a similar MD (0.1 ◦C) and an RMSD of 2.5 ◦C
(Fig. 3b). While the first evaluation is overoptimistic, the sec-
ond does not directly evaluate our best ANN model, which
is trained on all available data. These estimates nevertheless
provide bounds to the true performance of our ANN.

Averaging over the entire period 1950–2022, the ANN
uncertainty is lowest across the dry snow area (Fig. 3c), il-
lustrated by the NASA-E site (Fig. 3d). The uncertainty in-
creases towards the ice sheet margin in west, north and north-
east Greenland (Fig. 3c), as exemplified by the site DYE-
2 in the percolation area in western Greenland (Fig. 3e)
and by the sites KAN_L and KPC_U (Fig. 3f, g), two
ablation-area sites in western and northeastern Greenland, re-
spectively. The ANN uncertainty peaks in southeast Green-
land (Fig. 3c) where relatively high air temperatures and
snow accumulation produce temperate firn conditions and
firn aquifers (Forster et al., 2013; Kuipers Munneke et al.,
2014). When the measurements in this region are removed
for cross-validation, there are no firn aquifer observations left
in the training set for the ANN to learn what the T10 m struc-
ture in this ice sheet region is. This is illustrated in Fig. 3h
by a cross-validation model predicting lower T10 m than ob-
served at the site FA_13, resulting in a larger standard de-
viation between the cross-validation models for FA_13. Our
uncertainty estimation is conservative because the final ANN
model is eventually trained on all observations. The regions
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Figure 3. (a) Evaluation of theT10 m simulated by the best ANN model against the observations used for training. (b) Evaluation of the T10 m
simulated by the 10 cross-validation ANN models against their unseen data (i.e., not used for training). The statistics presented are mean
difference (MD), root mean square difference (RMSD) and number of samples for which the comparison was possible (N ). (c) The 1950–
2022 average of the ANN uncertainty as calculated from the standard deviation of 10 cross-validation ANN models trained on different spatial
subsets of the observation dataset. (d–h) Examples of ANN T10 m prediction, its uncertainty and the prediction of the 10 cross-validation
models at a dry-snow site (NASA-E), one percolation site (DYE-2), two ablation sites (KAN_L, KPC_U) and a firn aquifer site (FA_13).
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Table 2. Trends in 10 m subsurface temperature (T10 m) calculated from the ANN and observations (obs.) at 10 sites for the periods 1998–
2010 and 1998–2022. ANN trends are calculated only from the months where observations are also available. The difference between the
two calculated trends and the number of monthly values used for the calculation (N ) are also given for each site.

Trends in T10 m (◦C per decade)

1998–2010 1998–2022

Site ANN Obs. ANN− obs. N ANN Obs. ANN− obs. N

NASA-SE 1.0 0.7 0.3 115 0.4 0.5 −0.1 171
NASA-E 0.5 0.5 0.1 140 0.6 0.5 0.0 270
Summit 0.4 1.0 −0.6 133 0.3 0.6 −0.3 172
Tunu-N 0.7 0.3 0.4 140 0.6 0.5 0.0 150
South Dome 1.4 0.8 0.5 97 0.2 0.5 −0.2 116
Saddle 1.4 0.7 0.7 125 0.2 0.6 −0.4 156
Humboldt 0.5 1.0 −0.4 66 0.4 0.3 0.1 71
Crawford Point 1 1.3 3.0 −1.7 63 0.4 0.7 −0.3 120
DYE-2 1.2 0.8 0.4 139 0.3 1.1 −0.7 220
Swiss Camp 0.7 0.8 0.0 83 0.3 1.8 −1.5 172

of high uncertainty highlight where observations are the most
needed to map the ice sheet subsurface temperature.

To evaluate the capacity of the ANN to capture the recent
evolution of T10 m, we select 10 sites where more than 60
monthly values are available between 1998 and 2022 and
compare the trends calculated from the ANN and the ob-
servations over the periods 1998–2010 and 1998–2022 (Ta-
ble 2). These periods were chosen because of a general lack
of measurements between 2011 and 2020. Trends calculated
from the ANN only consider the months where observations
are available. We note that, due to the missing months, these
trends are not reliable for general inference of the true T10 m
evolution: depending on which months are missing, it might
overestimate or underestimate the true T10 m trend for these
periods. The median T10 m trends for 1998–2010 are 0.9 and
0.8 ◦C per decade for the ANN and for the observations, re-
spectively (Table 2). For the period 1998–2022, the median
T10 m trends for 1998–2010 are 0.4 and 0.6 ◦C per decade for
the ANN and for the observations, respectively (Table 2). The
ANN therefore slightly overestimates the T10 m trend dur-
ing 1998–2010 and underestimates it during 1998–2022. We
conclude that the ANN reproduces the magnitude of the T10 m
increase seen in observations, although this aptitude varies
with the location and the time period considered. From this
assessment and because the ANN does not suffer either tem-
poral or spatial gaps, the ANN appears to be a suitable tool to
study the trends in T10 m over the entire Greenland ice sheet.

