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In magneto- and electroencephalography (M/EEG), spatial modelling
of sensor data is necessary to make inferences about underlying brain
activity. Most source reconstruction techniques belong to one of two
approaches: point source models, which explain the data with a small
number of equivalent current dipoles and distributed source or
imaging models, which use thousands of dipoles. Much methodological
research has been devoted to developing sophisticated Bayesian source
imaging inversion schemes, while dipoles have received less such
attention. Dipole models have their advantages; they are often
appropriate summaries of evoked responses or helpful first approx-
imations. Here, we propose a variational Bayesian algorithm that
enables the fast Bayesian inversion of dipole models. The approach
allows for specification of priors on all the model parameters. The
posterior distributions can be used to form Bayesian confidence
intervals for interesting parameters, like dipole locations. Further-
more, competing models (e.g., models with different numbers of
dipoles) can be compared using their evidence or marginal likelihood.
Using synthetic data, we found the scheme provides accurate dipole
localizations. We illustrate the advantage of our Bayesian scheme,
using a multi-subject EEG auditory study, where we compare
competing models for the generation of the N100 component.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The analysis of evoked responses using magneto- and
electroencephalography (M/EEG) can proceed in several ways. If
one is interested in inferring the locations of M/EEG generators
within brain space, one has to solve the inverse spatial problem
(Baillet et al., 2001). There are two main approaches to estimating
sources from observed sensor data. The first assumes that sensor
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data can be explained by a small set of equivalent current dipoles.
The inversion of this model amounts to a nonlinear optimization
problem, because the forward model is nonlinear in dipole location
(Mosher et al., 1992). Recently, the source reconstruction problem
has been addressed by placing many dipoles in brain space, and
using constraints on the solution to make it unique; for example
(Baillet and Garnero, 1997; Mattout et al., 2006; Phillips et al.,
2005). This approach is attractive, because it produces images of
brain activity comparable to other imaging modalities and it
eschews subjective constraints on the inversion. For imaging
solutions, most constraints can be motivated by anatomical and
physiological arguments, e.g., smoothness constraints and approx-
imate location priors, based on regional activity in functional
magnetic resonance imaging (fMRI). Traditional few-dipole
solutions, however, are usually regarded as depending too much
on user-specified modelling decisions; like the number of dipoles
and their initial locations. Mathematically, it can be argued that the
inversion of dipole models is a harder problem than inversion of
distributed models, because the inverse problem of distributed
source imaging is basically linear. These reasons might explain
why much methodological research has been devoted to develop-
ing sophisticated Bayesian source imaging inversion schemes,
while dipole models have received less such attention.

However, models with a few dipoles are useful, because they
represent a direct mapping from scalp topography to a small set of
parameters. Dipole solutions usually lend themselves to simple
interpretations and provide an informative way to explain the
observed data. Furthermore, it is easy to report the sufficient
statistics of dipole parameters, over subjects. Operationally,
summarising distributed activity with a small number of sources
simplifies analyses of connectivity among those sources (e.g.,
dynamic casual modelling of evoked or induced responses (Kiebel
et al., 2006)). Critically, in a Bayesian context, different models
can be compared using their evidence or marginal likelihood. This
model comparison is superior to classical goodness-of-fit mea-
sures, because it takes into account the complexity of the models
(e.g., the number of dipoles) and, implicitly, uncertainty about the
model parameters. For this reason, classical schemes have adopted
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1 The moment vector can also be expressed as two angles and amplitude.

729S.J. Kiebel et al. / NeuroImage 39 (2008) 728–741
other measures for model comparison (e.g., the Akaike Information
Criterion (AIC); see also Supek and Aine (1993) for an example
using classical model comparison). For most models, the AIC and
its cousin, the Bayesian Information Criterion (BIC) are a rough
approximation to the model evidence (Beal, 2003; Penny et al.,
2004), and are less accurate than the negative free energy. In this
paper, we provide some examples of the usefulness of model
comparison, with dipole models.

When the model comprises only one or two dipoles, the best
solution can usually be found without using any constraints and a
Bayesian framework appears to be superfluous. For three or more
dipoles, model inversion is more difficult because many local
minima of the high-dimensional objective function exist. In this
situation, it is practically infeasible to visit all local minima and
select the best solution. Rather, one can introduce constraints that
preclude certain un-physiological solutions, and guide the inver-
sion towards favoured solutions. Such constraints are implemented
naturally using Bayesian techniques, but they invite criticism that
using informative priors imposes a pre-selected solution. This
criticism can be countered by observing that Bayesian model
comparison allows one to assess several solutions objectively and
assert that there is strong evidence in favour of a particular solution
(Penny et al., 2004). Usually, in M/EEG, candidate models already
exist, based on cognitive theories and preceding studies. These
predictions motivate the use of informed priors, and the subsequent
comparison of competing models. Therefore, Bayesian model
comparison is a useful way to decide which theory explains the
observed data best and informative priors are central to this
strategy. Even inconclusive model comparison (i.e., all models
explain the data equally well) tells us the data do not provide
enough evidence in favour of one theory over the other. These
procedures and inferences could not proceed in a classical (i.e.,
non-Bayesian) framework.

In short, fast Bayesian inversion for dipole models seems to be
a useful addition to the toolbox for M/EEG analysis. In the present
paper, we propose a variational Bayes (VB) inversion scheme for a
single time point. Only a few Bayesian inversion schemes for
(spatial or spatiotemporal) dipole models have been described in
the literature (Auranen et al., 2007; Jun et al., 2005, 2006; Schmidt
et al., 1999). These approaches are based on Monte Carlo–Markov
chain techniques, which use time-consuming sampling procedures
to compute the posterior distributions. Variational Bayes provides a
fast and efficient approximation to the necessary integrals and has
been applied successfully to source imaging in M/EEG (Daunizeau
et al., 2007; Sato et al., 2004) and other problems in functional
imaging (Flandin and Penny, 2007; Penny et al., 2003; Woolrich
and Behrens, 2006).

There are other approximate optimization schemes that we
could have used for implementing a Bayesian approach to
dipole models. Among them are ‘iterative conditional modes’
(ICM) or conditional expectation–maximization algorithms.
However, it is known that these techniques are not invariant
under re-parameterizations while VB is. Furthermore, ICM does
not per se compute the model evidence, which is easy to do
with VB.

