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Abstract

With the rapid advancement of offshore wind energy, efficiently managing inspection and main-
tenance (I&M) of wind turbine support structures has become increasingly important. Various
deterioration mechanisms in the harsh marine environment accelerate the structural degradation,
inducing a risk of failure which might result in substantial economic losses. Estimation of such
deterioration processes involves uncertainties which often hurdle decision-making in life-cycle
management planning. Collecting additional data, e.g., through structural health monitoring,
can reduce uncertainties in the estimation of deterioration mechanisms, enabling more rational
and informed maintenance decisions. However, collecting continuous information through mon-
itoring systems also incurs significant sensor installation and maintenance costs. Addressing
these concerns, this thesis is dedicated towards the development of a life-cycle management
framework for offshore wind structures by leveraging digital twin technology with the objective
of optimally allocating inspection, monitoring, and maintenance actions. The life-cycle manage-
ment planning is formally formulated as a decentralized partially observable Markov decision
process (POMDP), which is a principled framework for decision-making under uncertainty. In
this work, maintenance decisions are informed not only by inspection and monitoring data,
but also by a probabilistic digital twin. Particularly, the concept of probabilistic digital twins
for virtual monitoring is presented relying on Bayesian neural networks and state-of-the-art
learning algorithms, and implemented in both numerical and real-world case studies. Featuring
high-dimensional state, action, and observation spaces, the formulated POMDP is solved via
multi-agent reinforcement learning (MARL) algorithms, advising decisions on when and where
to inspect, monitor, or maintain. The outcomes of this research not only showcase the potential
of digital twins as virtual sensors, but also quantify their added benefit in life-cycle management
planning. While the primary application of this research is in the context of offshore wind
turbine support structures, the insights and developed methodologies can be adapted to a
wide spectrum of engineering systems or infrastructures, marking a significant shift towards
data-driven life-cycle management.
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Chapter 1
Introduction

1.1 Rationale and motivation of the research

Structures and infrastructures are subject to various gradual deterioration mechanisms which
can significantly degrade the performance or even trigger failure. For instance, offshore wind
substructures experience fatigue deterioration, as a result of the combined action of cyclic
wind and wave loads. Along with fatigue, offshore wind turbines are also subject to corrosion
deterioration, leading not only to a thickness reduction of structural members, but also accel-
erating the propagation of existing fatigue cracks. To effectively control the risk of structural
failure and mitigate its consequences, it becomes crucial to strategically allocate maintenance
actions throughout the lifetime. However, estimating the failure risk of engineering structures
involves significant uncertainties, such as aleatory uncertainties arising from stochastic nature of
loads and dynamic behaviour of structures themselves, and epistemic uncertainties of deployed
analytical/numerical models, therefore hurdling decision-making.

In order to reduce uncertainties, information can be collected through inspections and/or
monitoring and used to update the knowledge of structural deterioration. Whereas non-
destructive inspection methods previously stood as a primary source of information, the concept
of structural health monitoring (SHM) has recently gained importance along with the rapid
advancement of sensor technologies. For example, SCADA systems, motion sensors and fiber-
optic load cells are increasingly installed in offshore wind farms nowadays. Although the
additional collected information facilitates the decision-maker to make more informed decisions,
inspections and monitoring activities however incur significant costs. Especially, continuous
monitoring for several years might be difficult due to sensor installation and maintenance costs,
and limited lifetime of sensors. The concept of digital twin has therefore been introduced in
order to continuously simulate the physical assets, retrieve information and make decisions.

A digital twin is a virtual model designed to reflect a physical object. The object being
studied, e.g., a wind turbine, is equipped with sensors in critical areas of functionality. These
sensors produce data about different aspects of the physical object’s performance, such as energy
output, load information, environmental conditions, etc., which is then relayed and applied to



2 Introduction

Fig. 1.1. A jacket-supported offshore wind turbine and its digital representation.

the digital copy. Once informed with such data, the virtual model can be used to run simulations
and identify possible improvements, which can then be applied back to the original physical
object. However, in this loop of physical-virtual interaction, there underlie some questions to
be resolved- from the modeling complexity of the digital twin to the efficiency/frequency of
updating the digital twin. How the information retrieved from a digital twin can be useful to
improve life-cycle decisions on the physical asset also becomes a crucial aspect.

In summary, there is a need for integrated life-cycle management planning that already takes
into account the possibility of developing and deploying digital twins. The current life-cycle
management methodologies should be extended to be able to answer the following questions in
addition to classical inspection and maintenance (I&M) planning questions of when/where/how
to inspect or maintain:

• When to install sensors?

• Where to install sensors?

• When a digital twin should be updated or re-calibrated?

This thesis is devoted to propose solutions to these questions, ultimately leading towards efficient
and cost-effective digitalization and life-cycle management of infrastructures such as offshore
wind turbines.

1.2 Decision-making under uncertainty: State-of-the-art

Life-cycle management planning for offshore wind structures forms a complex decision-making
problem under uncertainty:
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• The stochastic offshore environments combined with the dynamic behaviour of wind
turbines induce aleatory uncertainties.

• Due to limited statistical data available for offshore wind turbines, especially as technology
and designs evolve rapidly, the estimation of deterioration mechanisms and failure proba-
bilities relies on analytical models or numerical simulations which are often associated
with epistemic uncertainties.

• Although collecting additional data can reduce statistical/epistemic uncertainties, inspec-
tions and monitoring systems are also subject to measurement uncertainties.

Under these uncertain circumstances, decision-makers need not only to identify optimal mainte-
nance actions but also to determine when and where to gather information in order to minimize
the expected life-cycle cost. The optimal policy in a decision-making problem can be theoretically
identified by conducting a pre-posterior analysis, taking into account the probabilities and
consequences of all the potential events [5]. However, in practice, the number of branches in a
decision tree exponentially grows with respect to the time horizon (curse of history), number of
actions and observations (curse of dimensionality), and becomes computationally intractable.
State-of-the-art I&M planning methods often introduce simplifications in order to alleviate this
challenge. Table 1.1 provides a systematic overview of decision-making approaches available in
the literature, classified in terms of optimization method and practical applications.

Many I&M planning problems rely on pre-defined heuristic decision rules to control the
computational complexity [6]. For instance, inspections are often planned at equidistant intervals
or upon exceeding a certain failure probability threshold, and maintenance actions are conducted
when a problem is detected during inspections, e.g., detection of cracks [7]. By imposing heuristic
decision rules, the decision-making problem is simplified and I&M strategies can be identified
within a reasonable computational time. Heuristics-based methods have often been implemented
in the I&M planning of offshore wind structures [8, 9, 10]. Dynamic Bayesian Networks (DBNs)
are integrated with heuristics [11, 12, 13, 14, 15] in recent I&M planning approaches, offering
an efficient and robust inference for Bayesian updating with observed information. Even though
heuristic decision rules alleviate the computational complexity in I&M decision-making problems,
the obtained I&M strategies are constrained by the number of evaluated pre-defined rules out
of the vast available policy space. Moreover, when I&M optimization is extended to the system
level, defining the decision rules is not as simple as in the component level due to the increased
number of action/observation combinations among the components [12, 16, 17].

On the other hand, the I&M planning problems are formulated as a partially observable
Markov decision process (POMDP) [18, 19, 20], a principled mathematical framework for
decision-making under partial observability. Solving POMDPs also demands computational
expense, and value iteration algorithms were able to solve only small state space problems.
However, with the development of point-based solvers [21, 22, 23, 24], the inherent complexities
of the solution process have been alleviated, by focusing the computation on a set of belief points
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Table 1.1. Survey of inspection and maintenance planning methods available in the literature.

Ref Optimization method Application
Heuristics POMDP DRL (MARL) OWT Others

[30] ✓ ✓
[10] ✓ ✓
[26] ✓ ✓
[27] ✓ ✓
[31] ✓ ✓
[25] ✓ ✓
[32] ✓ ✓
[33] ✓ ✓
[34] ✓ ✓
[14] ✓ ✓
[35] ✓ ✓
[12] ✓ ✓
[36] ✓ ✓
[37] ✓ ✓
[38] ✓ ✓
[39] ✓ ✓
[40] ✓ ✓
[41] ✓ ✓
[29] ✓ ✓ ✓
[42] ✓ ✓
[43] ✓ ✓
[44] ✓ ✓
[45] ✓ ✓
[46] ✓ ✓
[47] ✓ ✓
[48] ✓ ✓
[49] ✓ ✓ ✓
[50] ✓ ✓
[51] ✓ ✓

that are representative of reachable beliefs. POMDP-based approaches have been successfully
used in I&M planning of deteriorating systems [25, 26, 27, 28]. Moreover, POMDP-based policies
are demonstrated to be adaptive and cost-effective than traditional heuristics-based strategies,
and point-based algorithms can efficiently provide optimal I&M policies within a reasonable
computational time [29].

When I&M planning tackles very large engineering systems such as bridge networks, offshore
wind farms, POMDPs also suffer the curse of dimensionality. Addressing the computational
complexities of managing large engineering systems, some life-cycle management planning
methods rely on deep reinforcement learning (DRL) or multi-agent reinforcement learning
(MARL) algorithms in order to identify I&M strategies [38, 43]. Several state-of-the-art MARL
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algorithms are available, mainly categorized either as value-based or policy-based. Value-based
methods focus on optimizing the value function, i.e., the expected reward starting from a state or
state-action pair following a particular policy, to guide action selection. Some examples include
deep Q-networks (DQN) [52], independent Q-learning (IQL) [53], and QMIX [54], etc. On the
other hand, policy-based methods directly learn the optimal policy through neural networks, by
estimating the gradient of the policy’s performance and updating the policy in the direction that
increases the expected reward. Actor-critic methods also expand upon policy-based algorithms,
using two network models: one to find the optimal policy (actor) and one to compute the
value function (critic), e.g., multi-agent deep deterministic policy gradient (MADDPG) [55],
multi-agent proximal policy optimization [56, 57], among others. Actor-critic methods have been
adopted for I&M planning of engineering systems in complex scenarios, such as under budget
constraints [40], or when there are various forms of correlation among the system’s components
[43]. A benchmark of state-of-the-art multi-agent reinforcement learning algorithms with the
specific application of managing the life-cycle of large scale infrastructures can be found in [49].

1.3 Virtual monitoring: State-of-the-art

Virtual monitoring methods play a pivotal role in addressing the challenges associated with
obtaining direct measurements in various engineering applications [58]. These methods are
particularly valuable when accessibility issues prevent the deployment of physical sensors [59, 60],
enabling indirect estimation of critical information that is otherwise difficult to obtain. Table 1.2
summarizes the overview of the reported virtual monitoring models in engineering community,
categorized under modeling approach, probabilistic reasoning and their applications.

Virtual monitoring can be modeled either as physics-based [68, 69, 80] or data-based [4, 62, 72,
81, 82], or a combination thereof [79]. Physics-driven virtual sensors, often referred to as white-
box models, rely on fundamental physics laws and governing equations to estimate unmeasured
quantities. Physics-based models may be periodically updated with in-situ observation data
[66, 83]. On the other hand, data-driven or black-box models use machine learning techniques
such as regression models or neural networks to establish empirical relationships between input
variables and target responses. Data-based models are flexible and can efficiently identify
meaningful patterns in large datasets and have been widely used as virtual sensing models
in various engineering applications [84, 85, 86]. Physics-informed grey-box models combined
the strengths of conventional physics-based models and data-based machine learning models.
Uniquely, these models integrate domain-specific insights by embedding the fundamental physics
laws into the learning framework [87, 88, 89]. This integration ensures adherence to the
established rules of the system, being particularly beneficial in scenarios where only limited
training data is available.

In the specific case of offshore wind turbines, virtual monitoring methods are also required
to tackle additional challenges on top of maximizing prediction accuracy: (i) the quantification
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Table 1.2. Survey of virtual monitoring methods available in the literature.

Modeling approach Probabilistic reasoning Application
Ref Physics Data Deterministic Probabilistic OWT OWT Others

(SS) (B & RNA)
[61] ✓ ✓ ✓
[62] ✓ ✓ ✓
[63] ✓ ✓ ✓
[64] ✓ ✓ ✓ ✓
[65] ✓ ✓ ✓
[66] ✓ ✓ ✓
[67] ✓ ✓ ✓
[68] ✓ ✓ ✓
[69] ✓ ✓ ✓
[70] ✓ ✓ ✓
[71] ✓ ✓ ✓
[72] ✓ ✓ ✓
[73] ✓ ✓ ✓
[74] ✓ ✓ ✓
[75] ✓ ✓ ✓ ✓
[76] ✓ ✓ ✓ ✓ ✓
[77] ✓ ✓ ✓
[78] ✓ ✓ ✓
[79] ✓ ✓ ✓ ✓

SS = Support structures; B & RNA = Blade and rotor nacelle assembly

of uncertainties in model predictions, and (ii) implementation across an entire wind farm. As
mentioned before, the prediction of complex structural responses is associated with significant
uncertainties. The aleatory uncertainty arises from natural random phenomena such that the
turbine response to a single set of input parameters is not unique. Since conventional numerical
simulators typically rely on deterministic modelling, this aleatory uncertainty is often addressed
by conducting multiple simulations with different random seeds for each set of inputs, e.g., wind,
wave, yaw angle, etc., as recommended by offshore wind design practices [90, 91]. Deployment of
virtual monitoring models also induces additional epistemic uncertainty, which is often quantified
by comparing model predictions with respect to sensor data [72, 92]. However, sensors are also
prone to damage/non-functionality in harsh marine environment, and there is often a lack of
ground truth labels. Since the dynamics of offshore wind structures changes over time [93], a
virtual monitoring model becomes less accurate after a certain number of years as well as the
previously quantified model uncertainty is no longer representative.

Another important challenge is the farm-wide applicability of virtual monitoring approaches.
Due to the financial impracticality of fully instrumenting all wind turbines, virtual monitoring
models often rely on data from only one or a handful of ‘fleet-leader’ turbine(s). This approach
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Fig. 1.2. Farm-wide deployment of fleet-leader based virtual monitoring model.

may lead to inaccuracies when models, based on a limited turbine set, are deployed to differently
designed turbines within the same farm [72, 94], thus hindering their farm-wide application.

Digital twin concept

A digital twin is a virtual replica of real-world assets, processes or systems on which simulations
can be run to predict the behavior of the physical twin. In this context, virtual monitoring
models also have potential to be deployed as digital twins, in addition to the former objective of
replacing sensors. The ‘digital twin’ concept proposed by [95] consists of three distinct parts:
the physical object or process and its physical environment, the digital representation of the
object or process, and the communication between the physical and virtual representations.
The definition of the physical object and its physical environment will principally govern the
complexity of a digital twin. Even if a structural system is of interest, one may focus only on a
single sub-component of the system and its specific deterioration mechanisms.

In the context of virtual representation, a digital twin is often built with updatable parameters
which are calibrated with respect to the collected data. Physics-based models are especially
useful when specific knowledge of model parameters is available. The whole physical system can
be twinned in this approach, thus allowing to infer measurements all over the geometry of the
object. In complex engineering systems, retrieving certain model parameters can however be
challenging, limiting the practicality of physics-driven digital twins. On the other hand, data-
based models do not require such knowledge and are capable of capturing intricate patterns in
the data, making them suitable for digital twinning of complex engineering structures. However,
not having a physical model may cause lack of interpretation capabilities and extrapolation
to previously unmeasured locations in the object, and therefore may require component-wise
representation.
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The essential characteristic of a digital twin is the communication with its physical object.
The connection between the physical and digital versions is a closed loop, i.e., not only data from
the physical subject will be used by the virtual twin in order to improve its representation, but
also the predictions from the digital twin should also be used for the physical twin/environment.
In physical-to-virtual communication, when the digital twin should be updated with the newly
collected data is an important aspect to be considered since it will also significantly influence the
modeling complexity. Real-time calibration can be computationally expensive, and might only be
necessary in cases where prompt decisions are to be made, e.g., turbine control systems. However,
in the specific case of offshore wind support structure I&M management, the deterioration
mechanisms are gradual and also, decisions are made on a yearly basis. In such case, the digital
twin might not need to be calibrated every minute or even day, and longer periods are tolerant as
long as the model accuracy is enough for supporting decisions. However, the virtual-to-physical
communication can be still efficient as it only depends on the computational time to simulate
the digital twin. To complete a closed loop digital twin framework, the information from the
digital twin should also be re-used to improve decisions on physical assets, e.g., I&M planning,
lifetime extension or design improvement.

1.4 Objectives of the research

Most existing I&M planning frameworks do not consider digital twin and/or virtual monitoring
in the life-cycle management. Although sensor installation is sometimes considered in the action
space [44, 96], the monitoring data is only used to update the deterioration, disregarding the
potential of developing a digital twin for further information retrieval. On the other hand,
several approaches have been proposed for offshore wind turbine/farm virtual monitoring, only
with the focus of improving prediction accuracy, farm-wide application etc., but not specifying
how they can be used to improve I&M or lifetime extension decisions. Few digital twin based
decision-making methods can be found in the literature [97, 98, 99], presuming the existence
of sensors and/or digital twin over the decision horizon. In principle, there is a need for
decision-making frameworks which take into account the possibility of digital twin development
and deployment in pre-posterior reasoning.

The overarching aim of this thesis is to contribute to the development of probabilistic virtual
monitoring models for offshore wind turbines and a life-cycle management framework using
digital twins. The proposed life-cycle management planning methodology should be able to
identify when to (re)train a digital twin, as well as to control the risk of failure events by
optimally allocating inspections and maintenance interventions. Specifically, this investigation
targets to achieve the following objectives:

• Objective 1: To apply state-of-the-art decision-making methods in life-cycle management
planning for offshore wind support structures;
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Fig. 1.3. Organization of the PhD dissertation.

• Objective 2: To develop a probabilistic virtual monitoring framework for offshore wind
farms, enabling the quantification of aleatory and epistemic uncertainties in the estimated
predictions;

• Objective 3: To integrate virtual monitoring (digital twin) into life-cycle management of
offshore wind substructures;

• Objective 4: To quantify the value of virtual monitoring in life-cycle management and to
identify optimal model re-calibration intervals.

1.5 Outline of the thesis

Addressing the aforementioned objectives, the developments in this work are organized as
illustrated in Figure 1.3, first presenting the contributions with regard to decision-making for
I&M planning of offshore wind structural components, followed by the development of virtual
sensing models. At last, the integration of the developed virtual monitoring scheme with the
life-cycle management framework is presented. Each following chapter of this thesis corresponds
to a published, submitted or under review paper, reaching the concluding remarks and further
research directions in Chapter 7. In all the papers, the author of this thesis holds a primary
responsibility for the conceptualization of the study, formal analysis, investigation, interpretation
of the results, and writing. Additionally, the contributions of each co-author are listed at the
end of each chapter.

First, I&M planning is performed for an offshore wind structural component in Chapter
2, relying on partially observable Markov decision processes (POMDPs). A deterioration rate
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dynamic Bayesian network (DBN) is adopted to model various fatigue/fracture mechanics
models and failure definitions, which are commonly used for offshore wind substructures. The
DBN-POMDP based I&M planning is performed for an offshore wind turbine’s fatigue hotspot,
considering multiple levels of redundancy in the failure definition. The results demonstrate that
POMDPs are flexible and adaptive, providing optimal I&M strategies according the uncertainty
of the deterioration model, failure redundancy and the measurement uncertainty of inspection
techniques.

Thereafter, interpretation and analysis of POMDP-based I&M strategies are presented in
Chapter 3. The objective is to accelerate the practical implementation of POMDPs by offshore
wind asset management decision-makers, who may only be accustomed to calendar- and/or
condition-based approaches. Adaptive I&M policies and expected economic “regret” are also
analyzed in case a decision-maker opts for an action other than the POMDP-suggested optimal
policy.

In Chapter 4, a virtual load monitoring framework is introduced for fatigue load prediction
in offshore wind structures. Relying on supervised learning algorithms, artificial neural networks
are used to map either high or low-frequency SCADA data to the concurrent structural response
data, encoding aleatory uncertainty in the output as a probability distribution. The proposed
method is tested on a simulated dataset of NREL 5-MW offshore wind turbine and the results
show a strong agreement between predicted and actual values of stress range distributions and
fatigue damage estimates.

The development of virtual monitoring is further extended in Chapter 5, proposing a fully
probabilistic scheme along with the uncertainty quantification framework using Bayesian neural
networks (BNNs). Not only the aleatory uncertainty is modeled in the output distribution but
also the model (epistemic) uncertainty is characterized by random weights. The proposed virtual
monitoring framework is tested on an in-situ dataset from three wind turbines in a Belgian
offshore farm. The results demonstrate that BNNs can automatically inform if the provided
predictions are inaccurate, thus allowing deployment to non-fully instrumented turbines in
farm-wide monitoring.

The integration of the developed probabilistic virtual monitoring into life-cycle management
framework is presented in Chapter 6. Once the sensors are installed to collect training data, BNNs
are used as virtual sensors in the following years, providing load prediction and its uncertainty
information. Applying state-of-the-art multi-agent reinforcement learning algorithms, life-cycle
management strategies are then planned for a whole offshore support structure consisting of
several components. The expected benefit of using virtual monitoring system is quantified,
relying on the value of information principle.
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Chapter 2
Inspection and maintenance planning for offshore wind
structural components: Integrating fatigue failure
criteria with Bayesian networks and Markov decision
processes

Paper Hlaing, N., Morato, P. G., Nielsen, J. S., Amirafshari, P., Kolios, A. and Rigo, P. (2022).
Inspection and maintenance planning for offshore wind structural components: Integrating
fatigue failure criteria with Bayesian networks and Markov decision processes. Structure and
Infrastructure Engineering, 18 (7), 983-1001. DOI:10.1080/15732479.2022.2037667.

Abstract Exposed to the cyclic action of wind and waves, offshore wind structures are subject
to fatigue deterioration processes throughout their operational life, therefore constituting a
structural failure risk. In order to control the risk of adverse events, physics-based deterioration
models, which often contain significant uncertainties, can be updated with information collected
from inspections, thus enabling decision-makers to dictate more optimal and informed mainte-
nance interventions. The identified decision rules are, however, influenced by the deterioration
model and failure criterion specified in the formulation of the pre-posterior decision-making
problem. In this paper, fatigue failure criteria are integrated with Bayesian networks and Markov
decision processes. The proposed methodology is implemented in the numerical experiments,
specified with various crack growth models and failure criteria, for the optimal management of
an offshore wind structural detail under fatigue deterioration. Within the experiments, the crack
propagation, structural reliability estimates, and the optimal policies derived through heuris-
tics and partially observable Markov decision processes (POMDPs) are thoroughly analyzed,
demonstrating the capability of failure assessment diagram to model the structural redundancy
in offshore wind substructures, as well as the adaptability of POMDP policies.
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2.1 Introduction

An optimal and rational management of offshore wind substructures is becoming increasingly
important due to the growth of offshore wind installations, with a trend towards larger wind
turbines, often located far offshore. Exposed to harsh marine environmental conditions, the
degradation of offshore wind substructures is accentuated, thus inducing a risk of structural
failure. Additionally, inspection and maintenance interventions may become more complex and
expensive far offshore. In this context, inspection and maintenance (I&M) planning methods
offer a framework for minimizing life-cycle costs, controlling structural failure risks by optimally
allocating inspections and maintenance actions.

Already in the 1990s, early I&M planning methods address the decision-making problem
by exploiting Bayesian decision analysis with the objective to identify optimal strategies for
structures subjected to fatigue deterioration [6, 100], with many applications focused on I&M
planning for offshore structures [101, 102]. By defining the I&M policies based on a set of
predefined decision rules, the computational complications associated with solving an extensive
pre-posterior analysis were alleviated, enabling the identification of rational strategies within
a reasonable computational time [103, 104]. Heuristic-based I&M planning methods have
been widely applied to the management of fatigue-sensitive structures, planning inspections
at periodic intervals or immediately after a specified failure probability threshold is exceeded
[105, 106]. More recently, the integration of discrete dynamic Bayesian networks (DBNs) into
I&M methodologies has enabled the efficient evaluation of more sophisticated heuristic decision
rules [34]. For instance, [12] has proposed an I&M planning approach for structural systems,
evaluating system-level heuristic decision rules in a DBN simulation environment. Other existing
I&M research works consider multiple conflicting objectives within the policy optimization
[107, 108], planning maintenance actions, in some cases, based on specified thresholds [109].
Relying also on dynamic Bayesian networks, single- and multi-objective optimization methods
provide robust Bayesian inference and enable the evaluation of advanced decision rules, e.g.,
adaptive repair thresholds [14]. Through multi-objective policy optimization methods, decision-
makers can operate under budget constraints and/or control maintenance delays.

Even if heuristic decision rules alleviate the computational complexity of the I&M decision-
making problem, as mentioned before, the obtained I&M strategies are constrained by the
number of evaluated pre-defined rules out of the vast available policy space. Instead, I&M
planning methods that rely on Markov decision processes determine adaptive policies, providing
a mapping from the dynamically updated deterioration state to the optimal actions. Various
I&M planning applications for deteriorating structures modeled the decision-making problem
via Markov decision processes, e.g., [18, 19, 20]. The benefits offered by adaptive I&M policies
are substantiated by [28], and [29] have demonstrated that partially observable Markov decision
process (POMDP) solved via point-based algorithms can efficiently determine optimal I&M poli-
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cies. An overview of state-of-the-art point-based solvers and their applicability to infrastructure
management can be found in [110].

As explained before, I&M planning methods aim at controlling arising structural failure
risks by timely allocating inspection and maintenance actions. Essentially, the failure risk of
a structural component represents both the probability of a failure event and its associated
economic, societal, and environmental consequences. The estimation of the failure probability is
governed by a failure criterion, which is specified by the decision-maker. Within the context
of fatigue deteriorating structures, a through-thickness failure criterion is normally prescribed,
e.g., asset management of offshore pipelines and containers. This conventional criterion might
be over-conservative for redundant structures such as the tubular joints of jacket-type offshore
wind turbines (OWTs), as tubular connections have the capacity to sustain through-thickness
cracks until the loading exceeds the resistance of the cracked structure. In such applications, the
fatigue failure limit state can be, instead, formulated via a failure assessment diagram (FAD).

The failure assessment diagram, originally proposed by [111] and [112], describes the interac-
tion between brittle fracture and plastic failure through a two-parameter failure criterion. The
specification of FAD as the governing failure criterion has recently gained attention in offshore
wind applications. Among them, [113] and [114] showcased the evaluation of flaw acceptabil-
ity in offshore wind support structures using a failure assessment diagram of BS7910 [1]. In
parallel with the reported FAD research work, several probabilistic fatigue studies and I&M
planning methods for offshore wind substructures have still specified fatigue limit states based
on the conventional through-thickness failure criterion, potentially drawing over-conservative
conclusions.

In the reported I&M planning methods that formulate the fatigue failure limit state via
a failure assessment diagram [115, 116], the identified I&M policies are, however, based on
heuristic decision rules. In this paper, we originally integrate the modeling of stochastic
fatigue deterioration processes and the specification of FAD-based limit states via dynamic
Bayesian networks, and we introduce the necessary formulation for modeling the overarching
I&M decision-making problem as a partially observable Markov decision process (POMDP).
The proposed method is flexible and can be easily adopted by other applications whose limiting
failure criterion is also defined as a function of multiple failure parameters. The applicability and
efficacy of the proposed approach is verified through numerical experiments, in which optimal
I&M strategies are determined for the specific case of an offshore wind tubular joint. Within the
numerical experiments, the fatigue deterioration of offshore wind structural details is modeled
by one-dimensional and two-dimensional fracture mechanics methods as well as various failure
criteria, thoroughly investigating the effect of model selection on the identified I&M strategies.
The results reveal that the choice of failure criteria and the optimality of the implemented I&M
planning methods significantly affect the resulting I&M policies. In particular, the benefits
of adopting FAD criteria for offshore wind substructures and the cost savings provided by
POMDP-based policies are both meticulously discussed.



16
I&M planning for offshore wind structural components: Integrating fatigue failure criteria with

BNs and MDPs

2.2 Background: Risk-based inspection and maintenance
planning

Risk-based inspection and maintenance planning is based on pre-posterior decision analysis
integrated with deterioration modeling, inspection and repair modeling, and cost modeling. This
section presents deterioration modeling including failure criteria and inspection modeling. Cost
modeling along with policy optimization methods is discussed in Section 2.4. The probabilistic
fatigue deterioration model is used as reference and fracture mechanics models are calibrated
to the fatigue model. The through-thickness failure criterion has been commonly used in the
I&M planning of offshore wind structures [17, 96]. In this paper, the failure assessment diagram
criterion is also addressed and integrated into I&M planning. Procedures to obtain a FAD and
failure assessment points are also presented.

2.2.1 Deterioration modeling

Probabilistic SN model

Offshore wind turbine support structures are subjected to a large number of environmental
load cycles (e.g., waves) and other operational loading in their lifetime. For such structures,
the long-term stress range distribution can be represented by a Weibull distribution, described
by a scale parameter q and a shape parameter h. The shape parameter h for offshore wind
(OW) substructures as recommended by DNV standards [117] is 0.8 and the scale parameter q

is computed such that the cumulative lifetime damage of the structural component designed for
Td years is equivalent to the damage limit corrected by the fatigue design factor (FDF ), i.e.,
DSN(t = Td) = 1/FDF where the temporal fatigue evolution DSN is defined as:
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m1, m2, k1, k2, S1 are parameters of the bi-linear SN curve. n is the number of stress cycles per
year. γ1 and γ2 are the upper and lower incomplete gamma functions.