3.2 RCM evaluation and comparison with the ANN

We evaluate the RCMs against the observed T10 m in
the period 1980–2016, for which all three RCMs’ out-
puts are available (Fig. 4). HIRHAM shows the best
performance (MD=−0.4 ◦C, RMSD= 2.8 ◦C), followed
by RACMO (MD=−1.3 ◦C, RMSD= 3.1 ◦C) and MAR

(MD=+1.2 ◦C, RMSD= 4.7 ◦C). For the observation sites
located in the ablation area, RACMO, HIRHAM and MAR
have a cold bias with MD of −3.6, −0.9 and −3.4 ◦C, re-
spectively (Fig. 4). MAR captures neither the geographi-
cal nor the seasonal variability of T10 m in the ablation area
(RMSD= 5.4 ◦C). The ANN, although of a different nature,
gives better statistics at these ablation sites with an MD of
0.2 ◦C and an RMSD of 2.9 ◦C, even when calculated from
our cross-validation models’ unseen data (Fig. 3b).

We further evaluate the ANN and RCMs at eight sites
(Fig. 5) that are representative of the dry-snow (Summit,
NASA-E), percolation (DYE-2, KAN_U), bare-ice (Swiss
Camp, KPC_U, SCO_U) and firn aquifer regions (FA_13).
The ANN performs well at most of these sites: the average
MD for these eight sites is less than 0.2 ◦C, and the aver-
age RMSD is 1.2 ◦C. RACMO overestimates T10 m at lower-
temperature sites in the dry-snow area (Fig. 5a, b) and under-
estimates T10 m at the accumulation sites with relatively high
melt (Fig. 5c, d) and at ablation sites (Fig. 5e, g). HIRHAM
compares better than RACMO to the measurements at accu-
mulation sites (Fig. 5a, b) and can either over- or underes-
timate T10 m at percolation sites (Fig. 5c, d) and at ablation
sites (Fig. 5e–g). MAR simulates T10 m that are unrealistic
both in magnitude and in variation (Fig. 5). The causes of
this low performance will be discussed in Sect. 4. At a firn
aquifer site (Fig. 5h), the ANN and the three RCMs success-
fully estimate relatively high T10 m during the period 2013–
2015 for which observations are available. Yet, the models
diverge significantly when estimating the past history of the
site: HIRHAM and MAR indicate T10 m close to 0 ◦C from
the models’ respective initiations in 1980 and 1950, while
RACMO and the ANN indicate that T10 m below −2 ◦C may
have been common at FA_13 before 2000 (Fig. 5h).
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Figure 4. Evaluation of the monthly 10 m subsurface temperatures simulated by RACMO (a), HIRHAM (b) and MAR (c) against obser-
vations. The statistics presented are mean deviation (MD), root mean square difference (RMSD) and number of samples for which the
comparison was possible (N ) for the period when all three models are available (1980–2016). For RACMO and MAR, the statistics for
all available measurements are given in the parentheses. For sites where annual surface ablation is larger than snow accumulation, i.e., net
ablation sites with a bare-ice cover in summer, symbols and statistics are shown in red.

3.3 T10 m trends in the ANN and RCMs

According to the ANN, the Greenland ice sheet average
T10 m has been increasing significantly at a rate of +0.2 ◦C
per decade (P < 0.01) over the 1950–2022 period (Table 3,
Fig. 6a), from an ice-sheet-wide average value of −21.1 ◦C
in 1950 to −19.2 ◦C in 2022. This increase was not constant
over the 1950–2022 period. When fitting multiple piecewise
linear functions to the Greenland ice sheet average T10 m,
with a breakpoint between 1951 and 2021, we identify 1985
as the breakpoint year that explains most of the variance in
the ice-sheet-wide average T10 m time series. This piecewise
linear function consists of a period of significant cooling be-
tween 1950 and 1985 (−0.4 ◦C per decade, P < 0.01) fol-
lowed by a strong warming from 1985 to 2022 (+0.7 ◦C per
decade, P < 0.01). Both the cooling that occurred until 1985
and the subsequent warming were most pronounced in cen-
tral and southern Greenland (Fig. 7a, b). In contrast, the low
elevations of the northwest Greenland ice sheet underwent
warming during the entire period (Fig. 7a–c).

