

Sur la surface des couples de points de la quintique de Snyder (seconde note)

Lucien Godeaux

Résumé

Dans une note précédente, on a démontré que la surface image de l'involution d'ordre treize existant sur la surface des couples de points de la quintique de Snyder, est rationnelle. On donne ici une démonstration plus simple du fait que cette surface image a le genre géométrique et le bigenre nuls.

Citer ce document / Cite this document :

Godeaux Lucien. Sur la surface des couples de points de la quintique de Snyder (seconde note). In: Bulletin de la Classe des sciences, tome 42, 1956. pp. 8-10;

doi: https://doi.org/10.3406/barb.1956.68282;

https://www.persee.fr/doc/barb_0001-4141_1956_num_42_1_68282;

Fichier pdf généré le 22/06/2023

COMMUNICATIONS DES MEMBRES

GÉOMÊTRIE ALGÉBRIQUE

Sur la surface des couples de points de la quintique de Snyder,

(Seconde note)

par Lucien GODEAUX, Membre de l'Académie.

Résumé. — Dans une note précédente, on a démontré que la surface image de l'involution d'ordre treize existant sur la surface des couples de points de la quintique de Snyder, est rationnelle. On donne ici une démonstration plus simple du fait que cette surface image a le genre géométrique et le bigenre nuls.

Dans une première note (¹), nous avons démontré la rationnalité de la surface image de l'involution d'ordre treize appartenant à la surface qui représente les couples de points de la quintique de Snyder. Nous exposons ici une démonstration plus simple du fait que cette surface image est dépourvue de courbes canonique et bicanonique. Comme la démonstration précédente, celleci est basée sur le comportement des courbes canoniques et bicanoniques aux points de diramation de la surface image.

1. Reprenons la quintique de Snyder L et précisément le modèle canonique de cette courbe. La courbe L est donc une courbe d'ordre 10 de l'espace S_5 , de genre 6. Soit F la surface qui représente les couples de points de L. C'est une surface de genres $p_g = 15$, $p_a = 9$, $p^{(1)} = 76$. Considérons, dans S_{14} , le modèle canonique de cette surface ; c'est une surface d'ordre 75.

Les points d'une courbe canonique H de F, section hyperplane de cette surface, représentent les points d'appui des cordes de L qui appartiennent à un complexe linéaire de droites de S₅ (Severi).

⁽¹⁾ Voir le Bulletin de l'Acad. Roy. de Belgique, 1955, pp. 1258-1263.

Les courbes K qui représentent les couples de points de L dont un point est fixe sont d'ordre 9.

La courbe L contient une involution cyclique γ d'ordre 13 possédant trois points unis O_1 , O_2 , O_3 . La surface F contient une involution cyclique I, d'ordre 13, possédant six points unis : les points O_{11} , O_{22} , O_{33} qui représentent les couples formés respectivement des points O_1 , O_2 , O_3 comptés chacun deux fois ; les points O_{23} , O_{31} , O_{12} qui représentent les couples O_2 et O_3 , O_3 et O_1 , O_1 et O_2 .

Si K_0 est la courbe de F dont les points représentent les couples de points de L comptés chacun deux fois et K_1 , K_2 , K_3 les courbes K correspondant aux points O_1 , O_2 , O_3 , la courbe K_1 touche K_0 en O_{11} , la courbe K_2 touche K_0 en O_{22} et la courbe K_3 touche K_0 en O_{33} . Les courbes K_2 , K_3 ont en commun le point O_{23} , les courbes K_3 , K_1 le point O_{31} et les courbes K_1 , K_2 le point O_{12} .

2. Si la surface Φ , image de l'involution I, possède une courbe canonique, celle-ci a pour transformée sur F une courbe H_0 qui possède un point triple en O_{23} auquel sont infiniment voisins sur la courbe K_2 , deux points triples, un point triple en O_{31} auquel sont infiniment voisins successifs sur K_3 deux points triples, un point triple en O_{12} auquel sont infiniment voisins successifs deux points triples.

On en conclut que la courbe H_0 contient les courbes K_1 , K_2 , K_3 . La courbe $H_0 - (K_1 + K_2 + K_3)$ est rencontrée par les courbes K en six points. Elle passe deux fois par O_{23} et par deux points infiniment voisins de O_{23} sur K_2 , deux fois par O_{31} et par deux points infiniment voisins sur K_3 , deux fois par O_{12}

et par deux points infiniment voisins sur K_3 , deux fois par O_{12} et par deux points infiniment voisins sur K_1 . Par conséquent, la courbe $H_0 - (K_1 + K_2 + K_3)$ contient les courbes K_1 , K_2 , K_3 .

La courbe $H_0 - 2(K_1 + K_2 + K_3)$ est rencontrée par les courbes K en trois points. D'autre part, elle rencontre K_1 en quatre points : le point O_{31} , le point O_{12} et deux points infiniment voisins successifs de celui-ci. Par conséquent, elle contient la courbe K_1 et, de même, les courbes K_2 et K_3 .

Si donc la surface Φ possédait une courbe canonique, celle-ci

aurait pour transformée sur la surface F une courbe H_0 — $3(K_1 + K_2 + K_3)$. Or, une telle courbe serait d'ordre négatif et par suite ne peut exister. On en conclut que la surface Φ est de genre géométrique $p_g = 0$.

3. On démontre de même que la surface Φ ne peut posséder de courbe bicanonique. Si Φ possédait une telle courbe, elle aurait pour transformée sur F une courbe d'ordre 150 qui devrait contenir six fois chacune des courbes K_1 , K_2 , K_3 , d'ordre 9, ce qui est impossible. Le bigenre de Φ est donc $P_2 = 0$.

Comme d'autre part, on a, pour Φ , $p_a = 0$, cette surface est rationnelle.

4. On peut voir facilement que l'on peut prendre pour modèle projectif de la surface Φ un plan multiple d'ordre 13 dont la courbe de diramation est formée d'une conique ρ et de trois tangentes r_1 , r_2 , r_3 à cette conique.

A un point de l'une des droites r_1 , r_2 , r_3 correspond sur la surface Φ un point compté treize fois.

A un point de la conique ρ correspond sur la surface Φ un groupe de sept points formé de six points doubles et d'un point simple.

Liège, le 2 janvier 1956.