
ABSTRACT

The aims of this study were to estimate genetic pa-
rameters and to identify genomic regions associated 
with eating time (EAT) and rumination time (RUT) 
in Holstein dairy cows. Genetic correlations among 
EAT, RUT and milk yield traits were also estimated. 
The data were collected from 2019 to 2022 in 6 dairy 
herds located in the Walloon Region of Belgium. The 
data set consisted of daily EAT and RUT records on 
284 Holstein cows, from which 41 cows had records 
only for the first parity, 101 cows had both first and 
second parities records, and 142 cows had records only 
for the second parity. The number of daily EAT and 
RUT records in the first-parity (P1) and second-parity 
(P2) cows were 18,569 (on 142 cows) and 34,464 (on 
243 cows), respectively. Data on 28,994 single nucleo-
tide polymorphisms (SNP) located on 29 Bos taurus 
autosomes (BTA) of 747 animals (435 males) were 
used. Random regression test-day models were used 
to estimate genetic parameters through the Bayesian 
Gibbs sampling method. The SNP solutions were esti-
mated using a single-step genomic best linear unbiased 
prediction approach. The proportion of genetic vari-
ance explained by each 20-SNP sliding window (with 
an average size of 1.52 Mb) was calculated, and regions 
accounting for at least 1.0% of the total additive ge-
netic variance were used to search for candidate genes. 
Mean (standard deviation (SD)) averaged daily EAT 
and RUT were 327.0 (85.66) and 559.4 (77.69) min/d 
for cows in P1 and 316.0 (82.24) and 574.2 (75.42) 
min/d for cows in P2, respectively. Means (standard 
deviation; SD) heritability (h2) estimates for daily EAT 
and RUT were 0.42 (0.09) and 0.45 (0.06) for cows 
in P1 and 0.45 (0.04) and 0.43 (0.02) for cows in P2, 
respectively. Mean (SD) daily genetic correlations be-
tween daily EAT and RUT were 0.27 (0.07) for P1 and 
0.34 (0.08) for P2. Genome-wide association analyses 

identified 6 genomic regions distributed over 5 chromo-
somes (BTA1, BTA4, BTA11, BTA14 (2 regions), and 
BTA17) associated with EAT or RUT. The findings 
of this study increase our preliminary understanding 
of the genetic background of feeding behavior in dairy 
cows; however, larger data sets are needed to determine 
whether EAT and RUT might have the potential to be 
used in selection programs.
KEYWORDS: Rumination time, eating time, Holstein 
cows

INTRODUCTION

Milk yield per cow has more than doubled in the pre-
vious 40 years and many cows now produce more than 
20,000 kg of milk per lactation. Increased milk yield is 
associated with changed in diets and increased energy 
requirements in dairy cows (Løvendahl and Munks-
gaard, 2016). The ability of an animal to increase daily 
energy intake (EI) depends on the net energy density of 
the diet and daily feed intake (FI) (Harvatine and Al-
len, 2005). While using a reliable method to measure FI 
or residual feed intake (RFI; an increasingly used trait 
to analyze feed efficiency in livestock) is too expensive 
for commercial farms, available sensor technologies 
provide information about the feeding behavior of the 
animals which are associated with RFI and FI (Byskov 
et al., 2015; De Mol et al., 2016; Byskov et al., 2017). 
Feeding behavior can be analyzed using traits such as 
eating time (EAT), meal frequency, duration of each 
meal, intake per meal, and rumination time (RUT) 
(Nkrumah et al., 2007; Kelly et al., 2010; Cavani et al., 
2022). Several studies reported that variation in feeding 
behavior explained part of the variation observed in 
R(FI) in dairy cattle (Green et al., 2013; Lin et al., 2013; 
Cavani et al., 2022). De Mol et al. (2016) reported that 
the correlation between EAT and FI ranged from 0.53 
to 0.56 in lactating dairy cows. Byskov et al. (2017) re-
ported that RUT is genetically correlated with RFI and 
dry matter intake (DMI) in dairy cows. Byskov et al. 
(2015) reported that the daily intake of forage neutral 
detergent fiber (NDF) and starch are positively related 
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to RUT, whereas intake of sugar is negatively related to 
RUT. Furthermore, rumination activity may effect CH4 
emissions (a major contributor to the global greenhouse 
gas emissions and also a loss of feed energy during pro-
duction) through affecting feed particle size, microbial 
fermentation and rumen fluid pH (Zetouni et al., 2018; 
Mikuła et al., 2021). Moreover, FI, EAT and RUT can 
be used to monitor the health and reproduction of dairy 
cattle (DeVries et al., 2009; Calamari et al., 2014; Pahl 
et al., 2015). Therefore, feeding behavior like EAT and 
RUT can be considered useful indicators for R(FI) and 
CH4 production in dairy cows (Schirmann et al., 2009; 
Byskov et al., 2017; Negussie et al., 2017; Mikuła et al., 
2021; Cavani et al., 2022). The advantage of EAT and 
RUT over R(FI) or CH4 is that EAT and RUT can be 
automatically recorded on a large-scale by sensor-based 
systems (Bikker et al., 2014). However, the use of EAT 
and RUT in dairy cattle breeding program requires a 
comprehensive understanding of genetic backgrounds 
for these traits. It has been documented that factors 
such as stage of lactation, season, parity, health disor-
ders, housing conditions and composition of the feed 
ration may influence EAT and RUT (Nielsen et al., 
2000; Kaufman et al., 2016; Løvendahl and Munks-
gaard, 2016; Schirmann et al., 2016); however, more 
studies are needed to have reliable and complete infor-
mation about the genetic aspects of EAT and RUT in 
dairy cows. Thus, due to the lack of feeding behavior 
genetic studies in lactating dairy cattle, the aims of 
this study were to estimate genetic parameters and to 
identify genomic regions associated with EAT and RUT 
in Holstein dairy cows.