Probabilistic fatigue analysis can then be based on Palmgren-Miner’s rule with the long-term
stress range distribution. The limit state function applied in the fatigue deterioration model is:

gSN(t) = ∆−DSN(t), (2.2)

where ∆ is the fatigue limit beyond which failure happens and is considered as a random variable
owing to the uncertainty of Palmgren–Miner’s rule. DSN(t) is the accumulated fatigue damage
at year t calculated as in Equation (2.1).
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The design of offshore structures is based on SN curves but the inspection information,
i.e., the presence of crack or the crack size measurement, cannot be directly used to update
the SN-based reliability. Inspection and maintenance planning therefore demands the use of
fracture mechanics (FM) models. Different FM models are described in the following sections. It
becomes necessary to relate the two deterioration models and such a relation can be attained by
calibrating the FM models to the SN model which includes all the information from the design
stage. The calibration is performed such that a similar fatigue life is calculated by fracture
mechanics models as that of S-N test data. Whereas the FM models compute the crack growth,
the only information that contains in the SN model is the failure or survival of the hotspot
through fatigue damage. Therefore, the calibration between SN and FM models has been based
on the probability of failure along the lifetime [117]. Typically, FM parameters with the largest
influence on the crack growth and/or with the least available information are calibrated [103].

Two-dimensional crack growth model

In offshore wind support structures, fatigue cracks initiate from manufacturing imperfections
and welding defects as illustrated in Figure 2.1. The severity increases over the time as the
cracks grow under the cyclic loading of wind and waves. Paris-Erdogan’s law has been widely
used in linear elastic fracture mechanics (LEFM) to model the crack growth [118]:

d

dn
d = Cd (∆Kd)m , (2.3)

d

dn
c = Cc (∆Kc)m , (2.4)

where d is the crack depth growing through the thickness of the structural member and c is the
crack length growing along the surface. n corresponds to the number of stress cycles. Cd, Cc and
m are Paris law parameters, also called crack growth parameters and ∆K is the stress intensity
factor range at the crack tip calculated as:

Possible sites of fatigue crack initiations 

(undercuts)

Growing fatigue crack

Fig. 2.1. Illustration of fatigue crack initiation.
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∆Kd = ∆σYd(d, c)
√

πd, (2.5)

∆Kc = ∆σYc(d, c)
√

πd, (2.6)

where Yd and Yc are stress intensity correction factors and theoretically, are dependent on the
geometry of the component, welded joint detail and time-varying two-dimensional crack size. The
applied stress range ∆σ is assumed to be composed of membrane and bending stress components.
The two components are quantified by the ratio of bending stress to total stress, denoted as the
degree of bending Db. Stress concentration due to weld geometry is also incorporated as the
stress magnification factor Mk. The stress intensity factor ranges can then be described as:

∆Kd = ∆σ [YmdMkmd(1−Db) + YbdMkbd Db]
√

πd, (2.7)

∆Kc = ∆σ [YmcMkmc(1−Db) + YbcMkbc Db]
√

πd. (2.8)

The subscripts d, c refer to crack depth and crack length and m, b refer to membrane
and bending stress components respectively. Geometry functions Ymd, Ybd, Ymc, Ybc and stress
magnification factors Mkmd, Mkbd, Mkmc, Mkbc can be solved by using parametric equations, for
instance, as in BS7910 [1]. Alternatively, one can perform finite element analysis of the cracked
structure and directly compute the stress intensity factors Kd or Kc at each stress cycle [113].

One-dimensional crack growth model

In the one-dimensional fracture mechanics model, the crack propagation is considered only in
the direction of the member’s thickness. Therefore, the stress intensity correction factor Yd

simply becomes a function of crack depth only. Additionally, if it is further simplified such that
the stress intensity correction factor Yd does not depend on the time-varying crack depth and is
approximated as a constant value over the lifetime, an explicit solution of the crack growth can
then be obtained as follows:

d(t) =
[(

1− m

2

)
CdY m

d πm/2(∆σ)mn + d
1−m/2
t−1

](1−m/2)−1

. (2.9)

Through this simplification, the crack propagation can be analytically computed attenuating
the computation associated to solving the coupled equations. For small cracks situated far away
from the boundaries of the structural member, Yd can be taken as 1 with sufficient accuracy
[119]. In probabilistic deterioration modeling, Yd is assigned as a time-invariant random variable
to introduce the model uncertainties associated to the simplifications of the stress intensity
correction factor [2].
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Through-thickness failure criterion

As illustrated in Figure 2.1, a crack grows both through the thickness and along the surface of
the structural component taking a semi-elliptical shape. Assuming that the thickness is smaller
than the length and the width of the member, the crack is likely to penetrate the whole thickness
first. The failure criterion can be formulated depending on the capacity of the structure to
further resist the applied load after through-thickness penetration.

In the through-thickness criterion, the failure happens when the crack depth reaches the
thickness of the structural member which is also denoted as the critical crack size dcrit. This
common criterion is particularly adopted for structures containing pressurized containment, e.g.,
pipelines, pressure vessels, etc. and is conservative for redundant structures such as OW jacket
foundations. The following limit state function is employed for the through-thickness failure:

gF M(t) = dcrit − d(t), (2.10)

in which d(t) is the crack propagation over time. The probability of failure PF (t) is then the
probability of the limit state function being negative such that PF (t) = P (gF M(t) ≤ 0).

Failure assessment diagram

When a crack propagates through a structural member, ultimately the crack size may reach a
critical size which corresponds to a critical stress intensity factor, usually taken as the charac-
teristic value of the fracture toughness Kmat at which brittle fracture happens. Alternatively, if
the applied load is substantially high compared to the material tensile strength, the member
may reach its tensile capacity and fail by plastic collapse. In between brittle fracture and plastic
collapse is an elastoplastic failure mode, where the failure occurs before reaching the plastic
capacity or fracture toughness. The failure assessment diagram was therefore introduced to
combine the two failure modes [111].

The most rigorous method to obtain a FAD for a particular application is to perform an
elastic-plastic J-integral analysis [120]. Since it can be cumbersome, simplified approximations
are available. For instance, BS7910 [1] provide three alternative FAD options which have been
frequently used in offshore wind applications [113, 114]. They are of increasing complexity in
terms of the required material properties and stress analysis data but also provide results of
increasing accuracy with less conservatism. An example of the FAD is plotted in Figure 2.2.

In a FAD, the ordinate plots the fracture ratio Kr, also called the crack-driving parameter
which represents the structure’s susceptibility to brittle fracture. The abscissa plots the load
ratio Lr which measures how close the structure containing the crack is to plastic collapse.
The load ratio Lr is equal to 1 at the yield limit, however plastic collapse happens at a higher
value which is equal to Lr,max. The failure of a structural component is then defined by means
of a failure assessment line (FAL). If an assessment point lies inside the envelope below the
assessment line, the component is assumed to be safe. If it falls on or outside the FAL, it is



20
I&M planning for offshore wind structural components: Integrating fatigue failure criteria with

BNs and MDPs

0 0.5 1 1.5 2 2.5
Lr

0

0.5

1

1.5

2

2.5

K
r

I
II

III

BS7910 (Option 1)
JCSS 2011

R
f

Fig. 2.2. Failure assessment diagram [1] and the simplified criterion [2].

assumed to be failed. The failure assessment line (FAL) is in fact a plot of the critical values of
fracture ratio Kr,crit for a range of load ratio, i.e., 0 ≤ Lr ≤ Lr,max. The cut-off value for plastic
collapse Lr,max according to BS7910 [1] is:

Lr,max = σY + σU

2σY

, (2.11)

where σY and σU are the design yield strength and ultimate strength of the material used.
Kr,crit is equal to 1 for fully brittle fracture and declines as the load ratio increases towards the
collapse load as in Figure 2.2. In addition, as it is illustrated, the FAD can be partitioned into
three different zones: Zone I is the fracture dominant zone, Zone II is the elastoplastic zone and
Zone III is the plastic collapse dominant zone [115].

When the FAD is used as a limit state function, the failure occurs when the applied load
exceeds the reduced capacity of the cracked structure. It becomes necessary to consider the
combined influence of applied loads and non-monotonic strength deterioration of the cracked
structure. Therefore, evaluation of the failure probability with a FAD requires to apply time-
variant reliability methods which are extremely time-consuming. Instead, a simplified criterion
proposed by [2] has been used in this work as an alternative to FAD. In this case, the failure is
expected if the interaction of the crack-driving parameter Kr and the load ratio Lr exceeds a
normalized resistance parameter Rf , see Figure 2.2. The concept of the normalized resistance
parameter and the recommended values are described in [121] and [2]. Then, the limit state
equation and assessment points Kr and Lr are reformulated as:

gF M(t) = Rf −
√

K2
r (t) + L2

r(t), (2.12)
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Kr = KI

Kmat

+ ρ, Lr = σref

σY

, (2.13)

where Rf is the normalized resistance parameter. Kmat is the fracture toughness of the material.
KI is the stress intensity factor at the crack tip and can be computed for a particular crack size
as follows:

KI = σYd(d, c)
√

πd, (2.14)

where σ is the maximum applied stress. The plasticity correction factor ρ ≥ 0 reflects the
interaction between the applied primary loads and the secondary loads, e.g., residual stress Rs.
Plasticity correction is important when the secondary loads are high which, for example, is the
case of welded joints. In such case, ρ increases as the crack size becomes larger, representing
the reduced load carrying capacity of the deteriorated structure driven by plasticity interaction
effects. The plasticity correction can be evaluated according to the procedures in [2] or [1]. σY

is the material’s yield stress and σref is the net section stress or reference stress of the cracked
structure. For a surface crack at the weld toe, σref can be evaluated as in the following equation
[1]:

σref =
(Db · σ) +

(
(Db · σ)2 + 9 ((1−Db) · σ)2 (1− µ′′)2

)0.5

3(1− µ′′)2 ,

where µ′′ =


(d/t)

1+(t/c) , if W ≥ 2(c + t)
2d
t

c
W

, if W < 2(c + t)
, (2.15)

where W and t are the width and the thickness of the structural member.

2.2.2 Inspection modeling

The information gathered during the operational lifetime can be used to update the uncertainties
in the deterioration model. For instance, the probability distribution of the crack size can be
updated after an inspection is performed. However, it is necessary to take into account the
measurement quality of the observation model. The probability of detection (POD) curves have
been adopted to characterize the quality of several non-destructive inspection techniques such as
ultrasonic testing (UT), magnetic particle inspection (MPI) and eddy current (EC) inspection
[122]. The POD depends on the crack size and the detection threshold, as illustrated in Figure
2.3. A signal response above the detection threshold will give an inspection outcome of crack
detection and below the threshold results in a no-detection outcome. Accordingly, the POD is
defined in detection theory [123] as follows:

POD(d) =
∫ +∞

d̂s,th

fsignal(d̂s | d) dd̂s, (2.16)
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Fig. 2.3. Probability of detection, adapted from signal response method [3]. The mean values
of the signal response fall on a regression line with the regression parameters β0 and β1. ε is
associated with variability of imperfect inspection and is assumed normally distributed with a
zero mean and a standard deviation σε.

where d is the true crack size. d̂s,th is the detection threshold and fsignal is the probability density
function of the signal response d̂s. Given the regression parameters β0, β1 and the variability σε

of an inspection technique, Equation (2.16) can be derived as:

POD(d) = 1− Φ
 d̂s,th − (β0 + β1 · ln (d))

σε

 , (2.17)

where Φ is the cumulative distribution function of the standard normal distribution. For a
particular detection threshold d̂s,th, the theoretical probability of detection curve according to
Equation (2.17) is a monotonically increasing function of the crack size. Adjusting the detection
threshold d̂s,th, the shape of a POD curve can be changed so that POD = 1 when d̂s,th → −∞
and POD = 0 when d̂s,th →∞ for any crack size. Based on [124] and [103], the following limit
state function is used for the event of crack detection at time t:

gD(t) = u− POD(d(t)), (2.18)

where u is a uniformly distributed random variable in the interval [0, 1]. The POD of the crack
depth at time t is computed according to Equation (2.17).

The additional information obtained from inspections can be used to update the reliability
through conditional failure probability [125]. For instance, given no-detection outcome of
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inspection at year tins, the updated failure probability for t ≥ tins is:

PF (t) = P (gF M(t) ≤ 0 | gD(tins) > 0) = P (gF M(t) ≤ 0 ∩ gD(tins) > 0)
P (gD(tins) > 0) . (2.19)

2.3 Stochastic deterioration modeling through dynamic
Bayesian networks

Bayesian networks (BN), introduced by [126], is a graphical formalism to represent joint
probability distributions of a set of random variables. Dynamic Bayesian networks (DBNs)
are temporal repetitions of BNs which have been increasingly used in engineering structural
reliability and risk analysis [11, 34, 127]. To implement DBNs in I&M planning, the continuous
random variables involved in the deterioration model need to be discretized for prediction and
exact inference tasks. This step is crucial since the accuracy of the results and the computational
efficiency are influenced by the number of intervals and the discretized boundaries. Theoretically,
the discretization error tends to 0 as the size of the intervals approaches 0. In practical
applications, the discretization scheme is preferred to provide sufficient accuracy with maximum
computational efficiency.

The state space S in DBNs is the domain of the discretized variables. In a stochastic
deterioration process, the belief which is the probability distribution over the state space P (st)
transitions from one time step to the next one according the conditional probability P (st+1 | st),
also denoted as the transition matrix. Markovian property is assumed here, i.e., the state at
time t + 1 depends only on the state at t and not on the past ones. Additionally, the transition
matrix is time-invariant meaning that P (st+1 | st) is the same for any two consecutive time
steps. Evidence from observations (e.g., inspections) can also be incorporated through Bayes’
rule such that:

P (st+1 | ot+1) ∝ P (ot+1 | st+1)P (st+1), (2.20)

whereas the likelihood P (ot+1 | st+1) quantifies the quality of the observation.

2.3.1 Deterioration rate DBNs adopting a through-thickness crite-
rion

Dynamic Bayesian networks (DBNs) have been frequently used to model engineering deterioration
processes in risk analysis, often through combination of random variables to reduce the dimension
of the state space and the computation time [11]. When more complex deterioration model and
failure criterion are used, the state space becomes high-dimensional and non-combinative, e.g.,
the Weibull scale parameter q cannot be combined with other variables since the crack size is
conditional on it (through ∆σ) and so are the failure assessment points Kr and Lr (through
σ). In addition, the necessity of high-dimensional conditional probabilities for propagating the
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belief and computing the failure probability, such as P (dt+1 | dt, ct, q, Ca), P (ct+1 | dt, ct, q, Cc),
P (Kr,t | dt, ct, q, Kmat, Rs), P (Lr,t | dt, ct, q, σY ), P (gF M | Lr, Kr, Rf) increases computational
complexity.

Another DBN representation, denoted here as “deterioration rate” DBN, represents a stochas-
tic deterioration process as a function of the deterioration rate. The graphical representation of
such DBNs adopting a through-thickness criterion is shown in Figure 2.4. The crack evolution
is traced by the nodes dt and is dependent on the deterioration rate τt. The node τt is a one-hot
(one-zero) vector indicating the current deterioration rate. Unless any maintenance action
is taken, it transitions one deterioration rate, i.e., τi to τi+1, at every time step. Note that
the component may have the same deterioration rate for different time steps in the lifetime.
For example, the crack may return to its initial deterioration rate τ0 after a perfect repair or
jump a number of deterioration rates back after an imperfect repair. The inspection model is
considered within the observation nodes ot. The nodes Ft indicate the probability of failure. In
the through-thickness failure criterion, Ft is dependent only on the crack size dt. The failure
subspace SF ⊆ S is therefore defined based on the discretization scheme of dt to compute the
failure probability.

The initial belief b0(s) corresponds to a joint probability distribution of the initial crack
size and deterioration rate P (d0, τ0). The belief transitions from each time step t to the next
t + 1 according to the predefined conditional matrix as follows:

P (dt+1, τt+1 | o0, ..., ot) =
∑
dt

∑
τt

P (dt+1, τt+1 | dt, τt)P (dt, τt | o0, ..., ot). (2.21)
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Fig. 2.4. Deterioration rate DBNs adopting a through-thickness criterion. The nodes dt describe
the crack evolution dependent on the deterioration rate τt. The nodes ot represent the imperfect
observations (inspections) conditional on dt, and Ft indicates the probability of a failure event.
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When the evidence is available, the estimation of the updated belief can be done through
the normalization of:

P (dt+1, τt+1 | o0, ..., ot+1) ∝ P (ot+1 | dt+1)P (dt+1, τt+1 | o0, ..., ot). (2.22)

2.3.2 Deterioration rate DBNs adopting a FAD criterion

A method to implement a FAD criterion in deterioration rate DBNs is presented here. The
DBN model with the FAD criterion is illustrated in Figure 2.5. In this case, the probability
of a failure event cannot be obtained only from the nodes dt since it requires the crack length
as well as other time-invariant variables σY , Kmat, Rs, Rf to evaluate the failure. Alternatively,
one can include additional nodes gF Mt, denoted here as the limit state variable and computed
from Equations (2.12-2.15) in the DBNs to allow the direct estimation of the failure probability
Ft. In this I&M planning problem, the observation nodes ot are conditional on the crack depth
and the nodes dt still need to be tracked. Therefore, the belief space b0(s) becomes a joint
distribution of the deterioration rate, the crack size and the limit state variable P (dt, τt, gF Mt).

The deterioration evolution over the subsequent time steps can be computed through
transition and estimation steps. However, the computational complexity significantly increases
due to the larger state space size with this failure criterion. The transition of the crack length
has been implicitly considered in the DBNs through the nodes gF Mt. If the component returns
to its initial belief P (τ0, d0, gF M0) after the perfect repair, both the crack depth and the crack
length consistently return to the initial condition.
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Fig. 2.5. Deterioration rate DBNs adopting a FAD criterion. The nodes dt describe the
crack evolution dependent on the deterioration rate τt. The nodes ot represent the imperfect
observations (inspections) conditional on dt, and Ft indicates the probability of a failure event
through the nodes gF Mt.
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2.4 Policy optimization methods

2.4.1 I&M planning through heuristics

The objective of I&M planning is to identify the optimal strategy which provides the minimum
total expected cost E[CT ]. It is theoretically feasible to obtain optimal inspection and mainte-
nance plans by means of the pre-posterior decision theory, however it becomes computationally
intractable as the branches of the decision tree exponentially increase with time. One approach
to circumvent this problem is to impose predefined decision rules in order to reduce the policies
which have to be evaluated. Some of the decision rules that have been frequently applied in
risk-based inspection planning of offshore structures are:

1. Inspections are planned either periodically or before an annual failure probability threshold
∆PF is reached. The optimal interval and optimal annual failure probability threshold are
then identified.

2. A perfect repair action is immediately performed if the inspection gives an outcome of
crack detection (gD(tins) ≤ 0).

3. After the perfect repair, it is assumed that the component goes back to its initial state
thus forming a new decision tree with a lifetime equal to TN − tins.

I&M strategies are evaluated through Monte Carlo simulations to compute the total expected
cost E[CT ]. The expected failure cost E[CF ] is the sum of annual failure probabilities multiplied
by the failure cost CF . The expected cost of inspection E[CI ] is the product of inspection cost
CI and the number of inspections. The expected cost of repair E[CR] is the product of the
repair cost CR and the number of repairs performed. All the costs are discounted by a factor
γ ∈ [0, 1] to take into account the time value of money. The total expected cost E[CT ] is the
averaged sum of the failure, inspection and repair costs over Nsim simulations.

E[CT ] = 1
Nsim

Nsim∑
n=1

TN∑
t=1

CF ∆PF (t)γt +
tIn∑

t=tI1

CIγt +
tRn∑

t=tR1

CRγt

 , (2.23)

where TN is the planned lifetime of the structure. ∆PF (t) is the annual failure probability for
year t. In and Rn represent the number of inspections and repairs performed in each simulation.

2.4.2 I&M planning through POMDPs

In the following section, a brief description of partially observable Markov decision processes
(POMDPs) is presented with its particular implementation in offshore wind I&M planning
problem. A POMDP is a generalization of a Markov decision process (MDP) in which the
agent takes probabilistic actions in a stochastic environment and imperfect observations. In
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the 7-tuple ⟨S,A,O, T, Z, R, γ⟩ process, the agent takes an action a ∈ A thereby transitioning
the belief state b(s) according to the transition model T (s′, a, s) = P (s′ | s, a). The agent then
receives an imperfect observation o ∈ O with the probability Z(o, s′, a) = P (o | s′, a) and also
collects the reward R(b, a) for taking the action a.

An inspection and maintenance planning problem can be formulated as a POMDP through
proper definition of its elements ⟨S,A,O, T, Z, R, γ⟩. A concise explanation is provided below,
and more details can be found in [26, 27, 29].

• States: As already described before, the implementation of DBNs/POMDPs requires
efficient and effective discretization of continuous random variables. The first element of
POMDP tuple S can be directly defined from the domain of the discretized intervals. For
example, the through-thickness criterion POMDP consists of |S| = |Sd| · |Sτ | states and
that of FAD criterion POMDP is |S| = |Sd| · |Sτ | · |SgF M

|. The initial belief b0(s) is the
joint probability distribution of those random variables at t = 0.

• Action-Observation: Several maintenance actions a ∈ A can be defined herein such as
“perfect-repair”, “imperfect-repair” or “do-nothing”. Observations o ∈ O refer to different
types of inspection techniques described in Section 2.2.2. Note that monitoring can also be
modeled as an observation through systematic post-processing of continuous data stream
into discrete observations.

• Transition probabilities: A transition matrix T (s′, a, s) for each maintenance action a ∈ A
is defined as the probability of the component changing from the state s ∈ S to the state
s′ ∈ S.

For the action “do-nothing”, the transition matrix T (s′, aDN , s) follows the stochastic
deterioration process since no maintenance action is performed. Therefore, P (dt+1, τt+1 |
dt, τt) and P (dt+1, τt+1, gF Mt+1 | dt, τt, gF Mt) become the transition models for POMDPs
with different failure criteria.

The transition model for a “perfect-repair” action T (s′, aP R, s) is constructed such that
the component holding any belief b(s) returns to its initial condition b0(s) [29]. Despite
being briefed to only two actions in this paper, other repair transition matrices can also
be defined for different types of maintenance actions [27].

• Observation probabilities: An observation matrix Z(o, s′, a) defines the probability of
collecting an observation o ∈ O for the component being in state s′ ∈ S after taking the
action a. Frequently used ones in offshore I&M planning are “no-inspection”, “binary-
indication” and “continuous-indication”, etc.

• Rewards: After taking an action a ∈ A every time step, the agent collects the reward
R(b, a) which is a weighted sum of the belief b(s) and the state reward R(s, a). One
needs to define the state reward R(s, a) for each action-observation combination of RBI
planning.
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The reward of “do-nothing/no-inspection” is the failure risk computed from the failure
cost −CF assigned to the failure states within R̄(s, aDN−NI) and the transition probability
as follows:

R(s, aDN−NI) = P (s′ | s, a)R̄(s′, aDN−NI)− R̄(s, aDN−NI). (2.24)

The reward of “do-nothing/inspection” is one inspection cost −CI additional to the reward
of “Do-nothing/no-inspection” such that:

R(s, aDN−I) = R(s, aDN−NI)− CI . (2.25)

The reward of “perfect-repair/no-inspection” is simply equal to the repair cost −CR for
any state:

R(s, aP R−NI) = −CR. (2.26)

The objective of I&M planning being to identify the optimal policy which minimizes the
total expected cost can be rephrased, within the POMDP framework, as to obtain a sequence
of actions that maximizes the total expected reward. In an MDP policy (π : S → A), the
current state can prescribe which action to be taken. Since the agent cannot fully observe the
current state in POMDPs, action decisions are planned based on the belief. A POMDP policy
(π : B→ A) therefore maps a belief b to the prescribed action and the objective is to identify
the optimal policy π∗(b) which maximizes the expected sum of the rewards. The value of the
optimal policy π∗ is described by the value function:

V ∗(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

P (o | b, a)V ∗(b′)
]

. (2.27)

Recently, efficient point-based solvers have been developed which solve high-dimensional state
space POMDPs based on a representative set of belief points [22, 24]. In the point-based solvers,
the value function in Equation (2.27) is parametrised by a set of α-vectors each of which is
associated to an action. For a certain belief b(s), the optimal action is the one corresponding to
the α-vector which maximizes the value function:

V ∗(b) = max
α∈Γ

∑
s∈S

α(s)b(s). (2.28)

Since the belief is updated after every action and observation, as in Equations (2.21) and (2.22),
the value function is therefore recomputed to choose sequential optimal actions over time.
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2.5 Numerical experiments: Application to a tubular
joint

With the objectives of implementing the presented I&M planning methods integrated with
various failure criteria, as well as exploring the effects of failure criteria, deterioration and
inspection models on the identified I&M strategies, a set of numerical experiments are conducted
here for the particular case of an offshore tubular joint subjected to fatigue deterioration. Table
2.1 lists all the conducted experiments, classified by the implemented failure criterion and
fracture mechanics model.

First, the I&M planning is performed with an inspection model in which the detection
threshold d̂s,th (Section 2.2.2) is fixed. The effects of fracture mechanics models and failure
criteria on the crack propagation, reliability updating and optimal I&M plan are thoroughly
analyzed. The optimal I&M strategies identified by different optimization methods for each
case are also compared. Afterwards in Experiment 2, only one combination of 2-D FM model
and FAD criterion is considered while the detection threshold d̂s,th of the inspection technique
is varied within a range to demonstrate how the I&M policies adapt with different inspection
models. Detailed explanation of the deterioration models, inspection and cost models is provided
in the following sections.

2.5.1 Deterioration models

SN Model

The fatigue deterioration is first estimated by computing the cumulative fatigue damage following
the design recommendations provided by DNV standards [117, 128, 129]. Considering that the
tubular joint is located just above the mean waterline, which is an accessible area for inspections,
a fatigue design factor FDF of 2 is assigned in this case. Assuming the structural component
is designed to the limit for a lifetime of 20 years, the scale parameter of the Weibull stress
range distribution is found to be q = 6.4839 from Equation (2.1). The variables used in the SN

Table 2.1. List of analyzed cases for RBI planning.

Experiment 1 - Fixed detection threshold
Option Case name Deterioration model Failure criterion
1 1D-Thick-Fixed 1-D FM Through-thickness
2 2D-Thick-Fixed 2-D FM Through-thickness
3 2D-FAD-Fixed 2-D FM FAD
Experiment 2 - Varied detection threshold
Option Case name Deterioration model Failure criterion
3 2D-FAD-Varied 2-D FM FAD
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Table 2.2. Variables used in SN model.

Variable Distribution Mean Std References for Std (CoV)
(Median) (CoV)

m1 Determ. 3
m2 Determ. 5
∗log10(k1) Normal 12.48 0.2 [117, 129]
∗log10(k2) Normal 16.13 0.2 [117, 129]
S1 Determ. 67.09
n Determ. 3.5 · 107

q Normal 6.4839 (0.2) [129]
h Determ. 0.8
∆ Lognormal (1) (0.3) [2, 117, 129]
Determ. = Deterministic
*log10(k1) and log10(k2) are fully correlated.
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Fig. 2.6. Calibration between SN and FM approaches. The reliability index is the normal
inverse cumulative distribution function of the failure probability β(t) = −Φ−1(PF (t)).

approach are listed in Table 2.2. The reliability over the lifetime according to SN-Miner’s rule
is computed by crude Monte Carlo simulations with one million samples.

FM models

For each considered setting, the initial crack size d0 and crack growth parameter Cd are calibrated
to render a similar reliability in both SN and FM models. Calibration is performed by the
least-square fitting of the normalized failure probability. In Option 3 cases, the through-thickness
failure criterion is still used for the calibration since it is assumed that the cracks fail when they
penetrate the thickness during SN tests. The FAD criterion is only used for reliability analysis
and I&M planning. Figure 2.6 shows the goodness-of-fit of the calibrations. The calibration for
the 2-D FM model shows some discrepancies in the high reliability region. Yet the probabilities
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Table 2.3. Variables used in FM models.

Variable Option Distribution Mean Std References for Std (CoV)
(Median) (CoV )

d0 1 Exponential 0.1235 *calibrated
2,3 Exponential 0.1603 *calibrated

log(Cd) 1 Normal -27.7903 0.3473 *calibrated
2,3 Normal -27.6302 0.4599 *calibrated

n 1,2,3 Determ. 3.5 . 107

h 1,2,3 Determ. 0.8
m 1,2,3 Determ. 3
q 1,2,3 Normal 6.4839 (0.2) [129]
dcrit 1,2 Determ. 16
Yd 1 Lognormal (1) (0.1) [2, 96]
d0/c0 2,3 Determ. 0.2
Db 2,3 Determ. 0.81
Cd/Cc 2,3 Determ. 1
Rs 3 Lognormal (300) (0.2) [2]
σY 3 Lognormal (355) (0.07) [2, 130]
Kmat 3 3P-W [2]
Rf 3 Lognormal (1.7) (0.18) [2]
Determ. = Deterministic
3P-W = Three-parameter Weibull distribution

of failure in this region are very small so that they are assumed not to affect the optimal
decision. The calibrated parameters together with all other parameters used in FM models are
listed in Table 2.3. The normalized resistance parameter Rf for the FAD criterion is taken as
recommended by [2].

Incorporation of residual stress

When the failure assessment diagram criterion is used for the case of welded joints, it is necessary
to take into account the residual stress as a consequence of weld metal contraction being
restrained by the base material [120]. The presence of residual stress in welded joints contributes
as secondary stress component in the stress intensity factor such that KI = KP

I + KS
I . However,

secondary stress does not contribute in the plastic collapse since it has no significant effect on
the tensile strength [1].

