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Abstract

Using the largest data set available, we determine the best values that the data at t = 0
(total cross sections and real parts of the hadronic amplitudes) give for the intercepts
and couplings of the soft pomeron and of the ρ/ω and a/f trajectories. We show that
these data cannot discriminate between a simple-pole fit and asymptotic log2 s and log s
fits, and hence are not sufficient to reveal the ultimate nature of the pomeron. However,
we evaluate the existing evidence (factorization, universality, quark counting) favouring
the simple-pole hypothesis. We also examine the range of validity in energy of the fits,
and show that one cannot rely on such fits in the region
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Introduction

The description of forward scattering by universal fits has been an open question for the last twenty
years. The data from HERA, which now extend the measurement of off-shell cross sections to very
low values of Q2, have revived the interest in this problem, as it can shed some light on the nature
of the pomeron. Because of the presence of large logarithms of the center-of-mass energy

√
s,

perturbative QCD predicts an explosive increase of the cross sections with energy. Whether this
prediction is stable remains to be seen, but such a sharp rise is qualitatively present in the DIS
data from HERA. However, this is in marked contrast with the observation of on-shell hadronic
total cross sections, which have a very slow rise with s.

Two schools of thought exist regarding this puzzle. The first one starts from the simplest
assumption within Regge theory: that this rise with s is the result of the presence of a glueball tra-
jectory, for which there are at present strong candidates [1]. This trajectory is called the pomeron,
and has an intercept slightly larger than 1. This assumption leads to the prediction of a universal rise
with s, and of factorization. The further hypothesis that the pomeron couples to constituent quarks
leads further to the prediction of quark-counting rules. Moreover, simple refinements have enabled
Donnachie and Landshoff (DL) to push these ideas further [2], and to reproduce qualitatively well all
soft data for the scattering of on-shell particles, even at non-zero t. The problem with this approach
is that it cannot be automatically extended to off-shell particles, and, in particular, to DIS. The
only possible hypothesis [3] would be that an extra trajectory enters the problem, and that this
trajectory decouples at Q2 = 0. The possibility of such a stable trajectory is phenomenologically
viable, and is confirmed, to some extent, by the DGLAP evolution.

The other school of thought starts from perturbative QCD, and assumes that unitarization
changes the fierce rise observed at large Q2 to something compatible with the Froissart bound.
This approach suffers from the fact that, despite recent progress [4], no one has reliably unitarized
a QCD cross section. However, it is clear that such a unitarization will involve the exchange of
a very large number of gluons between the quarks. Hence, the details of the quark structure –
the hadronic wave function – should matter, and this means that the simple Regge factorization
property would be lost, as well as quark counting and even strict universality [5]. Furthermore, it
is expected that such a unitarization would lead to a cut singularity instead of a pole, and to a
power behaviour in log s.

The question we want to address here is whether one can distinguish between these two ap-
proaches by studying soft data. In order to maximize the number of data points, we shall consider
the full hadronic amplitude, i.e. both the total cross section, giving the imaginary part, and the ρ
parameter, giving the ratio of the real part to the imaginary part. As we shall see, the consideration
of the χ2 alone surprisingly does not discriminate between the different hypotheses, but leads one
to refine the description of lower trajectories, and to define a minimum energy below which none
of these fits work. The only discrimination that the soft data can bring in lies in the confirmation
of the properties that suggest that the pomeron is a simple pole coupled to the constituent quarks,
i.e. universality, factorization and quark counting.

This study complements and expands the results of a recent letter [6], where two of us (JRC
and KK) with S. K. Kim presented a detailed statistical analysis of the parameters of the DL model
([6]), as well as the analysis subsequently presented (by VE, SL and NT) in the 1998 Review of
particle physics [7].

This paper is organized as follows. In section 1, we describe the data sample and the hypothesis-
testing procedure. In section 2, we concentrate on the simple-pole fit, and study first the changes
one has to introduce in order to describe the low-energy data reliably. In section 3, we present
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the evidence for simple-pole behaviour, and in section 4 we consider alternative (unitary) forms
for the pomeron-exchange term. In section 5, we mention several attempts to extend the fit to the
low-energy region. In section 6, we use our dataset to place bounds on other trajectories, and we
present some predictions for cross sections.