In the following, we first describe the equivalent current dipole
model and derive the VB algorithm. In the second section, we use
the VB and conventional scheme on synthetic and real data. We
provide some examples of using informed priors and compare the
two schemes. In the discussion, we address advantages, disadvan-
tages and potential extensions of the approach.
Theory

Equivalent current dipole model

It is generally assumed that the bulk of remotely detectedM/EEG
signal is generated by synchronous depolarization of pyramidal
populations, where the current flows between synapses proximate
and distal to the cell bodies. The relationship between scalp data y
and primary current density is linear and instantaneous so that

y ¼ GðsÞw ð1Þ
where G(s) is the (Nc×3Ns) lead-field matrix. Nc is the number of
channels or sensors and Ns is the number of sources. The (3Ns×1)
vector location s forms the input argument for the nonlinear lead-
field function, G(s), whose output is multiplied by the (3Ns×1)
moment vector w to form the observed data.1 The lead-field
accounts for passive propagation of the electromagnetic field from
the sources to the sensors (Mosher et al., 1999). Note that although
the relationship between the data and primary current density is
linear, it is non-linear in the dipole locations.

For EEG, a popular head model is based on four concentric
spheres, each with homogeneous and isotropic conductivity. The
four spheres approximate the brain, skull, cerebrospinal fluid (CSF)
and scalp. The parameters of the model are the radii and
conductivities for each layer. Here, we use radii of; 71, 72, 79 and
85 mm, with conductivities 0.33, 1.0, 0.0042 and 0.33 S/m,
respectively. For MEG, one can use a single sphere as a good
approximation. The potential or magnetic field at the sensors
requires an evaluation of an infinite series, which can be
approximated using fast algorithms (Mosher et al., 1999; Zhang,
1995). For the ECD forward model, we used a Matlab (MathWorks)
routine that is freely available as part of the FieldTrip package
(http://www2.ru.nl/fcdonders/fieldtrip/, see also Oostenveld, 2003)
under the GNU general public license.
The observation model

We transform Eq. (1) into an observation model by adding an
error term.

y ¼ GðsÞwþ e ð2Þ
We assume an independent and identically distributed (i.i.d.)

normal error, which is parameterised by a precision parameter γy.
This specifies a likelihood model for the data given the model
parameters. The probabilistic generative model is completed by the
specification of priors: The normally distributed parameter vectors,
w and s, have gamma-distributed prior precisions γw and γs, which
are scale parameters for prior covariance matrices Σw0

and Σs0 of the
location and moment vectors. These do not need to be diagonal and
can encode user-specified prior constraints (see below for
illustrative examples). Fig. 1 shows the graphical model for this
equivalent current dipole forward model, which will guide us in the
subsequent derivation of update rules. We assume that the location
and moment parameters are a priori independent of each other; that
is, they are drawn independently of each other to generate the data.
This precludes any prior correlation between location and moment,
but such correlations are not used generally in ECD solutions.

http://www2.ru.nl/fcdonders/fieldtrip/


Fig. 1. Directed Bayesian graph for the equivalent current dipole forward
model. This summary of the forward or generative model shows the
conditional dependencies of the variables responsible for generating data.
Dipole locations s and dipole moments w generated data using the equality
y=G(s)w+ε, where G is the lead-field function and ε is white observation
noise with precision γy. The locations s and moments w are drawn from
normal distributions with precisions γy and γw. These gamma variables are
themselves drawn from prior distributions and scale the covariance matrices
for the location and moment parameters. Equivalently, the precision γy is
drawn from a prior gamma distribution. See Eq. (5) for a full specification of
these distributions.

730 S.J. Kiebel et al. / NeuroImage 39 (2008) 728–741
Using the Markov properties (i.e., conditional independences) of
the graphical model, the joint posterior distribution of model m is

p y;w;s;gy;gw;gsjm
� �
¼ p yjw;s;gy;m

� �
p gyjm
� �

p wjgw;mð Þp gwjmð Þp sjgs;mð Þp gsjmð Þ
ð3Þ

The likelihood is given by

p yjw;s;gy;m
� � ¼ N GðsÞw;g�1

y INc

� �
: ð4Þ

As noted above, the prior distributions of the parameters are
assumed to be normal with Gamma hyperpriors on the precisions.
The Gamma hyperpriors were chosen for conjugacy purposes. See
below for a detailed description of how to choose the sufficient
statistics of these priors and hyperpriors.

p wjgw;mð Þ ¼ N Aw0
;g�1

w Rw0

� �

p sjgs;mð Þ ¼ N As0 ;g
�1
s Rs0

� �

p gyjm
� � ¼ Ga ay0 ;by0

� �

p gwjmð Þ ¼ Ga aw0 ;bw0ð Þ

p gsjmð Þ ¼ Ga as0 ;bs0ð Þ ð5Þ
This concludes the specification of the generative model. Next,
we look at its variational inversion to obtain the posterior or
conditional density.

The variational Bayesian (VB) scheme

The assumption of conditional independence of the parameters;
the locations, moments and precisions, θ={w,s,γy,γw,γs} is at the
heart of the variational approach and corresponds to a mean-field
approximation: the true marginal posteriors of the parameters are
replaced by variational approximations, which are computed using
the sufficient statistics of the other variables. Under the mean-field
approximation, the posterior distributions on all parameters
factorizes into the marginals

qðhÞ ¼ qðwÞqðsÞq gy
� �

q gwð Þq gsð Þ ð6Þ
where q(U) is the variational approximation of any marginal
posterior density, p(U|y,m). With this approximation, we can
express the log-marginal likelihood or evidence as

ln pðyjmÞ ¼ lnpðh;yjmÞh i∏qð
˙
Þ þ ∑sðqð

˙
ÞÞf

FðqÞ

þDKL qðθÞ;pðhjy;mÞð Þ

ð7Þ
where the first two terms are the negative free energy, F(q), and
S(q(U)) denotes the Shannon entropy of each marginal. Maximis-
ing the negative free energy with respect to q(θ)means minimising
the Kullback–Leibler divergence term; e.g., Beal (2003); at which
point the free energy becomes a lower-bound approximation to the
log-evidence and q(θ) approximates the true posterior. This means
the sufficient statistics and functional form of the marginals can be
found by maximising the free energy. The functional form is given
by setting the variation of the free energy, with respect to each
marginal, to zero

Aqð
˙
ÞFðQÞ ¼ 0 Z

lnqð
˙
Þ ¼ ln pðh;yjmÞh ij q̃ð

˙
Þ þ lnZd Z

qðwÞ ¼ N Aw;Rwð Þ

qðsÞ ¼ N As;Rsð Þ

q gy
� � ¼ Ga ay;by

� �

q gwð Þ ¼ Ga aw;bwð Þ

q gsð Þ ¼ Ga as;bsð Þ ð8Þ

where ZU is a normalization constant known as the partition
function and q̃(U) is the Markov blanket of q(U) (i.e., marginals that
are the children, parents or parents of the children of each marginal
in the dependency graph in Fig. 1). By using conjugate priors (a
gamma prior for a normal distribution) we can derive analytic
expressions for the expectations above, in terms of the sufficient
statistics of the marginals, q(U); these closed forms specify
relatively simple update rules for the sufficient statistics, which
are summarised in Fig. 2. (These rules are derived in detail in



Fig. 2. Variational update rules for the sufficient statistics of the approximating marginal densities.
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Appendix A.) It can be seen from Eq. (8) that the sufficient
statistics for any marginal depend on the other marginals (in its
Markov blanket). It is therefore necessary to update these statistics
iteratively, until the free energy is maximised. This entails iterating
a series of variational steps, with one step for each marginal.

