Precising the different types of vocal fold immobility

A. Lagier aude.lagier@chuliege.be

- First step: observation
- No etiological interpretation

How to diagnose laryngeal immobility/hypomobility?

- Laryngeal examination:
 - Voluntary tasks of adduction (phonation, cough)
 - Voluntary tasks of abduction (sniff)
 - Alternative voluntary adduction/abduction (/i/-sniff)
 - Vegetative/unvolontary tasks: laugh, swallow, reflexive cough
 - Voluntary tasks of elongation (singing voice)
- Nasal flexible endoscopy > oral approaches
 - Awake , relaxed patient,
 - Natural and comfortable position

Laryngeal immobility

- Laryngeal immobility:
 - Absence of gross adduction/abduction motion in the full vocal fold (cartilaginous and membranous)
 - Focus on the vocal process
 - Or posterior part of membranous part when non visible (anterior tilt of the arytenoid)
- Precisions
 - Median, paramedian, lateral,
 - Foreshortened vocal fold
 - Sub-vertical drop
 - Position of the arytenoid

Laryngeal immobility/laryngeal hypomobility

- Laryngeal hypomobility:
 - Reduced range and/or speed of adduction/abduction
 - Reduced rest tension
 - Lack of elongation, anterior commissure rotation
- Compared with the controlateral vocal fold when unilateral disturbance
 - Degree of hypomobility can be precised
 - Stroboscopic finding (debatted)
- Diagnosis quite uneasy
 - Excellent inter-rater reliability for the diagnosis when definition is clear (Madden I, Rosen CA)
 - Almost 40% errors in the designation of the pathologic side in trainees,
 <10% in expert (Isseroff et al.)

Laryngeal immobility/laryngeal hypomobility

- Laryngeal hypomobility:
 - Reduced range and/or speed of adduction/abduction
 - Reduced rest tension
 - Lack of elongation, anterior commissure rotation
- Compared with the controlateral vocal fold when unilateral disturbance
 - Degree of hypomobility can be precised
 - Stroboscopic finding (debatted)
- Diagnosis quite uneasy
 - Excellent inter-rater reliability for the diagnosis when definition is clear (Madden I, Rosen CA)
 - Almost 40% errors in the designation of thepathologic side in trainees,
 <10% in expert (Isseroff et al.)

Neurogenic laryngeal immobility/hypomobility

- Neurogenic impairment
 - Strongly suspected in the medical history
 - Confirmed with LEMG
- Laryngeal paralysis = Neurogenic laryngeal immobility
 - Absence of gross motion
 - Small degree of arytenoid movement with contraction of the IA muscle
- Laryngeal paresis = Neurogenic laryngeal hypomobility
 - Impaired range or speed of VF adduction and/or abduction and/or elongation

Neurogenic laryngeal immobility/hypomobility

- Localization of the nervous lesion
 - Vagus nerve
 - Pharynx paresis
 - VF ab/ad-duction impairment, VF tension impairment
 - Loss of sensibility in pharynx and larynx
 - Recurrent laryngeal nerve
 - Ab/adduction impairment
 - Superior laryngeal nerve
 - VF tension impairment, ie. loss of high pitch voice (falsetto)
 - Asymetry of tension at rest or during phonation
 - Rotation of larynx axis in phonation

• Etiologic investigations mandatory

Imaging, neurological examination

- Diagnostic interest (AANEM Practice topic, 2016)
 - In clinically suspected RLP, 48% of other diagnosis with LEMG
 - Another or additional diagnosis
 - Superior laryngeal neuropathy (anormal EMG in CT muscle)
 - Crico-arytenoid joint fixation (normal EMG in RLN and SLN territories)
 - Myopathy (myogenic pattern)
 - Stroke

- Importance of multi-muscle LEMG (Foerster G & Mueller AH, Volk et al.)

- Diagnostic interest (Henry M et al. 2017)
 - Limitation of EMG lesional localization

due to anatomical variations in the RLN and SLN motor territories

- Pronostic interest (AANEM Practice topic, 2016)
 - After 4 weeks
 - Before 6 months
 - Spontaneous recovery after 6 months is quite rare
 - Synkinetic reinnervation can lead to normal Motor Unit Potential recruitment whitout any VF motion
 - Pronostic for recovery
 - Presence of MUP, presence of polyphasic MUPs
 - Insufficient evidence for fibrillation potentials and/or positive sharp waves for predicting the recovery
 - Electrical synkinesis may decrease the likehood of recovery

Mechanical immobility/hypomobility

- Diagnosis:
 - LEMG: normal (if isolated)
 - Direct laryngoscopy with palpation of the passive mobility of vocal folds
 - Under general aneasthesia +/- curare
 - Without oro-tracheal tube

Mechanical immobility/hypomobility

- Pathology of the crico-arytenoid joint (CAJ)
 - Dislocation/subluxation (uni or bi-lateral)
 - Trauma
 - Ankylosis (uni or bi-lateral)
 - Trauma
 - Arthritis/synovitis (Rheumatoid polyarthritis, psoriasis...)