I Dataset and statistical procedure

I.1 Dataset

Three of us (VE, SL and NT) have prepared a complete and maintained [8] set of published data
for the cross sections and real-to-imaginary part ratios for the following processes: pp, p̄p, π±p
and K±p, as well as for the total cross sections of γp and γγ scattering. Some superseded points
have been removed, and typos have been corrected. It was found in [6] that irrespectively of the
models used, the χ2/d.o.f. was large due to bad data points at ISR energies. Once about 10% of
the ISR points were removed, an acceptable χ2/d.o.f. was achieved, leading to reliable estimates
of the parameters and their errors. As it will turn out, the new dataset does not necessitate such
a filtering procedure, and thus seems more coherent. The dataset contains 2747 (303) data points
for total cross sections (resp. real-to-imaginary ratios), and the number of points used in the fits is
given as a function of energy in Fig. 1. It is our hope that this dataset will become the standard
reference when studying the validity of models for forward quantities.

I.2 Definition of χ
2 and of the errors

As the dataset is quite large and has no substantial inconsistencies, the conventional definition of
χ2 is used. Note, however, that as the most interesting quantities are sensitive to the highest-s
region, where the data are scarce, our definition may not be the best suited for determining the
soft pomeron intercept and other definitions giving more weight to the highest-energy data are
possible. One may also worry about whether one should consider only total cross sections, or the
full amplitude. The best data are certainly the measurements of the total cross section, and one
might wonder whether the interference between pomeron exchange and the Coulomb cross sections
can be reliably calculated.

Despite these two worries, we see no fundamental reason for rejecting part of the data, or using
a non-conventional χ2, as was done in e.g. [3, 9], where equal weights were given to the p̄p and the
pp datasets, while not fitting to the other cross sections or to the ρ parameters.

Choosing a conventional χ2 definition and weighting all the points with inverse squares of their
total errors enables us to define errors through the usual definition7 of a change of χ2 of 1 unit for
acceptable fits with a χ2/d.o.f. of order 1. In case of bad fits, we shall sometimes give an estimate
of the error, which corresponds to a change of χ2 of χ2

min/d.o.f., in other word, we shall then
dilate the errors by the Birge factor. This definition also allows us to reject models or parameters
corresponding to values of the χ2/d.o.f. appreciably larger than 1. Note that for the total error,
we have added the statistical and the systematic errors in quadrature.

One further problem is linked to the fact that the fits considered below are asymptotic: it is
clear that smooth functions cannot describe the resonance region, hence the fits can be trusted only
above a certain energy

√
smin which is a parameter in itself and could, in principle, be process-

dependent. We demand for the fits to be trusted that the value of the parameters remains stable

7Note that the errors in this paper are smaller than those of [6] because there a change of 5 units was considered,
and because we have now a larger dataset.
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w.r.t.
√

smin, and that the χ2/d.o.f. be less than 1. This criterion implies that our determination
of the parameters describing the pomeron is stable, or equivalently that the low energy data are
not of primary importance.

II Regge fits and lower trajectories

First we discuss the Regge-pole parametrization of the data. It is based on the idea that the
cross sections should be reproduced by the simplest singularities in the complex J plane, i.e.

simple poles, corresponding to the exchange of bound-state trajectories. The imaginary part of the
hadronic amplitude is then given by

ImAh1h2
(s, t) =

∑

i

(±1)SiCh1h2
(t)

(

s

s0

)αi(t)

(2.1)

with Si, the signature of the exchange. The total cross section is then equal to

σtot(s) = Im A(s, 0)/s. (2.2)

The trajectories αi(t) are universal, and the process (and mass) dependence is present only in the
constants Ch1h2

(0) (which absorb the scale s0). The highest trajectory, responsible for the rise of
cross sections, is that of the soft pomeron. The others are those of the mesons, and, in principle,
they are numerous. However, once the energy is high enough, only those with the largest intercept,
αi(0) of order 1/2, will contribute at t = 0. The four highest meson trajectories can be clearly seen
in a M2 vs. J plot of the meson data. They correspond to the ρ, the a, the ω, and the f resonant
states.