A note on priors

The use of priors, in combination with model comparison,
enables one to assess the relevance of competing models and
implicitly the priori assumptions. In this section, we will review
briefly the use and the meaning of the priors for each marginal.

An informative prior on the precision of the location parameters
can be motivated by prior information; for example from previous
data, or by using predictions from some theory about the functional
anatomy shaping the response. A simple example is making the
prior distribution of the locations tight around some prior locations,
μs0, which is a device to constrain the source locations to some pre-
defined regions or to ‘penalize’ deviations from the prior location.
Note that this is not the same as fixing the source locations. The
difference is that a ‘soft’ Bayesian prior will prefer the prior
locations, if the data does not imply otherwise. The tightness of the
prior is controlled by the prior covariance: The prior covariance
matrices Σs0 and Σw0

can be used to introduce prior knowledge
about the relative variability of the parameters, with a diagonal Rs0

(or Rw0 ) with unequal variances. Similarly, one can use the off-
diagonal elements to encode knowledge about correlations among
the locations or moments. This can be used for modelling
symmetric sources, as we will illustrate later. Otherwise, the prior
covariance matrices Rs0 and Rw0 are set to the identity matrix in
this paper. The absolute variability of the parameters is determined
by the prior precisions, which scale these matrices:

The prior precisions γs and γw determine the importance of the
prior relative to the likelihood (i.e., data). By allowing the prior
precisions to be optimised as free parameters, we are effectively
optimising the balance between data and priors. This is an
important aspect of hierarchical Bayesian models, which we have
exploited in the context of parametric empirical Bayes models
previously (e.g., Mattout et al., 2006; Phillips et al., 2002). It was
also used by Sato et al. (2004) to implement automatic relevance
determination (ARD) to ‘switch off’ redundant sources in an
imaging context. Unless stated otherwise, we use the same non-
informative Jeffrey’s priors for the precision parameters as
employed by Sato et al. (2004).

p gwð Þ~ 1
gw

p gsð Þ~ 1
gs

These are called hyperpriors because they are a prior on a
sufficient statistic of a prior and represent a special case of the
Gamma hyperprior above, that obtains when aw0

=as0→0 and
bw0

=bs0→0. Strictly speaking, these are improper densities but this
does not seem to confound variational schemes. Jeffrey's priors are
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uninformative about the magnitude scale of the precision
parameters (they are uniform over log-precision; see also Kass
and Wasserman, 1996). To make the priors more informative, we
simply increase a·0, which increases the expectation of the
hyperpriors and the corresponding prior precisions. The data
precision hyperpriors ay0 and by0 are specified in the same way.

Initialization and convergence

In this work, we adopt a pragmatic way of dealing with
potential local minima. Instead of using an informed initialization
that anticipates some best solution, we run the algorithm several
times (using different random initializations) and select the best
solution: a similar multi-start procedure has been described by
Huang et al. (1998). In our experience, to find a good solution, one
should at least run four iterations for single dipole models. In our
simulations, we obtained successful convergence using sixteen
random initializations, for all single and multi-dipole models.
Computationally, this approach is feasible, because the computing
time needed for each inversion (up to 4 dipoles) is in the order of
seconds. We use the multi-start approach (for example with four or
more inversions) for models with more than one dipole.

The random initialization is as follows:

1. Draw location vector μs repeatedly from N(0, 10INp
) until all

sources are inside the spherical head model
2. Draw a moment vector μw from N(0, INp

)
3. Initialize remaining sufficient statistics

ay ¼ Nc

2
; by ¼ 1

2
y� G Asð ÞAwð ÞT y� G Asð ÞAwð Þ

aw ¼ Np

2
; bw ¼ 1

2
Aw � Aw0

� �T Aw � Aw0

� �

as ¼ Np

2
; bs ¼ 1

2
As � As0
� �T As � As0

� �

Rw ¼ bw
aw

R�1
w0
; Rs ¼ bs

as
R�1
s0

The implicit Gamma densities on the precisions correspond to
an expected variance2 b·/a· based on the sum of squared residuals,
where these residuals are in measurement space or parameter
space, depending on the precision in question. Np is the number of
parameters under the conditional density in question. Once these
values have been initialised, they are updated until convergence.
The convergence criterion is a small change in the negative free
energy (see Appendix) and a maximum number of iterations. The
change is computed as ΔF=F(k)−F(k−1), where F(k) is the negative
free energy for iteration kN1. A typical threshold for ΔF is 10−2,
with a maximum of 200 iterations.

Applications

In the following, we first establish that the variational scheme
returns sensible posterior distributions. We will also show that the
posterior means provide veridical estimates of the true locations
2 The mean of a Gamma distribution is a•/b• and this encodes the
precision or inverse variance.
and moments. The marginal posterior covariances can be used to
construct Bayesian confidence intervals, which should encompass
known values. For selected case studies, we will demonstrate
Bayesian model comparison, when different prior assumptions are
appropriate. Using real data, we will illustrate model inversion and
comparison when the data are generated by more than one dipole.

Single-dipole simulations

In this section, we show briefly that the inversion can localize
single dipoles accurately. We simulated data using an extended 10–
20 setup with 30 channels. This setup is used widely in evoked
response potential (ERP) research (Oostenveld and Praamstra,
2001), and represents a challenge to any source localization
technique, relative to high-density recordings. The 30 channels
cover the scalp sparsely; the lowest channels are located just over
temporal locations. For some source locations and moments, there
are large posterior uncertainties in the parameters because the
spatial expression of these dipoles is indistinct.

We generated EEG data (at a single time point or time-window
average) caused by one dipole located randomly in head model
space. The locations were drawn from a normal distribution with
zero mean and a standard deviation of 50 mm. The moments were
drawn randomly from a normal distribution with zero mean and
standard deviation of one. Sources that were outside or close to the
inner sphere of the head model (more than 65 mm from origin)
were discarded. The same applies for sources with a z-coordinate
less than −20 mm. In this way, we generated dipoles that are within
the head and are located at approximate coordinates according to
the Montreal Neurological Institute (MNI) coordinate system. We
then used the VB scheme of the previous section to iterate the
update rules, employing uninformative priors. In these simulations,
the VB scheme converged after about ten to twenty iterations.
Unless otherwise stated, we used a multi-start optimization with
sixteen initialisations. Post hoc examination of the free energies,
after convergence, showed that about 80% of the initializations3

converged on the same maximum, which we take to be the global
maximum.