For the time period for which ANN, RACMO, HIRHAM
and MAR are available (1980–2016), the ANN gives an ice-
sheet-wide average T10 m trend of +0.6 ◦C per decade (P <

0.01), while the equivalent trends are estimated at +0.3,
+0.4 and −0.1 ◦C per decade by RACMO, HIRHAM and
MAR (P ≤ 0.01), respectively (Table 3, Fig. 6a). The spa-
tial patterns of T10 m trends in the three RCMs (Fig. 7e–g)
are consistent with the ANN (Fig. 7d): a more pronounced
warming at a mid-elevation band around the ice sheet and a
milder warming (or cooling for MAR) in the rest of the ice
sheet.

Since the processes controlling T10 m depend on the local
climatic, snow and ice conditions, we also compare the evo-
lution of T10 m in different ice sheet regions (Fig. 1): (i) the
bare-ice area where seasonal snow melts completely and ex-
poses underlying glacial ice at the end of summer, (ii) the
dry-snow area where little or no melt occurs, and (iii) the
intermediate percolation area where a significant portion of
the annual snow accumulation melts in spring and summer
and percolates into the underlying firn (Fig. 1a). In the bare-
ice area (Fig. 6b), the observation-based ANN predicts stable
T10 m until the 1980s and increasing T10 m thereafter (+0.6 ◦C
per decade over 1985–2022, P < 0.01). In contrast, MAR es-
timates a negative trend in T10 m temperatures over the 1950–
2022 period and overestimates the T10 m during the 1950–
2000 period compared to the ANN (Fig. 6b). In the bare-
ice area, RACMO and HIRHAM both present a T10 m trend
of +0.2 ◦C per decade (P < 0.01) over 1980–2016 period,
which is 66 % smaller than the ANN trend in the ablation
area for the same period. In the dry-snow area (Fig. 6c),
there is a better agreement between the models, but lower
T10 m in the 1990s in the ANN leads to a more pronounced
warming trend in that area (+0.5 ◦C per decade over 1980–
2016, P < 0.01), which is 40 %–60 % larger than warming
trends predicted by RACMO and HIRHAM. MAR describes
an overall cooling in the dry-snow area (Figs. 6c, 7g, Ta-
ble 3). In the percolation area (Fig. 6d), MAR has a warm
bias compared to the other models (∼+4 ◦C on 1980–2016),
but all models agree on the strong warming that has occurred
here since the 1980s: between +0.5 and +0.9 ◦C per decade
(all P < 0.01) over 1980–2016 (Figs. 6d, 7d–g, Table 3).
Overall, these spatial differences average into a warm bias
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Figure 5. Observed and simulated 10 m subsurface temperatures at selected sites. Note the different y axes.

of MAR for the entire ice sheet and more pronounced trends
for the ANN than for the RCMs (Fig. 6a).

4 Discussion

We compiled the largest dataset of observed subsurface tem-
perature on the Greenland ice sheet to date and used it to train
an ANN which, with snowfall and temperature from ERA5
reanalysis as input, estimates monthly grids of 10 m subsur-
face temperature over the entire ice sheet for the 1950–2022
period. The ANN describes a−0.4 ◦C per decade T10 m trend
during 1950–1985 (Fig. 6a, Table 3), which is consistent with
the negative trends in air temperatures found by Zhang et
al. (2022) in the ERA5 reanalysis and RACMO RCM from
the late 1950s to early 1990s. The following increase in T10 m
(+0.7 ◦C per decade) calculated by the ANN from the 1990s
to 2022 is consistent with all-year and summer air temper-