MATERIALS AND METHODS

Phenotypic Data

Six dairy herds located in the Walloon Region of 
Belgium participated in this study. Individual daily 
eating time (EAT) and rumination time (RUT) data 
were collected using SenseHub dairy sensors (Allflex 
Livestock IntelligenceTM). The animals included were 
equipped with SenseHub dairy sensors for the entirety 
of the study period. The data were collected from 2019 
to 2022 and were edited to include only cows with 
known birth date, calving date, and parity number. 
Age at the first calving (AFC) was calculated as the 
difference between birth date and first calving date and 
restricted to the range of 540 to 1200 d. Only records 
from the first 2 parities were kept for the analyses. Re-
cords from days in milk (DIM) greater than 305 d were 
eliminated. Daily EAT and RUT were edited to remove 
records outside the range of mean ± 3 standard devia-
tions (SD). The final data set consisted of daily EAT 

and RUT records on 284 Holstein cows, from which 41 
cows had records only for the first parity, 101 cows had 
both first and second parities records, and 142 cows 
had records only for the second parity. The 142 s parity 
cows without first parity records were kept in the data 
set due to the limited number of records available. The 
number of daily EAT and RUT records in the first-
parity (P1) and second-parity (P2) cows were 18,569 
(on 142 cows) and 34,464 (on 243 cows), respectively. 
The recordings on EAT and RUT were summarized as 
weekly averages for each animal before being subjected 
to further analyses. Pedigree depth of the animals were 
traced back to 25 generations to include all ancestors 
of the animals. Full pedigree records included 7,312 
animals (2,018 males).

Genotypic Data

Genotype data were available for 747 animals (435 
males and 312 females) in the pedigree data set used. 
EAT and RUT records were available for 243 of the 312 
genotyped females. The animals were genotyped using 
the BovineSNP50 Beadchip v1 to v3 (Illumina, San 
Diego, CA, USA). Single nucleotide polymorphisms 
(SNP) in common among the 3 chips were kept. Non-
mapped SNPs, SNPs located on sex chromosomes, and 
triallelic SNPs were excluded. A minimum GenCall 
Score of 0.15 and minimum GenTrain Score of 0.55 
were used to keep SNP. Minor allele frequency (MAF) 
less than 5% were excluded. The difference between the 
observed and expected heterozygosity was estimated, 
and if the difference was greater than 0.15, the SNP 
was excluded (Wiggans et al., 2009). Finally, 28,994 
SNP located on 29 Bos taurus autosomes (BTA) re-
mained for the genomic analyses.

Variance Component Estimation

The (co)variance components and breeding values for 
EAT and RUT were estimated based on the integration 
of the random regression test-day model (RR-TDM) 
into the single-step GBLUP procedure (SS RR-TDM) 
using the following 2-trait, 2-lactation (first 2 lacta-
tions) model (Paiva et al., 2022):

 

y   HTDp HY LS AS t

pe t

ijklmno i j k
b

l b

b
n b

b

= + + + + ( )

+ ( )+

=

= =

∑

∑

µ Φ

Φ

0

3

0

3

0

3

∑∑ ( )+a t en b ijklmnoΦ ,

where yijklmn is the weekly averaged daily records of 
EAT and RUT belonging to the DIM o of cow n in 
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parity m, belonging to ith class of HTDp, jth class of 
HY, kth stage of lactation, and lth class of AS. HTDp 
is the fixed effect of herd-testday-parity; HY is the 
fixed effect of herd-year of calving; LS is the fixed effect 
of lactation stage (11 classes were defined: DIM 1:15, 
16: 35, and the rest of the lactation period was grouped 
into 9 30-d classes); AS is the fixed effect of age-season 
of calving defined as follows: age at calving class (3 and 
2 classes of age at calving were defined for the first and 
second parity, respectively) × season of calving (4 sea-
sons: winter from January to March, spring from April 
to June, summer from July to September and autumn 