We simulated data for three different noise levels (white noise
at the sensors) with typical signal-to-noise ratios (SNR) of 100, 50,
and 20. We established this range experimentally by fitting dipole
models to peak component data of an auditory evoked response at
100 ms, over 12 subjects (see below). We derived the SNR using
the estimate of the precision parameter γy.

For each noise level, we generated 2000 data sets. In Fig. 3, we
show the localization errors (i.e., the distance between the true
location and the posterior mean of location) as histograms. As
expected, the localization error increases for higher noise levels.
For an SNR of 50, effectively all sources are located within 2 cm of
the true location. For all noise levels, the majority of realizations
had a localization error of less than 8 mm.

The marginal posteriors can be used to derive Bayesian
confidence intervals for all parameters (Friston et al., 2003). These
provide a measure of certainty of the dipole location (and moment).
In Table 1, we provide the percentage of simulations, in which a
95% confidence interval contained the true parameter.

Ideally, if the posterior marginal distributions were exact, the
percent would be around 95% However, for each parameter, the
posterior certainty is slightly too high, i.e., the confidence intervals
3 The exact percentage depends on the model.



Fig. 3. Single-dipole simulations. Histogram of localization error (distance
between true location and posterior mean, in mm). As expected, the
localization errors are larger for low SNR.

Table 1
Single-dipole simulations: percent of realisations in which the 95% posterior
confidence interval includes the true parameter; for each parameter and noise
level

SNR=100 SNR=50 SNR=20

x-location 87.90 (2.95) 86.60 (3.68) 86.40 (3.73)
y-location 90.05 (2.87) 88.45 (2.78) 88.60 (3.63)
z-location 79.20 (3.50) 79.15 (4.02) 78.50 (5.03)
x-moment 90.40 (2.87) 89.30 (3.53) 89.10 (3.77)
y-moment 87.95 (2.28) 88.00 (4.09) 88.00 (2.96)
z-moment 77.50 (4.71) 78.25 (3.89) 80.25 (4.44)

The numbers in parentheses are the standard deviations of the percent ratios.
It can be seen that the posterior confidence intervals are too tight, in
particular for z-location, and z-moment.
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are too tight, in particular for z-location and z-moment. This
reflects the well-known overconfidence problem with mean-field
approximations and is most likely a consequence of assuming that
the location and moment parameters are conditionally independent
(Eq. (3)); see also Discussion.

Two- and three-dipole models: Case studies

We could have repeated the above simulations with more than
one dipole. However, this would not be very useful, because multi-
dipole scenarios can be qualitatively different from each other. For
example, when two dipoles are orientated in parallel, some of the
parameters will be correlated, and error measures of single
parameters will be inflated, relative to the case when two dipoles
are orthogonal to each other. This is a fundamental issue for
validation of any dipole fitting procedure and can make
simulations based on random samples from multiple-dipole
parameters difficult to compare. We will work through a few
anecdotal but instructive cases, which are relevant in practice.

We summarise the results for each of the simulations by
reporting the (i) negative free energy as an approximation to model
evidence, (ii) the goodness-of-fit (Supek and Aine, 1993) and (iii)
the Akaike Information Criterion (Penny et al., 2004), using their
Eqs. (18) and (21).

Case 1: Symmetry priors for pair of dipoles
Often, in ERP/ERF analysis, one uses so-called symmetric

dipoles. These are typically chosen to model early- to medium-
latency peri-stimulus responses and assume simultaneous sub-
cortical input to both hemispheres. For an example, see Deffke et
al. (2007), where the authors use a pair of dipoles mirror-
symmetric about the sagittal plane (separating the two hemi-
spheres). Classical methods of fitting such dipole pairs enforce
symmetry by setting sx

1=−sx
2, s1y,z= s

2
y,z,wx

1=−wx
2 andw1

y,z=−w
2
y,z,

where [sx
1,2, sy

1,2, sz
1,2]T and [wx

1,2, wy
1,2, wz

1,2]T are the location and
moments of the first and second dipole. Obviously, there are many
variants of this parameterization; e.g., one could fix the x-axis
parameters only, or allow for different overall amplitudes.
Effectively, these parameterizations reduce the number of free
parameters and will give better models, if the symmetry assumption
is correct. Also, one can fit models with informative priors, which
cover the middle ground between the unconstrained model and fixed
symmetric parameters. With Bayesian model comparison, the idea is
to fit two or more models to the data and see which is best, using the
free energy approximation to the model evidence. In addition, one
can compare models with informative priors, which cover the
middle ground between the unconstrained model and fixed
symmetric parameters.

To show how our approach performs in such situations, we
simulated data from three models: The first comprised a truly
symmetric dipole pair; the second, a nearly symmetric pairs of
dipoles, and the third, a single unilateral dipole (i.e., with the
second mirror-symmetric dipole missing). We show the data and
the dipole parameters in Fig. 4.

We use seven models to invert each of the three data sets:

1. fully unconstrained (twelve) spatial parameters
2. prior on true location
3. prior on true moment
4. prior on true location and moment
5. prior on true location, moment and symmetry
6. hard symmetry constraint, otherwise uninformative priors
7. hard symmetry constraint, with priors on true location and

moment

Although, for real data, one would never know the true
parameters to specify these priors, we use them to simulate well-
informed beliefs about the parameters. All priors were implemen-
ted by increasing the prior expectations of the prior precisions. This
was implemented by making aw0

or as0 (the scale parameters of the
Gamma hyperpriors) equal to half the number of free parameters
under the prior density (see Eq. (5)). For example, for two dipoles
and ‘soft’ priors, the number of moment parameters is six, so
aw0

=3. The hard symmetry constraints of models 6 and 7 encode
fixed symmetry as described above; i.e., twelve free parameters are
reduced to six. We implemented this constraint using a projector
matrix to remove the unwanted spatial degrees of freedom (see
Appendix C). The symmetry prior of model 5 was induced with
strong correlations (±0.99) in the prior covariance matrices Σw0

and
Σs0. This is similar to using classical hard constraints, but uses
Bayesian priors.

We simulated data using observation noise with an SNR of 100.
Assuming a uniform prior over the seven models, the log-
evidences in Table 2 can be used directly for model comparison.



Fig. 4. First case study: Three scalp topographies (nose is up) and their generating dipole parameters. Left: truly symmetric pair of dipoles, middle: nearly
symmetric pair of dipoles, right: unilateral dipole.