Realistic estimates of the residual stress are possible by finite element simulations of the
considered welded detail. Alternatively, the residual stress can be conservatively assumed to be
uniform. In the experiments, the values recommended in [2] are used for lognormal distribution
of uniform residual stress Rs, see Table 2.3. The applied primary stress is considered to be fully
reversed, i.e., the primary mean stress is zero and therefore, the value of stress amplitude is
used when the primary stress intensity factor KP

I and the load ratio Lr are computed.
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Tensile strength and fracture toughness

Material properties are usually considered as uncertain variables due to production variability.
The tensile strength of a structural material is often described by a lognormal distribution.
Fracture toughness is a quantitative description of material’s resistance to fracture failure
beyond which the crack propagation becomes unstable. A three-parameter Weibull distribution
is proposed to describe the fracture toughness Kmat as in the following equation:

FKmat(k) = 1− exp

[
−
(

k −K0

Ak

)Bk
]
. (2.29)

The shape parameter Bk is 4 and the recommended value of the threshold parameter K0 is 20
MPa

√
m [2]. The scale parameter Ak is computed according to the following equation [1]. The

resulting fracture toughness is in MPa
√

m.

Ak =
[
11 + 77 exp

(
T − T0 − TK

52

) ](25
t

)0.25 [
ln

(
1

1− p

)]0.25

, (2.30)

where T is the temperature at which Kmat is to be determined (in °C). T0 is the temperature for a
median toughness of 100 MPa

√
m in 25 mm thick specimens and calculated as T0 = T27J − 18°C.

T27J is the temperature for 27J measured in a standard Charpy V specimen. TK is the
temperature term that describes the scatter in the Charpy versus fracture toughness correlation.
For Std = 15°C and 90% confidence, TK is +25°C. t is the thickness of the material for which an
estimate of Kmat is required (in mm), and p is the probability of Kmat being less than estimated
and 5% is recommended without experimental evidence [131]. In this paper, the tubular joint is
considered to be made of EN10025− S355− JR structural steel and the required values for
material properties are obtained as follows: T = 10°C, T27J = 20°C and σY = 355 MPa [130].

2.5.2 Inspection models

POD curves of different inspection methods frequently used for OWTs are provided in [117].
Eddy current (EC) inspection has become a common inspection method for offshore wind
structures as it can be used to detect fatigue cracks without removing coating. The EC inspection
in the normal working conditions is used as a reference inspection model in Experiment 1 -
Fixed detection threshold. The parameters of signal response method β0, β1, σε and d̂s,th as in
Equation (2.17), are therefore calibrated to provide an equivalent POD curve as the chosen
inspection technique, see Figure 2.7a.

In Experiment 2, the risk-based I&M planning is conducted for a range of detection thresholds.
The parameters of the inspection models used in the RBI experiments are shown in Table 2.4.
The shape of the POD curve changing with the detection threshold is illustrated in Figure 2.7b.
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Table 2.4. Parameters of inspection models.

β0 β1 σε d̂s,th

Experiment 1 - Fixed detection threshold 7.3074 2.092 4.189 5.4898
Experiment 2 - Varied detection threshold 7.3074 2.092 4.189 0 ≤ d̂s,th ≤ 10
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(a) Experiment 1 inspection model, d̂s,th =
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Fig. 2.7. Illustration of inspection models.

2.5.3 Modeling I&M planning in POMDPs

The I&M planning experiments are formulated as POMDPs through the deterioration rate
DBNs. As discussed in Section 2.3, the continuous random variables need to be discretized to
implement the DBNs and the discretization scheme should be an optimal compromise between
the accuracy of the results and the computational performance. Since the discretization is
arbitrary and case-specific, several attempts are made on the selection of the number of intervals
and boundary values, and the discretization schemes shown in Table 2.5 with the number of
states |Sd| = 40, |Sτ | = 21, |SgF M

| = 30, are selected as the relevant ones. Accordingly, the
deterioration rate DBNs with the through-thickness criterion has overall 840 states and that of
the FAD criterion has 25,200 states with the additional limit state variable gF M . Following the
discretization schemes, the initial belief b0 and transition matrices T (s′, a, s) for each case are
defined from one million simulations of crack size and FAD assessment points.

Since the existing point-based solvers are set up for the solution of infinite horizon POMDPs
and the I&M planning is desired for 20 years (finite horizon), the state space of deterioration
rate DBNs is augmented by encoding the time in the state space and adding a terminal state.
For the detailed explanation about state augmentation, the reader is referred to [26, 27]. Finally,
the state space of finite horizon POMDP with the through-thickness criterion has 9240 states
and that of the FAD criterion has 277200 states.
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Table 2.5. discretization schemes utilized in the numerical experiments.

Option Case name Variable Interval boundaries
1 1D-Thick-Fixed a 0, d0,mean : dcrit − d0,mean

|Sd| − 2 : dcrit, ∞
τ 0 : 1 : 20

2 2D-Thick-Fixed a 0, d0,mean : dcrit − d0,mean

|Sd| − 2 : dcrit, ∞
τ 0 : 1 : 20

3 2D-FAD-Fixed/Varied a 0, d0,mean : dcrit − d0,mean

|Sd| − 2 : dcrit, ∞
τ 0 : 1 : 20
gF M −∞, 0 : 2

|SgF M
| − 2 : 2, ∞

For all case studies, three action-observation pairs are considered: (1) do-nothing/no-
inspection (DN-NI) (2) do-nothing/inspection (DN-I) and (3) perfect-repair/no-inspection
(PR-NI). The consequence of a failure event is associated with a cost CF of 106 monetary units.
The cost of corrective repair and the risk of system failure conditional on component failure are
taken into account in the failure cost CF of the joint. The cost of inspection CI independent of
the detection threshold is 103 monetary units and the repair cost CR is 1.2 · 104 monetary units.
The discount factor γ = 0.94 is considered. SARSOP point-based solver is used for solving the
POMDPs to obtain optimal I&M policies [22].

2.5.4 Results and discussion: Experiment 1 - Fixed detection thresh-
old

Crack growth

As mentioned in the previous sections, both 1-D and 2-D fracture mechanics models are applied
to estimate the crack deterioration. In both models, the crack propagation rate is influenced
by the Paris law parameters and the stress intensity correction factor. To represent one-
dimensional crack growth, Equation (2.9) is used where the stress intensity correction factor Yd

is assigned as a time-invariant random variable, see Table 2.3. In two-dimensional crack growth,
the stress intensity correction factors Yd and Yc become functions of time-varying crack size
and are recomputed at every time step. The geometry functions Ymd, Ybd, Ymc, Ybc and stress
magnification factors Mkmd, Mkbd, Mkmc, Mkbc are evaluated by parametric equations following
the procedures of [132] and [117].

A crude Monte Carlo Simulation (MCS) containing 1 million samples was run to estimate the
stochastic crack evolution. The comparison of mean crack propagation between 1-D and 2-D FM
models can be seen in Figure 2.8a. The crack length is not comparable between the two models
as the 1-D model only measures the crack depth. The crack depth grows faster in the 2-D model
than in the 1-D model. In fact, this is due to different initial crack depths d0 and crack growth
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Rf

(a) Mean crack depth and crack length.

(b) Mean Kr and Lr (2-D FM).

Fig. 2.8. Illustration of crack deterioration.
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(a) Crack distribution by 1-D FM model.
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(b) Crack distribution by 2-D FM model.

Fig. 2.9. Crack propagation by 1-D and 2-D FM models. To illustrate the difference between
the two models, the same initial crack size d0 ∼ Exp(0.1603) and crack growth parameter
log(Cd) ∼ N (−27.6302, 0.4599) are used.
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parameters Cd of the two models since they are calibrated to the same target reliability, see
Table 2.3. However, it successively implies different crack propagation by the two models. To
examine this, crack propagation is computed by the two models using the same initial crack size
d0 ∼ Exp(0.1603) and the crack growth parameter log(Cd) ∼ N (−27.6302, 0.4599). The mean
crack depth over the lifetime and 95% reference interval (between 2.5% and 97.5% quantiles)
are plotted in Figure 2.9. Note that a cut-off point is considered at dcrit = 16 mm and all bigger
cracks remain at 16 mm in Monte Carlo simulations. It is observed that the two models give
different variability in the crack distribution. The variability of the 1-D FM model rapidly
increases compared to 2-D model. This effect is important in the structural reliability aspect
such that the 1-D FM model with higher model uncertainty gives higher probability of failure
than the 2-D FM model. And therefore, when calibrated to have the same reliability, the 2-D
FM model results in a higher mean and standard deviation of Cd.

Using the 2-D FM model, the deterioration of the tubular joint can also be described by the
fracture ratio Kr and the load ratio Lr computed from Equations (2.13-2.15). The mean values
of Kr and Lr are plotted in Figure 2.8b. Before year 10, the FAD assessment point mainly
increases in the Kr axis and the load ratio Lr is initially less sensitive to the crack size. With
small values of crack size, the tubular joint has a sufficient intact area and therefore it is not
subjected to high net section stress σref . However, the load ratio starts increasing as the crack
depth and crack length rapidly grow after year 10.

Updating reliability

The effect of failure criteria and FM models on the updated failure probability after an inspection
is examined here. Assuming an inspection is performed at year t = 11 and no crack is detected
during the inspection, the reliability is updated for different cases using Equation (2.19) through
Monte Carlo simulations. In the deterioration rate DBNs, the updated failure probability is
the probability of being in the failure states after performing the transition and estimation
steps. As shown in Figure 2.10, consistent PF values are obtained by the MCS and the DBNs,
which verifies the proper discretization of the state space variables. On the other hand, the
updated failure probabilities after the inspection are different among the analyzed cases. The
2D-FAD-Fixed case gives the smallest failure probabilities in all years. This is expected simply
due to the assumption of the capacity to hold the through-thickness cracks when the FAD
criterion is used.

The effect of fracture mechanics models on reliability updating can be analyzed through
comparison of 1D-Thick-Fixed and 2D-Thick-Fixed cases. As discussed before, the two FM
models provide different initial crack sizes d0 and crack growth parameters Cd when calibrated
to the SN failure probabilities. Consequently, the crack depth belongs to different probability
distributions with respect to each FM model, as illustrated with the crack size histograms
in Figure 2.11a. Firstly, the variation in prior distributions influences the updated failure
probability given no crack detection. However, this is not obvious just after the no-detection
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Fig. 2.10. The updated cumulative failure probability given no-detection in the inspection at
year 11.

event, in Figure 2.11b. Since the probability of no-detection and probability of crack distribution
are very low in the failure bin, i.e., d ≥ dcrit, the difference in the updated PF is extremely small
when normalized by the overall no-detection probability according to Equation (2.19). As the
posterior distribution further propagates accumulating and increasing the probability in the
failure bin, the difference in the updated PF can then be clearly observed as in Figure 2.11c and
2.11d. The more-detailed 2-D FM finally achieves higher reliability at the end of the lifetime.
And vice versa, the decision-maker may use simple models with higher uncertainty, e.g., 1-D
FM but may take a higher risk than using more precise ones or perform more inspections to
remain at the same reliability and risk.

Secondly, the overall probability of detection with the same inspection model is different
between the two cases. The 2-D FM model with its higher crack growth parameters results in a
higher probability of detection. In heuristic-based inspection planning, maintenance decision
rules are often prescribed based on inspection outcomes, e.g., repair is performed if a crack is
detected. In this case, using the 2-D FM will result in higher maintenance costs than the 1-D
FM for the same inspection strategy.

Optimal I&M strategies

I&M planning is performed through traditional heuristic-based methods as well as through
the formulation as POMDPs. The SARSOP point-based POMDP solver is used for the
computation of the optimal I&M policies [22]. Two sets of heuristic decision rules - equidistant
inspections (EQ-INS) and inspections planned before an annual failure probability threshold is
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(a) Prior distribution of crack depth (t=11).
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(b) Posterior distribution of crack depth
(t=11).
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(c) Posterior distribution of crack depth
(t=15).
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Fig. 2.11. Propagation of crack distribution. (a) The prior crack distribution at year t = 11 is
estimated by the two FM models. (b) The posterior PF at the year of inspection is almost equal
for 1-D and 2-D models whereas the overall detection probability is different. (c, d) The updated
PF w.r.t the two models becomes different as the posterior crack distribution propagates.

exceeded (THR-INS) - have been evaluated in the simulation environment through DBNs. If
the inspection indicates the presence of crack, a perfect repair is immediately performed and
after, the component goes back to its initial condition. The identified optimal I&M strategies
from heuristics and POMDPs are evaluated in a simulation environment. The resulting total
expected costs E[CT ] as well as the numerical confidence intervals over 105 simulations are
reported in Table 2.6.

In all combinations of deterioration models and failure criteria, POMDP policies outperform
traditional heuristics with significant differences in the total expected cost. Comparing among
different options, 2D-FAD-Fixed case results in less expected cost than the other two options
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Table 2.6. Experiment 1 - Fixed detection threshold: Comparison of the total expected cost.

E[CT ] 95% C.I
Option 1: 1D-Thick-Fixed
Finite horizon POMDP - SARSOP 6267.20 ±20.49
Heuristic EQ-INS (∆ins = 7) 6892.72 ±22.462
Heuristic THR-INS (∆PF th = 9 · 10−4) 6775.92 ±20.045
Option 2: 2D-Thick-Fixed
Finite horizon POMDP - SARSOP 5387.88 ±22.43
Heuristic EQ-INS (∆ins = 11) 6066.32 ±15.681
Heuristic THR-INS (∆PF th = 1.2 · 10−3) 6066.32 ±15.681
Option 3: 2D-FAD-Fixed
Finite horizon POMDP - SARSOP 3599.45 ±16.39
Heuristic EQ-INS (∆ins = 11) 4118.25 ±17.462
Heuristic THR-INS (∆PF th = 5 · 10−4) 4118.25 ±17.462

which rely on the through-thickness criterion. When the FAD criterion is used, it is assumed
that the through-thickness cracks can grow further in the length until the critical value of the
stress intensity factor is reached. It is also worth mentioning that the fracture toughness of the
material considered for the tubular joint is high enough so that the component does not fail
before the crack reaches the thickness and can hold the through-thickness crack. Therefore,
the failure probabilities over the lifetime with the FAD criterion are smaller than the other
cases, as already discussed before. It results in a significant reduction of failure risk as well
as less observations and maintenance actions can be generally expected. Random realizations
are presented to visualize the policies prescribed by different approaches. Figure 2.12a, 2.12c
and 2.12e represent the finite horizon POMDP policy realizations and Figure 2.12b, 2.12d and
2.12f show the realizations of the equidistant heuristic. As manifested in the POMDP policies,
only one inspection is required in the 2D-FAD-Fixed case if the first inspection outcome is
no-detection thanks to the low failure risk. Contrarily, more inspections are conducted in a
number of years in the cases in which the through-thickness criterion is used.

In the heuristic-based policies, an immediate repair action is prescribed after detection,
but the POMDP policies may opt to perform subsequent inspections in case of detection. A
repair action is planned only if the subsequent inspections also give detection outcomes. In
Figure 2.12a, POMDP policies plan one more inspection after a detection event and a repair
is performed as the second inspection also gives detection. However, POMDP policies also
consider more subsequent inspections when the deterioration model has lower uncertainty. For
the 2D-Thick-Fixed case, POMDP plans up to three consecutive inspections as in Figure 2.12c.
Since the last inspection declares no-detection, no maintenance action is taken. Therefore,
POMDP solutions can provide adaptive policies for different scenarios such that, as in this
example, it is plausible to take advantage of the more precise 2-D model to avoid an expensive
repair.



40
I&M planning for offshore wind structural components: Integrating fatigue failure criteria with

BNs and MDPs

0 5 10 15 20

Time (years)

10 -4

10 -3

10 -2

10 -1

P
F

ND
D
Repair

(a) 1D-Thick-Fixed (FH-POMDP).
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(b) 1D-Thick-Fixed (Heuristic EQ-INS).
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(c) 2D-Thick-Fixed (FH-POMDP).
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(d) 2D-Thick-Fixed (Heuristic EQ-INS).
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(e) 2D-FAD-Fixed (FH-POMDP).
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(f) 2D-FAD-Fixed (Heuristic EQ-INS).

Fig. 2.12. Policy realizations of Experiment 1 - Fixed detection threshold. Inspection outcomes
are represented by a circle (for no-detection) or a five-pointed star (for detection). A red bar
denotes that a perfect repair is performed.
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In contrast, traditional heuristic approaches which only follow the predefined decision rules
are not able to capture such aspects. Utilizing the 2-D FM instead of the 1-D FM affects
the optimal heuristic policies such that the number of inspections is reduced, which opposes
the pattern in the POMDP policies. In the equidistant inspection approach, two inspections
(∆ins = 7) are performed in the 1D-Thick-Fixed whereas only one inspection (∆ins = 11) is
conducted in the 2D-Thick-Fixed. As discussed before, using the 2-D FM model is a matter of
reducing the risk but on the other hand increasing the maintenance cost. And in this case, the
increased maintenance cost is more than the reduced risk, therefore one inspection has been
reduced to adjust the optimal policy.

2.5.5 Results and discussion: Experiment 2 - Varied detection thresh-
old

Optimal I&M strategies

Hereafter, only one combination with 2-D FM model and FAD criterion is considered. The
optimization is performed only through POMDPs as it has been demonstrated in the previous
experiment that POMDP outperforms traditional heuristic approaches for any combination of
deterioration model and failure criteria. In this experiment, the RBI planning is repeatedly
performed for several values of detection thresholds 0 ≤ d̂s,th ≤ 10. The transition models
and the rewards models of the POMDP remain the same as the 2D-FAD-Fixed case from the
previous experiment. Only the observation model Z(o, s′, s) is modified for each threshold value.

The breakdown of the total expected cost evaluated over 105 simulations are reported in
Figure 2.13. In general, moderate to high detection thresholds 5 ≤ d̂s,th ≤ 10 provide the lowest
expected costs. The policy realizations of some representative cases are also presented. Figure
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Fig. 2.13. Experiment 2 - Varied detection threshold: Comparison and breakdown of the total
expected cost.
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(a) 2D-FAD-d̂s,th = 0 (FH-POMDP).
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(b) 2D-FAD-d̂s,th = 0 (FH-POMDP).
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(c) 2D-FAD-d̂s,th = 10 (FH-POMDP).
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(d) 2D-FAD-d̂s,th = 10 (FH-POMDP).

Fig. 2.14. Policy realizations of Experiment 2 - Varied detection threshold. Inspection outcomes
are represented by a circle (for no-detection) or a five-pointed star (for detection). A red bar
denotes that a perfect repair is taken.

2.14a and 2.14b show random realizations of inspection planning with low detection threshold
d̂s,th = 0 and Figure 2.14c and 2.14d show the realizations with high threshold d̂s,th = 10.
An interesting pattern of inspection planning can be discovered in the POMDP prescribed
policies. When the inspection model has a lower threshold, POMDP tends to plan several
subsequent inspections in case of detection. The shape of the POD curve plateaus earlier with
lower detection threshold, e.g., POD curve of d̂s,th = 0 becomes flat at around d = 5 mm in
Figure 2.7b. If a detection outcome is obtained, one may not simply presume bigger crack
size and/or higher probability failure, noting that even the small cracks which do not cause
failure may also be detected. Therefore, the probability of failure is only slightly increased and
successive inspections are planned instead of taking an expensive repair action, see Figure 2.14a.
In the case of no-detection from the low threshold inspection, a small crack can be assured since
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bigger cracks d > 5 mm have almost zero probability of no-detection in the POD curve. The
probability of failure therefore drops drastically, see Figure 2.14b.

On the other hand, the POD curve with a high detection threshold slants up with the crack
size, see d̂s,th = 10 in Figure 2.7b. Bigger cracks are more likely to be detected than smaller
ones. If this inspection model gives a detection outcome, a severe crack can be expected with a
higher confidence, thus resulting in a high jump of failure probability as in Figure 2.14c. The
repair action is also performed immediately after one detection. Nevertheless, detection events
are less frequent in this case and the expected repair cost is still remarkably lower compared to
the low threshold inspection.

2.6 Conclusions

In this paper, the effects of failure criteria, deterioration and inspection models on the optimal
inspection and maintenance (I&M) strategies are examined. Two-dimensional fracture mechanics
model and failure assessment diagram (FAD) criterion have been successfully integrated with
dynamic Bayesian networks (DBNs), therefore allowing the formulation and optimization of I&M
planning via partially observable Markov decision processes (POMDPs). Various deterioration,
inspection and failure criteria settings were tested for the optimal management of a structural
detail subjected to fatigue deterioration, revealing the following findings:

• The failure assessment diagram might be preferred as the failure criterion to model
redundant structures with capacity to sustain through-thickness cracks since it offers
significant savings in the total expected cost, especially through advanced optimization
methods such as POMDPs. However, one needs the knowledge of material properties,
compulsorily yield strength and fracture toughness to implement the FAD criterion.

• 2-D fracture mechanics models are more robust than 1-D models since the effects of
time-dependent crack size, geometry of the structure and welded detail are inherently
considered in the stress intensity correction factors Yd and Yc. The shortcoming is that
it requires FEM analysis or the use of parametric equations, both of which demand
computational resources.

• The observation model, specified often through probability of detection (POD) curves,
can be adjusted by varying the detection threshold of the inspection technique. Generally,
very low detection thresholds are not recommended due to its flat and high POD curve,
causing frequent detections, inspections and/or repairs.

Throughout the experiments, it is demonstrated that I&M polices provided by finite horizon
POMDPs outperform heuristic-based polices for any combination of deterioration models and
failure criteria. POMDPs also reveal adaptability in the policy patterns depending on the models
specified in the I&M planning. The main limitation associated with implementing the 2-D
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fracture mechanics model and FAD criterion in discrete DBNs/POMDPs is the high-dimensional
state space. Computational intractability becomes a constraint to apply such complex models
and failure criterion for the case of multiple components or longer horizon lengths. To overcome
this curse of dimensionality, further research efforts are suggested towards the integration of
the FAD criterion with POMDP-based deep reinforcement learning (DRL) approaches. The
capability of POMDP-based DRL approaches to efficiently provide optimal I&M strategies for
large state space problems has been demonstrated in [40].
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Chapter 3
Interpretation of offshore wind management policies
identified via partially observable Markov decision
processes

Paper Hlaing, N., Morato, P. G., Papakonstantinou, K. G., Andriotis, C. P. and Rigo, P.
(2022). Interpretation of offshore wind management policies identified via partially observable
Markov decision processes. In The 18th European Academy of Wind Energy (EAWE) PhD
seminar.

3.1 Introduction

The installation of offshore wind turbines, profiting from available abundant and stable wind
resources, has been steadily increasing in the last decade, yet preserving offshore wind structures
in a good condition throughout their lifetime still remains a challenge. Structural components
are exposed to deterioration mechanisms (e.g., fatigue, corrosion, among others), and far offshore,
inspection and maintenance (I&M) operations can be complex and expensive. Hence the need
for efficient optimal I&M planning methods has been increased in order to control the risk of
structural failures by timely allocating inspection and maintenance interventions.

Identifying optimal I&M policies demands the solution of a complex sequential decision-
making problem under uncertainty and imperfect information. Whereas time-, condition-, or
heuristic-based strategies are conventionally followed in the offshore wind industry in order to
alleviate the aforementioned computational difficulties, the resulting policies statically select
inspection and maintenance actions and/or consist in predefined heuristic decision rules, e.g.,
equidistant inspections, repairs after detection inspection outcomes, which are optimized by
exploring a subset out of the vast policy space. Instead, optimal management strategies can be
identified via partially observable Markov decision processes (POMDPs), relying on mathematical
principles conceived for planning under uncertainty [26]. POMDP policies, efficiently computed
through point-based solvers, provide optimal adaptive I&M strategies that ultimately result in
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substantial cost benefits compared to their state-of-the-art counterparts [29], also demonstrated
in offshore wind inspection and maintenance planning settings [133].

Even if recently reported results demonstrate the benefits of implementing POMDP-based
adaptive policies for the management of offshore wind assets, the interpretation and execution
of POMDP-based strategies by decision-makers (e.g., designers, operators, etc.) accustomed to
calendar- and/or condition-based conventional I&M approaches might be initially challenging.
In this work, we analyze and interpret POMDP-based policies with the objective of accelerating
their practical implementation by offshore wind asset management decision-makers. Also, we
showcase the inherent flexibility and adaptability properties offered by POMDP-based policies in
a typical offshore wind inspection and maintenance planning setting, in which a decision-maker
opts for an action other than the one suggested in the optimal POMDP policy.

3.2 Optimal I&M planning for offshore wind structures
through POMDPs

A Markov decision process (MDP) is a 5-tuple ⟨S, A, T, R, γ⟩ controlled stochastic process for
optimal planning under uncertainty and perfect information. At every decision step, the agent
observes state s ∈ S and takes an action a ∈ A, then the state randomly transitions to state
s′ ∈ S according to a stochastic transitional model T (s, a, s′) = P (s′|s, a), and finally the agent
receives a reward R(s, a). An MDP policy (π : S → A) prescribes actions as a function of the
current state, with the main objective of identifying the optimal policy π∗(s), resulting in the
maximum expected rewards (or minimum expected cost).

A POMDP is a generalization of an MDP in which the agent only receives partial information
about the current state. In this case, the agent reasons according to the current belief b, i.e.,
a probability distribution over states. A POMDP is defined as a 7-tuple ⟨S, A, O, T, Z, R, γ⟩
controlled stochastic process. While a POMDP transitional model corresponds to the underlying
MDP, an observation model is additionally defined by specifying the probability Z(o, s′, a) =
P (o | s′, a) of collecting observation o ∈ O after taking action a. After taking action a and
collecting observation o, the belief b is updated via Bayes’ rule:

b(s′) ∝ P (o | s′, a)
∑
s∈S

P (s′ | s, a)b(s). (3.1)

Since beliefs are dynamically updated, the current belief, b is a sufficient statistic of the past
taken actions and collected observations. A POMDP policy therefore maps the current belief b
to the action. As for an MDP, the goal is to identify the optimal policy π∗(b) leading to the
maximum expected reward.

The decision-making problem corresponding to the optimal inspection and maintenance
planning for offshore wind structures can be adequately formulated as a POMDP, in which the
agent reasons in a stochastic environment (i.e., probabilistic deterioration model) and under
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imperfect information (i.e., measurement uncertainty associated with inspection techniques).
Once the optimal POMDP policy π∗(b) is identified, the decision-maker (e.g., operator, designer,
etc.) selects inspection and/or maintenance actions according to the current belief state. As
opposed to static decision rules, e.g., calendar- or condition-based maintenance approaches,
POMDP policies are inherently adaptive since beliefs are dynamically updated, thus resulting
in substantial cost benefits.

3.2.1 Solving POMDPs

The exact solution of a POMDP demands the identification of optimal actions for each belief
state, which as mentioned before, is a continuous probability distribution over states, thus
rendering the problem computationally challenging. Whereas value iteration algorithms or
grid-based interpolation techniques might work well for solving very low-dimensional state
space POMDPs, their application to higher dimensional state space POMDPs remains limited,
also due to computational tractability problems. However, the recently developed point-based
solvers, by executing Bellman backups only for a set of reachable belief points, have enabled the
solution of medium to high dimensional state space POMDPs [35]. Since the value function is
generally piece-wise linear and convex, it can be parametrized through a finite set Γ of α-vectors,
each of them associated with an action [29]. At a certain belief state, the optimal action is,
therefore, indicated by the α-vector that maximizes the value function. Point-based solvers are
usually developed for the solution of infinite horizon settings, yet practical applications normally
correspond to finite horizon problems, e.g., the operational lifetime of offshore wind structural
components is often considered as 20 or 30 years. In that case, the infinite horizon POMDP can
be transformed into a finite horizon POMDP through state augmentation techniques [26, 29].

3.3 Interpretation of POMDP-based management poli-
cies

With the objective of facilitating the interpretation of POMDP-based offshore wind management
policies, we conduct hereafter an I&M planning case study for a fatigue-sensitive offshore wind
structural component, inspired by [133]. The I&M decision problem is formulated as a POMDP,
adequately defining the elements of the POMDP tuple, as follows:

• States: The structural component deterioration states correspond to the discretized fatigue
crack size. In this study, the crack size is discretized into 40 deterioration states, with the
last one indicating a failure state.

• Actions: Three action-observation combinations are considered, (i) Do-nothing/No-
inspection (DN-NI), (ii) Do-nothing/Inspection (DN-I), and (iii) Perfect-repair/No-inspection
(PR-NI).
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• Observations: Inspections provide binary indications, resulting in either ‘crack detection’
or ‘no crack detection’. If an inspection is not performed, no additional information is
collected.

• Transition probabilities: The transitional model associated with a Do-nothing (DN) action
is estimated through crack propagation Monte Carlo simulations, where the crack growth
is computed according to Paris law. If a Perfect-repair (PR) action is undertaken, the
structural component deterioration transitions to its initial belief condition state.

• Observation probabilities: The observation model is defined according to the detection
probability curve that corresponds to eddy current inspection techniques [117].

• Rewards: At every decision step, the agent collects a reward, R(b, a), which is a weighted
sum of the belief probability b(s) and state reward R(s, a). A penalization of one million
monetary units is charged at the last state, i.e., failure condition, whereas 1,000 and 10,000
thousand monetary units are assigned as inspection and repair costs, respectively.

