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Abstract

We present a preliminary report on the determination of the intercepts and cou-
plings of the soft pomeron and of the ρ/ω and f/a trajectories from the largest
data set available for all total cross sections and real parts of the hadronic am-
plitudes.8 Factorization is reasonably satisfied by the pomeron couplings, which
allows us to make predictions on γγ and γp total cross sections. In addition we
show that these data cannot discriminate between fits based on a simple Regge
pomeron-pole and on an asymptotic log2 s-type behaviour, implying that the ef-
fect of unitarisation is negligible. Also we examine the range of validity in energy
of the fit, and the bounds that these data place on the odderon and on the hard
pomeron.
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I Introduction

Irrespectively of the true nature of the pomeron, the Regge parametrisation [1, 2] plays
an important role in the experimental analysis of diffractive processes at HERA [4] and in
p̄p studies at the Tevatron and at CERN [5]. It also offers a successful phenomenological
starting point at low x and low Q2 or at the soft limit of the hadronic interactions, from
which QCD evolution as well as the soft process theory based on QCD can in principle be
developed or to which one would have to add a hard (leading-twist) QCD contribution [6].

Remarkably, the experience over the past several decades in phenomenological analysis
of experiments has shown that the pomeron is, to a good approximation, a simple Regge
pole with intercept 1 + ǫ; despite the apparent complications of being non-perturbative in
QCD, t = 0 data can be described by particularly simple models– namely a sum of simple
powers of the center-of-mass energy

√
s:

ImAh1h2
(s, t) =

∑

i

(−1)SiCh1h2
(t)

(

s

s0

)αi(t)

(1.1)

with Si the signature of the exchange. The total cross section is then given by

σh1h2

tot (s) = ImAh1h2
(s, 0)/s. (1.2)

The trajectories αi(t) are universal, and the process dependence is present only in the
constants Ch1h2

(which absorb the scale s0). The trajectories are manifest (and approximately
linear) in the case of mesons, but can only be assumed in the case of the pomeron (despite
the existence of strong glueball candidates [7]).

Adopting the viewpoint that simple Regge pole exchanges should account for all soft data
up to the presently accessible energies, Donnachie and Landshoff (DL) [9] advanced a model
for the total cross sections with just two Reggeons, i,e., an additional exchange-degenerate
Reggeon representing both C = ±1 (ρ, ω, a, f ) exchanges besides the pomeron:

σtot(s) = Xsǫ + Y s−η (1.3)

with the intercepts given by αp = 1 + ǫ and αR = 1 − η . The simplicity of 1.3 has made
the DL model fit of total cross sections a standard reference for models of total, elastic and
diffractive cross sections [10].

Although the DL model fares reasonably well when fitting to pp and pp̄ total cross
sections, its χ2/d.o.f. becomes considerably larger that that of other models [11] when
fitting both the total cross sections and the real parts of the scattering amplitudes. This
lead two of us (JRC and KK) with S. K. Kim to propose a slight generalisation of the DL
model, lifting the degeneracy of the reggeon trajectories[12]:

σtot(s) = Xsǫ + Y+s−η+ ± Y−s−η− (1.4)

The last two terms represent the exchanges of non-degenerate C = +1(a, f) , and C =
−1(ρ, ω) meson trajectories, with intercepts αp = 1 − ǫ and α± = 1 − η± respectively. The
sign of the Y− term flips when fitting pp̄ data compared to pp data. The real parts of the
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forward elastic amplitudes are calculated from analyticity[13]. We shall refer to this model
as CKK.

Despite its successes, the above parametrisation [12] left some questions unanswered.
First of all, one had to introduce a filtering of the data to produce a reasonable χ2/d.o.f.,
irrespectively of the model. Such a filtering inevitably leads to a bias, which we could not
evaluate precisely. The present analysis uses an expanded and revised dataset [14] which
does not call for a selection of datapoints. Secondly, the analysis in [12] was limited to pp
and p̄p data, and could not consider questions related to factorisability and universality of
trajectories.