734 S.J. Kiebel et al. / NeuroImage 39 (2008) 728–741
For truly symmetric dipoles, the models which incorporate
informative priors and symmetry constraints are the best. It does
not seem to matter whether symmetry is enforced using hard
constraints, or whether one uses the prior covariance matrix to
enforce strong correlations. The unconstrained model is the worst
for truly symmetric data, because it is over-parameterised and too
complex. For nearly symmetric dipoles, the best models are the
ones that use moment or location priors only. For the single dipole
data, the models with the least assumptions about symmetry are the
best. Inspection of the posterior means show that the moment
parameters of the second (non-existent) dipole have been estimated
as being close to zero (the 95% confidence interval contains the
zero moments in each direction). For single-subject analyses,
model comparison can be used to identify the best model; for group
studies, one can select the best model over subjects, using the sum
of log-evidences. At the group level, one can add subject-wise log
posterior model probabilities (see below Eq. (9)). Given our
demonstration above, the best model will most likely be either a
symmetric model (model 5 or 7), or the model with informative
priors (models 2 and 3).

Case 2: Two or three dipoles?
In this example, we will use model comparison to decide if

there are two or three dipoles generating the data. We simulated
Table 2
First case study

Log-evidences for seven models, computed for three different data sets (see text
variance explained by model, and the Akaike Information Criterion (AIC). The be
models that incorporate symmetry constraints are the best. For non-symmetric da
Note the failure of the goodness-of-fit and AIC to select the appropriate model
two sets of data. The first was generated by a symmetric pair of
dipoles. The second data set was generated by the same symmetric
dipoles and a third dipole in a medial frontal location. The
parameters and resulting scalp topography are shown in Fig. 5.

The first scalp topography looks distinctively symmetric, while
the second shows clearly the effect of, at least, one asymmetric
dipole. The question is, whether one can retrieve the generating
models from each data set, given some prior knowledge about the
sources. We assume that some cognitive theory predicts a
symmetric pair of dipoles and a frontal source, for which we
know the approximate location from other M/EEG or fMRI
studies. Given our priors about the generating sources, we can
compare five models or hypotheses:

1. One dipole, uninformed priors
2. Two dipoles, uninformed priors
3. Three dipoles, uninformed priors
4. Two dipoles with informative location priors
5. Three dipoles with informative location priors

We inverted these models using the two data sets. For the
informative priors, we used the true location parameters. To check
that our results did not depend on knowing exactly where the true
sources were, we repeated the analysis with location priors that
for description). In parentheses: The goodness-of-fit; i.e., percent of total
st models are highlighted in yellow. For the first, truly symmetric data set,
ta, informed but non-symmetric priors lead to the best two dipole models.
(highlighted in blue).



Fig. 5. Second case study. Two scalp topographies and their generating
dipole parameters. Left: symmetric pair of dipoles, right: the same pair with
an additional frontal source.
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were 14 mm from the true locations; the results (not shown),
remained qualitatively the same (see also Discussion). The
informative location prior was implemented with as0 =3.

The resulting log-evidences are listed in Table 3. As can be
seen, model comparison selects the veridical model. For both data
sets, the best model has a log-evidence that was three or more
above those of competing models. This indicates ‘strong’
evidence in favour of the best model (Penny et al., 2004). With
informed (location) priors, the posterior location is more accurate
(as indicated by the improved goodness-of-fit; e.g., model 4 vs.
model 2), and the model-evidence clearly identifies a superior
model.

Case 3: Two pairs of symmetric dipoles
As illustrated in the first case study, it is typical in M/EEG

research to fit a single pair of symmetric dipoles to symmetric
scalp topographies. However, it is possible that symmetry results
from multiple pairs of symmetric dipoles, which overlap in sensor
space. In this case study, we will show that one can disambiguate
between one or two pairs of dipoles, given informed location
priors. Again, we assume that priors about the sources exist; e.g.,
derived from fMRI studies and cognitive theories. We simulated
three sets of data, with an SNR of 100. The first data set was
generated using a single pair of symmetric dipoles (location:
Table 3
Second case study

Log-evidences for five different models, computed using two data sets (see text fo
In parentheses: The goodness-of-fit; i.e., percent of total variance explained by
highlighted in yellow. For both data sets, model comparison selected the generati
highlighted in blue.
[±20, −40, 10], moment: [±0.2, 1, 0.2]). The second data set was
generated using another pair of symmetric dipoles (location:
[±40, −20, 0], moment: [±0.1, 0.7, 0.4]). The third data set was
generated using both pairs of dipoles. See Fig. 6 for the three
resulting scalp topographies.

We used six competing models:

1. One dipole, uninformed priors
2. Two dipoles, uninformed priors
3. Three dipoles, uninformed priors
4. Single pair of dipoles with informative priors on true location of

1st pair of dipoles
5. Single pair of dipoles with informative priors on true location of

2nd pair of dipoles
6. Two pairs of dipoles with informative priors on true locations of

two pairs of dipoles

The log-evidences in Table 4 show that model comparison
succeeded in selecting the true model, for all three data sets.

Real data: an auditory evoked potential study

Experimental design
We studied a group of fourteen healthy volunteers aged 24–35

(5 females), see also (Garrido et al., 2007). Each subject gave
signed informed consent before the study, conducted under local
ethical committee guidelines. Subjects sat on a comfortable chair in
front of a desk in a dimly illuminated room. Electroencephalo-
graphs activity was measured during an auditory ‘oddball’
paradigm; subjects heard “standard” (1000 Hz) and “deviant”
tones (2000 Hz), occurring 80% (480 trials) and 20% (120 trials) of
the time, respectively, in a pseudo-random sequence. The stimuli
were presented binaurally via headphones for 15 min, every 2 s.
The duration of each tone was 70 ms with 5 ms rise and fall times.
The subjects were instructed not to move, to keep their eyes closed
and to count the deviant tones.

Acquisition and pre-processing
EEG data were recorded with a Biosemi system and 128 scalp

electrodes at a sampling rate of 512 Hz. Vertical and horizontal eye
movements were monitored using EOG (electro-oculogram)
electrodes. Data were epoched offline, with a peri-stimulus
window of −100 to 400 ms, down-sampled to 200 Hz, band-pass
filtered between 0.5 and 40 Hz and re-referenced to the average
r description).
model, and the Akaike Information Criterion (AIC). The best models are
ng (true) model. The best models selected by goodness-of-fit and AIC are



Fig. 6. Third case study. Three scalp topographies and their generating dipole parameters. Left: first symmetric pair of dipoles, middle: second symmetric pair of
dipoles, right: both pairs of dipoles (using the same parameters).
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over channels. Trials in which the absolute amplitude of the signal
exceeded 100 μV were excluded. Two subjects were eliminated
from further analysis due to excessive numbers of trials containing
artefacts. In the remaining twelve subjects, an average 18% of trials
were excluded.