ature increases found in weather station observations, re-
analysis datasets and regional climate models (Hanna et al.,
2021; Zhang et al., 2022). Between 1950 and 2022, the av-
erage T10m trend derived from our observation-based ANN
is identical to the trend in annual air temperature in ERA5,
showing that the subsurface likely responds to the increasing
air temperature at the surface. Additionally, the ANN esti-
mates a strong warming of +0.9 ◦C per decade on average
and up to +1.4 ◦C per decade locally in the percolation area
(bounded by the dark-green and black lines in Fig. 7b) during
the 1985–2022 period.. This localized warming of the perco-
lation area is also calculated by the three RCMs (Figs. 6d,
7e–g). However, this hotspot of T10 m increase is not found
in air temperature trends (Zhang et al., 2022, Figs. 5–7). The
warming of the subsurface in the percolation area stems from
the increased meltwater infiltration and from the latent heat
released by refreezing (e.g., Humphrey et al., 2012; Vande-
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Figure 6. Evolution of the 10 m subsurface temperature (T10 m) for
all of the Greenland ice sheet (a) and in three ice sheet regions (b–
d). Although all panels have the same vertical-axis scaling, note the
different vertical-axis bounds.

crux et al., 2020a). This successful identification of areas
subject to firn warming by the ANN is remarkable consid-
ering that the ANN only learns from the T10 m observations
and the local air temperature and snowfall history and is not
fed information on meltwater infiltration and refreezing. This
indicates that the ANN successfully learns which areas are
susceptible to undergoing meltwater infiltration and refreez-
ing from its training data.

The ANN model has the strength of statistical models:
it fits the training data and thereby performs better than
RCMs when evaluated against observations used for train-
ing (Figs. 3a, 4). Yet, ANNs and statistical models have sev-
eral limitations. Firstly, the ANN is greatly dependent on the
distribution of the training data and how representative those

Table 3. Trends in 10 m subsurface temperature for different ice
sheet regions and different periods. All trends are significant at a
0.1 level.

Model Period Mean Trend in T10 m
T10 m (◦C) (◦C per decade)

All Greenland ice sheet

ANN 1950–1985 −21.5 −0.4
ANN 1985–2022 −20.7 0.7
ANN 1950–2022 −21.1 0.2
ANN 1980–2016 −21.0 0.6
RACMO 1980–2016 −21.0 0.3
HIRHAM 1980–2016 −21.4 0.4
MAR 1980–2016 −18.6 −0.1

Bare-ice area

ANN 1950–1985 −10.8 0.1
ANN 1985–2022 −9.5 0.6
ANN 1950–2022 −10.1 0.4
ANN 1980–2016 −9.7 0.6
RACMO 1980–2016 −14.0 0.2
HIRHAM 1980–2016 −13.0 0.2
MAR 1980–2016 −11.3 −0.0

Dry-snow area

ANN 1950–1985 −27.1 −0.4
ANN 1985–2022 −26.5 0.6
ANN 1950–2022 −26.8 0.2
ANN 1980–2016 −26.8 0.5
RACMO 1980–2016 −25.6 0.2
HIRHAM 1980–2016 −26.1 0.3
MAR 1980–2016 −24.2 −0.3

Percolation area

ANN 1950–1985 −13.5 −0.5
ANN 1985–2022 −12.8 0.9
ANN 1950–2022 −13.1 0.2
ANN 1980–2016 −13.1 0.8
RACMO 1980–2016 −14.0 0.6
HIRHAM 1980–2016 −13.5 0.6
MAR 1980–2016 −10.1 0.4

data are of the parameter space where the ANN is applied.
Our methods give more weight to observations that are from
underrepresented areas of the parameter space. Yet, there are
still regions with particular combinations of air temperature
and snowfall where no observations are available and where
the ANN extrapolates. More observations are needed from
these less-visited parts of the ice sheet to further train the
ANN. These new measurements could either focus on the
coldest parts of the ice sheet, where our compilation cur-
rently lacks measurements (Fig. 2a), or on the areas where
our uncertainty is the highest, in the southeast (Fig. 3c). Sec-
ondly, the ANN is limited by the input parameters it draws
on. For instance, inaccuracies in ERA5 data (as discussed
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Figure 7. Trends in 10 m subsurface temperature as determined by the ANN over the periods 1950–1984 (a), 1985–2022 (b), 1950–2022 (c)
and 1980–2016 (d) and calculated by RACMO (e), HIRHAM (f) and MAR (g) over the period 1980–2016, when data from all models are
available. Dotted areas indicate trends below significance level (P > 0.1). In panel (b), the lower limits of the dry-snow area (DSA) and of
the percolation area (PA) are shown in dark green and black, respectively.
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in Delhasse et al., 2020; Zhang et al., 2022) for certain pe-
riods or locations will affect the performance of the ANN,
as will T10 m measurement uncertainties. Besides, only us-
ing two input parameters (air temperature and snowfall) must
introduce inaccuracy through oversimplification of complex
physical processes. Additionally, the relatively coarse reso-
lution of the input grid (0.1× 0.1◦) prevents the ANN from
identifying local phenomena such as localized meltwater re-
freezing in surface deepenings and crevasses (Hills et al.,
2018; Chudley et al., 2021) or in ephemeral perched aquifers
(Humphrey et al., 2021; Culberg et al., 2022). Furthermore,
our ANN model cannot account for the exposure of ice af-
fected by past temperature anomalies, i.e., the advection of
deep ice in the ablation zone that may drive T10 m more than
surface conditions (Lüthi et al., 2015). Other widespread pro-
cesses such as the penetration of shortwave radiation into the
subsurface (Van den Broeke et al., 2008; Kuipers Munneke
et al., 2009; Van Dalum et al., 2021), firn ventilation (Al-
bert and Shultz, 2002) or potentially wind pumping (Clarke
et al., 1987) are more likely to be accounted for by the ANN
because observations subject to these processes are included
in the dataset. Ultimately, the ANN cannot identify the pro-
cesses that are responsible for a given subsurface tempera-
ture, but it can learn which T10 m are usually seen at various
temperature and snowfall combinations.