from October to December); 
b

j bAS t
=
∑ ( )
0

3

Φ  is the fixed 

regression coefficients of the age-season of calving mod-

eled using Legendre polynomials of order 3; 
b

m bpe t
=
∑ ( )
0

3

Φ  

and 
b

m ba t
=
∑ ( )
0

3

Φ  are the random regression coefficients of 

permanent environmental, and additive effects modeled 
using Legendre polynomials of order 3, respectively; 
and eijklmn is the residual effect. The permanent environ-
ment, additive genetic and residual variances were as-
sumed to be normally distributed with mean zero (µ = 
0) and variances as follows:
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where P is the 16 × 16 covariance matrix of the perma-
nent environmental regression coefficients; Ga is the 16 
× 16 covariance matrix of the additive genetic regres-

sion coefficients, blocks within R rp=
+

∑  contain resid-

ual variance (r) that depends on parity (p). Residual 
variance was assumed the same within each parity. The 
H is a matrix that combines pedigree and genomic re-
lationships, where its inverse relies on the integration of 
additive and genomic relationship matrices, A and G, 
respectively (Aguilar et al., 2010):
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where A is the numerator relationship matrix based 
on the pedigree for all animals; A22 is the numerator 
relationship matrix for genotyped animals; and G is 
the weighted genomic relationship matrix obtained us-
ing the following function:

 G G A= × + ×∗ 0 95 0 0522. . .

The G* is the genomic relationship matrix obtained 
using the following function described by VanRaden 
(2008):

 G
ZDZ∗

=

=
−∑ p p

i

M
i i

’

( )
,

1
2 1

where Z is a matrix of gene content adjusted for allele 
frequencies (0, 1 or 2 for aa, Aa and AA, respectively); 
D is a diagonal matrix of weights for SNP variances (D 
= I); M is the number of SNPs, and pi is the MAF of 
the ith SNP.

The (co)variance components were estimated by 
Bayesian inference using the GIBBS3F90 software 
(Aguilar et al., 2018). Gibbs sampling was used to ob-
tain marginal posterior distributions for the various pa-
rameters using a single chain of 500,000 iterates with a 
sampling interval of 20 samples. The first 100,000 itera-
tions of the chain were regarded as a burn-in period to 
allow sampling from the proper marginal distributions. 
Genetic (co)variances on each test-day were calculated 
using the equation described by Jamrozik and Schaeffer 
(1997). Daily heritability was defined as the ratio of 
genetic variance to the sum of the additive genetic, 
permanent environmental, and residual variances at a 
given DIM.

The vector of genomic estimated breeding values 
(GEBV) of the EAT and RUT for each animal i, which 
included daily GEBV from all DIM (1 to 305) in each 
parity was estimated by multiplying the vector of addi-
tive genetic predicted regression coefficients by the 
matrix of Legendre orthogonal polynomial covariates; 
that is, GEBV Tgi i= ˆ , where ĝi is the vector of additive 
genetic predicted regression coefficients for animal i 
and T is a matrix of orthogonal covariates associated 
with the Legendre orthogonal polynomial functions.

Genome-Wide Association Study

Genome-wide association studies (GWAS) were per-
formed for EAT and RUT in the first and second pari-
ties considering following 3 lactation stages: 1) from 1 
to 60 DIM, representing the ascending production stage 
and lactation peak; 2) from 61 to 200 DIM, represent-
ing the middle lactation stage; and 3) from 201 to 365 
DIM, representing the production decline up to the end 
of the lactation (Oliveira et al., 2019). Therefore, the 
GEBV for each lactation stage of each animal i were 
obtained by averaging the daily GEBV solutions of the 
specific DIM; that is,
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 GEBV GEBV GEBV GEBVi i i i
ˆ ˆ ˆ ˆ / ,1 601 2 60= + +…+( )

 GEBV GEBV GEBV GEBV  i i i i
ˆ ˆ ˆ ˆ( ) / ,2 14061 62 200= + +…+  

and

 GEBV GEBV GEBV GEBVi i i i
ˆ ˆ ˆ ˆ( ) / ,3 105201 202 305= + +…+

where GEBV i
ˆ ,1  GEBV i

ˆ ,2  and GEBV i
ˆ 3  are the GEBV for 

the first, second, and third lactation stages of animal i 
obtained by averaging the GEBV from 1 to 60, 61 to 
200, and 201 to 305 DIM, respectively. Furthermore, 
the GEBV of animal i through the entire lactation were 
obtained by averaging the daily GEBV solutions of all 
DIM; that is,

 GEBVe GEBV GEBV GEBVi i i i
ˆ ˆ ˆ ˆ( ) / ,= + +…+1 2 305 305

where GEBVeiˆ  is the GEBV of animal i through the 
entire lactation, obtained by averaging the GEBV from 
1 to 305.