Equivalent current dipole analysis
To illustrate the application of the VB scheme to real data,

we model the N100 component of the oddball condition. The
data, for each subject, consist of the average for peri-stimulus
times 95 to 105 ms. We use four different models which were
motivated by the literature; e.g., Lutkenhoner and Steinstrater
(1998):

1. Single dipole, uninformed priors
2. Two dipoles with symmetry priors (as in case study 1), prior

location of [±44, −30, 12] (Planum Temporale), with as0=1
3. Two dipoles, uninformative prior location of [±44, −30, 12]

(Planum Temporale), with as0→0
4. Two pairs of dipoles with symmetry priors, prior locations at

[±44, −30, 12] (Planum Temporale), and an anterior location
[±50, −8, 8]; informed with as=6.
Table 4
Third case study

Log-evidences for six models, computed using three data sets (see text for descrip
In parentheses: The goodness-of-fit; i.e., percent of total variance explained by
indicated by the free energy, are highlighted in yellow. For all three data sets,
goodness-of-fit and AIC are highlighted in blue.
The first (simple) model would be considered as an inappropriate
model for activity generated within both hemispheres. Models 2 and
3 incorporate standard assumptions about the main generators of the
N100 component. The difference is that the second uses (weak)
symmetry priors, whereas the third has a priori uncorrelated sources.
The fourth model is a possibly over-parameterised, but conceivable
model.

To summarise the model comparison over subjects we evaluated
the log conditional probability of each model, for each subject. This
obtains, under flat priors on models, by normalising the marginal
likelihoods to unity; i.e.,

lnp mijyð Þ ¼ lnp yjmið Þ � ln
X
j

p yjmj

� �
c

Fi � ln
X
j

exp Fj

� � ð9Þ

where Fi is the free energy of modelmi. The results are shown in Fig.
7; where we plot, for each subject, the log posterior model
probabilities adjusted to a minimum of −32 and shifted by 8, for
visualization purposes. It can be seen that the worst model is the
single dipole model. The third model, a pair of dipoles without
tion).
model, and the Akaike Information Criterion (AIC). The best models, as
model comparison selected the true model. The best models selected by



Fig. 7. Auditory evoked response data: Log-conditional probabilities of the
four models, for each subject. Model 1: Single dipole, model 2: symmetric
pair of dipoles in Planum Temporale (PT), model 3: pair of dipoles in PT,
model 4: two pairs of symmetric dipoles in PT and slightly anterior to PT. In
8/12 subjects, the third model has the highest evidence. In the remaining four
subjects, the fourth model is the best.
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symmetry constraints is the best model in eight out of twelve
subjects. In the remaining four subjects, the four-dipole model is the
best. It is interesting to look at the latter subjects (4, 5, 8, and 11).
The reason that the model evidence is higher than for the other
models is that the posterior location is close to its prior. The
Kullback–Leibler divergence between the approximate posterior
and the prior is small (this is the model complexity) and model
evidence relatively high. In other words, model four wins in some
subjects, because the priors are appropriate for these data and the
dipoles do not incur a complexity cost, allowing the other dipole
pair to increase accuracy.

For the winning model 3, the average over the posterior
locations (of those subjects, where model 3 is the best) is [−27.4,
−9.6, 19.2] and [36.6, 1.9, 18.2]. Their standard deviations are
large: [17.6, 19.1, 12.1] and [9.7, 14.7, 14.8]. These posterior
locations point to a more anterior location than the Planum
Temporale prior. There are two explanations for this result: the
head model is too simple, or/and there are multiple generators
involved; in particular, anterior to Planum Temporale. We cannot
discard the first explanation, although to our knowledge, the 4-
sphere head model should be appropriate for the locations in
question. The second explanation is made more plausible by the
results from subjects 4, 5, 8, and 11, where a second pair of dipoles
anterior to PT turned out to be the best model.

Discussion

We have described a variational Bayes (VB) scheme for source
reconstruction of M/EEG data using a spatial model with a small
number of dipoles. We have shown that the approach finds
veridical solutions for synthetic EEG data and, for real EEG data,
the results are sensible. There are several advantages of the present
scheme over conventional approaches, which all follow from its
Bayesian formulation. First, one can impose priors on the model
parameters. This has advantages over using hard constraints; i.e.,
by fixing parameters. Examples of hard constraints include the
hard symmetry constraints described above, or the approach of
‘sequential dipole fitting’. The latter procedure fits single dipoles
iteratively to the residuals of the previous iteration, until some
goodness-of-fit criterion is reached. We do not want to argue that
these approaches are not useful. Rather, we want to point out that
these procedures do not take into account uncertainty about the
estimates or account formally for differences in model complexity.
As we have shown, a Bayesian approach can incorporate this
‘fixing parameters’ approach, but also allows for ‘soft’ prior
constraints, which are mediated by information in the data. These
priors are useful, because they allow a principled balance between
prior knowledge, and letting the data speak for themselves.
Conventional approaches can only choose between imposing prior
knowledge, by fixing parameters, or not. A subtle but important
aspect of the scheme described above is that the hierarchical nature
of the generative model means that the relative importance attached
to various priors is itself optimised. This means that priors that
have been improperly specified will, in principle, not be used.
Specifically, the use of hyperpriors means that prior constraints can
be switched off and on, depending on whether they enable a better
explanation of the data at hand.

The second advantage of the VB scheme is that it supports
model comparison. With conventional approaches, the goodness-
of-fit (GOF) falls into the trap of over-fitting, i.e., attaining a high
GOF by selecting an overly complex model. There are other
measures, in the literature, that either use classical model
selection, e.g., an F-test (Supek and Aine, 1993), or use a simple
approximation to the model evidence, e.g., the Bayesian or
Akaike Information Criterion (Beal, 2003; Penny et al., 2004).
Although these measures are in widespread use, they do not work
well when different models can have the same number of
parameters but different informative priors. For AIC, this can be
seen exemplarily in case studies one to three (Tables 2–4) where
AIC does not point to the best model but either seems to prefer
simple models, or complex models with a high goodness-of-fit.
The negative free energy is an accurate approximation to model
evidence and therefore is an appropriate criterion to perform
model selection; among models with different priors and number
of dipoles. This is an important result, because an often-
encountered issue in M/EEG source localization is whether
multiple sources are involved. Without priors there is no
compelling way of disentangling these sources. Once priors are
brought into the game, it becomes feasible to distinguish the best
model from other good but less likely models. One might argue
that our simulations are not relevant to real data scenarios; either
because we do not include confounds or other noise sources in
the simulations, or because one never has good location priors.
This might be true. However, our main point is that, in principle,
Bayesian model comparison is a useful way of interrogating data,
when competing hypotheses can be formulated as different prior
constraints that induce different models.

