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Optimizing the performance 
of convolutional neural network 
for enhanced gesture recognition 
using sEMG
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Imran Khan Niazi 6

Deep neural networks (DNNs) have demonstrated higher performance results when compared to 
traditional approaches for implementing robust myoelectric control (MEC) systems. However, the 
delay induced by optimising a MEC remains a concern for real-time applications. As a result, an 
optimised DNN architecture based on fine-tuned hyperparameters is required. This study investigates 
the optimal configuration of convolutional neural network (CNN)-based MEC by proposing an effective 
data segmentation technique and a generalised set of hyperparameters. Firstly, two segmentation 
strategies (disjoint and overlap) and various segment and overlap sizes were studied to optimise 
segmentation parameters. Secondly, to address the challenge of optimising the hyperparameters of a 
DNN-based MEC system, the problem has been abstracted as an optimisation problem, and Bayesian 
optimisation has been used to solve it. From 20 healthy people, ten surface electromyography (sEMG) 
grasping movements abstracted from daily life were chosen as the target gesture set. With an ideal 
segment size of 200 ms and an overlap size of 80%, the results show that the overlap segmentation 
technique outperforms the disjoint segmentation technique (p-value < 0.05). In comparison to manual 
(12.76 ± 4.66), grid (0.10 ± 0.03), and random (0.12 ± 0.05) search hyperparameters optimisation 
strategies, the proposed optimisation technique resulted in a mean classification error rate (CER) 
of 0.08 ± 0.03 across all subjects. In addition, a generalised CNN architecture with an optimal set of 
hyperparameters is proposed. When tested separately on all individuals, the single generalised CNN 
architecture produced an overall CER of 0.09 ± 0.03. This study’s significance lies in its contribution 
to the field of EMG signal processing by demonstrating the superiority of the overlap segmentation 
technique, optimizing CNN hyperparameters through Bayesian optimization, and offering practical 
insights for improving prosthetic control and human–computer interfaces.

The development of improved myoelectric prosthesis control systems is receiving a surge in attention as a result 
of recent developments in machine learning (ML), deep neural networks (DNNs) and rehabilitation technology. 
Surface electromyogram signal (sEMG) signals are used to detect hand motion, and this method is regarded as 
fundamental in the literature1. Through the analysis of sEMG data, traditional ML algorithms such as support 
vector machines (SVMs) and linear discriminant analysis (LDA) have been employed to identify the intended 
hand2. Although conventional pattern-recognition-based myoelectric control has received much scholarly atten-
tion over the last few decades, cutting-edge approaches have not been applied in many practical commercial 
applications3. This is due, among many others, to the intrinsic data-driven nature of the ML and DNN algorithms. 
Regardless of the MEC configuration, the MEC’s success depends greatly on the classification accuracy, which is 
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strongly correlated with the selection of the MEC parameters and hyperparameters of the DNN algorithms. To 
achieve the best performance results, mainly two types of parameters need to be tuned:

MEC parameters
The number and location of sEMG channels, sampling frequency, segmentation technique, and segment size 
length contribute to any MEC system’s success. Each of these parameters has been extensively investigated for 
classical ML-based MEC systems. However, only a few studies have been conducted to study the effect of these 
parameters on a DNN-based MEC.

Hyperparameters of the DNN algorithm
Many ML/DL methods rely on hyperparameter selection, and these selections have a significant influence on 
system performance. The authors in Ref.4 thoroughly investigated a single highly parameterised model family, 
providing classification performance ranging from a chance to state-of-the-art performance, based simply on 
hyperparameter selection. This and other recent studies demonstrate that the question of "How good is this model 
on that dataset?" is incorrectly posed. Instead, the quality of the optimal configuration that a specific search 
technique can typically identify in a given period for a job at hand makes sense. According to this viewpoint, 
hyperparameter adjustment is a key aspect of understanding algorithm performance and should be a formal 
and quantifiable part of model assessment.

Hyperparameter optimisation or tuning is the identification of a set of hyperparameter settings, before the 
training phase, that archive the greatest data performance in a fair amount of time. The choice of hyperparameters 
is critical for the performance of ML frameworks. Unfortunately, the link between machine learning algorithm 
performance and hyperparameters is uncertain. Numerous ML models are trained by utilising various combina-
tions of hyperparameters to identify the set of hyperparameters for an optimal ML model.