We present here the preliminary results of a joint fit to pp, p̄p, π±p, K±p, γp and γγ cross
sections and hadronic ρ-parameters. The latter two processes are particularly important in
the study of DIS events at HERA. We will see that the soft-pomeron intercept obtained in
[12] is reproduced by global fits to all available soft data from these reactions. Also, in order
to see if the soft data are enough to establish the existence of a simple Regge pole for the
pomeron, we present also fits to a typical analytic amplitude model [15], i.e., Model A2 out
of many possible parameterizations in [11],

σtot(s) = Λ
(

A + B ln2(s/s0)
)

+ Y+s−η+ ± Y−s−η− (1.5)

which we shall call RRL2 in the following, and where the last two terms represent the
lower Regge trajectory terms of C = ±1 as before. We will see that the RRL2 fit is
indistinguishable from the CKK simple-pole one. Thus while one cannot conclude that the
pomeron is a simple pole, the claims concerning eventual problems with unitarity [17] is not
supported either.

II Results of the simple-pole fit: the CKK model

We first give the results for the simple-pole fit (model CKK). As before [12] we fit the data
above an energy cut-off

√
smin and require that the results be stable w.r.t. variations in that

cut-off, and that the χ2/d.o.f. be of order 1. Furthermore, in order to get a (slightly) better
fit at low energy, we use the variable s̃ ≡ (s − u)/2 in eqs. (1.4, 1.5).

We assume the intercepts ǫ, η+, and η− to be universal, and the couplings are then related

through charge conjugation by: Xh1h2
= Xh1h̄2

, Y h1h2

± = ±Y h1h̄2

± . Hence Y hγ
− = 0. We shall

rewrite the pomeron couplings in the following forms, which make their properties more
transparent:

Xpp = xpp ×
3

2
Xπp, XKp = xKp × Xπp, (2.6)

Xγp = xγp × gelm
2

[

1

f 2
ρ

+
1

f 2
ω

+
1

f 2
φ

]

(1 + δ)Xπp ≈ xγp ×
Xπp

213.9
, (2.7)

Xγγ = xγγ ×
X2

γp

Xpp

. (2.8)

The parameters xh1h2
are expected to be of order 1, because (2.6) reflect the additive quark

counting, (2.7) comes from generalised vector-meson dominance (GVMD) [18], where the
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Figure 1: The number of points included in the fit (a) and the resulting χ2/d.o.f.
as a function of the minimum energy

√
smin.

contribution of off-diagonal terms δ is expected to be about 15%, and (2.8) is a prediction
from the factorisation property of the pomeron couplings.

The number of data points is shown in Fig. 1(a), and the resulting χ2/d.o.f. in Fig. 1(b),
upon changing

√
smin from 3 to 20 GeV. Clearly, the fit is bad for small energies. This is

expected, as there is no reason to neglect the effects of lower trajectories and thresholds
then. We also see that values of 1 or smaller for the χ2/d.o.f. can be achieved for

√
smin ≥ 9

GeV.
The second criterion concerns the stability of the parameters. We show in Figure 2 the

intercepts of the three trajectories entering (1.4). One sees that these parameters are stable
once the energy is above 9 GeV. Also one obtains a larger pomeron intercept for a smaller
energy cut-off. The intercepts from the global fit to all soft data are the same as the results
of [12] above 9 GeV which is based on pp and pp̄ data alone, and this justifies to some
extent the statistical data treatment and numerical procedure employed in [12].

With the increased dataset from all available reactions, the errors of the parameters can
be narrowed, compared to those of [12] where the errors correspond to a change of 5 units
in χ2. As in [12], we need both C = ±1 meson trajectories, which are non-degenerate,
primarily because of the constraints coming from fitting the ρ parameters.

We show in Fig. 3 how the value of the pomeron coupling Xπp together with those of
xh1h2

depends on the minimum energy.
Note that the pomeron couplings become stable also for energies greater than 9 GeV. As

the intercepts and pomeron couplings are the most important parameters we give our best
fit results in Table 1 for

√
s ≥ 9 GeV, where we have most statistics. If we set

Xpp,pp̄ = 9β2
qp, Xπ±p = 6β2

qp, XK±p = (βsp + βqp)(3βqp)