The simplest assumption, which would result from a simple string model of the mesons, is that
these trajectories are degenerate, which implies that they have the same intercepts [9]. However,
the results of a previous fit [6] show that an exchange-degenerate meson trajectory fails to satisfy
the proposed criteria: the χ2/d.o.f. is large (of order 1.3), the parameters and their errors are
unstable when the model is fitted to the total cross sections and the ρ parameter, and, in fact, the
assumption of exchange degeneracy for C = ±1 meson trajectories is not supported even by fits
to total cross sections only.

This situation persists for other parametrizations of the pomeron term, and in the following we
shall keep the low-energy model of cross sections presented here and resulting from the exchange
of two non-degenerate C = +1 and C = −1 meson trajectories.

Furthermore, the situation remains identical when one considers the additional data presented
here. Hence, we shall adopt the simple generalization proposed in [6], which we shall call the RRP
model, and which assumes independent C = +1 (a/f) and C = −1 (ρ/ω) intercepts. Hence, the
formula (2.1) for the total cross section becomes

ImAh1h2
(s)

s
= Xh1h2sǫ + Y h1h2

1 s−η1 ∓ Y h1h2

2 s−η2 (2.3)

with the intercepts given by

αP = 1 + ǫ

α(C=+1) = 1 − η1 (2.4)

α(C=−1) = 1 − η2
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Figure 1: Parameters of the RRP model as functions of the minimum energy considered in the fit.
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Figure 2: The fit to the total cross sections from the parametrization RRP.
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Figure 3: The fit to the ρ values from the parametrization RRP.

The sign of the Y2 term flips when fitting h1h̄2 data compared to h1h2 data. The real parts of the
forward elastic amplitudes are calculated from analyticity (see, for example [10, 11, 12]):

ReAh1h2
(s)

s
= −Xh1h2sǫcot

(

1 + ǫ

2
π

)

− Y h1h2

1 s−η1cot

(

1 − η1

2
π

)

∓Y h1h2

2 s−η2tan

(

1 − η2

2
π

)

(2.5)

where the upper (resp. lower) sign refers to a proton scattering with a negatively (resp. positively)
charged particle.

We now study the stability of the fit, changing
√

smin from 3 to 13 GeV. The number of points
and the resulting χ2/d.o.f. are shown in Fig. 1. Clearly, the fit is bad for small energies. This is
expected, as there is no reason then for neglecting the effect of lower trajectories. As in [6], we need
C = ±1 meson trajectories that are non-degenerate, primarily because of the constraints coming
from fitting the ρ parameters. We also see that values of 1 or smaller for the χ2/d.o.f. can be
achieved for

√
smin = 9 GeV. Hence, Regge fits are not to be trusted below that energy.

The problem with such a high value of the minimum energy is that the pomeron is reasonably
determined, while the lower trajectories are much more poorly fixed. Clearly, if the fit is physically
meaningful past a certain energy, its parameters cannot depend any longer on its starting point. In
fact, one can see from Fig. 1 that the pomeron intercept and couplings are stable w.r.t.

√
smin once

we are above 8 GeV or so. However, this is not the case for the lower trajectories: although the
C = ±1 intercepts and the C = −1 couplings are stable, within large errors, the C = +1 couplings
do depend on the minimum energy.

It is to be noted that this problem has to do with the definition of the error bars, as all the values
of the couplings above 9 GeV shown in Fig. 1 would lead to a χ2/d.o.f. smaller than 1. Furthermore,
the parameters of the C = +1 trajectory are highly correlated to those of the pomeron8. A small
change in the latter can produce a large variation in the former once one is at high energy. The
bottom line, however, is that we cannot reliably determine the couplings of the a/f trajectory

8The unrounded parameter values, the corresponding dispersions, and the correlation matrices for each fit can be
obtained by request from tkachenkon@mx.ihep.su
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through the fitting procedure outlined here. This situation may change once photon cross sections
are more precisely measured at HERA and LEP.

The best we can do is to quote the values that we obtain for
√

smin = 9 GeV, with the above
caveats. These values are given in Table 1.