Hyperparameter optimisation techniques can broadly be categorised as manual, grid, random, and automatic 
optimisation search. Besides the automatic optimisation search method, all the other optimisation techniques 
iteratively traverse the entire space of accessible parameter values to identify the best possible combination of 
hyperparameters. Tuning using these approaches may be time-consuming, especially with large parameter spaces. 
The search space expands exponentially as the number of tuning parameters increases. At the same time, for each 
hyperparameter combination, a model must be trained, predictions must be made using validation data, and the 
validation metric must be determined. Hyperparameter tuning by automated optimisation search can reduce 
the time required to identify the best set of parameters and improve generalisation performance on the test set.

Bayesian optimisation is an automated optimisation technique for the optimisation of complex functions. 
In contrast with the other global optimisation algorithms, Bayesian optimisation performs better optimisations 
for a wide range of complex functions5. The classical Bayesian theorem helps to estimate the posterior informa-
tion on the function distribution by combining the sample information with prior information on the unknown 
function. This posterior information leads to identifying the optimal values of the function under consideration. 
We hypothesise that the Bayesian optimisation can not only be used to identify the hyperparameters of the DNN 
model but also the architecture of the DNN model can be optimised. The identified architecture and hyperpa-
rameters can be then used to construct an ideal MEC for sEMG-based hand gesture recognition, which might 
address the challenges of limited generalisation and a large training burden that have hampered the development 
of myoelectric control technology.

This study presents the notion of Bayesian optimisation for MEC systems for the first time. The proposed 
Bayesian optimisation considers the previous evaluations of the objective function before evaluating the next set 
of hyperparameters. This intelligent approach makes it possible to focus on those areas of the parameter space 
that may provide the most promising performance results. Bayesian optimisation can ignore the parameter 
space areas that do not contribute to reducing the objective function. This ability and consideration of previous 
evaluations make it possible to find the optimal set of hyperparameters with fewer iterations. The following 
contributions are made to the paper:

1.	 An extensive experiment has been conducted to investigate which segmentation technique (overlap and 
disjoint), and segment size provides the best variance-bias trade-off to design a DNN-based MEC.

2.	 A completely optimised CNN architecture, as well as hyperparameter possibilities, have been discovered 
using Bayesian optimisation. The proposed optimisation approach not only shortens the time required to 
discover the optimum DNN hyperparameters but also mitigates the significant challenge of reproducibility 
of the DNN results.

The structure of the paper is as follows: Section "Related work" provides an overview of the related work. 
In Section "Principle of Bayesian optimisation", the principle of Bayesian optimization is explained. Section 
"Methods" outlines the methodology employed in this study. The findings of the study are presented in Section 
"Results". In Section "Discussion", a detailed discussion of the results is provided, and Section "Conclusion" 
concludes the study.

Related work
In recent research, a typical technique for hand gesture identification is to employ DNN to increase hand gesture 
classification performance on "unseen data." Several cutting-edge efforts in this field mostly employed 1D and 
2D DNNs4,6. Pre-processing, segmentation, feature extraction, and classification are typical pipeline steps for 
processing sEMG with standard MEC systems. DNNs, on the other hand, often use raw sEMG signals as input 
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and multi-layer nonlinear functions to represent the hidden connections between the input and the output. It is 
important to note that the performance of ML and DNN is affected by various aspects, including pre-processing 
and the specified architecture. Other academic researchers, as well as our team, have recently conducted sev-
eral studies aimed at improving the performance of MECs. For example, it has been demonstrated that the 
performance of an ML-based MEC system is positively correlated with the length of the segment size7–10. More 
precisely, the results reveal that ML-based MEC systems perform best with a segment size of 500 ms. However, 
regarding a DNN-based MEC, no such investigations have been done. Different studies have utilised different 
segmentation techniques (either disjoint or overlap) with different segments and overlap sizes. For example, Asif 
et al. (2020) utilised an overlap segmentation technique with a segment size of 150 ms and an overlap size of 
25 ms to segment the sEMG signals from data recorded with a sampling frequency of 8000 Hz4. Another study 
reported using an overlap segmentation technique with a segment size of 150 ms and an overlap of 100 ms to 
design an adaptive domain adversarial neural network to recognise sEMG hand gestures11. Similarly, Rahimian 
et al. (2021) proposed a few-shot learning-based DNN framework for the MEC system and utilised a disjoint 
segmentation technique with a segment size of 50 ms12. Chen et al. (2020) proposed a transfer learning-based 
MEC system and processed the sEMG signals with an overlap segmentation technique having a segment size of 
100 ms and an overlap size of 50 ms13. In another study, the authors utilised a disjoint segmentation technique 
with a segment size of 260 ms to recognise sEMG hand gestures using a compact CNN14.