3
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Figure 2: The value of the pomeron intercept (RRP ) and of the coefficient of the
log2 s (RRL) (a) and of the intercepts of the a/f (C = +1) and ρ/ω (C = −1)
trajectories.
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Figure 3: The value of the pomeron πp coupling (RRP ) and of the constant term
A (RRL) (a) and of the x and λ couplings defined in Eqs. (2.6 - 2.8) and (3.10).
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ǫ η+ η
−

χ2/d.o.f. statistics

0.096 ± 0.003 0.35 ± 0.02 0.56 ± 0.02 1.00 268

pp πp Kp γp γγ
X (mb) 18.3 ± 0.6 11.8 ± 0.3 10.5 ± 0.3 0.059± 0.002 (1.5 ± 0.2) × 10−4

Y+ (mb) 61 ± 2 26 ± 1 14 ± 1 0.12 ± 0.01 (4 ± 3) × 10−4

Y
−

(mb) 36 ± 3 8 ± 1 14 ± 1

process χ2/N , σtot (N) χ2/N ,ρ (N) process χ2/N , σtot (N) χ2/N , ρ (N)
pp 1.02 (74) 1.25 (59) K+p 0.534 (22) 0.635 (7)
p̄p 1.16 (33) 0.504 (11) K−p 0.824 (28) 1.97 (5)

π+p 0.551 (24) 2.17 (7) γp 0.627 (25)
π−p 1.13 (47) 0.939 (23) γγ 0.265 (15)

Table 1: the values of the parameters of the hadronic amplitude in model CKK
(1.4), corresponding to a cut off

√
s ≥ 9 GeV, and the values of the individual

χ2 of the various processes, together with the number of points N .

Xγp = 3βqpβγp, X(γγ) = β2
γp (2.9)

where βqp denotes the pomeron coupling to any of the non-strange quarks u and d , βsp the
pomeron-strange quark coupling, and βγp the pomeron-photon coupling, we get numerically
from the global fit result of Table 1 that βqp = 1.39(2), βsp = 1.12(2) and βγp = 0.0139(3).
We see from this and also from Fig. 3(b) that the pomeron couplings respect factorizability
based on the additive quark counting within a few percents, and that the pomeron coupling
to the s quark is 15% lower than that to u and d. Also GVMD works well.

However, it is worth pointing out that the couplings of the lower trajectories are not
as stable as those of the pomeron. The quark counting and factorisation are violated by
about 50% for C = +1 Reggeon couplings, although GVMD still works well. The quark
counting is totally off for the C = −1 Reggeon couplings. This problem of instability is easy
to understand: the Regge couplings are basically representing the low energy nature of the
data where they have to compete with the secondary Regge contributions and multi-Regge
correction terms. At high-energies they compete with the pomeron, which determines most
of the cross section. Therefore there seems to be no best cut-off for their determination. Only
a model including more trajectories (and many more parameters!) and elastic and inelastic
threshold effects might achieve the stability. The couplings in Table 1 are those determined
with this 9 GeV energy cutoff where the χ2, the pomeron parameters and Regge intercepts
are showing stability. In this respect, the error determination based on a χ2 variation of one
unit may be underestimating the true errors, and certainly is in the case of the couplings
of the lower trajectories. We also show the χ2 per data points, and the number of data
points, for each process fitted to. One can see that, as in our previous work [12], the χ2 is
a little high for some of the sub-processes. We have shown in [12] that this has nothing to
do with the model, but rather with the dispersion of the data. Filtering the data for these
two processes did not change the determination of the parameters. We shall demonstrate
in another way in the next section that this is probably due to inconsistencies within the
data, and that this does not affect our conclusions. The fits for the total cross sections and
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Figure 4: The total cross sections corresponding to the parameters of Table 1.
The fits have been performed for

√
s ≥ 9 GeV.
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Figure 5: The ρ parameters corresponding to the parameters of Table 1. The fits
have been performed for

√
s ≥ 9 GeV.

ρ-parameters respectively for
√

smin ≥ 9 GeV, and extrapolated to
√

smin ≥ 3 GeV. are
shown in Figs. 4 and 5. Although the value of χ2/d.o.f. is bad in the low-energy region (it
goes above 2), and thus is statistically unacceptable, the fits look deceptively satisfactory.