Although the RCMs calculate subsurface temperatures in
similar ways (see Sect. 2.3), differences arise due to their
various assumptions. For example, MAR assumes that, in
the ablation area, the material added at the lower bound of
the model column is always slightly colder than the lower-
most material left in the column. This explains the decreas-
ing trend in simulated T10 m in Fig. 6a and the inability of
MAR to explain the observed T10 m variation at the abla-
tion sites (Fig. 4c). The noise within the T10 m trend map
(Fig. 7g) is also indicative of some numerical instability in
this deep temperature prescription. These limitations of the
model’s boundary conditions have now been identified, and
efforts are ongoing to remediate them in the next version of
MAR. It is, however, interesting to note that these biases
do not significantly impact the surface mass balance sim-
ulated by MAR; different sensitivity tests were performed
with the aim of improving the comparison with T10 m, and
for all of them, the MAR results at the surface remained
unchanged. Langen et al. (2017) showed that the simulated
subsurface temperature profile in HIRHAM in the percola-
tion area greatly depends on the formation, in the model,
of ice layers of density greater than 830 kg m−3 that inhibit
water infiltration. The formation of these high-density lay-
ers in the model depends on the surface climate and subsur-
face model but also on the discretization of the modeled firn
column, which is currently fixed in HIRHAM (Vandecrux et
al., 2020b). Recent efforts to update the HIRHAM subsur-
face scheme to a more flexible discretization that would pre-
serve high-density layers were made for Antarctica (Hansen
et al., 2021) but have not yet been applied to Greenland. Ste-

ger et al. (2017) found that the SNOWPACK model forced
by RACMO2.3, an older version of RACMO2.3p2, evalu-
ated here, overestimated the subsurface temperature in the
high-elevation areas in northwestern Greenland while under-
estimating the firn temperature at lower elevations due to ei-
ther insufficient meltwater generation at the surface or too-
shallow simulated meltwater infiltration. In that same study,
RACMO2.3, in combination with both IMAU-FDMv1.1 and
SNOWPACK subsurface schemes, could not accurately re-
produce subsurface temperatures at some low-elevation firn
sites because the models represented them as bare-ice sites.
This mismatch between the simulated and actual surface type
– bare ice or porous firn – makes sites at the transition be-
tween the bare-ice and percolation areas, i.e., the equilibrium
line, particularly challenging for all RCMs (e.g., KAN_U,
Swiss Camp, KPC_U in Fig. 5d–f). Switching from ver-
sion 2.3 to 2.3p2, in combination with an update to IMAU-
FDMv1.2, allowed RACMO to simulate KAN_U as a firn
site rather than a bare-ice site (Ligtenberg et al., 2018; Brils
et al., 2022). The IMAU-FDM always allows meltwater infil-
tration, which may lead to an overestimation of T10 m at sites
where thick ice layers in the firn provide a barrier for further
percolation. This was highlighted at KAN_U when driving
IMAU-FDMv1.1 with surface temperature and melt rates de-
rived from observations (Vandecrux et al., 2020b). However,
the updated IMAU-FDMv1.2 forced by RACMO2.3p2 now
shows a slight cold bias at KAN_U (Fig. 5d), indicating that
too-deep meltwater infiltration is no longer an issue at that
site (Brils et al., 2022).