The SNP effects were estimated using the postGSf90 
software (Aguilar et al., 2014). The animal effects were 
decomposed into those for genotyped (ag) and ungeno-
typed animals (an). The animal effects of genotyped 
animals are a function of the SNP effects, ag = Zu, 
where Z is a matrix relating genotypes of each locus 
and u is a vector of the SNP marker effect. The vari-
ance of animal effects was assumed as:

 Var Var   u aa Zu ZDZ Gg( ) = ( ) = ='σ σ2 2

where D is a diagonal matrix of weights for variances of 
markers (D = I) and σu

2 is the additive genetic variance 
captured by each SNP marker when the relationship 
matrix (G) was built with no weight. The SNP effects 
were obtained using the following equation:

 ˆ ˆ ˆ ,’u ’ a ’ Z ag g= = [ ]− −λDZ G DZ DZ1 1

where λ was defined by VanRaden (2008) as a normal-
izing constant, as described below:
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The percentage of the total additive genetic variance 
explained by the ith genomic region was estimated as 
following:
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where ai is the genetic value of the ith region that con-
sists of 20 adjacent SNPs; σa

2 is the total additive ge-
netic variance; Zj is the vector of the SNP content of 
the jth SNP for all individuals; and û j is the marker 
effect of the jth SNP within the ith region. The additive 
genetic variance explained by 20-SNP moving windows, 
with an average size of ~1.52 Mb, was calculated across 
the whole genome, and those windows explaining at 
least 1.0% of the total additive genetic variance were 
considered promising regions and used to identify posi-
tional candidate genes. The concept of grouping SNP 
into windows was adopted as a way to better capture 
the genetic information such as the extent of linkage 
disequilibrium (LD) in neighboring SNPs (Habier et 
al., 2011).

Identification of positional candidate genes for the 
studied traits

Genes located inside the identified genomic regions 
(i.e., between the start and end of genomic coordinates 
of the identified regions) were defined as the positional 
candidate genes for EAT and RUT. We identified genes 
using the National Center for Biotechnology Informa-
tion (NCBI) Map Viewer tool for the UMD3.1 assembly 
as the reference map.

RESULTS

The descriptive statistics of the analyzed traits are 
presented in Table 1. Daily milk yield (MY) averaged 
25.6 kg (4.21% fat and 3.41% protein) and 32.4 kg 
(4.22% fat and 3.38% protein) for cows in P1 and P2, 
respectively. Mean (SD) weekly averaged daily EAT 
and RUT were 327.0 (85.7) and 559.4 (77.7) min/d for 
cows in P1 and 316.0 (82.24) and 574.2 (75.4) min/d 
for cows in P2, respectively. The coefficient of varia-
tions (CV%) of weekly averaged daily EAT and RUT 
was 26.2% and 13.9% in the first parity and 26.0% and 
13.1% in the second parity, respectively.

The lactation curves for weekly averaged daily EAT 
and RUT are presented in Figure 1. The daily EAT was 
low at the day of calving, increased rapidly during the 
first month after calving, and reached the peak of 358 
min/d in P1 and 325 min/d in P2 at 35 and 28 weeks 
in milk, respectively. The daily RUT was low at the day 
of calving, increased rapidly until 6 and 5 weeks after 
calving, when the peak of 591 min/d in P1 and 588 
min/d in P2 was reached, respectively (Figure 1). Fac-
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tors including herd, parity, sampling season, sampling 
year, and the weeks in milk showed significant effect on 
EAT and RUT (P < 0.05). Least squares means EAT 
was highest in sampling season of summer (357 min/d, 
SE = 1.0) followed by spring (338 min/d, SE = 1.0) 
and was lowest in winter (310 min/d, SE = 1.1) fol-
lowed by autumn (320 min/d, SE = 1.0). Least squares 
means RUT was highest in sampling season of winter 
(576 min/d, SE = 1.1) followed by autumn (567 min/d, 
SE = 1.0) and was lowest in summer (551 min/d, SE = 
1.0) followed by spring (558 min/d, SE = 1.0).

Heritability estimates and genetic correlations among 
the studied traits are presented in Table 2. Means (SD) 
daily heritability (h2) estimates for weekly averaged 
daily EAT and RUT were 0.42 (0.09) and 0.45 (0.06) 
for cows in P1 and 0.45 (0.04) and 0.43 (0.02) for cows 
in P2, respectively. Mean genetic correlation estimates 
between weekly averaged EAT and RUT were 0.27 
(ranged from 0.01 to 0.55) for P1 and 0.34 (ranged 
from 0.17 to 0.54) for P2. The mean genetic correla-
tions between weekly averaged daily EAT and MY, fat 

percentage (FP), and protein percentage (PP) ranged 
from 0.15 to 0.17, 0.05 to 0.09, and 0.05 to 0.08, respec-
tively. The corresponding values estimated for weekly 
averaged daily RUT ranged from 0.22 to 0.27 (MY), 
0.12 to 0.17 (FP), and 0.11 to 0.16 (PP).