In this case study, the structural component lifetime is defined as 20 years and the corresponding
finite horizon POMDP is computed via SARSOP point-based solver [22]. The resulting optimal
policies are parametrized by a set of α-vectors, and as mentioned before, each α-vector is
associated with a specific action. At each decision point, the decision-maker selects the α-vector
(and corresponding action) that maximizes the value function V ∗(b) (minimizes the total
expected cost):

V ∗(b) = max
α∈Γ

∑
s∈S

b(s)α(s). (3.2)

The expected total cost associated with each α-vector can be simply computed as the weighted
sum of the expected total cost corresponding to a specific deterioration state α(s) and the
probability of being in that state b(s). Figure 3.1a illustrates the expected total cost resulting
from three α-vectors, indicating both the corresponding deterioration state values along with the
representation of the initial belief b0. The key observation is that the actions recommended in
POMDP-based policies are selected according to the current belief state b, which is dynamically
updated after each taken action and collected observation, as mentioned in Section 3.2. The
expected costs associated with all α-vectors available at the initial decision step (i.e., b0) are
additionally represented in Figure 3.1b. Logically, the optimal decision at this point is DN-NI,
and its corresponding value function indicates the total expected cost E[CT ] for the considered
20-year decision horizon.

3.3.1 What if the optimal policy is not strictly followed?

In this study, we investigate the effect of selecting an alternative action rather than the optimal
one suggested in the POMDP policy. We consider that the optimal POMDP policy is followed up
to year 7, and at that point, the decision-maker is evaluating the potential economic implications
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Fig. 3.1. Initial probability distribution over deterioration states (i.e., initial belief, b0) and
expected total cost resulting from each α-vector at the initial decision step.

of avoiding a perfect repair maintenance intervention, which is the action suggested in the
optimal POMDP policy, as showcased in Figure 3.2b. Previously, two crack detection inspection
outcomes were reported at years 6 and 7, thus indicating a high structural failure risk, which could
be effectively mitigated by conducting a repair action (Figure 3.3a). In that case, the structural
condition will be restored, and the updated belief will transition to its initial deterioration
condition, b0, as illustrated in Figure 3.2a with green markers. If the decision-maker opts,
however, for an alternative action at year 8, the expected total cost and the regret, i.e. the
extra cost associated with potentially suboptimal actions, can be straightforwardly computed
through a Bellman backup operation, as:

V (b7) =
∑
s∈S

b7(s)R(s, a) + γV (b′
7), (3.3)

where b and b′ correspond to the current and updated beliefs, respectively, and R(s, a) stands
for the reward associated with the action taken. Specifically, the potential alternative actions at
this decision point are:

• Do-nothing/No-inspection (DN-NI), in which the fatigue deterioration will naturally
progress according to the defined transition model, as illustrated with grey markers in
Figure 3.2a.

• Do-nothing/Inspection (DN-I), which can result in either a crack detection or no crack
detection outcome. The corresponding updated beliefs are plotted in Figure 3.2a with red
and blue markers, respectively. Since two inspection outcomes can be collected, in this
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case, the expected total cost estimated can be computed as:

V (b7) =
∑
s∈S

b7(s)R(s, aDN−I) + γ

[∑
o∈O

p(o | b′
7,aDN−I

) · V (b′
7,aDN−I ,o)

]
, (3.4)

where p(o | b′) represents the probability associated with each inspection outcome.

Gathering all action-observation combinations, Figure 3.2b illustrates the expected cost
associated with each action. The suggested action and expected total cost corresponding to
each updated belief, b′, can be directly computed through the α-vectors included in the original
POMDP policy, as indicated in Equation (3.2). For instance, if the decision-maker follows the
optimal policy and opts for a perfect repair action at year 8, the suggested subsequent optimal
action is DN-NI (Figure 3.2b). Instead, if the decision-maker selects a DN-NI action at year 8,
the logical suggested action is an immediate repair action the following year. Note that in the
reported results, the total expected cost, i.e., V (b′), is computed from the original POMDP
policy. In order to exactly evaluate the economic implication of selecting suboptimal actions,
the formulated POMDP can be solved again, considering b′ as the initial belief in a reduced
finite decision horizon, which corresponds, in this particular example, to twelve time steps.
However, only minor differences in the estimation of the expected total cost between the two
aforementioned approaches are observed in this study.

Further examining all alternative action-observation combinations available at year 8, Figure
3.3 showcases typical resulting policy realizations. As one could expect, a perfect repair is
suggested after a DN-NI action is selected at year 8 (Figure 3.3b), then the structural component
condition is restored, and no additional future interventions are usually needed. If a DN-I
action is taken at year 8, the POMDP policy suggests a subsequent repair action after a crack
detection inspection outcome is observed (Figure 3.3c), whereas if the inspection results in a no
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Fig. 3.3. Representation of typical policy realizations for all action-observation combinations
available at year 8.

detection outcome, a repair is not planned, and instead, the policy realization shows a series of
inspections for the remainder of the horizon (Figure 3.3d).

In summary, Table 3.1 lists the expected total cost associated with all available actions
at year 8 and their corresponding regret E[CP ]. It can be observed that, in this study, the
most suboptimal choice is a DN-NI action, as it results in a higher failure risk after year 8,
while a repair still needs to be allocated the following year. Interestingly, a DN-I action is
less suboptimal, in this case, since subsequent no detection inspection outcomes can still be
observed, thus slightly reducing the need of a perfect repair action.

3.4 Conclusion

In an offshore wind inspection and maintenance (I&M) planning context, we describe the
fundamentals of partially observable Markov decision processes (POMDPs) -based policies
and showcase their inherent adaptive and flexible properties. Through a typical offshore wind
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Table 3.1. Regret incurred when selecting alternative actions other than the one suggested in
the optimal original POMDP policy.

Action at year 8 E[CT ] (monetary units) E[CP ](%)
PR-NI (Optimal) 12,493 -
DN-NI 15,552 24.5

DN-I
{

p(oND | b′
7,aDN−I

) = 0.5437
p(oD | b′

7,aDN−I
) = 0.4563 15,428 23.5

I&M planning case study, we also demonstrate that decision-makers following POMDP-based
strategies can efficiently and swiftly quantify the effect of selecting alternative actions rather
than those suggested in the optimal POMDP policy. Based on the reported benefits offered by
POMDP-based policies in terms of optimality [26, 27], adaptability [29, 43], and flexibility [133],
along with the interpretability aspects introduced in this work, we encourage the adoption of
POMDP-based I&M planning methods in the offshore wind industry.

Authorship contribution statement

Hlaing, N.: Conceptualization, Methodology, Software, Validation, Formal analysis, Investiga-
tion, Writing - Original draft, Writing - Review & editing, Visualization.
Morato, P. G.: Conceptualization, Validation, Formal analysis, Writing - Review & editing.
Papakonstantinou, K. G.: Methodology, Validation, Formal analysis, Writing - Review &
editing. Andriotis, C. P.: Methodology, Validation, Formal analysis, Writing - Review &
editing. Rigo P.: Supervision, Project administration.

Acknowledgements

This research is funded by the Belgian Energy Transition Fund (FPS Economy) through
PhairywinD and MaxWind projects.

www.phairywind.be


Chapter 4
Probabilistic virtual load monitoring of offshore wind
substructures: A supervised learning approach

Paper Hlaing, N., Morato, P. G. and Rigo, P. (2022). Probabilistic Virtual Load Monitoring of
Offshore Wind Substructures: A Supervised Learning Approach. In The Proceedings of the 32nd
International Ocean and Polar Engineering Conference, ISOPE-2022, volume 4, 3137–3144.

Abstract In this work, a virtual load monitoring framework is proposed for deriving a mapping
from either high or low frequency (1-Hz /10-minute time averaged) SCADA data to load signals,
while preserving the high frequency dynamic components of the latter. Specifically, the proposed
virtual load monitoring scheme relies on a data-driven model that receives features retrieved from
SCADA data and yields the probability distribution of the structural response. The constituent
neural networks are trained via supervised learning based on the labelled data retrieved while
strain sensors are still functional, since at that operational stage, both SCADA and structural
response can be collected concurrently. Once the strain sensors are not functional, the trained
deep neural network is deployed, providing structural response predictions from on-site SCADA
data. The proposed virtual monitoring approach is tested on a monopile-supported offshore wind
turbine and cross-validated in terms of the predicted stress range distribution of a structural
connection located at the mudline. The results show good agreement between structural response
predictions and measurements, thus demonstrating the efficacy and utility of the tested scheme.

4.1 Introduction

Manual or robotic inspections have conventionally been planned and conducted in order to
collect useful information for the evaluation of the performance and structural degradation
of offshore wind turbines (OWTs). In the context of increasing wind farm installations in
deeper waters and farther from shore, monitoring solutions can provide timely information on
wind turbine performance and/or structural health. Along with the advancement of sensor
technologies, various monitoring instruments are currently installed on offshore wind turbines,
e.g., SCADA system, accelerometers, and strain sensors. Monitoring fatigue deterioration has
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become an important objective for assessing the health of OWT support structures since they
are exposed to the interaction of environmental loads and structural dynamics induced by
turbine loads. Strain gauges are often installed at fatigue critical locations to collect structural
response data that can be effectively utilized to reduce uncertainties associated with fatigue
deterioration.

An approach to reduce the epistemic uncertainty associated with the long-term load dis-
tribution relying on strain monitoring data has been introduced in [96], within the proposed
decision-making framework for optimally managing offshore wind farms. In general, the long-
term stress range exhibited by offshore wind structural components is typically described by
a two-parameter Weibull distribution [117, 129]. Due to the physical and model uncertainties
associated with load/ load effect estimations, a high coefficient of variation of the Weibull scale
parameter is often assumed. The uncertainty might also further increase during the structure’s
operational life as a result of the time-varying behavior of wind turbines, influenced by variations
in soil stiffness, scouring, etc. The stress range data retrieved from strain monitoring can be
used to update the prior belief and to reduce the uncertainty of the Weibull scale parameter.
In this context, the uncertainty of strain monitoring can be characterized as the probability
distribution over the states of the ‘observed’ Weibull scale parameter given the ‘true’ Weibull
scale parameter. The measurement quality of strain sensors combined with imperfect Weibull
distribution fitting are, therefore, inherently considered in the uncertainty of strain monitoring.
Bayesian inference is then conducted to update the scale parameter through Weibull distribution
fitting of stress ranges for a certain period of strain monitoring (e.g., 1 year).

In several reported methods for the estimation of remaining useful lifetime, the fatigue
damage computed from strain monitoring data serves as the basis to assess the remaining
lifetime of the analyzed offshore wind turbines. Short-term 10-minute damages are, for instance,
computed from strain measurements using Miner’s rule and binned into different environmental
conditions using SCADA and metocean data. Estimating the occurrence probability of several
environmental conditions either from design documents or long-term monitoring of SCADA data,
the computed short-term 10-min damages are extrapolated to lifetime damage. By comparing
with the design values or target reliability threshold, the remaining useful fatigue life of OWTs
can be reassessed [134, 135].

Strain monitoring data, as previously explained, can effectively reduce the epistemic uncer-
tainty associated with offshore wind fatigue damage estimations, thus enabling more informed
and rational inspection and maintenance decisions. However, under the influence of the harsh
marine environment, the health of strain sensors also deteriorates over time, thereby affecting
sensors’ functionality, e.g., strain sensors’ life might be limited to only 2 or 3 years of active
operation. On the other hand, SCADA data is normally collected throughout the operational
lifetime of wind turbines. This has directed offshore wind research towards data-driven load
prediction methods, i.e., SCADA-based virtual load monitoring. The purpose of virtual load
monitoring is to develop a model that relates SCADA data to the loads/load effects while the
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Fig. 4.1. Schematic representation of reported virtual load monitoring approaches [4].

strain sensors are able to collect data. When the strain sensors are not functional, the developed
model becomes, therefore, a virtual sensor that provides information on loads/load effects from
collected SCADA data.

The development process of a virtual load monitoring scheme is graphically described
in Figure 4.1, showcasing various approaches at each step. The estimation models can be
categorized as physics-based or data-based. Some examples of physics-based methods include
finite element models, modal expansion, Kalman filters, or state estimation, whereas data-driven
estimation models are supported by artificial neural networks or other statistical methods. Most
existing methodologies have focused on learning the relationship between the features/ statistics
of 10-minute averaged SCADA data to short-term damage equivalent load (DEL) [4, 134].
More recently, high frequency 1-Hz SCADA data has enabled the estimation of quasi-static
load component in time series, for example, via deep learning [67]. The superposition of other
sensor data, e.g., accelerations, is required so as to account for the dynamic component of load
signals [62]. Nevertheless, the applicability of such methods is currently limited as long as high
frequency SCADA data is expensive and not easily accessible.

In this work, a virtual load monitoring framework is proposed for predicting fatigue load from
either high or low frequency (1-Hz /10-minute time averaged) SCADA data. The investigated
data-driven prediction model relies on artificial neural networks that are trained via supervised
learning based on the features retrieved from SCADA data and the probability distribution
of concurrent structural response data. In contrast to other virtual load monitoring methods,
the dynamic components of the load signals are preserved, even if the input SCADA data is
encoded at low frequency. Implementation details needed for developing a supervised learning
approach, able to map low frequency SCADA to strain data, are explained in the following
section. Thereafter, the uncertainties associated with the introduced virtual load monitoring
model are characterized. In order to showcase the practical applicability of the developed
method, the fatigue damage of an offshore wind structural connection is calculated based on
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the stress range prediction generated by an already trained neural network. The results show
good agreement between predicted and labelled stress range distributions and fatigue damage
estimates, thus verifying the efficacy of the proposed virtual load monitoring approach.

4.2 Methodology

4.2.1 Mapping SCADA to strain data

In typical offshore wind turbine monitoring systems, strain sensors usually sample data at
high frequency, i.e., around 20-50 Hz or depending on the manufacturer and/or the monitoring
objective. The recorded data is stored in one output file every 10 minutes. The sampling
frequency of SCADA data is lower compared to strain monitoring. SCADA data is recorded at
1-Hz, however only 10-minute statistics are usually stored to reduce data storage. Nowadays,
1-Hz SCADA data can also be obtained with added expense.

A method to map either high or low frequency (1-Hz/ 10-minute averaged) SCADA data to
the associated load effects is proposed herein. The framework presented in Figure 4.2 is based on
10-minute averaged SCADA data. The following procedures are performed for each 10-minute
output file from a strain sensor. First, the strain/stress signals at the measured locations are
extrapolated to the hotspot stress at the location where a fatigue assessment is to be performed
[129]. The extrapolated stress signals then undergo rainflow counting into stress range bins.
Normalizing the rainflow results by the total number of stress cycles, a probability distribution
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Fig. 4.2. Framework for the development and deployment of a virtual load monitoring model
scheme that maps low frequency SCADA data to high frequency strain data.
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of stress range occurrence during 10-minute period is obtained such that:

Sn∑
i=1

P (si) = 1, (4.1)

where Sn is the number of stress range bins and P (si) stands for the occurrence probability of
the ith stress range bin.

Once the data has been processed, a deep neural network can be laid out and trained to
estimate the mapping between 10-minute averaged SCADA data (inputs) and the associated
stress range probability distribution (labels). Among various types of neural networks, fully
connected feed-forward networks are relevant for this application due to the efficient gradient
computation of the loss through back propagation. The choice of the network’s architecture,
i.e., the number of hidden layers and the number of neurons, is particularly dependent on the
amount of training data as well as a trade-off between training time and accuracy.

The non-linear mapping between SCADA and strain data can be introduced through
activation functions in each layer of the neural network. There exist several state-of-the-art
differentiable activation functions, which are often used in machine learning and that enable the
network to learn non-linear patterns contained in the dataset. Since the output layer represents
a probability distribution of stress ranges, a Softmax function or normalized exponential function
should be encoded in that layer, formulated as:

P (si) = exi∑Sn
j=1 exj

, i = 1, 2, ...Sn, (4.2)

where x is the input vector to the activation function. The Softmax function provides an output
vector of probabilities P (si) ∈ (0, 1) for Sn > 1, while the normalization term ensures the sum
of all the outputs to be one.

Regarding the size of dataset, more than 50,000 (10-minute averaged) data files can be
obtained to develop a virtual load monitoring model if a strain sensor continuously records
for over one year. A major portion of the recorded data is used to train the network, whereas
the rest is employed to evaluate the trained model. As mentioned previously, the proposed
mapping is also applicable to high frequency SCADA data. In such case, one can follow one of
the following two options:

1. The statistics/features are extracted from each 10-minute period of high frequency SCADA
time series. Post-processing and rainflow counting can normally be performed on 10-minute
output file of strain monitoring.

2. The strain/stress data is partitioned into 1-second time series and the rainflow counting is
performed on the 1-second time series. It should be noted that there might be losses of
some stress cycles due to splitting of the temporal load data. Another potential drawback
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is the storage and loading of the training dataset which is 600 times larger than the first
option.

4.2.2 Load prediction model uncertainty

The uncertainty characterization of a virtual load monitoring model is comprised of the following
aspects [92]:

• Parametric variability due to different environmental/ operational conditions that the
turbine might experience rather than those from the training dataset.

• Residual variability as a result of the elimination of random process’s variations through
averaging, e.g., averaging of SCADA data and imperfect Weibull distribution fitting.

• Observation error resulting from inaccurate measurements of SCADA devices and strain
sensors.

• Model inadequacy revealed by the discrepancy between model predictions and the true
mean value of the physical process.

Observation error and residual variability due to Weibull distribution fitting can be accounted
as strain monitoring uncertainty [96]. Using the virtual load monitoring model additionally
induces parametric variability and model inadequacy. The modulation of parametric variability,
except for extreme events, can also be achieved through avoiding overfitting of the neural network
and encouraging generalization during the training phase. Recalibration of the network’s weights
with new environmental/ operational conditions and sensor data can also reduce parametric
variability.

Model inadequacy can be quantified by analyzing the neural network’s predictions with
respect to the sensor data, which, corrected from observation errors, is considered as the true
mean value of the physical process. For a more detailed description of model uncertainty
(inadequacy) quantification, the interested reader is referred to [2]. On a worth-noting remark,
the wind turbine behaviour may change after the removal/damage of strain sensors and the
neural network might then become less accurate in representing the real wind turbine behaviour.
Consequently, the strain sensors might be re-installed after certain years so as to recalibrate
and fine-tune the neural networks, thus revisiting and treating model inadequacy.
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4.3 Virtual load monitoring of an offshore wind structural
connection

4.3.1 Numerical simulations

Structural response signals from installed sensors and concurrently recorded SCADA data can
be used to train a virtual load monitoring model. Post-processing of structural response signals
is required to transform them into a probability distribution of load effects, i.e., stress ranges.
Alternatively, structural response simulations can be performed via physics-based analysis of
the wind turbine with the objective to produce a training dataset. In this paper, the simulated
physics-based data of a monopile-supported wind turbine has been used for the training/testing
of the neural networks. Note that, if this option is selected for practical applications, the
physics-based model should be calibrated in order to ensure a consistent dynamic behavior
with respect to on-site measurements, and the physics-based model uncertainty should also be
adequately quantified.

Aero-hydro-servo-elastic simulations in both operational and parked conditions are performed
for NREL 5MW wind turbine mounted atop a monopile with a rigid foundation in 20 m water
depth. Specifications of the turbine and foundation are described in [136, 137]. The Ijmuiden
site is chosen for the gathering of wind and wave climate data, which is located in the Dutch
North Sea, near the already built Noordzeewind OWEZ project [138]. The water depth of the
chosen site is also closely in line with that of the NREL 5MW monopile. The environmental
and operational variables used in the simulations are listed in Table 4.1.

The input environmental parameters are obtained through ancestral sampling from the joint
scatter diagrams of the chosen site. Firstly, the random samples of wind speed Vw are withdrawn
from the Weibull distribution, and the significant wave height Hs, peak spectral period Tp, wind
and wave directions θwind, θwave are then sampled from two-dimensional scatter diagrams for
each of the sampled wind speeds. The initial rotational speed is obtained as a function of the
sampled wind speeds Vw based on the turbine specifications. The yaw error is assumed to be

Table 4.1. Environmental and operational parameters.

Variable Description Ref:
Wind speed (Vw) Vw ∼ Weibull [138]

(scale = 10.49, shape = 2.08)
Wind direction (θwind) P (θwind, θwave | Vw) [138]
Turbulence intensity (I) IEC-3 (I15m/s = 0.14) [139]
Significant wave height (Hs) P (Hs, Tp | Vw) [138]
Peak period (Tp) P (Hs, Tp | Vw) [138]
Wave direction (θwave) P (θwind, θwave | Vw) [138]
Rotational speed (ω) f(Vw) [136]
Yaw error (θyaw) θyaw ∈ [−10, 10]
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independent of other parameters and considered as a uniform random distribution within 10
degrees clockwise and counterclockwise from the wind direction.

Coupled aero-hydro-servo-elastic simulations are run on OpenFAST, a multi-fidelity tool for
wind turbine simulations. The simulation output consists of 10-minute time series of bending
moments and forces at the mudline, sampled at a frequency of 50 Hz. The stress at a fatigue
hotspot, which is located on the transverse Y-axis (0° nominal wind direction) of the substructure
coordinate system, is computed from the simulation outputs according to:

σhs = SCF ·
(
−FZss

Asub

+ MXss ·Rsub

Isub

)
, (4.3)

where FZss and MXss stands for the reaction force and bending moment at the mudline obtained
from wind turbine simulations. Rsub corresponds to the outer radius of the monopile. Asub

and Isub are the cross-sectional area and the second moment of area respectively. The stress
concentration factor SCF corresponding to the welded detail is estimated as recommended by
industrial design standards [129]:

SCF = 1 + 3(αm − α0)
t

e−α, where α = 0.91Lw√
Dsubtsub

. (4.4)

where αm is the maximum misalignment and 5% of the monopile thickness is assumed. α0 is the
misalignment inherent in the SN data for butt welds and α0 = 0 is recommended to consider
narrow fabrication tolerances [129]. Lw is the width of weld which is taken equal to the thickness
of the monopile, and Dsub and tsub are the diameter (6 m) and the thickness (60 mm) of the
monopile, respectively.

Rainflow counting is then conducted on the hot-spot stress time series, computed from
Equation (4.3), into a number of stress range bins. A discrete probability distribution (labels)
is then obtained through the normalization by the total number of stress range cycles. On
a worth-noting remark, the discretization scheme of the stress range bins is crucial since it
will govern over the accuracy of the virtual monitoring scheme as well as on the fitting of a
continuous probability distribution, envisaged for further applications. The error of probability
distribution fitting approaches to zero when the number of stress range bins tends to infinite.
However, it will also increase the number of zero-probability stress range bins, which, negatively
affects the accuracy of virtual monitoring. In this paper, multiple trials are tested and the
following discretization scheme with nbin = 50 is finally selected:

Edges : ∆σhs =
[
0, 0.5 : 50− 0.5

nbin − 2 : 50,∞
]

(4.5)

The input variables or stored pseudo-SCADA data consist of 10-minute mean values of wind
speed Vw, wind direction θwind, significant wave height Hs, peak period Tp, wave direction θwave,
nacelle position θnac = θwind + θyaw, and rotational speed ω. The dataset includes SCADA
(inputs) and stress range probability distribution (labels) of 50,000 numerical simulations (80%
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Fig. 4.3. Neural network architecture of the proposed virtual load monitoring scheme.

in the training set and 20% in the test set) under both operational and parked conditions. The
link to the dataset compiled throughout this work is provided at the end of the chapter.

4.3.2 Training the neural network

The virtual load monitoring model is implemented using the deep learning library Keras [140],
written in Python, and running on the machine learning platform TensorFlow. The input
parameters with different ranges of values undergo data normalization into a standard normal
distribution before they are fed to the neural network. After testing various model’s architectures,
a fully connected feed-forward neural network is chosen, consisting of three hidden layers with
50, 100, 200 neurons, respectively, as shown in Figure 4.3. The hidden layers include rectified
linear unit (ReLU ) activation functions. The output layer, featuring a Softmax function, yields
a discrete probability distribution over 50 stress range bins.

The neural network is trained with RMSprop optimizer at the default learning rate of 0.001.
The training of the network is evaluated in terms of the mean absolute error (MAE) over the
stress range bins:

MAE = 1
N

1
Sn

N∑
j=1

Sn∑
i=1
| Ppred,j(si)− Pdata,j(si) |, (4.6)

where Ppred is the predicted probability from the neural network and Pdata is the probability
from the data. Sn is the total number of stress range bins and N is the number of data samples.
During the training, the MAE continuously decreases as the number of epochs increases since in
fact, the network starts to overfit the training data. To avoid this, the network is evaluated
on the validation dataset after every training epoch. The training set is, therefore, randomly
split into 80% for training and 20% for validation during the training process. The MAE
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Fig. 4.4. Training and validation of the neural network, tracking the evolution of the mean
absolute error (MAE) over epochs.

Fig. 4.5. Reduction of the test MAE for increasing size of training data sets.

on the training and validation datasets tracked over 200 epochs is shown in Figure 4.4. The
performance on the validation dataset plateaus from 30th epoch, whereas the training MAE
continues decreasing due to overfitting. An early stopping callback is introduced, i.e., the
training task is stopped if there is no improvement of the validation MAE, thus preventing the
risk of overfitting.

4.3.3 Training and cross-validation results

First, the amount of training data on the performance of the neural network has been analyzed.
Several neural networks of the same architecture are trained with varying amounts of training
data from 3,000 to 40,000 samples. The whole test set is fed to the trained networks to evaluate
their performance. Figure 4.5 plots the mean absolute errors on the test set against the number
of training samples. As the size of training dataset is increased, the reduction in the error can
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Fig. 4.6. Comparison between predicted and simulated stress range distribution for a 10-minute
random test sample.

be observed. So far as the overfitting is controlled, the neural network benefits from larger
size of training datasets. However, the decrease in MAE is less significant after the number of
training samples is more than 30,000, and therefore, 1 year of SCADA and strain data is, in
general, sufficient to train a virtual load monitoring neural network.

Thereafter, comparisons between the probability distributions from simulated data and the
neural network’s prediction (with the training set size of 40,000 samples) are showcased. Figure
4.6 compares the stress range distribution of a 10-minute random test sample. In the test data,
some stress range bins belong to a zero probability from the rainflow counting results. However,
the output of the neural networks is always non-zero due to the nature of Softmax function,
see Equation (4.2). The function instead outputs very small probabilities. This might result
in an underestimation of the probability over other stress range bins, e.g., stress range bins
30-40 MPa, shown in Figure 4.6. This effect can be adverse when higher number of stress range
bins are used in the output layer, whereas a finer discretization of stress range is favorable for
Weibull distribution fitting.

Figure 4.7 compares the accumulated stress range distribution of the whole test set (∼ 10000
samples). Despite the aforementioned underestimations in low probability regions (< 10−3),
accurate neural network’s predictions can be observed in smaller stress ranges. In addition,
the smaller stress cycles are more critical than high stress ranges in terms of fatigue as they
contribute more to the damage.

4.3.4 Prospective applications

Fatigue damage estimation

Some prospective applications of the proposed virtual load monitoring are also presented in
Figure 4.2. When the strain sensors installed are not functional, one can rely on SCADA data,
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Fig. 4.7. Comparison between predicted and simulated stress range distribution, normalized
over the test set.

in conjunction with virtual load monitoring, in order to predict the load effect distribution. The
predicted stress range distribution can then be used to compute the fatigue damage, e.g., for
design validation. The short-term damage can be easily computed through a forward run of the
trained network using the newly recorded SCADA, followed by the application of Miner’s rule,
considering a deterministic number of stress cycles n within 10 minutes. For a linear SN curve,
the fatigue damage can be calculated as:

D = n
Sn∑
i=1

P (si)
Nfi

, with log10 Nfi
= log10 K −m log10 si. (4.7)

where m and K are parameters of the SN curve. P (si) is the probability in the ith stress range
bin and si is the reference stress range value of the bin.

In this hypothetical example, n = 1200 cycles/10-minute are considered. The SN curve
parameters to calculate the damage at the mudline (free corrosion) are specified as log10 K =
11.687, m = 3. The network is fed by SCADA data (from the test set) to predict the stress
range distribution and short-term fatigue damages are estimated for each 10-minute interval,
following Equation (4.7). The comparison of 10-minute fatigue damage from the simulated
data and the neural network’s predictions is shown in Figure 4.8. The color bar describes the
percentage of the test dataset. As the dotted black line represents 100% accuracy, adequate
performance of the neural network can be observed on around 70-80% of the test data, yet some
spread in the predicted damage can be seen on the remaining 20% of the test data.

Similarly, the long-term fatigue can also be efficiently estimated by damage accumulation
while continuously recording and feeding the collected SCADA data, benefiting from the cheap
computational cost of retrieving neural network’s predictions.
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Fig. 4.8. Comparison of short-term fatigue damage between the simulated data and neural
network’s predictions.

Bayesian inference of load effects

The proposed virtual load monitoring can also be applied to probabilistic fatigue assessments,
e.g., decision-making for inspection and maintenance planning, lifetime extension. In this
application, the predicted stress range information from the neural network model is used to
update the prior stress range distribution. The accumulated probability distribution of the stress
bins over a certain period (e.g., 1 year) is fitted to a Weibull distribution, thus constituting
an observation of the Weibull’s scale parameter. Quantifying the aforementioned uncertainties
of virtual load monitoring, the neural network’s prediction enables the updating of the scale
parameter through Bayesian inference.