ǫ η1 η2 χ2/d.o.f. statistics

0.0933 ± 0.0024 0.357 ± 0.015 0.560 ± 0.017 1.02 383

pp πp Kp γp × 10−2 γγ × 10−4

X (mb) 18.79 ± 0.51 12.08 ± 0.29 10.76 ± 0.23 5.98 ± 0.17 1.55 ± 0.14
Y1 (mb) 63.0 ± 2.3 26.2 ± 0.74 14.08 ± 0.57 11.64 ± 0.88 3.9 ± 2.0
Y2 (mb) 36.2 ± 3.2 7.63 ± 0.72 14.7 ± 1.3

process χ2/N , σtot (N) χ2/N , ρ (N) process χ2/N , σtot (N) χ2/N , ρ (N)

pp 1.01 (75) 1.27 (59) K+p 0.539 (22) 0.635 (7)
p̄p 1.24 (35) 0.518 (11) K−p 0.837 (28) 1.99 (5)

π+p 0.562 (24) 2.21 (7) γp 0.624 (25)
π−p 1.14 (47) 0.953 (23) γγ 0.324 (15)

Table 1: The values of the parameters of the hadronic amplitude in model RRP (2.5),
corresponding to a cut off

√
s ≥ 9 GeV, and the values of the individual χ2 of the

various processes together with the number of points N .

We also show the χ2 per data points and the number of data points for each process fitted to.
One can see that, as in [6], the χ2 is high for some of the sub-processes. We have shown in [6] that
this has nothing to do with the model, but rather with the dispersion of the data. Filtering the data
for these two processes did not change the determination of the parameters. As the global χ2/d.o.f.
is good, we do not resort here to such a procedure, as it is likely to bias the analysis slightly. In
section 4, we shall demonstrate in another way that this is probably due to inconsistencies within
the data, by comparing with other parametrizations of the pomeron, and that these high values of
a few χ2 do not affect our conclusions.

The fits for the total cross sections and ρ-parameters for
√

s ≥ 9 GeV, extrapolated to
√

s ≥
5 GeV, are shown in Figs. 2 and 3. Although the value of χ2/d.o.f. is bad in the low-energy region
(it goes above 2), and thus is statistically unacceptable, the fits look deceptively satisfactory. This
shows the need for a careful statistical analysis with physically sound criteria imposed on.

III The current evidence for the simple pole ansatz

It is not possible either to favour or to reject the simple-pole nature of the pomeron from fits to
the data. On the one hand, it is clear that the above fit is as good as it can be once the energy is
large enough, given its χ2/d.o.f. On the other hand, as we shall see in section 4, other fits fare as
well. Hence, the belief that the pomeron may be a simple pole is based on the other evidence.

III.1 Universality

The first requirement from Regge theory is that the singularities are universal, be they poles or cuts.
Hence, the s dependence of the data has to be a combination of parts which rise or fall with energy
in a process-independent manner. Note that, in general, this does not have to be exactly obeyed by
a diagrammatic expansion of pQCD, as the hadronic wave functions come into the calculation of
the various terms in the perturbative expansion, and one could a priori have a small deviation from
universality [5]. The question of whether the intercepts are universal is also linked to the study of
F2 at HERA [13]. There, for photons with negative masses squared, it is observed that the effective
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Figure 4: The value of the pomeron intercept for three different processes.

pomeron intercept, defined as the power of 1/x in F2(x)/x, seems to depend on Q2 = −M2
γ∗ . It is

of interest to check whether such a behaviour is seen on the other side of M2 = 0.
The problem here is that very little can be said in general. One can achieve for each process

values of the χ2/d.o.f. much smaller than 1 if one fits to that process only. Hence, the usual
definition of errors is meaningless. For instance, pion data have a very low sensitivity to the
pomeron intercept. If we accepted all fits with a χ2/d.o.f. smaller than 1, then the error bars
on the various parameters would be much too large to reach any sensible conclusion. We choose
here to do a partial fit, fixing the C = ±1 meson intercepts, and letting all other parameters free,
and thus deriving errors on the pomeron intercept. As the χ2/d.o.f.is still small, the errors should
correspond to a change in the χ2 such as the χ2/d.o.f. becomes equal to 1. In order to minimize the
errors, we have chosen to include both cross sections and real parts in each fit, and kept

√
smin = 9

GeV. We show the results of such an analysis in Fig. 4. We have not included the γp data, as there
is some uncertainty regarding these. They would lead to an intercept of order 0.075 with large
error bars. Note also that in the pp and p̄p cases, the χ2/d.o.f. is larger than 1, hence the errors
correspond there to a change of 1 unit in the χ2/d.o.f. We see that the soft pomeron intercept may
be universal, and may be independent of the target mass, but the evidence is not overwhelming.