Consequently, there have been few efforts to design advanced DNN architectures for MEC with optimised 
hyperparameters. In Ref.4, the impact of the learning rate and the number of epochs for a CNN-based MEC. 
The results showed that, for a MEC, the CNN performs best with a learning rate set to either 0.0001 or 0.001 
with 80–100 epochs. Another study investigated the effect of the number of sEMG channels, the number of 
filters, and the choice of the optimiser on the performance of CNN-based MEC15. It was shown that the CNN 
architecture with Adam optimiser, having the number of convolutional filters in the range from 100 to 200, 
and the maximum number of sEMG channels resulted in the highest classification accuracy. It is worth not-
ing that both studies conducted an empirical investigation to identify optimal parameters. Only one study has 
reported the use of an optimisation algorithm (crow search metaheuristic algorithm) for the identification of 
DNN hyperparameters16. However, the study was conducted on the hand gesture recognition database composed 
of a set of near-infrared images.

It is worth noting that while it is true that various previous studies have achieved excellent performance in 
sEMG gesture classification without extensive MEC and hyperparameter tuning, our study places a deliberate 
emphasis on hyperparameter optimization for several reasons: (1) Different applications and datasets may have 
unique characteristics, noise levels, and requirements. MEC and hyperparameter optimization allows us to fine-
tune the CNN model to best fit the specific context of the dataset, potentially yielding improved classification 
accuracy in scenarios where such fine-tuning is critical. (2) By exploring hyperparameter optimization, our 
study provides valuable insights into how to improve model generalizability. This information can be particularly 
useful for researchers and practitioners seeking to apply CNN-based EMG signal processing techniques to a 
variety of real-world applications. (3) Our research serves as a benchmark for evaluating the potential impact of 
hyperparameter optimization in the context of HD-sEMG gesture classification. It allows researchers to compare 
the performance of models with and without hyperparameter tuning, thereby helping to establish best practices 
and guidelines in the field. In summary, while some prior works have indeed achieved strong results without 
extensive MEC and hyperparameter tuning, our study intentionally focuses on this aspect to explore its impact 
on classification accuracy and to provide insights that can be applied to a range of EMG signal processing appli-
cations. We believe this emphasis on hyperparameter optimization enriches the existing body of knowledge in 
the field and complements the achievements of prior studies.

The research gap in the context of MEC research primarily lies in the limited exploration of key factors that 
influence the data preprocessing and hyperparameter optimization for CNNs. While previous studies have 
mainly concentrated on DNN architectures for hand gesture recognition, there has been a paucity of compre-
hensive investigations into the segmentation techniques (overlap and disjoint) and the segment size, which play 
a pivotal role in the data preprocessing pipeline. This research contributes by addressing this notable gap in the 
field, delving deeply into the effects of segmentation techniques and segment size on DNN-based MEC, thus 
unveiling a novel dimension in data preprocessing. Moreover, the study introduces a groundbreaking approach to 
hyperparameter optimization through Bayesian optimization, which offers a streamlined and efficient method for 
discovering the most effective CNN architectures and hyperparameter settings. The integration of Bayesian opti-
mization addresses the challenge of reproducibility in DNN results and establishes a new paradigm in optimizing 
DNNs for MEC systems, making it a pivotal and innovative contribution to the existing body of knowledge.

Principle of Bayesian optimisation
Problem formulation
Hyperparameter optimisation aims to identify the optimal set of hyperparameters for a specific ML/DNN model 
which can provide the best performance results upon the evaluation. Mathematically, hyperparameter optimi-
sation is expressed as x∗ =

argmin
x∈χ f (x) . Here x can take on any value in the domain χ ; x∗ is the set of identified 

hyperparameters providing the lowest classification error, and f (x) is the classification error (objective function) 
which needs to be minimized.