Assuming that the stress range distribution follows a Weibull, Miner’s rule, formulated in
Equation (4.7), becomes:

D(t) = nt
[
qm

K
Γ
(

1 + m

h

)]
, t = 0, 1, 2, ...Td, (4.8)

where the SN parameter K is now a random variable owing to the uncertainty of SN curves, n is
the number of stress cycles per year and often assumed deterministic, Γ is the gamma function,
whereas q and h are the parameters of the long-term stress range distribution.

A common practice to obtain the expected value of the scale parameter in inspection and
maintenance planning tasks is to calibrate the damage to the design’s limit, i.e., D(Td) = 1/FDF

where Td is the design lifetime and FDF is the fatigue design factor [115]. Table 4.2 lists the
values of SN variables used in this example. Owing to the lack of knowledge on potential changes
in turbine dynamics, it is assumed that the uncertainty of Weibull scale parameter slightly
increases every year according to:

qt+1 = qt + ε, (4.9)

where ε is a Gaussian distribution with zero mean and a standard deviation of 0.1.
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Table 4.2. Fatigue assessment representative parameters.

Variable Distribution Mean Std (CoV )
FDF Deterministic 3
m Deterministic 3
log10K Normal 11.687+2Std 0.2
h Deterministic 0.8
q Normal *1.9776 (0.2)
n Deterministic 6.32 · 107

UO Normal 0 0.25
UP R Normal 0 0.25
UMI Normal 0 0.5
* calibrated for Td = 20 years and FDF = 3.

Fig. 4.9. Goodness-of-fit between a continuous Weibull distribution and the discrete stress range
distribution obtained from the neural network.

The training set and test set are merged in order that the stress range distribution spans
over a long-enough period, and the merged dataset is fed to the neural network. Accumulating
the obtained results, the final stress range distribution is fitted to a Weibull distribution with a
fixed shape parameter of 0.8. Figure 4.9 illustrates the goodness-of-fit between the fitted Weibull
distribution of qpred = 3.611 and the neural network’s prediction. UO, UP R and UMI represent
the uncertainties of the virtual monitoring associated with observation errors, combined residual
and parametric variability, and model inadequacy, respectively. The observed scale parameter
qobs can be then quantified as:

qobs = qpred + UO + UP R + UMI , (4.10)

where qpred stands for the scale parameter of the fitted Weibull distribution.
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Fig. 4.10. Evolution of estimated fatigue damage over time.

Assuming the SCADA is collected at half of the design lifetime, the scale parameter q is
updated using virtual monitoring data, according to Bayes’ rule:

P (q′ | qobs) ∝ P (qobs | q)P (q). (4.11)

The fatigue damage in Equation (4.8) can subsequently be updated with the posterior information
of q. Figure 4.10 illustrates the evolution of the fatigue damage and its coefficient of variation
(CoV) over time. Due to the uncertainty propagation of the prior scale parameter q, the CoV of
the fatigue damage increases. Updated by the posterior distribution of q, the mean and the
standard deviation of the fatigue damage increase since the observed scale parameter is higher
than the prior expected value. However, the uncertainty of the estimated fatigue damage (CoV)
is significantly reduced at that year.

Due to limited dataset size, the stress range distribution and fatigue damage are updated
only once in this example. In practical scenarios, the SCADA data is collected throughout the
operational life of the offshore wind turbines. Bayesian inference can then be conducted every
one or two years, thus continuously reducing the statistical uncertainty. It is worth-noting that,
the Weibull scale parameter can be considered as a time-invariant random variable in certain
decision-making tasks in order to attenuate the computational demand associated to modeling
the stochastic deterioration process [29, 133]. In that case, the uncertainty of the Weibull scale
parameter, once updated through strain sensor data, will not increase, and the applicability of
the virtual monitoring will be limited.
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4.4 Conclusions and outlook

The nonlinear relationship between operational SCADA data and other monitoring signals,
e.g., strain measurements, can be learned while the information is concurrently collected. Once
some sensors are not functional due to, for instance, deterioration experienced in the marine
environment, and if operational data is still available, the trained data-driven model can predict
other measurements of interest. In most current monitoring setups, operational information
is stored at low frequency (10-minute averaged), whereas structural response data is normally
collected at a much higher frequency, thus hindering the implementation of informative data-
driven predictive models. As demonstrated in this paper, by specifying the output signal
as a probability distribution, a virtual load monitoring scheme, able to treat both low and
high frequency input signals, can be efficiently implemented via supervised learning. The
conducted numerical experiments show that the proposed virtual load monitoring approach can
be applied to multiple practical scenarios, from fatigue damage estimations of offshore structures
to Bayesian updating of load effects, among others.

Besides the mentioned practical applications, this work unfolds further research opportunities.
Robust feature selection methods are, for instance, worth exploring in order to select the most
influencing variables and statistical values among the wide spectrum of signals that can be
monitored on-site, while avoiding redundant variables. Further research efforts can also be
directed to the development of probabilistic deep learning methods, thus enabling the intrinsic
quantification of physical and measurement uncertainties by modeling the neural network
parameters, i.e., weights and biases, as random variables. The inherent uncertainty associated
with data-driven models can be, therefore, reduced as more data is collected and fed to the
neural network.
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Chapter 5
Farm-wide virtual load monitoring for offshore wind
structures via Bayesian neural networks

Paper Hlaing, N., Morato, P. G., de Nolasco Santos, F., Weijtjens, W., Devriendt, C. and
Rigo, P. (2023). Farm-wide virtual load monitoring for offshore wind structures via Bayesian
neural networks. Structural Health Monitoring. DOI:10.1177/14759217231186048

Abstract Offshore wind structures are exposed to a harsh marine environment and are subject
to deterioration mechanisms throughout their operational lifetime. Even if the deterioration
evolution of structural elements can be estimated through physics-based deterioration models,
the uncertainties involved in the process hurdle the selection of life-cycle management decisions,
e.g., lifetime extension. In this scenario, the collection of relevant information through an
efficient monitoring system enables the reduction of uncertainties, ultimately driving more
optimal life-cycle decisions. However, a full monitoring instrumentation implemented on all
wind turbines in a farm might become unfeasible due to practical and economical constraints.
Besides, certain load monitoring systems often become defective after a few years of marine
environment exposure. Addressing the aforementioned concerns, a farm-wide virtual load
monitoring scheme directed by a fleet-leader wind turbine offers an attractive solution. Fetched
with data retrieved from a fully instrumented wind turbine, a model can be firstly trained
and then deployed, thus yielding load predictions of non-fully monitored wind turbines, from
which only standard data remains available, e.g., SCADA. During its deployment stage, the
pretrained virtual monitoring model might, however, receive previously unseen monitoring
data, thus often producing inaccurate load predictions. In this paper, we propose a virtual
load monitoring framework formulated via Bayesian neural networks (BNNs) and we provide
relevant implementation details needed for the construction, training, and deployment of BNN
data-based virtual monitoring models. As opposed to their deterministic counterparts, BNNs
intrinsically announce the uncertainties associated with generated load predictions and allow
to detect inaccurate load estimations generated for non-fully monitored wind turbines. The
proposed virtual load monitoring is thoroughly tested through an experimental campaign in an
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operational offshore wind farm and the results demonstrate the effectiveness of BNN models for
‘fleet-leader’-based farm-wide virtual monitoring.

5.1 Introduction

Offshore wind turbines are continuously exposed to a combined wind and wave load excitation,
thus inducing fatigue deterioration and other mechanical stressors throughout their service life.
The evolution of fatigue damage can be estimated through physics-based engineering models,
yet the resulting deterioration predictions contain significant uncertainties. Combined with
engineering models, manual and/or robotic inspections can be conducted in order to reduce
the uncertainties associated with deterioration estimations, hence supporting more rational and
informed maintenance decisions [133, 141]. With the advent of modern sensor technologies,
monitoring systems are increasingly being deployed with the objective of continuously monitoring
the deterioration experienced by offshore wind structures, thus also enabling decision-makers
to make timely and informed decisions [142, 143]. For example, fatigue load monitoring
through strain gauges provides valuable information that can be used to estimate the remaining
useful fatigue lifetime [135, 144, 145] and/or to update probabilistically modeled time-varying
deterioration mechanisms [96, 146, 147].

However, strain gauges, and other monitoring systems, are also prone to deterioration in a
harsh marine environment and their operational lifespan is normally shorter than the service life
considered for an offshore wind turbine. In this context, virtual load monitoring, either physics-
or data-based, offers an adequate solution, providing load information once strain sensors are
no longer functional [81]. Each approach features its own advantages and disadvantages, and
the choice should be mainly based on one’s knowledge in physics and on data availability [148].
Physics-based approaches demand the development of a numerical model in order to simulate the
loads under actual environmental and operational conditions (EOCs), which are collected via a
supervisory control and data acquisition (SCADA) system. Based on collected on-site structural
response information, physics-based models can be periodically updated [66, 83]. Whereas
physics-based approaches require less data than fully data-based schemes, the development and
implementation of complex dynamical models demand specific knowledge, e.g., thrust coefficient,
soil parameters, that is usually hard to retrieve in real case scenarios.

Alternatively, one can benefit from easily-accessible data, e.g., SCADA data, accelerometers,
among others, to train a deterministic or probabilistic data-based model [61, 147]. The majority
of previous research studies investigate the application of deterministic models for virtually
monitoring offshore wind turbines, mostly focusing on learning relationships between SCADA
data and fatigue loads [4, 67]. In a few cases, high frequency acceleration measurements
are combined with SCADA data in order to adequately capture dynamic load components
[62]. Generally, deterministic models do not explicitly indicate the uncertainty associated
with the generated predictions, except for model verification analysis with respect to sensor
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data [92, 147]. On the other hand, probabilistic approaches can intrinsically provide an
indication of the uncertainty contained in the produced predictions. From the limited number of
reported probabilistic virtual monitoring methods, [82] and [149] investigated the applicability of
heteroscedastic Gaussian processes for probabilistically modeling turbine loads, and similarly, a
Gaussian process-based method was also proposed with the objective of extrapolating monitored
fatigue damage from an instrumented tower section to any other level, based on a covariance
matrix defined via acceleration signals [71].

An additional challenge faced by virtual load monitoring schemes is their applicability at a
farm-wide level. In this perspective, physics-based approaches can easily become burdensome
since a complex numerical model of the entire wind farm is needed, where each turbine structural
design is tailored to a specific water depth, soil conditions, etc. More recently, certain data-based
virtual monitoring schemes have adopted a fleet-leader approach, in which load measurements
collected from monitored turbines are extrapolated to non-instrumented ones. For instance, a
recent study extrapolates short-term damage measurements from an instrumented fleet-leader
to the wind farm relying on binned SCADA data and turbine conditions (i.e., operational
or parked) [150]. However, other relevant information for the estimation of fatigue damage
evolution, e.g., structural dynamics variations among wind turbines, might not be appropriately
captured in SCADA data [151]. In this regard, data-based models that combine both SCADA
data and response information collected from accelerometers can provide farm-wide fatigue
predictions more effectively [72].

As previously explained during the literature survey, recent investigations often rely on
deterministic data-based approaches for the formulation of virtual load monitoring models, yet
their inability to detect potential conflicts during the deployment stage, e.g., inaccurate load
predictions when the network is fed with previously unseen input data, limits their applicability
to farm-wide virtual monitoring implementations. Unless additional sensors are installed with
the objective of retrieving ‘ground truth’ load measurements, the model uncertainty associated
with predictions generated for non-fully monitored wind turbines cannot be quantified. In this
paper, we cast a virtual load monitoring framework that relies on Bayesian neural networks
and probabilistic deep learning methods in order to provide farm-wide load predictions and
enable the intrinsic quantification of aleatory uncertainty (emerging due to the random nature
of the physical system) and epistemic uncertainty (arising due to lack of knowledge of the
system). The proposed virtual monitoring framework is tested on a dataset collected from three
wind turbines that are currently operating in a Belgian offshore wind farm. In particular, a
Bayesian neural network is trained based on SCADA and accelerometer data (inputs) along
with the corresponding damage equivalent moments (labels) collected from a specific offshore
wind turbine. The reduction of model uncertainty with increasing dataset size is thoroughly
quantified and the resulting Bayesian model is cross-validated for the same turbine as well as for
other turbines located in the same wind farm. Interestingly, the results showcase that Bayesian
models are able to intrinsically report higher model uncertainties when tested on a wind turbine
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characterized with a dynamic behavior different from the one employed during the training,
thus demonstrating the ability of the proposed virtual load monitoring scheme to automatically
inform if the provided predictions are inaccurate and whether further information collection
actions are needed.

5.2 Bayesian neural networks

Most recent applications of Bayesian neural networks for offshore wind energy settings have
mainly focused on wind speed and power forecasting [152, 153, 154]. Up to the knowledge of
the authors, Bayesian neural networks-based structural health monitoring methods have not
yet been formally proposed for offshore wind applications. In this section, we briefly introduce
Bayesian neural networks from a general theoretical perspective, since this will facilitate the
application and understanding of the proposed virtual monitoring framework. In essence, a
Bayesian neural network (BNN) is a stochastic artificial neural network trained via Bayesian
inference, featuring the combined strength of deep learning and Bayesian theory in order to
provide a rich probabilistic interpretation of the generated predictions.

The key defining characteristic of Bayesian neural networks with respect to conventional
artificial neural networks (ANNs) is their stochastic neural network components, i.e., stochastic
activations and/or weights [155], as illustrated in Figure 5.1, enabling this way multiple model
parametrizations θ, each of them associated with a probability distribution P (θ). In most appli-
cations, the output prediction of a BNN is also formulated as a probability distribution, thereby
quantifying uncertainties associated with the underlying process, i.e., aleatory uncertainties that
naturally arise from random physical phenomena or inherent noise in the training data, and
model (epistemic) uncertainty due to the limited information used for training the networks.
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(a) Deterministic neural network with weights and
biases specified as point estimates θ along with a
deterministic output.
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Fig. 5.1. Schematic diagrams comparing the topology and constituents of a standard deterministic
neural network (DNN) and a Bayesian neural network (BNN), both mapping standard input
monitoring data x to a load indicator y.
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Whereas aleatory uncertainty is irreducible, model uncertainty can be reduced as the networks
learn from additionally considered training data. In contrast to their deterministic counterparts,
BNNs report high epistemic uncertainty in regions where only few (or none) training points are
available.

When modeling BNNs, and similarly to ANNs, the selection of the network architecture
plays a key role. Various ANNs’ topologies commonly used in machine learning applications,
e.g., feed-forward, convolutional, and recurrent neural networks, are also applicable to BNNs.
Additionally, a stochastic model should also be defined, i.e., a prior distribution of model
parameters P (θ). While the choice of prior distributions is arbitrary, a Gaussian prior with
zero mean and diagonal covariance N (0, σI) is commonly adopted. Gaussian priors are often
preferred due to their advantageous mathematical properties, e.g., its logarithmic formulation is
the cornerstone of most learning algorithms.

5.2.1 Inference methods for BNNs

Conditioned to the training dataset D, the posterior probability distribution of neural network
weights P (θ | D) can be computed via Bayes’ theorem:

P (θ | D) = P (D | θ)P (θ)∫
P (D | θ)P (θ)dθ

. (5.1)

The calculation of the posterior distribution is usually intractable for continuous probabilistic
settings. Therefore, various methods have been developed in order to estimate the Bayesian
posterior, e.g., Laplace approximation [156], variational inference [157], Markov chain Monte
Carlo sampling [158].

Among various Markov chain Monte Carlo (MCMC) algorithms, Metropolis-Hastings [159,
160] has been widely used in Bayesian statistics [161], benefiting from the fact that only a
proportional distribution to the posterior is needed. Despite MCMC algorithms enable the
estimation of posterior distributions through sampling processes, their applicability is still
limited to small datasets and medium complex models, e.g., 10 to 100 variables. Alternatively,
variational inference (VI) has been widely used for settings featuring large datasets and highly
complex models with thousands to millions of parameters and can be applied to most neural
network architectures [162]. The interested reader is directed to Jospin et al. [155] for a detailed
overview of VI and other inference methods applicable to Bayesian neural networks.

The objective of variational inference (VI) is to approximate the potentially complex pos-
terior distribution of weights by a simpler one, denoted as variational distribution. Gaussian
distributions are often used to estimate the posteriors, whose parameters λ = (µθ, σθ) are,
therefore, commonly known as variational parameters. VI methods adjust λ so that the varia-
tional distribution qλ(θ) closely resembles the posterior P (θ | D). The similarity or divergence
between the two distributions is formally described by the Kullback-Leibler (KL) divergence
[163], a non-symmetric and information-theoretic measure of the statistical difference between
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two probability distributions. An optimal solution for the variational distribution qλ(θ) is then
obtained by minimizing KL divergence between qλ(θ) and the posterior P (θ|D). Mathematically,
KL corresponds to the expected value of the difference between the logarithmic probabilities
associated with the two distributions:

KL (qλ(θ) || P (θ | D)) =
∫

qλ(θ) log qλ(θ)
P (θ | D)dθ (5.2)

=
∫

qλ(θ) log qλ(θ)
P (θ,D)
P (D)

dθ

=
∫

qλ(θ) log P (D)dθ −
∫

qλ(θ) log P (θ, D)
qλ(θ) dθ

= log P (D)−
∫

qλ(θ) log P (D | θ)P (θ)
qλ(θ) dθ.

Since the first term is independent with respect to the variational parameters, minimizing
KL (qλ(θ) || P (θ | D)) is equivalent to maximizing the second term, often denoted as the
evidence lower bound objective (ELBO):

ELBO =
∫

qλ(θ) log P (D | θ)P (θ)
qλ(θ) dθ (5.3)

= −
∫

qλ(θ) log qλ(θ)
P (θ) dθ +

∫
qλ(θ) log P (D | θ)dθ.

In particular, the loss function to be minimized corresponds to the negative ELBO and the
optimal variational parameter λ∗ can be, therefore, formulated as:

λ∗ = argmin{KL (qλ(θ) || P (θ))− Eθ∼qλ
[log (P (D | θ))]}. (5.4)

The first term represents the KL divergence between the variational distribution qλ(θ) and the
known prior P (θ) and it makes sure the variational distribution is close to the prior distribution.
When priors are selected with zero mean, minimizing KL (qλ(θ) || P (θ)) resembles the concept
of regularization, i.e., driving weight estimates toward zero [164]. The second term of Equation
(5.4) computes the expected negative log-likelihood of the training data given the weight θ

distributed according to qλ(θ). Minimizing this term controls that BNN’s produced predictions
match training target data.

When a BNN is being trained, the loss function cannot be back-propagated through θ since
it follows a probability distribution. In this scenario, the derivative of the loss with respect to
the variational parameters cannot be obtained. However, the following reparameterization trick
enables the formulation of θ as a deterministic function of the variational parameters:

θ = µθ + σθ · ε, where ε ∼ N (0, 1). (5.5)
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Fig. 5.2. Graphical representation of the reparametrization trick, where by reformulating
stochastic network parameters θ as a function of statistical distribution parameters and additional
stochastic inputs, the back-propagation of the loss with respect to variational parameters can
be effectively computed.

Through this formulation, one can compute the derivative of the loss with respect to the
variational parameters, as shown in Figure 5.2. During forward prediction runs, θ is obtained
through sampling from a standard normal distribution ε, instead of sampling directly from
the variational distribution qλ(θ) so as to facilitate the implementation of the aforementioned
reparametrization formulation. There are also other possible solutions for computing the gradient
when random variables are included in the neural network, e.g., score function estimator [165],
VarGrad [166], straight-through estimator [167], among others. The reparametrization approach
described before is widely adopted in practice owing to its capability for generating unbiased
gradient estimates.

It is also worth-noting that, to reduce computation efforts, the negative log-likelihood can
be evaluated, in some cases, for only one θ sample, instead of computing the expectation over
several realizations, as described in Equation (5.4). The resulting gradient descent is noisy, yet
it can still find its path toward the minimum loss. At the expense of drastically increasing
the computational demand, a more accurate gradient can be computed by sampling multiple
realizations.

5.3 Farm-wide virtual load monitoring through Bayesian
neural networks

In general, the full instrumentation of an offshore wind farm with strain sensors becomes
economically impractical due to the elevated installation and maintenance costs associated with
the process. In this context, virtual load monitoring offers an efficient alternative by providing
load information - denoted hereafter as ‘load indicator’ - based on readily available monitoring
data - denoted hereafter as ‘standard monitoring data’, e.g., SCADA and accelerometer data.
Thus, virtual load monitoring constitutes a natural solution for the implementation of a farm-
wide monitoring strategy, i.e., one or a set of representative turbines, commonly designated as
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Fig. 5.3. Rationale of the proposed farm-wide virtual load monitoring framework featuring
Bayesian neural networks as data-based virtual sensors. (Top left) A fleet leader BNN is trained
based on available load measurement labels. (Top right) At the deployment stage (measurement
labels are no longer available), the pre-trained BNN indicates whether the generated predictions
might be inaccurate by reporting a high model uncertainty. (Bottom) Uncertainty decomposition
is enabled by the proposed BNN approach, yielding information on: (i) the need to collect
more data for improving the model’s performance, (ii) the intrinsic variability of the analyzed
phenomena.

a fleet-leader, is fully instrumented enabling the training of a data-based model, which then
provides load indicator predictions to the other non-fully instrumented wind turbines. As
opposed to conventional deterministic virtual load monitoring schemes, this paper proposes a
probabilistic virtual monitoring method, which by indicating the uncertainty associated with the
‘load indicator’, intrinsically informs the quality of the generated predictions. The overarching
rationale of the proposed virtual monitoring method is illustrated in Figure 5.3, highlighting
BNNs’ capabilities for automatically detecting potential prediction inaccuracies when the virtual
model is deployed to wind turbines where load measurements are not available. Moreover, it is
also showcased in the figure how the overall involved uncertainty can be decomposed into model
and aleatory components, providing information on (i) whether more data is needed to improve
model’s performance, and (ii) capturing the intrinsic variability associated with the analyzed
phenomena, respectively. A more specific description of the general procedure for implementing
a BNN-based virtual load monitoring model is summarized in Figure 5.4, and will be further
explained in the following subsections.
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Fig. 5.4. Flowchart diagram illustrating the steps needed for the implementation of the proposed
farm-wide virtual load monitoring framework.

5.3.1 Selection of the input monitoring signals

In principle, various environmental, operational, and/or motion signals, e.g., SCADA, wave
data, accelerations, can be monitored and fed as inputs to the virtual load monitoring model.
However, a reduced selection of meaningful monitoring signals as inputs to the model will ease
the instrumentation setup of non-fully monitored wind turbines, and overall alleviate practical
constraints during the deployment of the farm-wide virtual monitoring strategy. In order to select
the reduced set of monitoring signals, a data-based model can be tested for various potential
configurations, and by observing the generalization error associated with each considered setting,
the setup that results in the desirable trade-off between accuracy and monitoring equipment
complexity can be then chosen.

The generalization error can be estimated through either deterministic or probabilistic
approaches, yet the metrics employed to assess the error vary between them. Whereas deter-
ministic neural networks (DNNs) are constructed assuming point estimates for the constituent
weights and biases, Bayesian neural networks (BNN) consider weights and biases as probability
distributions, as shown in Figure 5.1. Besides, even if both DNNs and BNNs similarly receive
input monitoring signals x = {x1, x2, ...xM}, DNNs provide a deterministic load indicator as
output, while BNNs’ output becomes a probabilistic load indicator. For the case of deterministic
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neural networks, the standard metrics, e.g., mean absolute error (MAE) or root mean squared
error (RMSE), can be used as reference to compare the performance of the analyzed virtual
load monitoring models, as:

MAE = 1
N

N∑
i=1
|yi − ŷi|, (5.6)

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, (5.7)

where N stands for the number of test samples, and ŷ represents the model prediction, compared
against the ground truth (label), y.

On the other hand, a probabilistic output is provided by BNNs, as mentioned previously,
from which random samples can be drawn. More specifically, the output layer features the
statistical parameters of a specified probability distribution, e.g., a Gaussian y ∼ N (µy, σy),
which are then fed to an additional distribution layer to be able to draw random samples of the
load indicator ŷ, as well as to compute likelihood of the label, i.e., P (y | x, θ). To assess the
performance of a BNN, one cannot rely on MAE or RMSE, since the model outputs are random
realizations. Instead, metrics that provide a probabilistic interpretation should be observed,
e.g., the expected log-likelihood of the label given the prediction model, defined as:

E[L(y)] = 1
N

1
Nf

N∑
i=1

∑
Nf

log (P (yi | µy,i, σy,i)), (5.8)

where µy and σy stand for the output statistical parameters predicted by the model. Note that
the output statistical parameters are, for the case of BNNs, also stochastic, resulting from the
random realizations drawn from the network’s stochastic weights and biases, and thus statistical
properties of the likelihood can be retrieved via numerical simulations, i.e., sampling Nf forward
predictions.

5.3.2 Bayesian neural networks uncertainty decomposition

As explained before, the statistics of BNN’s predicted results can be computed at the deployment
stage through numerical simulations, e.g., Monte Carlo sampling. For instance, one can estimate
the expected value and the predictive uncertainty of the load indicator ŷ given newly acquired
standard monitoring data x:

E[ŷ | x] = 1
Nf

∑
Nf

f(ŷ | x, θ), (5.9)

V(ŷ | x) = 1
Nf

∑
Nf

(f(ŷ | x, θ))2 − (E[ŷ | x])2, (5.10)
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where the network parameters, θ are randomly drawn from the posterior weights and biases
associated distributions, and f symbolizes the Bayesian network model itself. Note that, in
this case, the retrieved predictive uncertainty estimate V(ŷ | x) encompasses both aleatory and
epistemic contributions.

On the one hand, aleatory uncertainties arise from the inherent randomness of physical
phenomena and/or the presence of noise in sensing devices. While the physical uncertainty is
irreducible [168], measurement uncertainty can be reduced by modulating the noise level of
sensors, albeit it cannot be controlled by adjusting the model. On the other hand, epistemic
uncertainties are induced by the quality of the model and can be reduced by improving the
model. For instance, at the deployment stage, a trained BNN might indicate high epistemic
uncertainty if data outside of the training domain is fed to the network, and after the model is
retrained from representative data in the reported high uncertainty region, the BNN’s epistemic
uncertainty can be further reduced. Theoretically, the epistemic uncertainty will be totally
dissipated in the limit of infinite available training data. In practice, however, there exists no
perfect model for predicting the response of complex engineering systems, i.e., the model might
not consider all representative features, and the additional uncertainty associated with the
missing or unavailable latent variables is sometimes also denoted as aleatory uncertainty [169].

A decomposition of the overall uncertainty retrieved by the BNNs, into its aleatory and
epistemic contributions, becomes highly informative when deploying the trained network to the
farm-wide level. An indication of high global predictive uncertainty does not inherently report
the need for retraining the model, since the variability might correspond to noise present in
the observations (labels). However, further data collection and model retraining actions can be
planned as a result of observed high model uncertainty. Not isolated to virtual load monitoring
applications, uncertainty decomposition is an active topic within the probabilistic machine
learning community [168, 169, 170]. The overall uncertainty can be decomposed, according to
the law of total variance, as follows:

V(ŷ | x) = E[σ2
y | x] + V(µy | x). (5.11)

In general, complex engineering systems are exposed to aleatoric physical phenomena, i.e.,
the system response for a given set of input parameter values does not correspond to a single
output value. Since conventional numerical simulators are very often deterministic, the intrinsic
variability is normally accounted for by running multiple simulations with different random seeds
for each input combination, e.g., wind and wave conditions specified following offshore wind
design practices and recommendations [90, 91]. In BNNs, the aleatory uncertainty is captured
by learning the variance parameter σ2

y , thus inherently yielding a probabilistic output. The first
term E[σ2

y | x] in Equation (5.11) can be interpreted as the aleatory component, computed as:

E[σ2
y | x] = 1

Nf

∑
Nf

(f(σy | x, θ))2, (5.12)
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The epistemic uncertainty is encapsulated in the probability distribution of the network’s weights
and biases. The variance of the BNN’s predicted means V(µy | x), computed as in the following
equation, therefore explains the epistemic uncertainty,

V(µy | x) = 1
Nf

∑
Nf

(f(µy | x, θ))2 − (E[µy | x])2 . (5.13)

where,
E[µy | x] = 1

Nf

∑
Nf

f(µy | x, θ), (5.14)

It should be noted that there also exists the uncertainty of BNN’s predicted variance V(σ2
y | x),

yet its contribution to the overall uncertainty is insignificant enough to be neglected.

5.3.3 Farm-wide load prediction

Once the reduced set of input monitoring signals, i.e., standard monitoring data, has been
identified by quantifying the generalization error through either deterministic or Bayesian neural
networks, and the BNN model corresponding to the fleet-leader has also been trained, the
following steps are to be implemented for farm-wide load prediction:

• Collection and treatment of the required standard monitoring data x from non-fully
monitored turbines.

• Deployment of the trained BNN on non-fully monitored turbines, from which multiple
forward simulations are run, thus randomly drawing load indicator realizations, ŷ.

• Computation of the load indicator expected value E[ŷ | x].

• Estimation of the model epistemic uncertainty V(µy | x), and the performance metric
E[L(y)] if the target labels are available, and further information collection actions might
be decided depending on the observed model uncertainty metric.