General information (start and end SNP numbers, 
window size, start and end genomic positions, and the 
variance explained by each windows) about the results 
of single-step GWAS (ssGWAS) for EAT and RUT 
are presented in Data S1-S16 [2 traits (EUT and RUT) 
× 2 parities × 4 stages per parity]

(https: / / github .com/ hadiatashi/ eating -rumination 
-time -Holstein -cows). The Manhattan plots of the 
proportion of total additive genetic variance explained 
by 20-SNP windows for EAT and RUT are shown in 
Figures 2 and 3, respectively. The genomic regions as-
sociated with EAT and RUT along with correspond-
ing genes are presented in Table 3. In total, 6 regions 
distributed over 5 chromosomes (BTA1, BTA4, BTA11, 
BTA14 (2 regions), and BTA17) were identified that 
are associated with EAT or RUT. The following are the 
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Table 1. Descriptive statistics for milk yield, fat percentage, protein percentage, weekly averaged daily eating 
time, and rumination time in Walloon Holstein cows1

Traits2

First lactation

 

Second lactation

Mean SD CV (%) Mean SD CV (%)

MY (kg) 25.6 5.3 20.8 32.4 7.5 23.1
FP (%) 4.21 0.63 15.1 4.22 0.69 16.5
PP (%) 3.41 0.29 8.45 3.38 0.34 10.2
EAT (min/d) 327.0 85.7 26.2 316.0 82.2 26.0
RUT (min/d) 559.4 77.7 13.90 574.2 75.4 13.1
1.The number of test-day records for EAT and RUT in first and second parity cows were 18,569 (on 142 cows) 
and 34,464 (on 243 cows), respectively.
2.MY = milk yield (kg/d), FP = fat percentage (%), PP = protein percentage (%), EAT = eating time 
(min/d); RUT = rumination time (min/d).

Figure 1. Lactation curves for weekly averaged daily eating time (EAT, min/d) and rumination time (RUT, min/d) for the first (blue) and 
second (red) parity in Walloon Holstein cows.

https://github.com/hadiatashi/eating-rumination-time-Holstein-cows
https://github.com/hadiatashi/eating-rumination-time-Holstein-cows


Journal of Dairy Science Vol. TBC No. TBC, TBC

results discussed by chromosome. The genomic regions 
are expressed based on the UMD3.1 assembly.

BTA1 The genomic region located from 103.0 to 
105.2 Mb on BTA1 was associated with EAT. This 
region was 2.16 Mb in size and explained 1.37% of the 
total additive genetic variance for EAT during early 
lactation for P2. This region also explained 0.84% of 
the total additive genetic variance of RUT in the late 
lactation for P2.

BTA4 Genomic region located from 56.8 to 58.12 
Mb on BTA4 explained 1.02% of the total additive 
genetic variance of RUT in late-lactation for P2. This 
region was 1.24 Mb in size and harbors genes includ-
ing inner mitochondrial membrane peptidase subunit 2 
(IMMP2L) and leucine rich repeat neuronal 3 (LRRN3).

BTA11 The genomic region located from 15.64 to 
17.026 Mb on BTA11 was associated with RUT in the 
second lactation. This region was 1.38 Mb in size and 
explained 1.19% and 0.76% of the total additive ge-
netic variance of RUT for the early and mid-lactation 
in P2, respectively. This region harbors genes including 
latent transforming growth factor β binding protein 1 
(LTBP1), RAS guanyl releasing protein 3 (RASGRP3), 
and family with sequence similarity 98 member A 
(FAM98A).

BTA14 Two genomic regions located from 7.61 to 
8.48 Mb and 26.3 to 27.4 Mb on BTA14 were associated 
with EAT and RUT. Hereafter, these regions are identi-
fied as BTA14-I, and BTA14-II.

The BTA14-I was 0.87 Mb in size and explained 
1.09% of the total additive genetic variance of EAT 
during mid lactation for P1. This region harbors zinc 
finger and AT-hook domain containing (ZFAT) and 
microRNA mir-30d (MIR30D).

The BTA14-II explained 1.10% and 0.75% of the 
total additive genetic variance for EAT during mid-
lactation for P1 and P2, respectively. This region ex-
plained 1.12% of the total additive genetic variance of 
RUT during mid lactation for P1. This region was 1.10 
Mb in size and also explained 2.27% and 1.36% of the 
total additive genetic variance of RUT during mid and 
entire lactation for P2. Genes including UBX domain 
protein 2B (UBXN2B), thymocyte selection-associated 
high mobility group box (TOX), syndecan binding 
protein (SDCBP), cytochrome P450 family 7 subfamily 
A member 1 (CYP7A1), and neutral sphingomyelinase 
activation associated factor (NSMAF) were identified 
inside this region.