Mechanical immobility/hypomobility

- Posterior glottic stenosis
 - +/- inter-arytenoid scar
 - +/- CAJ ankylosis
 - Frequently post-intubation

Cancer of the larynx and laryngeal immobility/hypomobility

- Pronostic value of the vocal fold fixation (TNM, AJCC 2017)
 - Definition of T3 in non-glottic larynx cancers
 - More subtle analysis of the vocal fold movement for the glottic cancer.
 - Physiopathology non precised (neurogenic or mechanical motion impairment)

	GLOTTIS	
()T1	Tumor limited to the vocal cord(s) (may involve anterior or posterior commissure) with normal mobility	()T1
()T1a	Tumor limited to one vocal cord	() T1a
()T1b	Tumor involves both vocal cords	()T1b
() T2	Tumor extends to supraglottis and/or subglottis, and/or with impaired vocal cord mobility	()T2
() T3	Tumor limited to the larynx with vocal cord fixation and/or invasion of paraglottic space, and/or inner cortex of thyroid cartilage	() T3
()T4	Moderately advanced or very advanced	()T4
() T4a	<u>Moderately advanced local disease</u> . Tumor invades through the outer cortex of the thyroid cartilage and/or invades tissues beyond the larynx (e.g., trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid or esophagus)	()T4a
() T4b	Very advanced local disease. Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures	() T4b

References

- Rosen CA et al. Nomenclature proposal to describe vocal fold motion impairment. Eur Arch Otorhinolaryngol (2016)273: 1995-1999.
- Maamary JA et al. Relationship Between Laryngeal Electromyography and Video Laryngostroboscopy in Vocal Fold Paralysis. J Voice (2017) 31:638–642.
- Madden LL, Rosen CA. Evaluation of Vocal Fold Motion Abnormalities: Are We All Seeing the Same Thing?
- J Voice (2017) 31:72-77.
- Isseroff TF et al. Interrater Reliability in Analysis of Laryngoscopic Features for Unilateral Vocal Fold Paresis. J Voice (2016) 30:736-740.
- Henry M, Pekala PA, Sanna B, Vikse J, Sanna S, Saganiak K, Tomaszewska IM, Tubbs RS, Tomaszewski KA. The Anastomoses of the Recurrent Laryngeal Nerve in the Larynx: A Meta-Analysis and Systematic Review. J Voice, 2017;Vol. 31 (4), 495–503
- Munin MC et al. AANEM practice topic. Consensus statement: using laryngeal electromyography for the diagnosis and treatment of vocal cord paralysis. Muscle & Nerve (2016) 53:850-855.
- Blitzer A et al. Invited article: recommendations of the neurolaryngology study group on laryngeal electromyoraphy. Otolaryngol Head and Neck Surg (2009) 140: 782-793.
- Foerster G, Mueller AH. Laryngeal EMG: preferential damage of the Posterior Crico-Arytenoid Muscle branches especially in iatrogenic recurent laryngeal nerve lesions. The Laryngoscope (2017) 128:1152-1156.
- Volk GF et al. Laryngeal electromyography: a proposal for guidelines of the European Laryngological Society. Eur Arch Otorhinolaryngol (2012) 269:2227-2245.
- Bogdasarian R, Olson NR. Posterior glottis laryngeal stenosis. Otolaryngol Head Neck Surg (1980) 88:765-72.
- AJCC Cancer Staging Manual, 8th edition, 2017

Thanks for attention!

• Technique (Volk et al.):

• Tochnique (Valk at al).

Table 4 Documentation of LEMG

		TA		PCA		СТ	
		Right	Left	Right	Left	Right	Left
	Insertion activity						
1.	No activity						
2.	Normal activity (<300 ms)						
3.	Increased activity						
4.	Highly increased activity						
	Spontaneous activity						
1.	No reproducible pathologic spontaneous activity						
2.	Little pathologic spontaneous activity						
3.	Moderate pathologic spontaneous activity						
4.	Dense pathologic spontaneous activity						
	Volitional activity						
1.	No activity						
2.	Single fiber pattern						
3.	Moderately decreased recruitment pattern						
4.	Mildly decreased recruitment pattern						
5.	Normal/dense recruitment pattern						
	Morphology of waveform						
1.	Normal biphasic motor unit potential						
2.	Early polyphasic reinnervation potentials with						
	low amplitude and long duration						
3.	Giant polyphasic reinnervation potentials with						
	high amplitude and long duration						
4.	Myogenic polyphasic potentials with low						
	amplitude but normal duration						

- Diagnostic interest
 - Technique (Blitzer et al., 2010)
 - Insertionnal activity: burst of activity, <300ms, normal/reduced/increased
 - Rest activity: spontaneous activity
 - Fibrillation potentials (<5ms muscle fiber action potential)
 - Positive sharp waves (idem always in the positive direction)
 - Complex repetitive discharges (chronic myopathies and neuropathies: abrupt beginning and stop, harsh machinery-like sound
 - Fasciculations (spontaneous discharges of entire motor unit)
 - Polyphasic potentials
 - Motor unit recruitment patterns

- **Results** (Blitzer et al., 2010)
 - Motor unit recruitment patterns
 - With increasing force contraction, MUAPs firing rates increase and additional MUAP are recruited
 - No, poor, moderate, slightly reduced voluntary recruitment of laryngeal motor unit firing
 - Synkinesis
 - Anormal patterning of activation after reinnervation