5.3.4 Epistemic Bayesian neural network

In certain cases, one might only be interested in a virtual sensor model that provides a
mapping between the inputs and deterministic predicted output(s). In that case, an epistemic
variant of the proposed BNN can be implemented by assigning zero to the output variance
node(s) (i.e., σy → 0), hence disregarding the potential aleatory uncertainty associated with the
output response and only seeking the prediction of the mean response output node (i.e., µy).
Theoretically, the response of typical engineering systems normally contains physical aleatory
uncertainty, yet more data is required to train a probabilistic output response compared to
a point estimate. In any case, an epistemic BNN can yield model uncertainty information
because the weights and biases are still described by probability distributions. Since no aleatory
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uncertainty is now incorporated into the model, i.e., the first term in Equation (5.11) becomes
zero and the total predictive uncertainty directly corresponds to model uncertainty. Whether
aleatory uncertainty is included or not, farm-wide deployment can be executed in both cases
since the BNN model will inform valuable model uncertainty metrics about its confidence in the
generated predictions.

5.4 Experimental campaign: Probabilistic virtual load
monitoring in an offshore wind farm

The proposed framework for farm-wide virtual load monitoring is hereafter implemented and
tested for the specific case of an existing offshore wind farm. In this study, we do not rely only
on environmental and operational data, but also incorporate acceleration signals within the
standard monitoring data that will be used to predict the load indicator, as motion information
provides an indication of wind turbines’ structural dynamics and significantly influences fatigue
load estimations [72].

5.4.1 Monitoring setup and dataset description

This investigation relies on the data collected during the course of a 2-year monitoring campaign,
from early 2018 to the end of 2019, conducted on three wind monopile-supported turbines located
in a Belgian offshore wind farm. The overall monitoring setup installed above the mean sea level
is graphically illustrated in Figure 5.5. The turbines are equipped with a standard supervisory,
control and data acquisition (SCADA) system, continuously collecting both environmental and
operational data. More specifically, the collected SCADA data contains 10-minute statistics of
wind speed and direction, turbine rotational speed, yaw and pitch attitude, and instantaneous
power. The sensor setup does not feature wave measurements, yet data from Meetnet Vlaamse
Banken [171]’s Westhinder wave buoy was additionally collected, thus providing wave height,
wave period and wave direction information. As aforementioned, the monitored turbines are
also equipped with three accelerometers installed on the transition piece and tower at 17 m, 38
m, and 77 m above lowest astronomical tide (LAT), respectively. The collected accelerometer
data reports acceleration statistics, i.e., minimum, maximum, and root-mean-square (rms), from
10-minute time series of fore-aft (FA) and side-to-side (SS) accelerations.

Along with the standard monitoring data mentioned previously, strain gauges are installed at
17 m above the lowest astronomical tide (LAT) level of the wind turbines, so as to collect load
signals, i.e., bi-axial bending moments, Mtl in SS direction and Mtn in FA direction. Following
common offshore wind industrial and scientific practices [90], the time series of the monitored
loads are post-processed into representative damage equivalent loads (DELs), i.e., equivalent load
range such that the damage caused by a pre-defined number of the equivalent load amplitude
cycles Neq equals the damage DSN caused by the original load time series, as computed using
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77 m

Accelerometer
Strain gauge

17 m

38 m

SCADA

Fig. 5.5. Illustration depicting the monitoring setup installed on an operational offshore wind
turbine, from which data was continuously collected during the course of the experimental
campaign. The monitoring setup includes a standard SCADA system, accelerometers at three
different levels, and strain gauges installed at the lowest level.

Miner-Palmgren’s rule:

DSN =
Ns∑
i=1

ni

k · S−m
r,i

= Neq

k ·DEL−m
, (5.15)

where k and m correspond to linear S-N curve parameters, Ns stands for the number of stress
range bins in the load spectrum, whereas Sr,i and ni represent the reference value for the ith

stress range bin and the number of cycles inside that bin, respectively. Note that the equivalent
stress cycles Neq are commonly specified as 107. In this work, the damage equivalent moment
(DEM) is computed for each retrieved 10-minute time series of bending moment measurements,
as follows:

DEM =
(∑Nm

i=1 ni ·Mm
r,i

Neq

)1/m

, (5.16)

where Nm stands for the number of bins in the load spectrum, Mr,i and ni represent the reference
moment value for the ith bin and the number of cycles in that bin. One can straightforwardly
compute the fatigue damage from the calculated DEM by also considering the geometrical
properties (i.e., thickness, second moment of area), as well as the specified SN curve parameters
k and m. In this application, the estimated damage equivalent moments DEMtl and DEMtn

constitute the output load indicators that are provided as labels to the virtual load monitoring
model.
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Table 5.1. Description of the dataset.

Sensor Monitoring signal Symbol Units
In

pu
t

SCADA Rotational speed (mean) µ[RPM ] rpm
Yaw angle (mean) µ[Y aw] deg
Pitch angle (mean) µ[Pitch] deg
Power (mean) µ[Power] kW
Wind speed (mean) µ[WSpd] m/s
Wind speed (std) σ[WSpd] m/s
Wind direction (mean) µ[WDir] deg

Wave buoy Wave height Hs cm
Average wave period Tp s
Wave direction θw deg

Accelerometers FA acceleration (max) max[accF A] g
- LAT-017 FA acceleration (min) min[accF A] g
- LAT-038 FA acceleration (rms) rms[accF A] g
- LAT-077 SS acceleration (max) max[accSS] g

SS acceleration (min) min[accSS] g
SS acceleration (rms) rms[accSS] g

O
ut

pu
t Strain gauges DEM (side-to-side) DEMtl MNm

- LAT-017 DEM (fore-aft) DEMtn MNm

In summary, Table 5.1 lists and describes each dataset considered in this work, overall
containing 28 monitoring input signals: 7 from the SCADA system, 3 from the wave buoy, and
18 from the accelerometers; and 2 monitoring output signals retrieved from the strain gauges.
As aforementioned, the data is recorded for three wind turbines within the same offshore wind
farm, and during the investigation, the data retrieved from the fleet-leader wind turbine is
employed for the development and training of the virtual load monitoring model, where the
data is randomly split into 75% for training and 25% for testing. The data collected from the
other two turbines is fully reserved for farm-wide load prediction purposes.

5.4.2 Selection of the input monitoring signals

Following the procedures provided in the framework, a reduced set of representative and
informative input monitoring data is carefully selected through both deterministic and Bayesian
neural network approaches. In order to decide the reduced set of standard monitoring data,
the generalization error is computed for the following model configurations of monitoring input
signals:

1. SCADA + wave

2. SCADA + wave + accelerometer (LAT-017)
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3. SCADA + wave + accelerometer (LAT-038)

4. SCADA + wave + accelerometer (LAT-077)

5. SCADA + wave + accelerometers (LAT-017, 038)

6. SCADA + wave + accelerometers (LAT-017, 038, 077)

7. SCADA

8. SCADA + accelerometer (LAT-017)

9. SCADA + accelerometer (LAT-038)

10. SCADA + accelerometer (LAT-077)

11. SCADA + accelerometers (LAT-017, 038)

12. SCADA + accelerometers (LAT-017, 038, 077)

Note that a distinction has been made in the selection process between model configurations
which include, or do not include, wave data. It is worth exploring alternatives that purely
use the turbine’s monitoring data without relying on the secondary wave data, thus naturally
simplifying the later implementation of a farm-wide load monitoring.

5.4.3 Deterministic neural networks

The deterministic neural networks (DNNs) implemented in this investigation rely on Keras [140]
API, which forms part of the machine learning and artificial intelligence library TensorFlow.
The topology of the DNNs features a fully connected feed-forward neural network consisting of
three hidden layers with 64, 128, 64 neurons, respectively. Naturally, the width of the input layer
varies according to the tested input monitoring signal combination, and the output layer features
two neurons corresponding to the predictions of damage equivalent moments in the side-to-side
(DEMtl) and fore-aft (DEMtn) directions. Note that all network layers are equipped with
rectified linear unit (ReLU ) activation functions.

During the course of the training task, the neural networks are trained via Adamax optimizer
at the default learning rate of 0.001, minimizing the loss function corresponding to the mean
absolute error (MAE):

MAE = 1
2N

N∑
i=1

 ∣∣∣DEMtl,i − ˆDEM tl,i

∣∣∣+ ∣∣∣DEMtn,i − ˆDEM tn,i

∣∣∣
, (5.17)

where N stands for the total number of training samples, DEM and ˆDEM represent the ground
truth (measurements) and predicted damage equivalent moments, respectively. For each tested
combination, the training task conducted 200 epochs, running stochastic gradient descent based
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on randomly collected 32-sample batches. Moreover, potential overfitting conflicts are avoided
by implementing an ‘early stopping callback’, i.e., the training task is stopped if there is no
improvement in the validation MAE [147]. In this regard, the training dataset is randomly split
into 80% for training and 20% for validation purposes.

As described before, we have overall tested 12 input monitoring signal setups. Figure 5.6a
illustrates the performance of each DNN model with respect to the considered input monitoring
setup, indicating in the generalization error computed as:

Error(%) = 100
N

N∑
i=1

∣∣∣∣∣DEMi − ˆDEM i

DEMi

∣∣∣∣∣, (5.18)

where N stands for the total number of test samples. Interestingly, including wave data as
an input to the model is beneficial in configurations in which information on accelerations is
not available, where one can observe a reduction of approximately 6.3% (DEMtn) and 10.1%
(DEMtl) in the computed generalization error. However, the benefit of feeding the network with
wave data becomes negligible once acceleration information becomes also available, resulting
in around 1% reduction of the generalization error in all accelerometer-integrated setups. As
a result, only primary wind turbine monitoring signals, i.e., combination of SCADA system
and accelerometers, can be deemed, in this case, as a satisfactory input monitoring setup, thus
avoiding the need of relying on secondary wave data during the deployment stage of the virtual
load monitoring model.

Furthermore, it can also be observed that the generalization error of the model including
SCADA + accelerometer (LAT-077) as inputs remains very similar to the error reported for
the input setup that features SCADA + accelerometers (LAT-017, 038, 077). Specifically, the
generalization error for the case in which all accelerometers information is considered results in
3.0% (DEMtl) and 5.3% (DEMtn), whereas the error corresponding to the setup where only
the top accelerometer is included as input to the model results in 3.1% (DEMtl) and 5.8%
(DEMtn), respectively. Installing two additional accelerometers at the lower levels reduces only
0.1-0.5% in the errors. Since fatigue is primarily driven by the first structural mode to which the
top accelerometer is more sensitive compared to the other two lower levels, it provides the most
informative data to predict the loads. Therefore, the input monitoring signal setup SCADA
+ top accelerometer interestingly outperforms the monitoring input combination of SCADA
+ accelerometers (LAT-017, 038), even though the load prediction is conducted for a location
situated at the lowest level (LAT-017).

5.4.4 Bayesian neural networks

The Bayesian neural networks introduced in this investigation are implemented with the support
of the probabilistic deep learning library TensorFlow Probability. As for the case of
the DNNs, the width of the Bayesian neural network (BNN) input layer is defined based
on the specified input monitoring data, along with three hidden layers equipped with ReLU
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(a) Errors reported during the testing stage of the implemented deterministic neural networks. The
lower error indicates a better performance of the model.
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Fig. 5.6. Illustration showcasing the performance of load prediction data-based models. Each
bar corresponds to a model specified with a specific set of input monitoring signals, i.e., SCADA,
wave, and/or acceleration data. The red box indicates the selected reduced set of input
monitoring signals.
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activation functions, and an output layer with 4 neurons, from which the output statistical
parameters µDEMtl

, σDEMtl
, µDEMtn , σDEMtn are estimated. Note that, for the case in which the

standard deviation of the output load indicator distribution is known and fixed, the BNN can be
alternatively laid out with a reduced output layer containing only the mean statistical parameter
that drives the resulting load distribution. More specifically, both hidden and output layers of
the BNNs are built through DenseFlipout, implementing Bayesian variational inference via a
Flipout estimator. Since the training samples in each batch share the stochastic weights ε, there
is potential correlation in the resulting gradients which can lead to inefficient training. Flipout
is an efficient method to improve variance reduction by implicitly sampling pseudo-independent
stochastic weights for each training data and therefore decorrelating the gradients within a
batch. For more detailed description of the Flipout estimator, the reader is referred to Wen et
al. [172].

A thorough description of the topology and training environment considered for both
deterministic and Bayesian neural networks is showcased in Appendix A, providing details
for each tested input monitoring setup. In general, the number of neurons included in the
hidden layers of BNNs is lower than the neurons specified for the deterministic counterparts.
If the same architecture would be specified for both DNNs and BNNs, the training for the
latter will naturally take longer as Bayesian inference normally demands more computational
resources than classical backpropagation. However by considering the network parameters as
probability distributions, BNNs are intrinsically more informative, despite having less neurons,
and additionally provide beneficial properties to avoid overfitting with respect to standard
DNNs. As shown in Figure 5.7, a DNN starts to overfit the training data after some training
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Fig. 5.7. Graphical representation and comparison between the usual training behavior of (top)
standard deterministic neural networks (DNNs) and (bottom) Bayesian neural networks (BNNs).
Training and testing losses are plotted for both models over epochs. The automatic overfitting
control featured by BNNs can be observed in the illustration.
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episodes, i.e., the validation loss plateaus while the training loss keeps decreasing. One therefore
needs to add regularizers and/or test on a validation set after each training epoch. In this study,
an early stopping callback based on validation loss metrics is implemented in order to prevent
potential overfitting. On contrary, a BNN does not overfit as it contains a regularizer by default
as explained in the previous section, and a separate validation dataset is no longer needed, and
the early stopping callback in BNN monitors the training loss.

The prior weights’ distributions of the Bayesian neural networks are assigned to follow a
multivariate standard normal distribution. Since the BNN needs to minimize the negative ELBO,
i.e., the sum of KL divergence and negative log-likelihood as shown in Equation (5.4), the built
DenseFlipout layers add the KL divergence between the posteriors and their respective priors to
the specified loss function. The Bayesian model is then trained on 1024-sample data batches
applying the Adam optimizer. On a worth-noting remark, we used a very small learning rate to
train BNNs in this work since otherwise, the network tends to converge to a local minimum
owing to the stochastic nature of the model combined with the complexity of the dataset.

The training is established for 2000 epochs but the BNN early stopping criteria demands to
stop if there is no significant improvement in the training loss. The evolution of the weights can
also be tracked while the Bayesian neural network is being trained. Figure 5.8 illustrates the
evolution of the mean, the standard deviation and the coefficient of variation of a model bias
in the neural network. Evidently, rapid reduction of the uncertainty can be observed as the
network learns from the dataset.
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Fig. 5.8. Evolution of a specific bias from the neural network over training epochs. The reduction
of model uncertainty can be appreciated by observing the plunge of the bias’ coefficient of
variation (CoV) over the course of the training task.
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The comparison of BNN models is shown in Figure 5.6b. The expected log-likelihood on the
test dataset is computed from 10,000 forward runs according to Equation (5.8). Similar to the
deterministic case, the model which maximizes the expected log-likelihood is the one with all
available information, however, the model fed with reduced information - SCADA + accelerometer
(LAT-077) - also provides satisfactory results. Furthermore, since both deterministic and
probabilistic approaches provide consistent results, one can perform the sensor sensitivity
analysis only in a deterministic manner, if preferred, without particular interest on model
uncertainty.

Whereas the optimization of sensor placement can be application specific [173], here we
aimed to maximize the model performance, yet keeping the required instrumentation as minimal
as possible to facilitate farm-wide deployment. Therefore, based on the presented results, we
selected the SCADA + accelerometer (LAT-077) combination for subsequent steps.

5.4.5 Fleet-leader’s virtual monitoring model

Following the process undertaken for the selection of a reduced set of input monitoring signals,
we further investigate the uncertainty associated with the virtual load monitoring model with
respect to specific data collection periods. For each conducted assessment, BNNs featuring the
same architecture are trained and fed with data gathered throughout a certain period, i.e., from
3 to 24 months. Note that a test set randomly sampled from the longest available period, i.e.,
25% percentage of ‘fleet-leader’ full dataset, is used as reference to fairly evaluate all tested
models. More specifically, Figure 5.9 represents the mean of the model’s performance over the
test dataset and as a function of 3-month data collection periods. By examining the separation
between tick values along the x-axis, one can notice the scarcity of monitoring data during
certain periods, which might be potentially associated with the inactivity of certain sensors.

In order to quantify the performance of the analyzed BNN models, two metrics are reported:
the expected log-likelihood of the DEM, E[L(DEM)], and the BNN’s model uncertainty. The
representation of the latter can be seen in Figure 5.9b, which is computed over 10,000 forward
model runs. For better interpretability, the model uncertainty, usually indicated by the standard
deviation of the predicted means, SD(µDEM), is normalized with respect to the expectation,
E[µDEM ], as:

CoV(µDEM) = SD(µDEM)
E[µDEM ] , (5.19)

where CoV(µDEM ) corresponds to (normalized) model uncertainty, and E[µDEM ] and SD(µDEM )
are computed according to Equations (5.14) and (5.13), respectively. Note that the standard
deviation, SD(.), is equal to the square root of the variance, V(.). Even if the model uncertainty,
i.e., CoV(µDEM ), is quantified from BNN predicted results, it does not directly assess the accuracy
of the generated load predictions with respect to DEMtl and DEMtn (labels) measurements.
The considered BNN models are, therefore, additionally evaluated with respect to the expected
log-likelihood of load measurements, E[L(DEM)], computed according to Equation (5.8) over
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Fig. 5.9. Illustration of the virtual monitoring model performance over specific data collection
periods. It can be noticed that the amount of data collected differs for each period, e.g., the
information retrieved over the course of the second trimester is scarce. Note that the plots
indicate the mean of the model’s performance over the test dataset.

also 10,000 forward model runs, and the results are plotted in Figure 5.9a. A similar trend in
the performance reported by both metrics can be observed in the figure.

In general, BNNs (and other deep learning models) will benefit from additional training
data, especially if the information is collected for regions where previously available training
data was limited. The amount of data required to establish a robust BNN is case-dependent
as it is influenced by the number of neurons considered and the complexity of the inherent
physical process, among others. For the specific case of offshore wind turbines, representative
environmental and operational data can be collected within a short term (∼ 1-2 years) [72, 147].
As shown in Figure 5.9, the reduction of model uncertainty reported by the BNN steadily
decreases over 12 months, where the model uncertainty reaches a stagnation point. One can thus
conclude that, for this application, a robust BNN can be trained from 1-2 years of training data.
Even if enough representative data has been collected, wind turbine dynamics might change at
some point in the operational life, in which case, the BNN will automatically indicate to the
user (e.g., operator) that additional data might be required. More specifically, an increased
BNN’s model uncertainty reported by the fleet-leader might suggest that the initially trained
model is no longer adequate and strain gauges should be re-installed and the BNN model should
re-trained. Based on the reported findings, the BNN model is trained over the full training
dataset, i.e., data collection spanning over 24 months, and the resulting BNN virtual model is
then deployed to other wind turbines in the subsequent farm-wide monitoring study.
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5.4.6 Farm-wide deployment of virtual load monitoring model

Once the BNN load model has been trained based on the monitoring output signals (labels)
collected from the fleet-leader wind turbine, the resulting BNN model is deployed in order to
predict the loads of the other two wind turbines in the same wind farm, denoted in the text
as ‘MP01’ and ‘MP02’. Following the same monitoring setup as the fleet-leader, the input
standard monitoring signals fed to the network during the deployment stage correspond to the
combination of SCADA and acceleration data collected at the level LAT-077 (top accelerometer),
and the virtual load monitoring model predicts the damage equivalent moments at the level
LAT-017. Throughout the study, the damage equivalent moments predicted for every 10-minute
collected input data are randomly sampled, thus enabling an uncertainty quantification of the
retrieved load predictions. Note that even if the predictions generated by the model are studied
and deployed to only two wind turbines in this investigation, the proposed framework can be
easily deployed to the whole wind farm.
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Fig. 5.10. Load predictions generated by the Bayesian neural networks at the deployment stage
for all analyzed offshore wind turbines. The retrieved expected damage equivalent moments,
E[µDEM ], are classified into discrete bins colored according to their associated model uncertainty
CoV(µDEM). The height of each bar represents its probability and the color intensity indicates
its associated model uncertainty.
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To observe the load predictions generated by the BNNs, Figure 5.10 illustrates the expected
load indicator E[µDEM ] and its respective (normalized) model uncertainty CoV(µDEM) for all
investigated turbines. Specifically, the expected load indicators E[µDEM ] are allocated into
DEM bins and normalized by the total number of samples, obtaining, therefore, a probability
distribution over the damage equivalent moment. Note that E[µDEM ] is also equal to E[ ˆDEM ].
The model uncertainty associated with each bin is then computed according to Equation (5.19).
As one can observe in the figure, the damage distribution is similar between the fleet-leader and
MP01, resulting in higher probabilities in the low damage region (i.e., normalized DEM < 0.5)
and smaller probabilities for medium to severe damage regions (i.e., normalized DEM > 0.5).
However, MP02 rarely experiences medium to severe damage and many test samples are classified
in the low damage region. Correspondingly, the model performance metric CoV(µDEM) also
indicates a good agreement between the fleet-leader’s training and testing, as well as MP01’s
load predictions. The model in general predicts more accurately DEMtl loads than DEMtn,
achieving the lowest uncertainty in the medium DEMtl region of the fleet-leader and MP01
turbines. The model uncertainties reported for the case of MP02 are visibly higher than other
turbines, announced in the illustration by a darker red color.

The showcased farm-wide load indicators and model uncertainty results are only based on the
outputs retrieved from the deployed BNN, yet the accuracy of the predicted values with respect
to the labels is not explicitly considered. Since MP01 and MP02 turbines have also been equipped
with strain gauges during the monitoring campaign, the measurements (labels) are available
to further analyze the obtained results. Figure 5.11 summarizes the model uncertainty for all
considered offshore wind turbines, compared against the expected log-likelihood of the measured
load indicator given the BNN outputs. Both performance metrics are represented by box plots
that span over the interquartile range (IQR), i.e., between 25th and 75th percentiles, along
with whiskers that extend up to 2.5th and 97.5th percentiles, respectively. Unsurprisingly, the
expected log-likelihood outcomes are in agreement with the BNN-provided model uncertainties.
MP02 wind turbine’s results are characterized with higher model uncertainty as well as lower
expected log-likelihood than for the other turbines, thus indicating potential conflicts with the
generated predictions, e.g., the input monitoring data used during the training stage of the
BNN might significantly differ from the input monitoring data collected for wind turbine MP02.

To further clarify the potential differences between the input monitoring data used during
the training of the fleet-leader and the input monitoring data available for the other wind
turbines at the deployment stage, the minimum Euclidean distance, rmin, of the corresponding
input test data, xtest, with respect to the training dataset, X, is also quantified:

rmin(xtest, X) = min
x∈X
||(xtest − x)||2, (5.20)

where x, xtest ∈ RM , X ∈ RM×N , M and N stand for the dimension of input variables and the
total number of training samples. X represents the matrix of input variables for all training
data, x and xtest indicate the vectors of input variables for each training and testing sample,
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Fig. 5.11. Representation of BNN’s model performance for farm-wide load prediction. In
particular, the model uncertainty is reported for the fleet-leader (both train and test datasets),
MP01, and MP02 offshore wind turbines. In the figure, the orange line and the red-dotted
line represent, respectively, the median and mean values of CoV(µDEM) over the corresponding
dataset, and the boxes span between 25th and 75th percentiles, whereas the whiskers extend up
to 2.5th and 97.5th percentiles.

and rmin denotes the minimum Euclidean distance from each test sample to its nearest training
sample. A high rmin value implies that the corresponding test sample is far from the training
region and, consequently, the predicted results rendered by the model might be inaccurate or
highly uncertain. As one can observe in Figure 5.12, MP01 turbine’s input monitoring test
dataset is in good agreement with the fleet-leader’s train dataset, also characterized with similar
Euclidean distances when compared with the fleet-leader test dataset. On the other hand, the
observed high Euclidean distances with a wider spread over the test set demonstrate that MP02’s
input test dataset substantially differs from the training dataset. Intrinsically, a BNN-based
virtual monitoring scheme adjusts and reports higher model uncertainty, thus detecting potential
conflicts that might emerge when input monitoring data at the deployment stage corresponds
to unexplored data during the training stage.

In particular, the lack of correspondence between training and MP02 testing datasets can
be explained by their divergent structural dynamics behavior. To better visualize this, the
marginal probability distributions corresponding to each input variable are compared for all
tested turbines, and the results are presented in Appendix B. Whereas SCADA input signals are
fairly consistent, acceleration data clearly differ in MP02 wind turbine, as shown in Figure B1.
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Fig. 5.12. Representation of the minimum Euclidean distance from each wind turbine’s input
test dataset to the fleet-leader’s input training dataset. The minimum Euclidean distances are
plotted for the fleet-leader (test dataset), MP01, and MP02 offshore wind turbines. In the figure,
the orange line and the red-dotted line represent, respectively, the median and mean values of
rmin(xtest, X) distances over their corresponding dataset, and the boxes span between 25th and
75th percentiles, whereas the whiskers extend up to 2.5th and 97.5th percentiles.

5.4.7 Comparative study between DNNs and epistemic BNNs

We have hitherto focused on the BNN model in which both aleatory and model uncertainties
are encapsulated. This fully probabilistic BNN model is not directly comparable to the DNN
since the former yields a probabilistic load estimate while the latter only generates a point
estimate. In order to objectively compare BNNs and DNNs in terms of error point estimates,
an epistemic BNN (i.e., the variance of the prediction output is intentionally set up to 0) is
trained based on the fleet-leader dataset and deployed to other wind turbines. In particular, this
BNN modality quantifies the model uncertainty of the predicted load mean, yet the aleatory
uncertainty is disregarded, as previously explained in the theoretical section. The outcome of
the comparative analysis is represented in Figure 5.13, comparing the errors associated with
DNN’s deterministic outputs, ˆDEM , and BNN’s predictions, E[ ˆDEM ], quantified following
Equation (5.18). Note that the networks are trained only with the fleet-leader data and directly
deployed to MP01 and MP02 without fine-tuning. The figure reveals that the epistemic BNN
yields slightly more accurate point load estimates than its DNNs counterparts, except for MP02
turbine. Interestingly, the epistemic BNN also reports higher model uncertainty for MP02,
illustrated in Figure 5.13 with blue-colored bars, agreeing with the computed test accuracy
(MAE).

One should also keep in mind that the modeled epistemic BNN features fewer neurons than
the considered DNN, potentially reducing its generalization capabilities. A thorough description
of the implemented neural network architectures and training parameters is presented in
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Fig. 5.13. Prediction error associated with DNN and epistemic BNN predictions. The mean
absolute error (MAE) corresponding to DNNs and epistemic BNNs is represented with light and
dark grey bars, respectively. Additionally, model uncertainty metrics, CoV(µDEM ), reported by
the epistemic BNN (without the need for ground truth labels) are represented with blue bars.

Appendix A. Whereas the generalization capabilities of different neural network architectures
and hyperparameters are case-dependent, the proposed BNN-based virtual monitoring method
constitutes a general framework for detecting potential load inaccuracies without the explicit
need for a target (load measurement), which is especially relevant when dealing with farm-wide
monitoring applications. In this specific case study, measurements are available for all analyzed
turbines, yet this will most likely not be the case in practical scenarios as it is economically
unfeasible to fully instrument all turbines. While the DNNs do not explicitly report model
uncertainty estimates, BNNs are able to yield consistent model uncertainty information without
the need for ground truth labels. This is confirmed by the reported results, where potential
high prediction inaccuracy is automatically announced for the wind turbine MP02.

5.4.8 BNNs model uncertainty

BNNs are able to automatically announce the model uncertainty associated with the generated
predictions independently of whether the output predictions are modeled as a probability
distribution or as a point estimate. As mentioned in the theoretical section, a BNN that can
capture both epistemic and aleatory uncertainty information would naturally require more
training data. To analyze this, a further investigation has been conducted, comparing the
model uncertainty reported by (i) a BNN that captures both aleatory and epistemic uncertainty
components and (ii) an epistemic BNN (i.e., the variance of the prediction output is intentionally
set up to 0). The architecture and training hyperparameters are the same for both tested BNNs.
Further details can be found in Appendix A.
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Fig. 5.14. Model uncertainty associated with the load predictions generated by the investigated
Bayesian neural networks. BNNs capturing only epistemic uncertainties are colored in light
blue. Spreading over each wind turbine dataset, box plots represent the corresponding model
uncertainty, CoV(µDEM), within the interquartile range, with whiskers that span from 2.5th to
97.5th percentiles. Additionally, the median and mean are indicated with orange and red-dotted
lines, respectively.

The results are represented in Figure 5.14, indicating with box plots the spread in model
uncertainty, i.e., CoV(µDEM ), over the training and testing datasets corresponding to all tested
wind turbines. A similar trend can be observed for the analyzed BNNs, reporting a higher model
uncertainty associated with the predictions generated for wind turbine MP02, thus verifying
farm-wide applicability of both variants. A further inspection of Figure 5.14 reveals that the
aleatoric BNN yields higher model uncertainty compared to its epistemic counterpart. This is
justified by the fact that the training of a model that can predict a probability distribution
given a certain input combination requires more training data, as mentioned previously, and
especially considering the input is high-dimensional in this case, i.e., 13 input variables. Note
that the prediction accuracy cannot be directly compared here because one of the tested BNN
models generates an output probability distribution, whereas the epistemic BNN only provides
the prediction of a point estimate.
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5.5 Conclusions

In this paper, we propose and examine the effectiveness of a data-based virtual load monitoring
framework formulated with Bayesian neural networks for ‘fleet-leader’ farm-wide load monitoring,
i.e., a data-based model is trained with data collected from a fully monitored wind turbine, and
once the training task is completed, the resulting model is deployed, thus yielding load predictions
for other non-fully monitored wind turbines. Within the investigation, we carefully assess
relevant advantageous properties offered by Bayesian neural networks (BNNs), e.g., uncertainty
quantification, automatic overfitting regulation, with respect to standard deterministic neural
networks (DNNs), and we test the proposed virtual load monitoring framework through an
experimental monitoring campaign conducted in an existing offshore wind farm.