BTA17 The genomic region located from 57.8 to 59.0 
Mb on BTA17 explained 1.37% and 0.64% of the total 
additive genetic variance of EAT during mid lactation 
and entire lactation for P1, respectively. In addition, 
more than 0.60% of the total additive genetic variance 
of EAT during mid lactation for P1 was explained by 
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this region. Genes including citron rho-interacting ser-
ine/threonine kinase and coiled-coil domain containing 
60 (CCDC60) were inside this region.

DISCUSSION

The mean weekly averaged daily EAT ranged from 
316 to 327 min. This result was in agreement with pub-
lished mean daily EAT of 330 min (Senn et al., 1995) 
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Figure 2. Additive genetic variance explained by windows of 20 adjacent SNPs across chromosomes for weekly averaged daily eating time 
(min/d) in different stages of lactation in the first (left) and second parity (right) Walloon Holstein cows.
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and was in the range of 240 to 420 min reported by 
Beauchemin (1991). Dado and Allen (1994) reported 
that Holstein cows spent 301 min/d eating. However, 
some studies reported shorter daily EAT of 208 to 218 

min/d (Meir et al., 2018), 185 to 214 min/d (Kononoff 
et al., 2003) and 248 to 264 min/d (Braun et al., 2015) 
in Holstein cows. Moreover, some studies reported lon-
ger daily EAT of 462 min/d (Schleisner et al., 1999) 

Atashi et al.: Genomic analysis of eating and rumination times in dairy cows

Figure 3. Additive genetic variance explained by windows of 20 adjacent SNPs across chromosomes for weekly averaged daily rumination 
time (min/d) in different stages of lactation in the first (left) and second parity (right) Walloon Holstein cows.
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and 375 to 497 min/d (Braun et al., 2013). The mean 
weekly averaged daily RUT ranged from 559.4 to 574.2 
min which is in agreement with published daily RUT of 
464 to 579 min/d (Metz, 1975) and 498 to 584 min/d 
(Maekawa et al., 2002). Dado and Allen (1994) reported 
that Holstein cows spent 457 min/d ruminating. Soriani 
et al. (2012) reported that mean RUT during the early 
lactation (DIM 15 to 40) was 504 min/d in primiparous 
and 562 min/d in multiparous Holstein cows. However, 
mean RUT found in our study are higher than that re-
ported by some previous studies. For instance, Byskov 
et al. (2017) reported that the mean RUT for Holstein 
cows is 413 min/d and varied from 413 to 448 min/d in 
different parts of lactation. Meir et al. (2018) reported 
values from 427 to 459 min/d for mean RUT. Lopes 
et al. (2022) reported values of 446 min/d for overall 
RUT in Canadian Holstein. López-Paredes et al. (2020) 
reported that mean of RUT is 473 min/d and Zetouni 
et al. (2018) reported that mean RUT varied from 415 
to 443 min/d in Holstein cows.

Factors such as age, parity, lactation stage, milk 
yield, type of ration and feeding management affect 
FI and may explain the variation found for daily EAT 
and RUT in the literature. Daily EAT and RUT   were 
low at calving and increased rapidly in the first month 
after calving, but showed little change in the rest of the 
lactation. Considerable divergence was found between 
EAT lines for first and second parity in late lactation, 
presumably due to higher lactation persistency and 
slower feeding rate in first parity animals. This study 
showed that first parity cows ate longer and had shorter 
RUT than second parity cows. The published studies in 
recent years provides new insights on eating and ru-
minating activity of dairy cows (Beauchemin, 2018). 
EAT is strongly influenced by eating rate and there are 
issues of social competition for eating, whereas RUT is 

largely a function of ration compositions; thus, RUT 
is considered as a physiological trait, whereas EAT 
has both physiological and behavioral origins. Braun 
et al. (2013) reported that the duration of eating and 
rumination are longer in older cows. Dado and Allen 
(1994) reported that older cows eat faster than younger 
cows (shorter EAT per kg DMI). Soriani et al. (2012) 
reported that daily means of RUT in primiparous cows 
are shorter than that in multiparous cow. The difference 
between the duration of rumination in primiparous and 
multiparous cows can be, at least in part, attributed 
to the differences in DMI as RUT adjusted for DMI of 
primiparous cows is usually less than or similar to that 
of multiparous cows (Dado and Allen, 1994). Kowsar et 
al. (2008) reported that means EAT and RUT per day 
and per kg DMI in primiparous are longer than those in 
multiparous cows. The lowest values for RUT and EAT 
were found on the day of calving which is in line with 
Soriani et al. (2012). The current study showed that the 
RUT in summer and spring is less than that in winter 
and autumn. Tapki and Şahin (2006) and Moallem et 
al. (2010) showed that RUT is reduced during heat 
stress in dairy cows. FI depends on EAT and intake per 
unit time. Mujibi et al. (2010) reported significant asso-
ciation between season and eating speed in beef cattle 
and showed that higher air temperature and higher 
solar radiation are associated with lower feeding rate; 
therefore, although mean EAT in summer and spring 
was higher than that in winter and autumn, kg FI may 
be less per minute eating. The CV for EAT was more 
than that for RUT. Dado and Allen (1994) reported 
that CV for EAT is about 17% and the reported CV for 
RUT ranged from 16% (Dado and Allen, 1994) to 48% 
(Byskov et al., 2015).