Furthermore, our scheme returns posterior distributions, not just
point estimates. These can be used to form confidence intervals
about each parameter, in particular dipole locations. This issue has
been addressed by a number of techniques (Braun et al., 1997;
Fuchs et al., 2004; Jun et al., 2005); approaches like ours provide a
practical solution by approximating the true marginal posteriors.
As we have shown empirically, for single dipoles with uninformed
priors, there is a slight overconfidence about location and moment
parameters. This effect is most notable for the parameters in z-
direction (up and down). For these, one expects higher uncertain-
ties than for the other parameters, because, after removing the
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average reference, the sensor data are less informative than for x-
and y-directions. This reflects the lack of sensors in the lower half
of the head, which leads to correlations between z-locations and z-
moments. The mean-field factorization between locations and
moments may explain the overconfidence, which increases with
dependencies between the two mean-field subsets (location and
moments). Overconfidence can be reduced by assigning informed
priors to one of the parameter subsets; this can be shown using
simple theoretical arguments. From the update rules (Fig. 2), one
can see that the uncertainty about one subset of parameters is
expressed in another through its first two moments only; this
means the posteriors do not account fully for dependencies
between the two subsets of parameters. In practice, the certainty
intervals for x- and y-parameter can be used, although they are
slightly too tight. We recommend using the z-parameter intervals,
with uninformed priors, only in a cautious manner.

Other Bayesian algorithms for dipole models have been
described previously, most notably (Jun et al., 2005). Their
algorithm uses Markov chain–Monte Carlo (MCMC) to sample the
posteriors. The two key differences between MCMC and VB
techniques lie in their speed and accuracy. VB is an approximation,
but fast as compared to MCMC. MCMC is slow and for interesting
models, convergence criteria; i.e., when to stop the algorithm, are
based on heuristics. In practice, our algorithm converges after
seconds (using an AMD Opteron processor, 2.39 GHz), and the
approximation seems to be sufficient in terms of face validity. In
M/EEG source reconstruction, MCMC has been used to perform
quality control on VB approximations (Nummenmaa et al., 2007;
Sato et al., 2004).

Although we have illustrated our scheme using EEG data only,
it can be applied to MEG after exchanging the lead-field function
G. Moreover, there is no constraint on the type of the forward
model. It would be feasible to use realistic head models; e.g.,
boundary element models (BEM). Because these models take a
long time to compute given location parameters; in practice, one
might compute the lead-field function using a lookup table, where
lead-fields are pre-computed for dipoles on a grid. The lead-fields
for locations between grid points can then be interpolated, as
shown in Yvert et al. (2001). In a similar vein, it is also possible to
incorporate parameters of the forward model into the full model
(Fig. 1). For example, it has been shown that the standard head
model parameters; i.e., conductivities and parameters, vary over
subjects, e.g., Radich and Buckley (1995). This is important for
EEG because in typical dipole fitting (including ours), these
parameters are fixed to some standard values. However, a variation
in, for example, skin conductivity can have a large effect on how a
dipole appears at the sensors; i.e., it is more focused or more spread
out. In practice, for a single dipole model, this means that location
parameters, in particular their distance from the spheres, co-vary
with skin conductivity (and other forward model parameters). A
potential and simple extension of our scheme would incorporate
selected head model parameters, or their ratios, into the model, and
use informed priors to allow the model to optimise them. In
principle, this approach would allow for better localization, if the
standard head model parameters are not appropriate for a given
subject.

There are occasions when the algorithm updates a dipole
location to outside the head. This is of course an un-physiological
solution and can happen because of two reasons. First, the
algorithm uses a first-order Taylor approximation, which precludes
strong non-linearity constraints at the head boundary. We therefore
check for inadmissible updates and iteratively half the step-size
(up to a maximum of 16 after which the algorithm reports its
failure to find a solution inside the head; cf., Levenberg–
Marquardt regularisation). Secondly, updates to outside the head
generally indicate that the priors are too lenient. For example, if
there are too many dipoles and uninformed priors, some of the
dipoles will be used to model noise, which might entail a source
outside the head. This issue is also encountered with classical
dipole fitting techniques. However, with our approach, one can
resolve it with more informed priors.

It has been pointed out that a dipole model for a single time
slice, or the average over several time slices, is not optimal for
localization (Mosher et al., 1993). Given that sources are active
over time, seeing the full spatiotemporal data would provide for
more certainty about parameters and potentially more veridical
estimates. Our model is simple, and one can think of several
extensions, including a spatiotemporal model, where the temporal
dynamics are described by some neural mass model (David et al.,
2006; Kiebel et al., 2006). Here, our main intentions were to
present a practical Bayesian routine and its application to routine
evoked responses analysis. Furthermore, variational Bayes approx-
imates the model evidence. It can be shown that this implies, for
model comparison, a bias towards simple models (Beal, 2003). In
this paper, we make no attempt at quantifying this bias, or using
MCMC for cross-validation, but observe that for the synthetic and
real data, our results are sensible and any systematic bias seems to
be small.

Conclusion

We have presented a variational Bayes approach to source
localization using models consisting of a few dipoles. The
inversion routines are computationally efficient and return veridical
posterior distributions. We have shown, in several examples on
synthetic and real data, the usefulness of a Bayesian approach
using informed priors and model comparison.

Software note

The scheme described in this note has been implemented as
Matlab (MathWorks) code. The source code is available in the
Statistical Parametric Mapping package (SPM5) from http://www.
fil.ion.ucl.ac.uk/spm/ as an academic freeware.
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Appendix A. Derivation of update rules

To derive the update rules we found the following helpful:
aTb=tr(abT) and tr(CTBC)=vec(CT)T(B⊗ I)vec(CT), where B is a
symmetric matrix. For terms involving the non-linear lead-field
function G(s), we use the vectorised first-order Taylor expansion

g sð Þcg Asð Þ þ Ag
As

s� Asð Þ

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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This use of this first-order expansion is motivated by theoretical
convergence results for any Gauss–Newton optimization scheme.
It exploits the same simplifications afforded by the Laplace
approximation in fixed-form variational schemes (e.g., Friston
et al., 2007) but, in this instance, is used only to finesse the
optimization of free energy.

To make the notation more compact, we use the following
Kronecker tensor products:

E ¼ AwA
T
w � I

� �

D ¼ Rw � Ið Þ

and auxiliary residual variables

rðwÞw ¼ Aw � Aw0

rðsÞs ¼ As � As0

In what follows we work though the update rules for the sufficient
statistics of the conditional marginal densities, based on the equality
in Eq. (8). Unless otherwise stated we omit constants (i.e., terms that
are not functions of the parameter of interest) and drop the
conditional dependency on the model for clarity.