The results observed throughout the conducted experimental campaign reveal that, by
reporting an epistemic model uncertainty indicator, and as opposed to their standard DNNs
counterparts, BNN-based virtual monitoring approaches are able to intrinsically identify potential
conflicts with the generated load predictions, providing therefore an informative proxy for
controlling the accuracy of the deployed farm-wide virtual monitoring model. For instance,
a BNN-based virtual monitoring model, whether aleatory uncertainty is inclusively modeled
or not, will automatically report high model uncertainty during its deployment if the input
monitoring data features outliers, i.e., unexplored data with respect to the data fed to the model
during the training stage. Besides their useful uncertainty management capabilities, BNNs
overall training task, even if more computationally demanding than for DNNs, is automatically
regulated by Bayesian inference principles, thus avoiding the risk of overfitting and eluding the
need of a separate cross-validation dataset.

From all available standard monitoring signals, a reduced set of informative input monitoring
signals has been selected in this work by quantifying the generalization error resulting from each
considered monitoring setup. The selection process relies, in this case, on already collected input
data from the installed load monitoring system. Benefiting from BNNs’ internal properties
in terms of uncertainty quantification, we motivate further research efforts toward farm-wide
sensor placement studies capable of allocating monitoring installation and maintenance actions
by following optimal adaptive management policies, e.g., asset management strategies identified
via Markov decision processes and/or deep reinforcement learning methods [27, 29, 38, 43].

In a more specific note, we also encourage the exploration of sophisticated principled metrics
that can be computed during the testing stage of BNN-based virtual monitoring models, and we
suggest, for instance, the investigation of entropy-based metrics [169]. Moreover, a detailed survey
of data-based probabilistic virtual monitoring models is also recommended, e.g., comparing
kernel- and neural network -based methods, which could potentially be complemented with a
thorough uncertainty decomposition assessment.
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Chapter 6
Quantifying the value of virtual monitoring in life-
cycle management of offshore wind support structures

Paper Hlaing, N., Morato, P. G. and Rigo, P. Quantifying the Value of Virtual Monitoring in
Life-cycle Management of Offshore Wind Support structures. Engineering Structures, under
internal review.

Abstract This paper focuses on life-cycle management planning for offshore wind support
structures by leveraging data-based virtual monitoring. Bayesian neural networks are proposed
as virtual sensors, providing useful information and predictive uncertainty when monitoring
systems are no longer available. The probabilistic virtual monitoring model is integrated
with the decision-making framework in order to improve the life-cycle management policies of
deteriorating structures. Featuring high-dimensional state, action and observation spaces, the
decision-making problem is formulated as a decentralized partially observable Markov decision
process (POMDP) and solved via multi-agent reinforcement learning (MARL) algorithms,
advising decisions on when and where to inspect, monitor, or maintain. Life-cycle management
planning is performed both with and without virtual monitoring, quantifying the value of
virtual information. The outcomes of this research not only verify the added benefit of virtual
sensors in decision-making under uncertainty, but also demonstrate the effectiveness of MARL
in identifying life-cycle management strategies for complex engineering systems.

6.1 Introduction

Structures and infrastructures, including bridges and offshore wind turbines, are subject to
various gradual deterioration mechanisms such as fatigue and corrosion, which can significantly
degrade the performance or even trigger failure. To effectively control the risk of structural
failure and mitigate its consequences, it becomes crucial to strategically allocate maintenance
actions throughout the lifetime. Given the stochastic nature of the deterioration processes
mentioned earlier, planning maintenance for these infrastructures requires a comprehensive
approach involving probabilistic analysis and a decision-making framework under uncertainty.
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Structural health information can be collected through inspection and monitoring, reducing
the uncertainties in deterioration estimations and improving the inspection and maintenance
decisions. Whereas non-destructive inspection methods previously stood as primary source of
information, the concept of structural health monitoring (SHM) has recently gained prominence
thanks to the rapid advancement of sensor technologies [93]. SHM which involves the use of
advanced sensing technologies to continuously monitor the condition of structures offers an
array of benefits, ranging from early detection of structural defects to enabling decision-makers
to make timely and informed decisions [96, 143].

However, collecting additional information through either inspections or SHM not only incurs
a significant cost but also concerns with measurement uncertainty. One therefore needs a value of
information (VoI) analysis to quantitatively assess the potential benefit prior to execution. Straub
has presented a formal VoI framework from the structural reliability perspective quantifying the
value of perfect as well as imperfect information [174]. The frameworks for quantifying the value
of structural health monitoring have also been reported [36, 47, 175]. Generally, uncertainties
in the deterioration estimations are reduced upon gathering of additional data, thus having an
effect on maintenance strategies. One can quantify the net value of information as the difference
between: the achieved reduction of expected costs due to additional information, and the cost
of information collection. In some I&M planning methods, the expense of collecting information
via inspections or structural health monitoring is already inherently considered within the cost
modeling of the decision-making framework [36], and the net VoI is directly obtained as the
difference in the expected costs.

Leveraging the advancement of artificial intelligence and machine learning tools, virtual
sensing has increasingly used to enhance the amount of information collected. Virtual sensing
which refers to the ability to gather information about a specific system without directly using
physical sensors, is particularly useful in situations where physical sensors are expensive or
difficult to deploy [59, 60]. Even if not more accurate than physical sensors, virtual sensing
tools can provide insights on a system’s performance at no cost. Virtual sensing models have
been widely implemented in offshore wind structures [68, 70, 79, 80] and other engineering
applications [65, 84]. Quantifying the value of virtual sensing information, however, imposes
some challenges such as to obtain the uncertainty of the virtual sensors and consequently the
quality of virtual observations. Even in the posterior analysis, the uncertainty of the already
observed virtual information may be unknown in some cases, if the target labels cannot be
collected.

In this paper, we adopt a probabilistic virtual sensing model [176] and integrate it in life-cycle
management framework, with the objective of strategically allocating inspection, monitoring and
maintenance actions. Virtual monitoring based decision-making methods can be found in the
literature [97, 98, 99], assuming the existence of digital twin as virtual sensors since the beginning
of decision horizon. Unlike the existing methodologies, our proposed method relies on the pre-
posterior decision analysis to optimally allocate virtual monitoring options over the lifetime
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of structures. In particular, the life-cycle management framework is formulated considering
the possibility of developing a virtual sensor after data collection, and continuous information
retrieval afterwards. Beliefs about deterioration states are updated with not only inspection
outcomes but also physical or virtual monitoring observations. The uncertainty of virtual
monitoring is stochastically propagated over the decision horizon, reflecting the variations in the
structural dynamics. Optimization of the decision-making problem adheres to the principles of
partially observable Markov decision processes (POMDPs) while the computational complexity
of identifying optimal policies, is alleviated by implementing a multi-agent reinforcement learning
approach. We apply the proposed methodology to the case study of managing an offshore
wind turbine support structure consisting of multiple components. We thoroughly analyze
how the optimal policies are altered by including virtual monitoring, and the benefit of virtual
monitoring is quantified relying on the value of information principles.

6.2 Virtual sensing

Sensors are often installed on engineering systems to monitor certain physical quantities,
performance indices or operational information. In many practical applications, it might,
however, be difficult or even impossible to obtain direct measurements of some quantities due
to challenges in terms of accessibility and/or sensor installation and maintenance expenses,
among others. Virtual sensors are therefore developed and used to estimate or infer unavailable
information [60]. Virtual sensing has been adopted in several engineering applications, including
wireless networks [59], intelligent buildings [58], and structural health monitoring [70, 79, 176].

A virtual sensor consists of a software or mathematical model, whether physics-driven
(white-box), data-driven (black-box) or combined (grey-box), which relies on measurable data
to indirectly estimate unmeasured information. Physics-driven virtual sensors, often developed
as numerical models, involve the use of governing equations and physics laws and occasional
calibration of model parameters with respect to in-situ observations. Although physics-based
approaches require limited observation data, the development and implementation in complex
engineering systems demand specific knowledge of model parameters that are usually hard to
retrieve in real case scenarios.

Data-driven virtual sensors, often including regression models or neural networks, learn to
obtain empirical relationships between input variables and target responses. Data-based models
are flexible and can efficiently identify meaningful patterns in the dataset, especially being useful
to model complex behavior of engineering structures. However, they require substantial amount
of data for effective learning, and their ‘black-box’ nature might lack interpretability, making it
challenging to explain the rationale behind predictions or estimations. Additionally, ensuring
generalization beyond the training data and adapting to different operational conditions or
system dynamics can be challenging.
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Physics-informed grey-box models often bridge the gap between traditional physics-based
models and the flexibility of machine learning models, offering a powerful tool for estimating or
inferring unmeasured information within complex engineering systems [76, 87]. These models
leverage domain-specific knowledge by incorporating the underlying physics laws or governing
equations into the learning process, ensuring that the models are consistent with the known
behavior of the system, offering an advantage in situations with limited available data [148].

The most critical aspect of leveraging virtual sensing information for decision-making lies in
effectively quantifying the uncertainty inherent in virtual models, as emphasized before. Virtual
sensing methods in this context can be categorized into deterministic models and probabilistic
models. Deterministic models which operate with fixed model parameters generally lack explicit
indications of the uncertainty associated with their predictions, relying primarily on physical
sensor data (‘ground truths’) for verification and validation purposes [92]. However, when it is
difficult to acquire target labels for evaluating virtual sensing information’s quality, conservative
uncertainty assumptions may be employed, often based on engineering judgment.

On the other hand, probabilistic approaches whose parameters are represented by random
variables, can intrinsically provide an indication of the uncertainty contained in the output
predictions. Such models often include stochastic simulators, e.g., stochastic finite elements
methods [177], and probabilistic machine learning models, e.g., Gaussian processes, Bayesian
neural networks. Gaussian process models are frequently used as virtual monitoring tools in
small to medium dimensional cases [71, 82, 149]. Probabilistic neural networks such as BNNs,
deep ensembles, etc., are capable of handling high dimensional and complex problems especially
when large amount of data is available, and are frequently used in engineering applications
[154, 176, 178].

6.3 Value of information in decision-making

This section briefly describes a theoretical framework for quantifying the value of information in
decision-making. A more detailed and comprehensive explanation can be found in [174]. The
uncertainties in the underlying process can be characterized by a set of random variables X,
each of which follows a specific probability distribution. In decision analysis under uncertainty,
the objective is to identify actions that minimize the expected cost E(C). When no information
is available, the decision-making is purely based on the prior knowledge of uncertain variables
X. This optimization problem is referred to as a prior decision analysis:

aopt = argminaE[c(a, X)] = argmina

∫
X

c(a, x)f(x)dx. (6.1)

The random variables are discretized into a finite number of discrete states s ∈ S, then the
optimization problem is:

aopt = argmina

∑
s∈S

cs(a)p(s), (6.2)
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where p(s) is the probability of being in the state s and cs(a) is the cost of action a if taken in
the state s. The expected prior cost is also associated with optimal decision:

E[Cprior] =
∑
s∈S

cs(aopt)p(s). (6.3)

Optionally, additional information can be gathered before making the action decisions in
order to reduce the uncertainties in random variables X. If it is assumed that the information is
already collected, the prior knowledge on X can be updated using the observation o via Bayesian
inference:

p(s | o) = P (o | s)p(s)∑
s∈S P (o | s)p(s) , (6.4)

where the likelihood P (o | s) is the probability of observing o given the state s. The decision
optimization, which is now based on the updated information, is denoted as the posterior
analysis, obtaining the optimal decision as:

aopt|o = argmina

∑
s∈S

cs(a)b(s | o). (6.5)

The conditional value of information for a particular observation o is computed as the difference
in the costs of prior and posterior optimal actions in the conditional belief b(s | o), as follows:

CV oIo =
∑
s∈S

cs(aopt)b(s | o)−
∑
s∈S

cs(aopt|o)b(s | o). (6.6)

If the optimal decision remains the same before and after information collection, the CVoI will
be equal to zero.

When additional information is collected, there are several possible outcomes, e.g., inspection
outcomes can be binary: detection and no-detection, or multivariate: crack size measurement.
One needs to consider all those possibilities in the VoI analysis ahead of information collection
decision. The VoI is then the expected value of the CVoI with respect to all possible observations
V oI = E[CV oI]. Assuming a finite number of possible observations, the VoI is computed as:

V oI =
∑
o∈O

CV oIoP (o) (6.7)

=
∑
o∈O

P (o)
[∑

s∈S
cs(aopt)b(s | o)−

∑
s∈S

cs(aopt|o)b(s | o)
]

= E[Cprior]−
∑
o∈O

P (o)
∑
s∈S

cs(aopt|o)b(s | o).

The second term of the equation is denoted as pre-posterior decision analysis, in which the
decisions are planned by already taking into account all potential outcomes.
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In addition, it is also useful to compute the net value of information (NVoI) which also
includes the cost of additional information Ci,

NV oI = V oI − Ci. (6.8)

If the NVoI is positive, the collected information provides an added value whereas the negative
NVoI indicates that the information is more expensive than its added benefit.

Quantifying the value of information in life-cycle management planning involves sequential
prior and pre-posterior decision analyses, i.e., decisions are made at multiple time steps. This
imposes significant challenges since the computational cost is exponentially increasing with the
number of decision steps. In traditional risk-based inspection and maintenance planning, this
has lead to the identification of heuristic decision rules such as inspections which are planned at
equidistant time intervals, or before exceeding a failure probability threshold, and maintenance
actions being planned according to inspection outcomes. However, since a sub-space of the vast
policy space has been evaluated, heuristics-based optimization can be sub-optimal, resulting in
the inaccurate estimation of the VoI.

To address this limitation, more advanced decision-making frameworks have been explored.
Such approaches involve the use of Markov decision processes (MDPs) [18, 26, 27, 179] or
reinforcement learning techniques [38, 175]. In the former approach, the life-cycle management
planning problem is formulated as a partially observable Markov decision process (POMDP).
The system state is characterized by the deterioration condition of the asset and the decision-
maker’s belief about this condition. At each decision point, the decision-maker selects an action
(e.g., inspection, maintenance) based on the current belief, i.e., a probability distribution over
the deterioration states. Since the belief is updated after taking an action or collecting an
observation, the current belief is a sufficient statistic of all the past actions and observations.
The objective is to derive a policy that dictates the optimal action at each decision point
to maximize the expected reward (or minimize the expected cost) over the entire life-cycle.
Dynamic programming algorithms, e.g., value iteration or policy iteration, or more sophisticated
point-based solvers are then employed to identify this optimal policy. POMDP-generated policies
are adaptive and assure optimality if exactly solved [29].

Reinforcement learning algorithms are adopted to approximate POMDP solution for life-cycle
management planning of civil infrastructures such as bridges and wind turbines [44, 180, 181].
In this paradigm, each agent representing a specific component interacts with the environment
(the deterioration of the asset in this context) and learns to make decisions that maximize the
cumulative reward. The agent receives feedback in the form of rewards or penalties based on
the outcomes of its actions. Through learning from these experiences, the agent refines its
decision-making strategy over time. While reinforcement learning approach can handle sequential
decision-making in high-dimensional state and action spaces, optimality is not guaranteed as
the training may converge to a local optimum. However, I&M strategies obtained from state-
of-the-art reinforcement learning algorithms such as DDMAC, QMIX, FACMAC, etc., are
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demonstrated to outperform calendar-based or condition-based planning with substantial cost
savings in the management of large infrastructure systems [40, 43, 49]. Furthermore, when
life-cycle management planning consists of multiple information collection possibilities, e.g.,
inspection, sensor installation, and multiple maintenance actions, e.g., minor repair, major repair,
replacement, etc., it becomes difficult to define heuristic patterns, especially for multi-component
systems.

6.4 Virtual monitoring integrated life-cycle management
framework

6.4.1 Decentralized POMDP description

Life-cycle management planning aims to minimize the expected sum of discounted costs, including
inspections, sensor installations, repairs, and failure risk. In this section, we formulate the
life-cycle planning of a multi-component system as a decentralized partially observable Markov
decision process (Dec-POMDP), defined by a tuple [S,A,O, T, Z, R, n, γ]. A detailed description
of each tuple element is provided in the following sections. In essence, at every time step t of
the decision horizon, n agents simultaneously choose an action while being in the state s ∈ S
where S is the set of states. In an uncertain environment, the state s is not observable, and
hence the agent only perceives the belief b(s), i.e., the probability distribution over the states.
Each agent l ∈ 1, ...n takes an action al ∈ Al from the joint action space A = A1, ...An, thereby
transitioning the belief state b(s) according to the transition model T (s′, s, a) = P (s′ | s, a). The
agent then receives an imperfect observation o ∈ O with the probability Z(o, s′, a) = P (o | s′, a),
and the reward R(s′, s, a) discounted by a factor γ is collected by all agents. The optimal
POMDP policy involves a sequence of actions that maximize the accumulated reward over the
decision horizon.

States

Each agent observes its respective component’s damage state and the current time step. However,
since the damage state cannot be perfectly known, the agent instead perceives a probability
distribution. The probability distribution of each component’s damage condition transitions
according to maintenance actions, and can also be updated based on the information collected
from inspection, physical or virtual sensors.

When virtual monitoring option is integrated in life-cycle management, additional information
related to virtual sensors need to be incorporated into the state space. In this work, we
additionally consider two additional variables - the sensor status and the model uncertainty
of a virtual sensor, which are both fully observable. The sensor status consists of three states-
‘physical sensor’, ‘virtual sensor’ and ‘no sensor’, in which the actual state is indicated by a
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one-hot vector. The sensor status therefore informs whether there is a physical or virtual sensor
from which the information can be retrieved.

It should be noted that the measurement uncertainty of physical sensors can be pre-collected
from sensor manufacturers. The parameter describing the uncertainty of physical sensors εp

is therefore deterministic, and not included in the state space. On the other hand, the model
uncertainty is informed by a (probabilistic) virtual sensor during its deployment, i.e., only in
the posterior case. In the pre-posterior analysis, a virtual sensor’s uncertainty εv is considered
as a random variable, and encoded in the state space S.

Actions

The action space A includes not only maintenance actions such as ‘perfect repair aP R’, or ‘do
nothing aDN ’, but also decisions related to information collection, such as ‘inspection aI ’, ‘install
sensor aS’, etc. Moreover, maintenance- and observation-related decisions can also be combined
as additional action possibilities [26]. For example, it is possible to install a sensor immediately
after a maintenance action is performed, allowing data collection in the following year.

Observations

The observation space O is defined according to the inspection and monitoring techniques
available. Non-destructive inspections usually provide only two observations - detection and
no-detection of cracks. In some inspection techniques, direct measurement of cracks can also
be obtained. Whereas monitoring systems output continuous data stream often in time series,
a systematic post-processing is required to convert into discrete observations. For instance,
rainflow counting can be used to convert load signals from a strain gauge into a load spectrum
[147] or damage equivalent load [176].

Transition probabilities

A transition matrix for each maintenance action a ∈ A is defined as the probability of the
component damage transitioning from the state st ∈ S to the state st+1 ∈ S. For example, the
transition matrix of the action ‘do nothing’ T (st+1, aDN , st) follows the stochastic deterioration
process of interest. The transition model for a ‘perfect repair’ action T (st+1, aP R, st) can be
constructed such that the component with any belief b returns to its initial condition b0 [29]:

P (st+1 | st, aP R) =


b0(s0) b0(s1) · · · b0(sk)
b0(s0) b0(s1) · · · b0(sk)

... ... . . . ...
b0(s0) b0(s1) · · · b0(sk)

 . (6.9)
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Despite using only two maintenance actions in this paper, other repair transition matrices can
also be defined, e.g., the component damage after an ‘imperfect repair’ action will go back to a
healthier state but not the initial one.

The transition matrices for the sensor status h are also separately defined for each action.
Specifically, the sensor status indicates the presence of a ‘physical sensor’ once a sensor is
installed. In the following years until the next sensor installation, the sensor status indicates
the presence of a ‘virtual sensor’ unless a maintenance action is executed. In the latter case, it
is assumed that the virtual sensing model no longer represents the structural component after
repair, thus transitioning back to the ‘no sensor’ state. To preserve this dynamics, the transition
matrices are modeled for ‘install sensor’, ‘do nothing’, ‘inspection’, and ‘perfect repair’ actions,
respectively.

P (ht+1 | ht, aDN) =


0 1 0
0 1 0
0 0 1

 ; P (ht+1 | ht, aI) =


0 1 0
0 1 0
0 0 1

 ;

P (ht+1 | ht, aS) =


1 0 0
1 0 0
1 0 0

 ; P (ht+1 | ht, aP R) =


0 0 1
0 0 1
0 0 1

 . (6.10)

On a remark, the lifetime of a physical sensor is modeled as only one year in the above
setting. One can also consider a longer lifetime by increasing the dimension of the sensor status
state and its transition matrices. Moreover, stochastic lifetime of physical sensors can also be
modeled by changing the transition probabilities.

Observation probabilities

An observation matrix defines the probability of collecting an observation o ∈ O for the
component damage being in state s′ ∈ S after taking an action a ∈ A. Observation outcomes
are frequently in the form of binary indication or continuous indication. Non-destructive
inspection techniques often provide detection or no-detection outcomes, of which the likelihood
is quantified by means of probability of detection (PoD) curves [182]. The PoD is the probability
of collecting a detection observation oD as a function of the current state s′ ∈ S, that is
P (oD | s′) = PoD(s).

On the other hand, physical or virtual monitoring systems, and sometimes certain inspection
techniques, provide continuous indication, e.g., measuring the loads and/or crack size. In this
case, the likelihood of observations is modeled by a continuous distribution:

P (o | s′) ∼ N (s′, ε), (6.11)

where ε is the uncertainty of observation techniques. It should be noted that the observation
space for continuous indications is usually discretized into a finite number of observed states for
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efficient Bayesian inference [96]. In this work, the observations are also conditional on the sensor
status, i.e., a monitoring-related observation is collected only if the sensor status indicates a
physical or virtual sensor.

Rewards

In decentralized POMDP, each agent being responsible for a component takes actions a ∈ A over
the decision horizon tN . An immediate reward corresponding to the taken actions is collected
by all agents at each time step, however the ultimate objective is to maximize the accumulated
rewards, i.e., to minimize the expected life-cycle cost of the system:

Ctot =
tN∑
t=0

[
γt

(
RFt + Ccampt +

Nc∑
l=1

{
C

(l)
inst

+ C(l)
senst

+ C(l)
rept

})]
. (6.12)

The system failure risk is defined as RF = CF · (Pfsys,t+1 − Pfsys,t), where Pfsys is the system
failure probability and CF is the associated consequences of a failure event. On the other
hand, inspection, sensor installation and repair actions also incur costs, Cins, Csens, Crep re-
spectively. Optionally, a global campaign cost Ccamp can also be considered if at least one
component in the system is inspected, monitored or repaired, plus a surplus, Cins, Csens, Crep

per inspected/monitored/repaired component. γ is the discount factor which assigns higher
importance to immediate decisions over long-term decisions. All I&M associated costs and
failure risks are formally included in the Dec-POMDP framework as negative rewards.

6.4.2 POMDP dynamics

The algorithmic POMDP dynamics is presented hereafter, implementing the belief evolution via
dynamic Bayesian networks [11]. Although the state space S is usually augmented to jointly
model all the involved variables in classical POMDP configurations, we decouple and consider
individual belief states for deterioration bdt,qt , deterioration rate bτt , sensor status bht and
virtual sensor’s uncertainty bεvs,t . It should be noted that physical or virtual sensors do not
measure the damage dt directly, but observe the underlying parameter qt instead. Therefore, the
deterioration belief state is in fact a joint distribution of dt and qt, also illustrated in Figure 6.1.
The POMDP dynamics is also specified in conditional formations to alleviate the dimensionality
and computational complexity. The deterioration rate b(τt) of each component transitions
according to P (τt+1|τt, at):

b(τt+1 | at) =
∑

τt∈Sτ

P (τt+1|τt, at)b(τt). (6.13)

The transition of the component deterioration bdt,qt is also defined as:

b(dt+1, qt+1 | at) =
∑

dt∈Sd

∑
qt∈Sq

∑
τt+1∈Sτ

P (dt+1, qt+1|dt, qt, τt+1, at)b(dt, qt)b(τt+1). (6.14)
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Fig. 6.1. Graphical representation of a POMDP for life-cycle management including virtual
monitoring. The evolution of a component’s deterioration mechanism, parametrized by the
damage dt, an underlying random variable qt, the deterioration rate τt, is controlled by the
actions at and informed by the imperfect observations odt

and oqt
. The observation oqt is also

influenced by sensor status ht and the sensor’s measurement uncertainty εt. The system cost
depends on the taken actions at and the system failure state fsyst , defined conditional on the
components’ failure states fct .

On the other hand, the sensor status bht also evolves, according to the transition model
P (ht+1|ht, at), as:

b(ht+1 | at) =
∑

ht∈Sh

P (ht+1|ht, at) b(ht). (6.15)

If the sensor status bht indicates the presence of a physical or virtual sensor, the agent will
collect an observation of the underlying parameter oq. If an inspection is also performed, the
agent observes both oq and od. Upon collection of the evidence (observation), the updated belief
of each component’s deterioration can be estimated through the normalization of:

P (dt+1, qt+1 | odt+1 , oqt+1) ∝ P (odt+1 , oqt+1 | dt+1, qt+1)P (dt+1, qt+1). (6.16)

The measurement uncertainty of physical sensors εp can be obtained prior to the installation,
for instance, directly from the manufacturers or laboratory tests. However, the uncertainty of
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virtual sensors is unknown prior to physical sensor installation, data collection, training and
validation. In this context, the uncertainty of virtual sensors can be considered as a probability
distribution εv ∼ N (µεv , σεv), in which the distribution parameters should be defined according
to statistical data, or previously reported results of the selected modeling approach. Alternatively,
a virtual monitoring model can be trained during the computation of the pre-posterior analysis.

The uncertainty of virtual sensors is nevertheless fully observable, i.e., a probabilistic virtual
sensor will also provide uncertainty information along with the predictions [176]. In this context,
an uncertainty realization ε̂v is drawn from the initial distribution εvt . In the next time step,
the virtual sensor’s uncertainty is then updated by replacing the Gaussian mean by the current
realization:

εvt+1 ∼ N (ε̂v, σεv). (6.17)

In this formulation, the uncertainty of virtual sensors can change over time, being rational in
real-world scenarios where virtual sensors are likely to receive both in-training and out-of-training
operational conditions as inputs. In certain cases, even the dynamic behaviour of the structure
may sometimes change, for example, offshore wind turbines often experience scouring which can
cause alternations in their structural dynamics [93]. When significant variations are expected in
the lifetime, a higher value of σεv can be considered.

The failure probability of each component can then be estimated by specifying a node which
represents the component’s failure state ft conditional on the deterioration state of the analyzed
component p(ft+1|dt+1, qt+1). The component failure probability can be computed as:

b(ft+1) =
∑

dt+1∈Sd

∑
qt+1∈Sq

P (ft+1|dt+1, qt+1) b(dt+1, qt+1). (6.18)

The probability of a system failure event Pfsys is subsequently defined, conditional on the
components’ failure probabilities, specified as:

b(fsyst+1) =
∑

ft+1∈SF

P (fsyst+1|ft+1)b(ft+1), (6.19)

where ft+1 is the joint probability distribution of failure/survival states among all components.
In some cases, one could assume full observability of the system failure state. In that case, the
component failure states and component damage states can also be inferred from the observed
system failure state f̂syst+1 . However, we assume in this paper that the system failure is not
fully observable.

All algorithmic steps regarding the transitioning, observation probabilities and belief updates
in the virtual sensing integrated environment are summarized in Algorithm 1.
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Algorithm 1 POMDP dynamics in virtual sensing integrated environment
for t = 1, tN do
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end for

6.4.3 Policy optimization via multi-agent reinforcement learning

Life-cycle management problems, formulated as (decentralized) POMDPs can be solved either
by dynamic programming, e.g., exact value iterations in small state spaces or point-based solvers
from medium to high dimensional state spaces [22, 24]. On the other hand, for the life-cycle
planning for very large infrastructures, reinforcement learning algorithms offer an attractive
solution, parameterizing value function or policies with artificial neural networks [38, 43]. A
benchmark on state-of-the-art multi-agent reinforcement (MARL) algorithms can be found in
[49], with the specific application in infrastructure management planning. In this work, we adopt
QMIX algorithm [54] to approximate the solution of the formulated Dec-POMDP problem. A
brief description of the algorithm is provided below, and the interested reader is directed to [54]
for a more elaborated explanation.
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For each component l, there is one agent network that represents its individual action-value
function Q(l)(b, a), denoted Q(l) for short. Each agent network takes the component’s current
belief states b(l)

t and the action from the previous time step a
(l)
t−1, and outputs the estimation of

individual Q function:

Q(l) = Qπ,(l)(b, a) = Ebt+1:tN
,a

(l)
t+1:tN

[
Rt | bt, a

(l)
t , π

]
, (6.20)

where Rt is the sum of discounted rewards as follows:

Rt =
tN −t∑
i=0

γi rt+i. (6.21)

The outputs of the agent networks are then fed to the mixing network which maps to the joint
Q function, denoted Qtot:

Qtot = Qπ(b, a) = Ebt+1:tN
,at+1:tN

[Rt | bt, at, π] . (6.22)

The key property of the mixing network is the monotonicity constraint:

∂Qtot

∂Q(l)
> 0, (6.23)

so that as the individual Q(l) values increase, the joint value Qtot also increases, reflecting a
cooperative relationship among agents. To ensure the monotonicity constraint, the weights of
the mixing network are restricted to be non-negative. The mixing network also receives the
global information in the form of concatenated components’ beliefs. However, Qtot is monotonic
only with respect to each Q(l) value, but not necessarily to the global belief. Therefore, a
separate hypernetwork is used to estimate the non-negative weights of the mixing network using
the global belief as inputs. The mixing network helps the agents learn coordinated policies in a
centralized training, but once the policies are learned, the mixing network is not used during
decentralized execution, and instead, each agent independently selects its action from the agent
networks.