The mean daily h2 estimates for EAT and RUT ranged 
from 0.42 to 0.45 (EAT) and from 0.43 to 0.45 (RUT), 
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Table 3. Genomic regions associated with weekly averaged daily eating time (EAT) and rumination time (RUT) in different stages of lactation 
in Walloon Holstein cows1

Chromosome Position (bp)2 Gene3  Trait4 (parity, stage of lactation, % variance explained)

BTA1 103,034,522 - 105,191,465 SI  EAT (2, 1, 1.37), RUT (2, 3, 0.84)
BTA4 56,875,012 - 58,115,832 IMMP2L, LRRN3, IMMP2L  RUT (2, 3, 1.01), EAT (1, 1, 0.51),
BTA11 15,644,634 −17,026,673 LTBP1, RASGRP3, FAM98A  RUT (2, 1, 1.19), RUT (2, 2, 0.76)
BTA14 7,612,098 - 8,479,608 ZFAT, MIR30D, MIR30B  EAT (1, 2, 1.09), EAT (2, 3, 0.61), EAT (2, e, 0.45)
BTA14 26,264,142 - 27,360,366 NSMAF, CYP7A1, SDCBP, TOX, 

UBXN2B
 EAT (1, 2, 1.10); EAT (1, 1, 0.63); EAT (2, 2, 0.75); 

RUT (1, 2, 1.12); RUT (2, 2, 2.27); RUT (2, e, 1.36); 
RUT (1, 1, 0.46); RUT (1, e, 0.83); RUT (2, 1, 0.78)

BTA17 57,800,291 - 59,043,406 TMEM233, PRKAB1, HSPB8, 
CCDC60, SRRM4, CIT

 EAT (1, 2, 1.37), EAT (1, e, 0.64), EAT (2, 2, 0.62)

1.The GWAS analyses were performed for EAT and RUT considering 3 stages of lactation in each parity: (1) from 5 to 60 DIM, representing the 
ascending production stage and lactation peak; (2) from 61 to 200 DIM, representing the lactation persistency stage; (3) from 201 to 365 DIM, 
representing the production decline up to the end of the lactation, and (e) from 5 to 365 DIM representing the entire lactation.
2.The positions of the identified genomic regions based on the UMD3.1 assembly.
3.Genes inside the genomic region. Official gene symbol.
4.EAT = eating time (min/d); RUT = rumination time (min/d).
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indicating that a significant proportion of phenotypic 
variance of these traits are explained by additive genetic 
effects. Lopes et al. (2022) reported that h2 of RUT in 
Canadian Holstein cows is 0.41 and Byskov et al. (2017) 
reported that h2 of RUT ranged from 0.14 to 0.33 in 
Holstein cows. Low to moderate genetic correlations 
ranged from 0.27 to 0.34 were found between EAT and 
RUT indicating that cows that spend more time eating 
tend to ruminate longer. Beauchemin (2018) reported 
a direct relationship of 0.27 between EAT and RUT 
for dairy cows but Dado and Allen (1994) reported an 
inverse relationship between EAT and RUT. Moderate 
positive genetic correlations were found between EAT 
and RUT with MY which is in agreement with previous 
studies (Stone et al., 2017; Kaufman et al., 2018). Al-
though the relationship between RUT and milk produc-
tion has been investigated in few studies information 
is lacking on the relationship between EAT and milk 
yield and composition. Part of the variation found in 
the published studies may be due to the slightly dif-
ferent criteria used among studies to define RUT and 
in particular EAT, but RUT and EAT are also highly 
affected by feed management, physical and chemical 
composition of the diet, and inherent variability among 
animals. Soriani et al. (2013) reported a direct relation-
ship between RUT and MY in Holstein cows. Lopes 
et al. (2022) reported that genetic correlation between 
RUT and MY in Canadian Holstein is 0.51. EAT and 
RUT were weakly correlated with FP and PP. López-
Paredes et al. (2020) reported that RUT had positive 
correlations with MY and protein yield (PY) and nega-
tive correlations with fat yield (FY), PP, and FP. The 
mean genetic correlation found between FP and RUT 
was stronger than that found between FP and EAT. 
Milk fat is strongly influenced by changes in rumen 
fermentation; therefore, the high association between 
RUT and FP can be, at least in part, explained by the 
effect of rumination on rumen fermentation by breaking 
up large feed particles, increasing saliva and changing 
rumen pH (Bauman and Griinari, 2001; Zetouni et al., 
2018; Mikuła et al., 2021).