Overview of Bayesian optimization
The Bayesian optimisation aims to minimise f (x) from a subset of RD on some bounded set χ . Firstly, a proba-
bilistic model for f (x) is built to estimate the subsequent evaluations from χ while eliminating the uncertain-
ties. Bayesian optimisation takes advantage of local gradient and Hessian approximations and also utilises the 
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information from prior evaluations of the objective function17. This results in the identification of the minima of 
complex non-convex optimisation problems; however, additional calculations are needed to estimate the location 
of the next evaluation in the subspace. The results of previous evaluations are used to build a surrogate function 
denoted by p(x|y) . The surrogate function is a probabilistic model mapping hyperparameters to the likelihood 
of a score on the objective function. Minimising the surrogate function is comparatively more straightforward 
than the objective function18. The hyperparameters that perform best on the surrogate function are then used to 
determine the next set of hyperparameters to minimise the true objective function under consideration. Figure 1 
presents the pseudocode for Bayesian optimisation. Here are the key components:

1.	 Search space: Bayesian optimisation works by sampling from probability distributions for each parameter. 
The user must configure these distributions. One of the subjective aspects of the procedure is determining 
the distribution for each parameter. The initial learning rate, network depth, stochastic gradient descent 
momentum, and L2 regularisation strength have been considered as optimising parameters.

2.	 Objective function: The objective function is the primary assessor of hyperparameter combinations. It simply 
accepts a set of hyperparameters and returns a score indicating how well the collection of hyperparameters 
performs on the validation set. The classification error will be our preferred assessment statistic for our 
hand gesture classification challenge. The goal in this scenario is to minimise the objective function. The 
fundamental idea behind Bayesian optimisation is to limit the number of times the objective function must 
be run by evaluating just the most promising set of hyperparameters based on past calls to the evaluation 
function. The next set of hyperparameters is chosen on a surrogate model.

3.	  Surrogate function: The surrogate function is the probability representation of the objective function con-
structed from past assessments. It is a high-dimensional representation of hyperparameters to the probability 
of scoring well on the objective function. The objective function can be approximated using the surrogate 
function. It is used to suggest parameter choices to the objective function that are likely to increase the accu-
racy score. The Gaussian process (GP) is the most commonly used surrogate function due to its flexibility 
and tractability18,19.

4.	  Acquisition function: The acquisition or selection function is the set of conditions used to determine the 
subsequent combination of surrogate function hyperparameters. The hyperparameters that are put forth 
for assessment by the objective function in Bayesian optimisation are chosen by applying criteria to the sur-
rogate function. A selection function defines this criterion. A popular strategy is to employ a metric known 
as expected improvement (EI)20.

Bayesian optimisation
Suppose that the objective function f (x) , is chosen from a GP and that the observations are of the form 
{xn, yn}

N
n=1 , with predictive mean function µ(x;

{

xn, yn
}

, θ) and predictive variance function σ 2(x;
{

xn, yn
}

, θ)
17. Here, θ indicates the vector of the kernel functions. This prior and these data provide a posterior over func-
tions denoted by α : χ → R

+ and known as the acquisition function. The acquisition function determines, 
with the help of proxy optimisation xnext = argminxα(x) , which point in χ should be evaluated next in which 
multiple functions have been offered18. The GP hyperparameters and results of the past evaluations drive the 
acquisition function. Mathematically this relationship is referred as α(x;

{

xn, yn
}

, θ) . The expected improvement 
in the optimisation of the f (x) is monitored by EI while ignoring the values from the subspace which are not 
contributing to the optimisation. The EI under GP may be summarised as follows:

Here, µQ(xbest) represents the lowest value of the posterior mean. The time it takes to optimise the objec-
tive function might vary depending on the search space19. If this is the case, integrating time-weighting into 
the acquisition function will result in a better improvement per second. To do this, another Bayesian model of 
f (x) as a function of location x is maintained throughout the objective function evaluations. The anticipated 
improvement per second (EIpS) may be calculated:

(1)EI(x,Q) = EQ[max(0,µQ(xbest)− f (x))].