Data precission

From Eq. (8) we have

lnq gy
� � ¼ lnp yjgy;w;s

� �þ lnp gy
� �� �

qðwÞqðsÞ

lnp yjgy;w;s
� � ¼ 1

2
Nclngy �

1
2
ðy� GðsÞwÞTR�1

y ðy� GðsÞwÞ

lnp gy
� � ¼ ay0 � 1

� �
lngy � by0gy

It follows that

lnq gy
� � ¼ 1

2
Nc þ ay0 � 1

� 	
lngy � gy

1
2

�
yTy� 2ATwG Asð ÞTy

�

þg Asð ÞTðDþ EÞg Asð Þþ tr Rs
Ag
As

T

ðDþEÞAg
As

� 		
þby0

	

This equality has the form lnq(γ)=(a−1)lnγ−bγ+c; from this,
we conclude that q(γy)=Ga(γy; ay,by) is a Gamma density, where

by ¼ 1
2

yTy� 2ATwG Asð ÞTyþ g Asð ÞTðDþ EÞg Asð Þ
�

þtr Rs
Ag
As

T

ðDþ EÞAg
As

� 		
þ by0

ay ¼ 1
2
Nc þ ay0

Parameter precisions

We can follow a similar derivation for the prior precisions on
the parameters

lnq gwð Þ ¼ lnp wjgwð Þ þ lnp gwð Þh iqðwÞ
lnp wjgwð Þ ¼ 3
2
Nslngw � 1

2
gwrðwÞTwR�1

w0
r wÞw
�

lnp gwð Þ ¼ aw0 � 1ð Þlngw � bw0gw

lnq gwð Þ ¼ 3
2
Ns þ aw0 � 1

� 	
lngw

� gw
1
2

r Awð ÞTwR�1
w0
r Awð Þwþtr R�1

w0
Rw

� �� �
þ bw0

� 	

Where r(w)w=μw−μw0
, such that q(γw)=Ga(γw; aw,bw) where

bw ¼ 1
2

rTwR
�1
w0
rw þ tr R�1

w0
Rw

� �� �
þ bw0

aw ¼ 3
2
Ns þ aw0

Equivalently, for the precision of the location parameters;
q(γs)=Ga(γs; as,bs), where

bs ¼ 1
2

rTs R
�1
s0
rs þ tr R�1

s0
Rs

� �� �
þ bs0

as ¼ 3
2
Ns þ as0

Moments

For the moments the Markov blanket has three subsets, such
that

lnqðwÞ ¼ lnp yjw;s;gy
� �þ lnp wjgwð Þ� �

qðsÞq gyð Þq gwð Þ

lnp wjgwð Þ ¼ � gw
2
rðwÞTwR�1

w0
rðwÞw

lnp yjw;s;gy
� � ¼ � 1

2
ðy� GðsÞwÞTR�1

y ðy� GðsÞwÞ Z

lnq wð Þ ¼ � aw
2bw

rðwÞTwR�1
w0
rðwÞw � ay

2by
�2wTG Asð ÞTy

�

þwTG Asð ÞTG Asð Þwþ tr Rs
Ag
As

T

I � wwT
� �Ag

As

� 		

¼ � 1
2
wT aw

bw
R�1
w0

þ ay
by

G Asð ÞTG Asð Þ þ B
� �� 	

w

þ wT ay
by

G Asð ÞTyþ aw
bw

R�1
w0
Aw0

� 	

Where, inMatlab notation,matrixB¼RNc
j¼1C jþ½0:Np � 1�;jþ ½0:Np � 1�� �

with C ¼ Ag
As

Rs
Ag
As

T

. The above expression has a quadratic form in

which w means q(w)=N(w;μw,Σw) is a Gaussian density, where

Aw ¼ Rw
ay
by

G Asð ÞTyþ aw
bw

R�1
w0
Aw0

� 	

Rw ¼ aw
bw

R�1
w0

þ ay
by

G Asð ÞTG Asð Þ þ B
� �� 	�1

Locations

Similarly, for the locations we have

lnqðsÞ ¼ lnp yjw;s;gy
� �þ lnp sjgsð Þ� �

qðwÞq gyð Þq gsð Þ
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lnp sjgsð Þ ¼ � gs
2
rðsÞTs R�1

s0
rðsÞs

lnp yjw;s;gy
� � ¼ � 1

2
ðy� GðsÞwÞTR�1
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Z
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2bs
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þsT
AgT
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Þ

From this, we conclude, q(s)=N(s;μs,Σs), where

As ¼ Rs
as
bs
R�1
s0
As0 þ

ay
by

Ag
As

T �
Aw � yð Þ

��

�ðDþ EÞ g Asð Þ � Ag
As

As

� 				

Rs ¼ as
bs
R�1
s0

þ ay
by

AgT

As
ðDþ EÞAg

As

� 	� 	�1

This completes the derivation of the update rules, which are
summarized in Fig. 2.

Appendix B. Derivation of the negative free energy

The [negative] free energy is given by

F ¼
Z

qðhjyÞln pðy;hÞ
qðhjyÞ dh

¼ Lav � KLprior

With accuracy and complexity terms given by

Lav ¼
Z

qðhjyÞlnpðyjhÞdh

KLprior ¼
Z

qðhjyÞln qðhjyÞ
pðhÞ dh

The prior and the approximate posterior are

pðhÞ ¼ p wjgwð Þp gwð Þp sjgsð Þp gsð Þp gy
� �

qðhÞ ¼ qðwÞq gwð ÞqðsÞq gsð Þq gy
� �

Giving

KLprior ¼ KLðwÞ þ KLðsÞ þ KL gwð Þ þ KL gsð Þ þ KL gy
� �

Lav ¼
Z

qðwÞqðsÞq gy
� �

lnpðyjhÞdwdsdgy
After similar calculations to those presented in Appendix A, we get

F ¼ �Nc

2
ln2pþ Nc

2
W ay
� �� ln by

� �� �

� ay
2by

yTy� 2yTG Asð ÞAw þ g Asð ÞTðDþ EÞg Asð Þ
�

þtr Rs
Ag
As

T

ðDþ EÞAg
As

� 		
where ψ(U) is the digamma function. Note that the free energy
bound on the log-evidence is not an explicit function of the
hyperpriors; this is because their effect is mediated though the
conditional density on the parameters.

Appendix C. Projection matrices and hard constraints

To enforce N symmetric dipoles, one can define the following
matrices for location and moments:

Ts ¼ Tw ¼ 1
2
IN � TTT T ¼

1 0 0
0 1 0
0 0 1
�1 0 0
0 1 0
0 0 1

0
BBBBBB@

1
CCCCCCA

Ts is an idempotent rank-deficit projector matrix (i.e., Ts=TsTs)
that effectively removes unwanted degrees of freedom from the
location and moment vectors. One can also think of this constraint
as a re-parameterization; in which one dipole comes to encode the
spatial deployment of two symmetric dipoles; i .e. ,
IN � I3ð ÞwY 1

2 IN � TTT
� �

w. Practically, the updates of the poster-
ior means are pre-multiplied by Ts; i.e., μs→Tsμs and the
covariances are sandwiched to give Σs→TsΣsTs

T (similarly for the
moment parameters). Suitable matrix inversions (i.e., pseudo-
inverses) are required during the updates, if rank-deficient
covariance matrices are induced in this way. This procedure can
also be applied to other hard constraints, implemented by a user-
specified T.
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