During the training, QMIX uses a loss function that is similar to the temporal difference
loss used in Q-learning, i.e., the difference between the predicted and target Qtot values:

L(θ) =
∑

u

(
Qpred

tot (b, a)−Qtarget
tot (b, a)

)2

=
∑

u

(
Qtot(b, a; θ)−

(
r(b, a) + γ max

a′
Qtot(b′, a′; θ−)

))2
(6.24)

where r is the immediate reward and u is the batch size. Random batches of experiences are
sampled from the replay buffer, where the agent stores past experiences (tuples of belief state,
action, reward, next belief state). The main networks’ parameters are described by θ and
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those of the target networks are described by θ−. Target networks are used to stabilize the
learning process by providing more consistent target values, and are periodically updated with
the parameters of the main networks.

6.4.4 Value of virtual health monitoring

We aim to quantify the value of virtual health monitoring in the integrated life-cycle management
framework. In this context, the life-cycle management planning is performed with and without
including virtual monitoring. When there is no virtual monitoring option, the sensor status h

directly transitions from ‘physical sensor’ to ‘no sensor’ state as follows:

P (ht+1 | ht, aDN) =


0 0 1
0 0 1
0 0 1

 ; P (ht+1 | ht, aI) =


0 0 1
0 0 1
0 0 1

 ;

P (ht+1 | ht, aS) =


1 0 0
1 0 0
1 0 0

 ; P (ht+1 | ht, aP R) =


0 0 1
0 0 1
0 0 1

 . (6.25)

The VoI is calculated as the difference between the expected cost in which virtual monitoring
is not included E(C0) and the expected cost in which monitoring is included E(C1):

V oI = E(C0)− E(C1). (6.26)

Since the virtual monitoring models are cost-free, i.e., the computational cost and soft-
ware/hardware costs are neglected, the VoI is also equal to the NVoI. Theoretically, NVoI
of unbiased monitoring information is expected to be non-negative if the policies are optimal.
However, it can be zero if the information does not improve the I&M strategies which means
the virtual monitoring is not useful in the decision-making context.

6.5 Numerical experiments

The presented life-cycle management framework with virtual monitoring is implemented and
tested for life-cycle management of an offshore wind support structure under fatigue deterioration.
The objective is to plan inspections, maintenance and structural health monitoring of an OWT
support structure over a lifetime of 20 years in order to minimize the expected life-cycle cost.

6.5.1 Fatigue deterioration modeling

The design of offshore wind foundations is often based on fatigue damage modeling along with
SN curves and Miner’s cumulative damage rule. A component is assigned as failed when the
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cumulative fatigue damage exceeds the failure limit ∆ corrected by the fatigue design factor
(FDF), formulating the probabilistic fatigue limit state gSN as follows:

gSN(t) = ∆−DSN(t), (6.27)

whereas temporal fatigue accumulation DSN(t) is governed by the load distribution and SN
curves. The long-term stress range in offshore wind substructures is often described by a
Weibull distribution with scale parameter q and shape parameter λ, and the fatigue resistance
is empirically parameterized by bi-linear SN curves with slopes m1 and m2 changing at the
reference point of S1, along with the corresponding SN curve intercepts C1,SN and C2,SN . The
temporal accumulated fatigue damage is then computed as follows:

DSN(t) = vt

[
qm1

C1,SN

γ1

{
1 + m1

λ
;
(

S1

q

)λ}
+ qm2

C2,SN

γ2

{
1 + m2

λ
;
(

S1

q

)λ}]
, (6.28)

where v is the fatigue cycle rate and γ1 and γ2 correspond to incomplete gamma functions. Since
load predictions in offshore wind turbines involve significant uncertainties, the scale parameter
q of long-term stress range distribution is also modeled as a random variable. When installing
load monitoring systems, the collected data can be used to reduce the statistical uncertainty of
q, subsequently updating the fatigue damage estimation DSN(t).

Fatigue damage, although its estimation uncertainty can be reduced indirectly through
load monitoring, is not physically observable. Non-destructive inspections can only detect the
presence, location and/or severity of fatigue cracks. A prior modeling of the fatigue deterioration
cannot be combined with inspections within a Bayesian approach. In this regard, we calibrate a
fracture mechanics (FM) model to the probabilistic SN-Miner’s cumulative damage model, such
that the FM model with the following limit state renders similar structural reliability as the SN
model:

gF M(t) = dc −
[
d

2−m
2

t−1 + 2−m

2 CF M(Y π0.5Se)mn)
] 2

2−m

(6.29)

where dc is the critical crack size, often assumed to be the thickness of a structural component.
The crack growth dt is computed, according to Paris law originally proposed by Ditlevsen [119],
as a function of the crack size at the previous time step dt−1, Paris’ law parameters CF M and
m, equivalent stress range Se, stress intensity factor Y and number of cycles in one time step n.
The uncertainty of the crack size can be updated through Bayesian inference using the crack
observations collected at inspections or the load observations from monitoring. It is worth
noting that if a fracture mechanics model has been used during the design phase, it can then be
directly used for inspection and maintenance planning.

The equivalent stress range Se is often considered time-invariant and is computed as the
expected stress range of the two-parameter Weibull distribution:

Se = qΓ(1 + 1/λ), (6.30)
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where q is the scale parameter and λ is the shape parameter, usually taken as 0.8 for offshore
wind support structures. In this paper, we consider the equivalent stress range to be time-
variant by introducing Gaussian noise to the temporal evolution of the scale parameter q. This
incorporation of stochastic variation encapsulates the potential dynamic changes in offshore wind
turbine behavior, accounting for dynamic fluctuations induced by scouring, rotor imbalance,
among others. At each time step, the scale parameter experiences the perturbation of Gaussian
noise, represented by ϵq ∼ N (1, σϵq), and the fracture mechanics limit state in Equation (6.29)
is reformulated as:

gF M(t) = dc −
[
d

2−m
2

t−1 + 2−m

2 CF M{Y π0.5qϵqΓ(1 + 1/λ)}mn)
] 2

2−m

(6.31)

6.5.2 System modeling

The analyzed offshore sub-structure consists of three different types fatigue hotspots with the
following characteristics:

• Hotspot above the water level (AW): This hotspot is assumed to be located above the
waterline, and with a plate thickness of 20 mm. Due to the ease of accessibility, a fatigue
design factor (FDF) of 1 is considered. The SN curves in air environmental conditions are
used to compute the fatigue damage.

• Hotspot below the water level (BW): This structural detail is located in the splash zone,
below the waterline, and with a plate thickness of 60 mm. Due to a slightly difficult
accessibility, a fatigue design factor (FDF) of 2 is considered for this hotspot. In the splash
zone, the corrosive environment accelerates fatigue deterioration, thus the SN reference
curves in a corrosive environment with cathodic protection are selected for the fatigue
damage computation.

• Hotspot below the mudline (MD): This structural detail is located below the mudline,
and with a plate thickness of 60 mm. Being in an inaccessible zone, the structural detail
cannot be maintained as well as inspections and monitoring are not possible. Therefore, a
fatigue design factor (FDF) of 3 is assigned. The fatigue damage is estimated using SN
curves for a corrosive environment with cathodic protection.

The deterioration parameters used for each type of component, both for Miner’s rule fatigue
model and the calibrated fracture mechanics model are listed in Table 6.1. All the continuous
random variables are discretized, allowing the efficient implementation of deterioration transition
and inference through dynamic Bayesian networks. The discretization scheme is presented in
Table 6.2, listing the intervals and state space of the crack size d, deterioration rate τ , scale
factor q, and the sensor status h.

The considered offshore wind turbine substructure consists of five levels- two above water,
two below water and one below mudline. There are two hotspots at each level which are
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Table 6.1. Random variables and deterministic parameters for modeling the fatigue deterioration.

Parameter Distribution Mean Std
h Deterministic 0.8 -
v (cycles/s) Deterministic 0.16 -
m1 Deterministic 3 -
m2 Deterministic 5 -
∆ Lognormal 1 0.3
d0 (mm) Exponential 0.11 -
Y Lognormal 1 0.1
mF M (mm) Deterministic 3 -
AW hotspot
C1,SN* Normal 12.164 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 10.21 2.55
ϵq Normal 1 0.05
lnCF M Normal -26.445 0.122
dc (mm) Deterministic 20 -
BW hotspot
C1,SN* Normal 11.764 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 7.40 1.85
ϵq Normal 1 0.05
lnCF M Normal -26.043 0.403
dc (mm) Deterministic 60 -
MD hotspot
C1,SN* Normal 11.764 0.2
C2,SN* Normal 15.606 0.2
q (MPa) Trunc. Normal 6.74 1.68
ϵq Normal 1 0.05
lnCF M Normal -26.122 0.396
dc (mm) Deterministic 60 -
*Fully correlated.

considered to be in parallel connection and the five levels form a series system. In terms
of implementation, we rely on efficient matricial algorithms proposed by Song et al. [183]
to compute the system probability of failure Pfsys for k-out-of-N systems, i.e., k out of N

components have to be working so that the system is functional. In this context, the whole
support structure represents a 5-out-of-5 system where each level is a 1-out-of-2 system. Figure
6.2 illustrates the unconditional failure probabilities of each component and the system over
the lifetime. The failure probability of the whole system is lower than the failure probability of
some components due to the redundancies in the system modeling.
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Table 6.2. Description of the discretization scheme for the crack size d, stress range scale
parameter q, deterioration rate τ , sensor condition h, component failure state f , and system
failure state fsys.

Variable Interval boundaries States
d [0, d0 : (dc − d0)/(|Sd| − 2) : dc,∞] 30
q [0 : (max(q) + 0.1)/(|Sq| − 1) : (max(q) + 0.1),∞] 20
τ [0 : 1 : 21] 21
h [physical sensor : virtual sensor : no sensor] 3
f [survival, failure] 2
fsys [survival, failure] 2

0 5 10 15 20
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P F

System
Above-water
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Below-mudline

Fig. 6.2. Unconditional failure probability of each component and the support structure system.

6.5.3 Inspection and monitoring models

The measurement uncertainty associated to inspections is described by probability of detection
curves, which can be found in offshore wind design standards [117]. Out of the three different
types of hotspots, only the structural details above the waterline and those at the splash zone
can undergo inspection. The eddy current (EC) inspection, a common inspection method for
offshore wind support structures, is used as a reference inspection model and the probability of
detection curve is defined as follows:

p(odt | dt) = 1− 1
1 + (dt/χ)b

, (6.32)

where the parameters χ and b are 1.16 and 0.90 respectively for the EC inspection at the normal
working conditions.

In addition to crack inspections, strain can also be monitored through operational sensors,
providing statistical information on stress range distribution, denoted as qt. If the sensors
could measure qt perfectly, then the state of qt would be fully observable. However, due to
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Fig. 6.3. Virtual sensing model using a probabilistic Bayesian neural network.

existing measurement errors and the fact that sensors do not directly measure strain at the
precise fatigue hotspot location, we account for these uncertainties by introducing an unbiased
Gaussian noise, characterized by a 7% coefficient of variation. Since the monitoring outcome is
continuous, we use the same discretization scheme as q in Table 6.2. In total, there are a total
of 40 observations available, consisting of 20 load observations for oqt and 2 crack observations
for odt .

Virtual sensing through Bayesian neural networks

In the numerical experiments, we adopt Bayesian neural networks as a conceptual model of
virtual sensing. The BNN-based virtual sensing framework has been previously proposed for
offshore wind farms [176], enabling the intrinsic modeling of aleatory uncertainty (emerging due
to the random nature of the physical system) and epistemic uncertainty (arising due to the lack
of knowledge of the system). Bayesian neural networks are demonstrated to be able to inform
higher model uncertainty when receiving input variables that divert from the training data,
especially being suitable as virtual sensors for offshore wind turbines being subject to structural
dynamic variations over time.

The considered conceptual model consists of a Bayesian neural network which receives
environmental and operational data in the form of short-term statistics and predicts the
equivalent stress range for that period, by learning the underlying scale parameter q of the
stress range distribution, shown in Figure 6.3. The environmental and operational data can be
collected mainly from supervisory, control and data acquisition (SCADA) system and motion
sensors such as accelerometers, which are generally present along the wind turbine’s lifetime. The
output layer captures the equivalent stress range parameterized by the Weibull scale parameter
q and shape parameter λ. Whereas the shape parameter λ is deterministic with a fixed value
of 0.8, the network learns the scale parameter q. The model uncertainty is represented by
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the network’s probabilistic weights, which are estimated during the training through Bayesian
inference [162, 184].

Given that the weights and biases within the network are represented as probability distri-
butions, the BNN produces stochastic realizations of the equivalent stress range Ŝe and the
underlying scale parameter q̂ during each forward execution. A sufficient number of forward
simulations is required to estimate the expected prediction and associated uncertainty of q. In
the posterior analysis, the short term predictions can be accumulated up to one year period
(decision interval), obtaining the yearly observation of shape parameter oqt and ε̂v. In the
pre-posterior analysis, ε̂v is randomly withdrawn from the current probability distribution of
virtual sensor’s uncertainty εv,t, and the probability of oqt ∈ Oq depends on the current belief
state of q and the uncertainty of the virtual sensor. The initial εv of virtual sensor just after
(re-)training is assumed to follow a Gaussian distribution N (µε = 0.1, covε = 0.25), referenced
from the previously reported results [176].

6.5.4 Virtual monitoring integrated life-cycle management of offshore
wind substructures

The decision-maker can choose from six possible actions for each accessible hotspot: (i) Do
nothing (DN), (ii) Inspection (I), (iii) Install sensor (S), (iv) Inspection and install sensor (I-S),
(v) Perfect repair (PR), (vi) Perfect repair and install sensor (PR-S). Actions (i), (ii), and (v)
are frequently used in conventional I&M decision-making problem. On the other hand, actions
(iii), (iv), and (vi) are related to monitoring decisions. Installing a sensor changes the sensor
state from ‘no sensor’ to ‘physical sensor’ and the monitoring observation will be only collected
in the next year. As already mentioned in the previous section, the lifetime of a physical sensor
is assumed to be only one year after which the sensor state will transition to ‘virtual sensor’.
If a maintenance action (PR) is performed while ‘virtual sensor’ is active, the sensor state
will go back to ‘no sensor’, assuming that the virtual monitoring model does not represent
the structural component anymore. The load observations are collected if the agent is in the
‘physical sensor’ or ‘virtual sensor’ state.

Each action incurs an associated cost and the overall cost encompasses failure costs, inspection
costs, repair costs, and sensor installation costs. The campaign cost is also included if at least
one hotspot is inspected, monitored or maintained and Cins, Cins and Crep are added per action
per component respectively. The cost models for various actions and components are described
in Table 6.3. Underwater inspection and maintenance actions are more costly than above water
due to the added complications such as the need of divers, etc.

6.5.5 Results

As explained before, the life-cycle planning is performed with and without deploying virtual
sensing models. For each experiment, the multi-agent reinforcement learning is trained using
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Table 6.3. Cost model for the life-cycle management planning.

γ 0.95
cfsys 10000
ccamp 3

AW hotspot BW hotspot MD hotspot
cins 1 3 -
csens 3 9 -
crep 50 100 -

five different training seeds with up to 2,050,000 episodes in each realization. The model weights
are saved at every 20,000 episodes. The replay buffer contains the most recent 2000 episodes.
Batches of 64 episodes are sampled from the replay buffer during training. All neural networks
are trained using RMSprop with learning rate 5 · 10−4 and the target networks are updated
at every 200 training episodes. The architecture of the agent networks and mixing networks
is the same as in the original work of QMIX [54]. We used the same hyperparameters in all
experiments without fine-tuning.

The statistics (mean, min-max range) of training realizations are shown in Figure 6.4. In all
the training realizations, the expected total cost converges after 1e6 episodes. The value of the
standard deviation is still significantly high in both cases at the end of the training. Since we
also consider load monitoring information, the observation space is higher than traditional I&M
settings in which only two observation outcomes are modeled, leading to the high variance of
life-cycle cost. The networks’ parameters which give the highest expected rewards are chosen
from the saved models by running 100 test realizations of the life-cycle management environment.
Table 6.4 describes the expected costs of life-cycle planning, E(C0) without virtual monitoring
and E(C1) with virtual monitoring. The value of virtual monitoring information is significant in
this case being 9.4 monetary units and 7% of the original life-cycle cost.

In order to visualize MARL-devised strategies, policy realizations for each case are shown in
Figure 6.5 and 6.6, along with the evolution of failure probability for each component and the
whole support structure. In addition, action histograms for each component over 1000 life-cycle
realizations are also presented in Figure 6.7. Since the AW hotspots have the highest probability
of failure among all the components, and the cost of observation and maintenance actions are
also significantly cheaper, the MARL-devised strategies prioritize, in both cases, inspecting and
maintaining those components.

In the life-cycle management without virtual monitoring, first sensor installations occur at
year 6 on all components above the water. It can be seen that the agents seek to minimize the
campaign cost by grouping the observation actions at the same decision step. Two years later,
one of the below water components is also instrumented with a load sensor. Taking advantage
of the unavoidable campaign cost, inspections of some components above the water are also
performed, by selecting those with higher load indication from the installed sensors in order to
effectively control the system failure probability. Since the cost of perfect repair incurs high
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Fig. 6.4. The expected life-cycle cost (mean, min-max range) over training realizations. The
solid lines and shaded colors represent the mean and min-max range of the expected life-cycle
costs from different training seeds. The circular dots indicate the minimum expected life-cycle
cost and its associated standard deviation for each case.

Table 6.4. Expected costs of life-cycle management planning and value of virtual health
monitoring.

Life-cycle management case E(C) 95%
(monetary units) Confidence interval

Without virtual monitoring 133.6 2.35
With virtual monitoring 124.2 2.42
Value of virtual monitoring 9.4 (7%)

costs, PR action is taken only in severe deterioration states, i.e., after consecutive detection
indications or very high failure probability. Sensors are sometimes re-installed on the above
water components before the end of the lifetime, as illustrated in Figure 6.5.

When virtual monitoring is included in the life-cycle management planning, we can see a
different pattern of policies. The agents purely focus on the AW components, always assigning
‘do nothing’ action for the BW components. For all the AW components, sensors are installed
earlier at year 4, thus maximizing the amount of information that can collected from virtual
sensors. Inspections are then planned if the virtual monitoring yields high stress indications,
and ‘perfect repair’ is executed following detection outcomes, as shown in Figure 6.6. It can be
seen that the actions after year 4 significantly rely on the virtual sensing information. Sensor
re-installation on the AW components is more frequent than in the previous case.

The percentage of each action taken over 1000 policy realizations is summarized in Figure
6.8, accounted for all accessible components. The number of inspections is reduced by using
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oq 

Fig. 6.5. Policy realizations of the components and system’s failure probability in life-cycle
management without virtual monitoring.
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Fig. 6.6. Policy realizations of the components and system’s failure probability in life-cycle
management with virtual monitoring.
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virtual health monitoring, from around 6% to less than 4%, while also decreasing slightly the
sensor installation and repair actions.

6.6 Concluding remarks

This paper introduces a life-cycle management framework for optimal monitoring, inspection,
and maintenance planning of offshore wind structures subject to fatigue deterioration. Whereas
previous studies assume pre-existence of physics-based/data-based digital twin for virtual
sensing, the proposed framework relies on the pre-posterior analysis to optimally identify when
to develop/re-calibrate the virtual monitoring model. The decision-making problem is formulated
as a decentralized POMDP with high dimensional state, action, and observation spaces, and
solved via a state-of-the-art multi agent reinforcement learning algorithm.

Monitoring observations are specified conditional on the sensor status, i.e., the information is
only collected if there is a functional physical or virtual sensor. While a Bayesian neural network
is showcased as a conceptual model for virtual monitoring to quantify predictive uncertainty, the
presented framework is compatible with a broad range of uncertainty-aware probabilistic models.
We also propose a stochastic uncertainty propagation of the virtual sensor, representing the
time-varying nature of offshore wind turbine’s structural dynamics. The proposed uncertainty
propagation model is flexible and can be adapted for different initial uncertainties of virtual
model and structural dynamics variations.

We applied the proposed framework in the life-cycle management planning of an offshore wind
support structure consisting of multiple fatigue-critical components. It is demonstrated that the
policies computed by the MARL algorithm can efficiently combine monitoring, inspection, and
maintenance actions, providing optimal decision sequences that might be otherwise difficult to
predict. The value of virtual monitoring is quantified by executing the prior and pre-posterior
decision analyses. The results demonstrate that virtual monitoring information is effectively
used to plan inspections and maintenance actions, resulting in the significant reduction of the
expected life-cycle cost. Further research efforts are recommended toward the development
and investigation of decision-making frameworks that include the management of the complete
life-cycle from design to decommissioning. Life-cycle management of entire offshore wind farms
informed by fleet-leader-based virtual monitoring models are also worth-exploring.
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Chapter 7
Conclusions and outlook

7.1 Concluding remarks

This thesis investigated the potential of leveraging data-driven techniques for virtual monitoring
and effective management of offshore wind support structures. This work emphasizes the
significant role of data-driven methodologies, particularly Bayesian neural networks (BNNs),
partially observable Markov decision processes (POMDPs) and reinforcement learning, in
optimizing maintenance strategies and managing uncertainties. This chapter provides a summary
of the performed research along with the main findings and contributions drawn throughout the
investigation.

As presented in Chapter 2, dynamic Bayesian networks (DBNs) can be adopted to model
stochastic deterioration processes for offshore wind support structures. Even sophisticated
failure criteria can be integrated with dynamic Bayesian networks, allowing efficient computation
of failure probability and inference tasks. Life-cycle management problems can be formulated
as partially observable Markov Decision Processes (POMDPs), with transition and observation
models derived from DBNs. In medium to high dimensional state space settings, point-based
solvers can provide POMDP solutions within a reasonable computational time. Despite still
being uncommon among wind farm operators, POMDP solutions from point-based solvers offer
rich interpretation aspects, as demonstrated in Chapter 3. Particularly, decision-makers can
sequentially choose optimal actions only by tracking the belief states. Furthermore, when human
factors and/or inevitable constraints intervene the POMDP-suggested strategies, analysis of
alternative actions can be performed, devising subsequent strategies in order to minimize the
associated economic regret.

Sensors can also be installed on offshore wind turbines in order to collect load information,
however, there is a challenge that physical sensors are prone to damage in harsh marine
environment and may become unreliable/not functional after a few years. When the installed
sensors are no longer functional, data-driven tools can be used as virtual monitoring models by
training artificial neural networks to learn complex relations from environment and operational
conditions to the response of offshore wind turbines, as presented in Chapter 4. Fully probabilistic
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virtual monitoring schemes can be developed through Bayesian neural networks, combining
the strengths of deep learning and Bayesian inference principles (Chapter 5). Bayesian neural
networks are particularly suited for stochastic modeling and uncertainty quantification in the
predictions. Their capability to announce higher model uncertainty upon receiving out-of-training
input data is advantageous for farm-wide monitoring applications where a fleet-leader-based
model is directly deployed to other turbines.

In addition to inspection and monitoring data, information from virtual sensors can also
be used to reduce epistemic uncertainties as well as to enable more informed maintenance
decisions (Chapter 4 & 6). The benefit of a virtual monitoring model can be systematically
quantified through a value of information analysis, computing the reduction of the expected
life-cycle cost when the virtual monitoring model is deployed. In this regard, virtual monitoring
model can also be incorporated within the sequential decision-making problem, by modeling
monitoring observations conditional on the presence of physical or virtual sensors and following
the integrated POMDP dynamics presented in Chapter 6.

The virtual monitoring integrated life-cycle management of offshore wind structures involves
high dimensional state, action, and observation spaces. In this case, multi-agent reinforcement
learning algorithms can be used to approximate POMDP solution, instead of point-based solvers.
The decision-making problem then relies on the decentralized POMDP formulations, yet the
value function or policies are parameterized with artificial neural networks. The policies obtained
from the life-cycle management planning problem provide not only inspection and maintenance
strategies but also virtual monitoring related decisions including sensor (re-)installation and
re-calibration of the virtual model.

In particular, the original contributions can be shortlisted as:

i) modeling of stochastic fatigue failure criteria and deterioration models through dynamic
Bayesian networks and partially observable Markov decision processes;

ii) interpretation and analysis of POMDP-based inspection and maintenance policies in order
to accelerate implementation in the offshore wind energy industry;

iii) development of a fully probabilistic virtual monitoring model through combination of
deep learning and Bayesian inference principles and application in a real-world case study,
demonstrating uncertainty quantification capability and farm-wide applicability;

iv) modeling of a stochastic uncertainty propagation scheme for uncertainty-aware virtual
monitoring methods;

v) development of an algorithmic framework for optimal monitoring, inspection, and mainte-
nance planning of offshore wind structures using virtual sensors;

vi) application of the proposed framework for the life-cycle management of an offshore wind
support structure and quantifying the value of virtual monitoring information.



7.2 Suggestions for further research 131

7.2 Suggestions for further research

Further research directions are here suggested for future scientific exploration in the aspects
of probabilistic virtual monitoring and integrated life-cycle management planning. In the
probabilistic virtual monitoring context, deeper uncertainty quantification analysis, including
the development of sophisticated principled metrics are strongly encouraged. The theoretical
formulation of Bayesian neural networks and Bayesian inference forms a principled mathematical
framework for probabilistic learning. However, simplifications are often imposed in the learning
algorithms or during the training in order to approximate the Bayesian inference of high
dimensional models within a reasonable computational time, e.g., assumption of posterior
mean field weights, thus reducing the learning capacity. The investigation of efficient inference
approximation methods, for instance, Hamiltonian Markov Chain Monte Carlo [185], stochastic
gradient Langevin dynamics [186], are recommended. Thorough comparative analyses between
Bayesian neural networks and other probabilistic models such as deep ensembles and Gaussian
processes are also worth-conducting.

With respect to the scope of the life-cycle management planning, this work was mainly
focused on the operational phase of already existing structures. This could be further extended
to a complete life-cycle management from the design stage to decommissioning, considering
not only gradual deterioration processes, but also the potential occurrence of extreme events.
Whereas this work mainly relies on data-based models for virtual monitoring, it would also
be worth-exploring the fusion of information from multiple virtual monitoring systems in the
decision-making. For instance, when the management of an entire wind farm is carried out,
information over the whole support structure of a turbine can be obtained from its physics-based
virtual model [187] and farm-wide information can be retrieved from a data-driven probabilistic
model [176].
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Appendix A
Network architectures and training environments

Table A1. Comparison between deterministic and Bayesian neural networks for sensor con-
figurations “SCADA + wave, SCADA + wave + accelerometer (LAT-017), SCADA + wave
+ accelerometer (LAT-038), SCADA + wave + accelerometer (LAT-077), SCADA + wave +
accelerometers (LAT-017, 038)”.

Deterministic NN Bayesian NN
Optimizer Adamax Adam

(lr=0.001) (lr=0.0003)
Batch size 32 1024
No of episodes 200 2000
Early stopping Validation loss Training loss

(Patience = 5) (Patience = 30)
No of neurons:
Hidden layers 64, 128, 64 31, 64, 32
Output layer 2 4
Distribution layer - 2

Table A2. Comparison between deterministic and Bayesian neural networks for sensor configu-
ration “SCADA + wave + accelerometers (LAT-017, 038, 077)”.

Deterministic NN Bayesian NN
Optimizer Adamax Adam

(lr=0.001) (lr=0.00035)
Batch size 32 1024
No of episodes 200 2000
Early stopping Validation loss Training loss

(Patience = 5) (Patience = 30)
No of neurons:
Hidden layers 64, 128, 64 31, 64, 32
Output layer 2 4
Distribution layer - 2
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Table A3. Comparison between deterministic and Bayesian neural networks for sensor configu-
rations “SCADA, SCADA + accelerometer (LAT-017), SCADA + accelerometer (LAT-038),
SCADA + accelerometer (LAT-077)”.

Deterministic NN Bayesian NN
Optimizer Adamax Adam

(lr=0.001) (lr=0.0002)
Batch size 32 1024
No of episodes 200 2000
Early stopping Validation loss Training loss

(Patience = 5) (Patience = 30)
No of neurons:
Hidden layers 64, 128, 64 32, 64, 32
Output layer 2 4
Distribution layer - 2

Table A4. Comparison between deterministic and Bayesian neural networks for sensor configu-
ration “SCADA + accelerometers (LAT-017, 038), SCADA + accelerometers (LAT-017, 038,
077)”.

Deterministic NN Bayesian NN
Optimizer Adamax Adam

(lr=0.001) (lr=0.0003)
Batch size 32 1024
No of episodes 200 2000
Early stopping Validation loss Training loss

(Patience = 5) (Patience = 30)
No of neurons:
Hidden layers 64, 128, 64 32, 64, 32
Output layer 2 4
Distribution layer - 2
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Fig. B1. Probability distributions of 10-minute SCADA and acceleration statistics for the
fleet-leader, MP01 and MP02 turbines. The X-axes are normalized due to data confidentiality
concerns.
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