

Aeroelastic measurements on a vertical axis wind turbine

L. Gayon, R. Dubois, P. Laurent, P. Bélier, F. Dupont, J.M. Redouté, V. Manto and T. Andrianne

Context

Vertical Axis Wind Turbines (VAWT)

- → Aerodynamic loading on the blade varies along the azimuth
- → Risk of dynamic stall and/or torque fluctuation
- \rightarrow Resulting aeroelastic vibrations

In this work

- → Development & validation of a new type of measurement device WAMB = Wireless Aeroelastic Measurement Belt
- \rightarrow On site measurements on a VAWT
- \rightarrow Comparison with numerical results (Qblade)

WAMB - genesis

Arc majeur

WAMB – first prototypes

- Flexible/Thin/Adaptable device including:
- 13 pressure taps
- One 3-axis accelerometer
- Acquisition frequency = 60Hz
- Excluding : cables !

WAMB – wind tunnel validation

- Blade from the VAWT fixed statically
- NACA0018 airfoil profile
- Comparison with pressure measurements from DPMS (TFI ltd.)

WAMB - wind tunnel validation

Comparison of Cp coefficients: Mean $(\overline{C_p})$ and STD (C'_p)

Installation on one blade

Sign conventions

Extraction of events
= cst rotating conditions

Example of data set

Selected events (60 sec)

Event	Wind speed	Rotation speed	TSR
1	2m/s	15RPM	4.4
2	5m/s	15RPM	1.8
3	5m/s	35RPM	4.1
4	8m/s	35RPM	2.6

Figure CP vs TSR

Unsteady pressure distributions of events

Comparison with Qblade

- Qblade = Multiphysic numerical tool developed by TUBerlin
- In this work: Aeroelastic simulations of events
- Aerodynamic model = Lifting Line Free Vortex Wake (LLFVW)
- Structural model = Multi-body with rigid and flexible non-linear beams₁₂

Comparison with Qblade

Comparison with Qblade

Calculation of a "partial tangent force" (C_T)

Conclusions and perspectives

Until now:

- Instrumentation of a blade
- 4 events : 2 stalled, 2 attached
- Comparisons with Qblade

In the future:

• WAMB covering the blade up to the trailing edge

 \rightarrow Access to C_T and the torque

• Measurement in configurations leading to stall

 \rightarrow Measurement of vibration with accelerometers of the WAMB

• Additional Qblade aeroelastic simulations

 \rightarrow Comparison of pressures, forces and accelerations