III Comparison with the RRL2 model

While the Regge pole hypothesis works surprisingly well with the soft data up to the Tevatron
energy, this is not the only parameterization that is successful in term of χ2/d.o.f. : there
have been a number of successful analytic amplitude representations at the phenomenological
level [11] based on analyticity and with the asymptotic behavior ln2 s or ln s for the total
cross sections, when appropriately modified by the meson trajectory contributions as in (1.4),
which could give equally good or better fits to the pp and pp̄ data as shown in [11]. In these
models, one may also regard the asymptotic ln2 s or ln s terms as an effectively unitarised
form [19] of the bare pomeron term of sǫ. We know that a simple pole will eventually violate
the Froissart-Martin bound. We show here first that in the region of available data, the
two descriptions of Eq. (1.4) and (1.5) are indistinguishable. Furthermore, the instability
present in the lower trajectory couplings of the simple-pole fit has nothing to do with the
assumptions regarding the pomeron.

We present here the results of the fit to all soft data of total cross sections and ρ-
parameter for the modified Amaldi-Schubert (RRL2) model (1.5) suitably factored to exhibit
the factorization property by the ln2 s term. In (1.5), Λ will be different for different
reactions and will follow the factorization property based on the additive quark counting, if
the ln2 s term is to represent the pomeron exchange contributions. Here, the parameters A
and B and the meson trajectory intercept parameters η+ and η− are taken to be universal
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A (mb) B (mb) η+ η
−

χ2/d.o.f.

15.8 ± 0.3 0.15 ± 0.06 0.32 ± 0.02 0.56 ± 0.02 1.00

pp πp Kp γp γγ
Λ 1.55 ± 0.01 1 0.90 ± 0.07 4.96 ± 0.08)× 10−3 (1.3 ± 0.2) × 10−5

Y+ (mb) 51 ± 2 20 ± 1 10 ± 1 0.088 ± 0.008 (3 ± 3) × 10−4

Y
−

(mb) 36 ± 3 7 ± 1 14 ± 1

Table 2: the values of the parameters of the hadronic amplitude in model RRL2
(1.5), corresponding to a cut off

√
s ≥ 9 GeV. and the values of the individual

χ2 of the various processes. The number of points, the statistics and the χ2 for
each process are the same as for Table 1.

for all reactions, while the factorization parameter Λ which will be set to 1 for π±p . In
analogy with (2.6 - 2.8) we define:

Λpp = λpp ×
3

2
, ΛKp = λKp,

Λγp ≈
λγp

213.9
, Λγγ = λγγ ×

Λ2
γp

Λpp

(3.10)

In order to simplify our discussion, and in order to have the same number of parameters for
both fits, we set9 s0 = 1 GeV2. We again use s̃ instead of s in Eq. (1.5) to improve the fit
at small energy.

We proceed as for the simple-pole fit. We see from Figs. (1-5) that identical problems and
successes are present in this case. It is interesting to observe that the couplings of the a/f
trajectory go down a little, but remain unstable, whereas the C = −1 contribution remains
identical. One amazing outcome is that despite this variation, the two fits are identical.
As shown in Fig. 1, the χ2/d.o.f. are the same. If we again settle on the parameters
corresponding to

√
smin = 9 GeV, shown in Table 2, we obtain the dashed curves of Figs.

4 and 5, which are almost identical to those of the simple-pole fit. This has two important
consequences. First, the simple-pole assumption is one of the possibilities, but not the only
one. One has to realise however that the property of quark counting and factorisation,
exhibited by both fits, is hardly understandable outside of a simple-pole ansatz. Hence it is
the physics that must make us prefer this fit and the possibility to extend it to elastic and
diffractive events, and not simply the quality of reproduction of the t = 0 data. Furthermore,
as already mentioned, the indistinguishability of the simple pole from the log2 s proves that
effectively there cannot be any problem with unitarisation. As the difference in total cross
sections at the LHC energies is at most 6 mb it seems unlikely that such an effect will be
detectable, even if we assume that the total cross section will be reliably measurable within
the approved CERN program.