III.2 Factorization and quark counting

The couplings of Regge exchanges are expected to factorize into the product of two couplings,
one for each interacting hadron. One further and much more stringent assumption is that the
pomeron couples to single quarks as a C = +1 photon. The pomeron being an extended object,
this assumption is only viable for constituent quarks, and it strongly suggests that the pomeron is
a simple pole, as, otherwise, the cuts would feel the hadronic wavefunction. The results shown in
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Table 1 can be rewritten

Xpp/Xπp

3/2
= 1.04 ± 0.11 (3.6)

XKp/Xπp = 0.89 ± 0.05 (3.7)

Xγp

gelm
2

[

1
f2

ρ
+ 1

f2
ω

+ 1
f2
Φ

]

(1 + δ)Xπp

≈
213.9Xγp

Xπp
= 1.06 ± 0.04 (3.8)

XppXγγ

X2
γp

= 0.78 ± 0.15 (3.9)

The first and second relations illustrate quark counting, the third comes from factorization and
generalized vector-meson dominance (GVMD) [14], where the contribution of off-diagonal terms δ
is expected to be about 15%, and the fourth is an example of factorization. Hence, the properties
of factorization and quark counting seem to hold within 10%. However, it is clear that data from
other targets would need to be collected at sufficiently high energy before any firm conclusion can
be reached.

The quark-counting property can be summarized by rewriting the pomeron couplings to single
quarks as 1/Λu and 1/Λs for light and strange quarks, so that, for instance, we write Xpp = (3/Λu)2.
The values of the scales thus obtained are

Λu ≈ 0.43 GeV

Λs ≈ 0.60 GeV (3.10)

It is to be noted that quark counting fails to be present for the other trajectories. Hence, these
exchanges have to probe multi-quark configuration, whereas the pomeron seems to be coupled
mainly to single quarks.

IV The question of unitarization and alternative models

It has been known for a long time that simple poles cannot be the only singularities of the hadronic
amplitudes, and that their existence implies that of cuts in the complex J plane. These arise
through multiple exchanges and restore unitarity (and the Froissart-Martin bound). These multiple-
exchanges are expected to play a significant rôle at the highest energies, but it is not clear whether
present data require them. The problem in studying these is that, although one knows qualitatively
what their effect will be, nobody knows the precise form that they will take in hadronic interactions.

For instance, Donnachie and Landshoff have proposed to consider the exchange of two pomerons
as a measure of the strength of unitarization effects, others [15] have used eikonal forms, or N/D
methods [16]. We shall not consider all the possibilities, as we shall show that an ansatz based on
an explicitly unitary answer is indistinguishable from the simple pole fit.

Indeed, one may assume that the simple pole ansatz is strongly unitarized even at low s, and
that multiple exchanges occur very early and turn the s dependence of the cross section into log2 s
[11], which would saturate unitarity, and this for energies as low as 10 GeV. Such a form can
be obtained e.g. through an eikonal formalism, although there is no justification for it in a QCD
context. Following the above logic, we have considered an amplitude of the form
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Figure 5: Parameters of the RRL2 model, as functions of the minimum energy considered in the
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ImAh1h2
(s)

s
= λh1h2

[

A + B log2
(

s

s0

)]

+ Y h1h2

1 s−η1

∓ Y h1h2

2 s−η2 (4.11)

ReAh1h2
(s)

s
= πλh1h2

B log

(

s

s0

)

− Y h1h2

1 s−η1cot

(
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In order to simplify our discussion, and to have the same number of parameters for both fits, we
set9 s0 = 1 GeV2. This form, which we shall call the RRL2 amplitude, leads to the results shown
in Fig. 5. In a manner entirely similar to the RRP case, the fit is bad in the region

√
s < 9 GeV,

and again the C = +1 couplings are not stable. Furthermore, it is interesting to note that this
parametrization leads to fits which are indistinguishable from the simple-pole case. Hence, all forms
of partial unitarization which lead to something between a simple pole and a log2 s fit cannot be
distinguished on the basis of t = 0 data alone. We show in Figs. 6 and 7 the result of such a fit for
the cross sections and ρ parameters. The parameters corresponding again to

√
smin = 9 GeV are

given in Table 2.