Typically, GWAS methods are based on testing 
the significance of SNP effects on the traits of inter-
est. However, SNPs within a genomic region can be 
highly correlated and jointly influence the phenotype. 
Furthermore, the genetic information in neighboring 
SNPs, such as the extent of LD, is not used in the 
GWAS because it depends on single SNP (Bao and 
Wang, 2017). Therefore, window-based GWAS proce-
dure has been proposed as an effective method to esti-
mate the combined effect of several consecutive SNPs 
in a specific region and to identify genomic regions that 
explain a given amount of genetic variance (Aguilar et 
al., 2019). The common form for declaring significance 

is to use a threshold on the additive genetic variance 
explained by individual window (Aguilar et al., 2019). 
However, it is unclear what window size is optimal, 
and no standard presently exists to define the threshold 
on explained genetic variance. Therefore, determining 
the proper window size is usually subjective and re-
searchers often do not justify their choices or sometimes 
acknowledge that their choices are arbitrary. Fragomeni 
et al. (2014) examined different SNP window sizes and 
recommended windows of 20 adjacent SNP as a reason-
able size. In this study, a window-based GWAS through 
the single-step genomic best linear unbiased predictor 
(ssGBLUP) was used. The results were presented by 
the proportion of total genetic variance explained by 
window of 20 adjacent SNP with an average size of 
~1.52 Mb and windows explaining at least 1.0% of the 
total additive genetic variance were used to search for 
candidate genes. We used 1 SNP as the moving step of 
the window, which ensured that we do not miss genom-
ic regions potentially associated with the traits due to 
the combination of SNPs. The results of the ssGWAS 
identified 6 genomic regions distributed over 5 chromo-
somes (BTA1, BTA4, BTA11, BTA14 (2 regions), and 
BTA17) associated with EAT and RUT. A genomic 
region located from 103.0 to 105.2 Mb on BTA1 was 
associated with EAT. This region has previously been 
reported to be associated with FI-related traits includ-
ing FI, DMI, and RFI (Rolf et al., 2012; Seabury et al., 
2017; Li et al., 2019). This region was also associated 
with milk yield traits and average daily gain (ADG) 
(Viitala et al., 2003; Meredith et al., 2012). Sucrase-
isomaltase (SI) is the only functional gene identified 
inside this region. SI encodes a sucrase-isomaltase 
enzyme which is essential for the digestion of dietary 
carbohydrates.

The genomic region located from 56.8 to 58.12 Mb 
on BTA4 was associated with RUT. Previous studies 
reported that this region is associated with FP and PY 
in dairy cows (Lindersson et al., 1998; Schrooten et al., 
2004). The genomic region located from 15.64 to 17.026 
Mb on BTA11 was associated with RUT. This region 
has previously been reported to be associated with FI-
related traits such as DMI, RFI and feed conversion 
ratio (FCR) (Marquez et al., 2009; Sherman et al., 
2009). In addition, it has been reported that this region 
is associated with milk yield traits and milk fatty acid 
(FA) profile (Cole et al., 2011; Iung et al., 2019). RAS-
GRP3 gene, located inside this region, was reported to 
be associated with FP and PP in Holstein cows (Cole et 
al., 2011). The genomic region located from 7.61 to 8.48 
Mb on BTA14 was associated with EAT. This region 
was reported to be associated with milk yield traits 
and milk FA profile in Holstein cows (Gebreyesus et 
al., 2019; Pedrosa et al., 2021). Buitenhuis et al. (2014) 
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reported that ZFAT, identified inside this region, is as-
sociated with FP in Holstein cows. The genomic region 
located from 26.3 to 27.4 Mb on BTA14 was associated 
with EAT and RUT and has been reported to be as-
sociated with milk yield traits (Boichard et al., 2003; 
Lund et al., 2008; Pedrosa et al., 2021). Among genes 
located inside this region, CCDC60 was associated with 
PY in Holstein (Wang et al., 2022). The genomic region 
located from 57.8 to 59.0 Mb on BTA17 was associated 
with EAT and has been reported to be associated with 
milk yield traits, milk FA profile, and RFI in Holstein 
dairy cows (Bouwman et al., 2012; Seabury et al., 2017).

CONCLUSION

This study aimed to estimate genetic parameters and 
to identify genomic regions associated with EAT and 
RUT in Holstein cows. The results showed that EAT 
and RUT are moderately heritable and moderately 
correlated with MY. However, we strongly encourage 
future work to investigate genetic backgrounds of EAT 
and RUT using a bigger data set on dairy cattle to 
determine whether these traits might have the poten-
tial to be used in selection programs. Although several 
genomic regions were identified to be linked with EAT 
and RUT, combined explained lees than 2.5% of the to-
tal additive variances of the traits. This indicates that 
EAT and RUT are highly polygenic, in which many 
regions across the genome contribute to their genetic 
variations. Therefore, implementing marker based se-
lection for these traits seems to be impractical at this 
stage.
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