9It is possible to get slightly better fits below s = 9 GeV2 if one lets this parameter free, but it reaches
unphysical values of the order of 100 MeV2 or smaller, and the stability of the fit is not improved.
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IV Concluding remarks

There is no room in any of the considered models for another C = +1 Regge trajectory with
intercept 0.8 ≤ αnew ≤ 1.2. All couplings are then set to a very small value. Note however
that this conclusion is possible only after inclusion of the real parts in the dataset. Total
cross sections only allow (and slightly favour) an extra flat contribution.

As for the presence of a hard pomeron with intercept ≈ 1.4 [6], there was no room in
pp and p̄p data for such an object [12], and we obtain a (1σ) upper bound on its coupling:
Xnew/X ≤ 5×10−9. However, such a large intercept will certainly call for a strong unitarisa-
tion. It is puzzling that in fact the presence of such a term is favoured both by the πp and Kp
data, particularly for the measured ρ parameters. Notice from Table 1 that the individual
χ2 were rather high for the fits to the ρ parameters of π and K. These χ2 per data point
get lowered to from 2.17 (resp. 1.97) to 1.51 (resp. 1.42) in the presence of a hard pomeron.
The global fit then gets a χ2/d.o.f. of 0.89 instead of 1.00. The hard pomeron intercept is
fitted to 0.38 ± 0.13, with a coupling of the order of 1.5% that of the soft pomeron. The γp
data do not favour such a term, and the errors on the γγ data are large enough to allow for
it. But as the total γp and γγ data are under reconsideration, and as unitarity effect may
set in early, it is hard to draw any conclusions about these.

The data does not allow further C = −1 trajectories. The quality of the fit is not
improved by the introduction of one such trajectory, and all couplings are less that 1 per
thousandth of the soft-pomeron coupling. We have also tried to stabilize the couplings of
lower trajectories through the introduction of new C = ±1 trajectories with lower intercepts.
However, the fit depends then on 26 parameters, and the data is not constraining enough to
draw any firm conclusion.

Concerning the existing conflicting data, first of all, the long-standing problem of the
measurement of the total cross section at the Tevatron [20] cannot be resolved by this method.
As can be seen from Figure 4, the fit chooses the middle points of the two measurements.
Because of our choice of χ2, which does not privilege higher-energy data, this conclusion
is stable independently of removal of either the CDF or the E710 point from our dataset.
Secondly, there is a well-known uncertainty about the HERA total cross section[21]. Our fit
favours the H1 measurement. Imposing GVMD exactly leads to exactly the same conclusion.
This is expected in view of the ZEUS analysis of low-Q2 F2 data [22]. Finally, as there may be
some problem regarding the value of the γγ cross sections [23], we can remove the high-energy
γγ data from our dataset, and we can predict the γγ cross section imposing factorisation
xγγ = yγγ = 1. This leads to the dashed curve of Fig. 6. We see that the factorisation
hypothesis favours higher numbers than the published L3 data but compatible with the
preliminary OPAL measurement10

We have shown that the soft pomeron produces very good fits to t = 0 data, once the
energy is bigger than 9 GeV. From our new compilation of data points, and from the 264
points above 9 GeV, we determined the pomeron intercept to be 1.096± 0.03, in agreement
with the conclusions of [12]. Lower C = ±1 trajectories are non-degenerate, and have
intercepts given in Table 1. The determination of these parameters is stable and reliable, as

10New L3 183GeV and OPAL measurements are now consistent as reported to ICHEP’98 in Vancouver
[24]. We would like to thank A. De Roeck for bringing this to our attention.
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Figure 6: The γγ total cross section at LEP, assuming factorisation.

is that of the pomeron couplings, but the interplay between C = +1 contributions makes the
determination of the couplings of the a/f trajectories problematic. Finally, t = 0 data are
not sufficient to rule out other models of forward scattering amplitudes, but the factorisation
and quark counting properties which seem to be well respected are difficult to be understood
outside of the context of simple poles. Further details of the work along with the fits to
other analytic amplitude models and the results of the efforts to ameliorate the instability
of the lower Reggeon couplings will be reported elsewhere[25].

One of us (KK) would like to acknowledge Professor R. Vinh Mau and his group for
warm hospitality extended to him at LPTPE, Université P. & M. Curie (Paris6) during a
part of the 1998 summer where a part of this work was carried out.
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