A (mb) B (mb) s0 η1 η2 χ2/d.o.f.

25.29 ± 0.98 0.2271 ± 0.0071 1 (fixed) 0.341 ± 0.024 0.558 ± 0.017 1.01

pp πp Kp γp × 10−2 γγ × 10−4

λ 1 0.6459 ± 0.0043 0.5772 ± 0.0065 0.3201 ± 0.0055 0.083 ± 0.076
Y1 (mb) 52.6 ± 2.2 20.17 ± 0.62 9.00 ± 0.75 8.65 ± 0.87 (3.0 ± 2.0)
Y2 (mb) 36.0 ± 3.2 7.50 ± 0.71 14.6 ± 1.3

Table 2: The values of the parameters of the hadronic amplitude in model RRL2 (4.12),
corresponding to a cut off

√
s ≥ 9 GeV.

9It is possible to get slightly better fits below
√

s = 9 GeV2 if one lets this parameter free, but it reaches unphysical
values of the order of 100 MeV2 or smaller, and the stability of the fit is not improved.
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Finally, it is also conceivable that unitarity is not saturated, e.g. multiple exchanges of a pomeron
with ǫ = 0 may lead to a slower rise, in log s [11, 17].

ImAh1h2
(s)

s
= λh1h2

[

A + B log

(

s

s0

)]

+ Y h1h2

1 s−η1 ∓ Y h1h2

2 s−η2 (4.13)

and the real part is again obtained through analyticity:
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The scale s0 can be reabsorbed into A and will be set to 1 in the following.
This fit leads to a slightly better χ2/d.o.f. than the two previous ones, and to stable parameters

for
√

s ≥ 5 GeV. We show the details of this fit, which we shall refer to as RRL1, in Figs. 8-10,
and the best values of the parameters in Table 3. As mentioned by the E811 collaboration [18], a
logarithmic fit favours their new measurement. However, for our purpose, we must point out that,
despite the fact that the fit seems better, the pomeron contribution becomes negative for

√
s < 12

GeV. Hence, one encounters another low-energy problem, and we do not favour such fit over the
other ones for this reason.

A (mb) B (mb) s0 η1 η2 χ2/d.o.f.

−30.8 ± 3.6 6.74 ± 0.22 1 (fixed) 0.2078 ± 0.0079 0.545 ± 0.0063 0.97

pp πp Kp γp × 10−2 γγ × 10−4

λ 1 0.6839 ± 0.0045 0.6439 ± 0.0073 0.3566 ± 0.0048 0.0845 ± 0.0061
Y1 (mb) 106.3 ± 2.9 61.2 ± 2.4 49.7 ± 2.5 29.4 ± 1.3 8.1 ± 3.5
Y2 (mb) 33.36 ± 0.96 5.78 ± 0.16 13.42 ± 0.38

Table 3: The values of the parameters of the hadronic amplitude in model RRL1 (4.13),
corresponding to a cut off

√
s ≥ 5 GeV.

V The low-energy region

Clearly, all the fits presented here become valid only above 10 GeV or so. Extending of their region
of validity would be an important progress, as one would be able to compare them with the other
processes, mainly measured at lower energies, and hence to test factorization better.

We have first tried [19] to modify the energy variable in the fits, and used s̃ = s−u
2 , which is

the variable predicted by Regge theory [20]. Note that the use of s̃ instead of s makes no difference
from

√
s = 9 GeV onwards. It only produces significantly better fits below 9 GeV, but those fits

are still statistically unacceptable.
We have also tried to implement thresholds more rigorously, and found the same situation as in

the s̃ case. We have also attempted to introduce lower trajectories, but the number of parameters
involved then is too high to obtain any convincing answer. Hence, the question of the extension of
the fits to lower energies remains open.