The subsurface temperature impacts the surface energy
budget through the conductive heat flux and thereby affects
the snow and ice surface melt. Heat from a warm subsurface
will be conducted to the surface when surface temperatures
are lower. And vice versa, a colder subsurface represents a
heat sink (heat will conduct down, away from the surface)
and will moderate surface melt. Another consequence of the
near-surface snow and firn warming is that it decreases the
cold content and therefore the retention capacity of the snow
and firn (Pfeffer et al., 1991; Vandecrux et al., 2020a). Melt-
water retention in firn occurs when (i) pore space is avail-
able, (ii) this pore space can be accessed by the meltwater,
and (iii) cold content is available to refreeze the meltwater.
Vandecrux et al. (2019) documented that the upper 10 m of
the firn in the lower part of the accumulation area has lost
about 20 % of its pore space over the last decades, while,
in the dry-snow area, pore space has remained stable since
the 1950s. Our work documents the recent subsurface warm-
ing of the ice sheet and how the upper 10 m of snow, ice and
firn is brought closer to the melting point, potentially enhanc-
ing meltwater runoff in the subsequent summers. Our ANN
estimates that the dry-snow area average T10 m increased
from −27.3 ◦C over 1980–1990 to −25.8 ◦C over 2010–
2020. Similarly, the percolation area warmed from −13.7 ◦C
over 1980–1990 to −11.8 ◦C over 2010–2020, 1.9 ◦C (14 %)
closer to the melting point. Our findings complement other
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work showing the changes in the Greenland ice sheet subsur-
face and their impact on the ice sheet mass loss: for example,
the recent expansion of the firn aquifer area stemming from,
among other causes, the loss of firn cold content (Horlings
et al., 2022) or the increasing the runoff from the firn area
(Tedstone and Machguth, 2022) linked to the formation of
ice layers reducing meltwater percolation and retention into
the underlying firn (Machguth et al., 2016; MacFerrin et al.,
2019) .

5 Conclusion

Using the most complete compilation of observed T10 m on
the Greenland ice sheet to date, we trained an artificial neural
network (ANN) to describe the spatio-temporal evolution of
T10 m during 1950–2022. We found that, following a signifi-
cant cooling between 1950 and 1985 (−0.4 ◦C per decade,
P < 0.01), ice-sheet-wide T10 m increased by +0.7 ◦C per
decade from 1985 to 2022 (P < 0.01). Overall, the Green-
land ice sheet T10 m increased at a rate of+0.2 ◦C per decade
over the 1950–2022 period in response to increasing en-
ergy influx at the surface. Our observational dataset yielded
unique and extensive constraints on the subsurface tempera-
ture simulated by three conventional regional climate mod-
els, RACMO, MAR and HIRHAM, and demonstrated their
mixed performance. Notably, it revealed numerical instabil-
ities in MAR, prompting improvements in its snow module,
although these T10 m biases apparently have low impact on
the SMB simulated by MAR. This work highlights the value
of in situ measurements of ice, snow and firn temperatures
to better quantify the response of the Greenland ice sheet
to Arctic warming and to reduce uncertainty in projections
of mass loss from the Greenland ice sheet. Our evaluation
shows highest ANN uncertainty in the southeast and in the
lower percolation area in northern Greenland (Fig. 3). Those
are regions where few observations are available (Fig. 1)and
where additional measurements are needed to better under-
stand the ice sheet’s subsurface temperature and its response
to recent climate change.

Code and data availability. The original subsurface temperature
datasets are cited in Table 1, and, when available, download links
to the original datasets can be found in the reference list. Some
of the observational data were found in other compilations such as
Mock and Weeks (1965), McGrath et al. (2013) or Løkkegaard et
al. (2023), and Mankoff et al. (2022).

The monthly T10 m dataset is currently hosted at
https://doi.org/10.22008/FK2/TURMGZ (Vandecrux, 2023a)
and has also been added to the 2023 release of the SUMup dataset
(https://doi.org/10.18739/A2M61BR5M, Vandecrux et al., 2023a).
A compilation of non-interpolated, instantaneous subsurface
temperatures can be requested from the authors. The T10 m maps
here are available at https://doi.org/10.22008/FK2/C24WVN
(Vandecrux, 2023b), and the scripts used for the analysis are

available at https://doi.org/10.5281/zenodo.8027442 (Vandecrux,
2023c).
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