VI Other trajectories

VI.1 Hard pomeron

As we already mentioned, one of the possibilities is that the sharp rise observed at HERA is due
to the presence of another singularity, so far undetected, which would correspond to a new kind of
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Figure 10: The fit to the ρ values from the parametrization RRL1.

pomeron, called the hard pomeron. Assuming that this is a simple pole [3], one can get beautiful
fits to DIS data. However, one would expect such an object to have some kind of manifestation in
soft interactions. Our procedure enables us to place the following 2σ bounds on the hard pomeron,
assuming a hard intercept of 0.4:
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< 10−4 (6.15)

Hence, it seems that if the hard pomeron is a simple pole, it must decouple at Q2 ≤ 0.

VI.2 Odderon

The exchange of a C = −1 trajectory [21] with intercept close to 1 is needed within the Donnachie-
Landshoff model to reproduce the large-t dip in elastic scattering. Such an object does not seem
to be present at t = 0. Again, we can place bounds similar to the above, but this time we allow
the intercept to be as low as 1. We then obtain the 2σ bounds
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VII Predictions

Finally, for each fit, we present the 1σ limits that one gets on σtot and ρ at current or future
hadronic machines. Clearly, one will have to wait until the results from the LHC to discriminate
among the various possibilities presented here. It is not even totally clear whether the LHC will be
able to measure total cross sections sufficiently well within its presently approved program.

We cannot unfortunately make any firm statement on γp and γγ cross sections, as both are
linked. A reliable measurement of either of these would enable us (through factorization) to predict
the other one. At present, the published data are not consistent or precise enough to reach a firm
conclusion. Eq. (3.9) shows that factorization would imply higher γγ and/or lower γp cross sections.

RHIC RHIC Tevatron LHC

σab
tot [mb] 200 [GeV] 500 [GeV] 2000 [GeV] 14000 [GeV]

RRP pp 51.84 ± 0.18 60.63 ± 0.36 77.88 ± 0.87 111.65 ± 2.20
p̄p 52.03 ± 0.18 60.70 ± 0.36 77.89 ± 0.87 111.65 ± 2.20

RRL2 pp 52.11 ± 0.18 61.10 ± 0.37 78.06 ± 0.80 108.16 ± 1.68
p̄p 52.31 ± 0.19 61.17 ± 0.37 78.07 ± 0.80 108.16 ± 1.68

RRL1 pp 52.27 ± 0.11 60.97 ± 0.22 76.17 ± 0.50 99.90 ± 1.06
p̄p 52.48 ± 0.11 61.04 ± 0.22 76.18 ± 0.50 99.90 ± 1.06

RHIC RHIC Tevatron LHC

Re/Im 200 [GeV] 500 [GeV] 2000 [GeV] 14000 [GeV]

RRP pp 0.125 ± 0.002 0.138 ± 0.003 0.145 ± 0.004 0.147 ± 0.004
p̄p 0.127 ± 0.002 0.139 ± 0.003 0.145 ± 0.004 0.147 ± 0.004

RRL2 pp 0.127 ± 0.002 0.137 ± 0.003 0.137 ± 0.002 0.126 ± 0.002
p̄p 0.130 ± 0.002 0.138 ± 0.003 0.137 ± 0.002 0.126 ± 0.002

RRL1 pp 0.125 ± 0.001 0.129 ± 0.002 0.119 ± 0.002 0.099 ± 0.002
p̄p 0.128 ± 0.001 0.129 ± 0.002 0.119 ± 0.002 0.099 ± 0.002

Table 4: Predictions of the pp and p̄p total cross sections and ρ parameter values for
future and present machines.

Conclusion

We have shown that a simple-pole model for the soft pomeron produces very good fits to t = 0 data,
once the energy is bigger than 9 GeV. From our updated compilation of data points, and from the
264 points above 9 GeV, we determined the pomeron intercept to be 1.093 ± 0.003, in agreement
with the conclusions of [6]. We have shown that the lower C = ±1 trajectories are non-degenerate,
and have intercepts given in Table 1. The determination of these parameters is stable and reliable,
as is that of the pomeron couplings. We have also explained that the interplay between C = +1
contributions makes the determination of the couplings of these trajectories problematic. Further
stabilization of these is needed.

Finally, we have indicated that t = 0 data are not sufficient to rule out other models of forward
scattering amplitudes, but the factorization and quark counting properties, which are well respected,
are difficult to understand outside the context of simple poles.
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