Figure 1.   Pseudocode for the Bayesian optimization. Here f (x) is the objective function from a subset of RD on 
some bounded set χ . Where D is the set of available N data points. Whereas α(x) is the acquisition function.
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Here µS(x) represents the posterior mean of the GP model. The acquisition function predicts the overexploi-
tation of an area to avoid the minima of local f (x) . If σ denotes the posterior standard deviation of the additive 
noise and σF(x) is the standard deviation of the posterior f (x) at x , then according to  σ 2

Q(x) = σ 2
F (x)+ σ 2 local 

minima can be avoided19. To do so, the acquisition function evaluates if the next point x satisfies σF(x) < σ tσ , 
after each iteration. Here tσ denotes a positive number representing the value of the exploration ratio. The 
exploration ratio governs the trade-off between investigating new locations for a better overall solution and 
focusing on previously investigated places. If the requirement is met, the algorithm determines x to be overex-
ploited. The acquisition function then adjusts its kernel function by multiplying θ by the iteration count. This 
change increases the variation for points between observations. The newly fitted kernel function is then used to 
construct a new point.

The overall procedure of the study is depicted in Fig. 2.

Methods
Dataset
Informed consent from all the subjects was obtained before the start of the experiment. All the subjects were 
adults and provided their written consent. The Myo dataset, a new, publicly accessible (available at: https://​short​
url.​at/​ghqLZ) sEMG-based hand gesture recognition dataset, is one of the article’s significant contributions. 
The dataset, which includes 20 healthy volunteers (all males; average age (years) = 28.6 ± 1.4; average height 
(cm) = 168.0 ± 7.8; average weight (kg) = 68.9 ± 8.6), should be used to develop, evaluate, and optimise sEMG 
hand gesture classification algorithms. No musculoskeletal disease or prior history of upper extremity disorder 
was the inclusion criteria for the participants. The dataset was collected using a commercially available Myo 
Armband from Thalmic Labs, which was previously available for purchase. The dataset includes a diverse set 
of sEMG signals corresponding to hand gestures performed by the participants. It is organized in a structured 
format that facilitates the development, evaluation, and optimization of sEMG hand gesture classification algo-
rithms. Researchers can access and utilize this dataset for their own investigations, even if the Myo Armband 
is no longer available as a new device. We are committed to ensuring the transparency and replicability of our 
research, and this publicly available dataset is a fundamental part of that commitment. The National University 
of Sciences and Technology (NUST) ethics committee, Islamabad, Pakistan, authorised the data collecting pro-
cedure (approbation number: NUST/SMM-BME/REC/000471/403412022).

The experimental protocol was explained both verbally and in writing, before the experiments, to all the 
participants. The Myo is an 8-channel, low-cost consumer-grade sEMG armband with a low-sampling rate 
(200 Hz), dry-electrode, and was used to capture the electromyographic activity from the forearm of each subject. 
Since the dry electrodes allow users to slip the bracelet on without any preparation, the Myo is non-intrusive. 
In comparison, gel-based electrodes require shaving and cleaning of the skin to obtain good contact between 
the electrodes and the participant’s skin20. Participants wore Myo on their right forearm, covering the muscles 

(2)EIpS(x) =
EIQ(x)

µS(x)
.

Figure 2.   Block diagram depicting different steps of the study.

https://shorturl.at/ghqLZ
https://shorturl.at/ghqLZ
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of the extensor carpi ulnaris, the flexor carpi radialis, the extensor digitorum, the palmaris longus, the extensor 
carpi radialis, and flexor digitorum superficialis muscles. Each participant completed a randomised pattern of 
10 static and dynamic hand movements during the tests in a single session. Before data collection, each move-
ment was displayed to volunteers using a BioPatRec graphical user interface21. In the experiment, the following 
hand motions were recorded: pointer, agree, fine grip, side grip, supination, pronation, extend hand, flex hand, 
close hand, and open hand. Each exercise (with 10 repetitions) lasted 10 s, with a contraction duration of 6 s 
and a relaxation duration of 4 s. For each participant, the data acquisition lasted for 4000 s ([6 s contraction + 4 s 
rest] × 10 motions × 10 repetitions).

Pre‑processing of data
The acquired sEMG signals were filtered using a second-ordered digital Butterworth notch filter with a cut-off 
frequency of 50 Hz to minimise the effect of powerline interference. The relaxation or rest period was eliminated 
from each movement, and only the contraction period was utilised for further processing. Since sEMG signals 
acquired from the muscles are a continuous stream, these signals are segmented into shorter segments of finite 
length. Overlap and disjoint segmentation or windowing techniques are primarily employed to segment the 
sEMG signals. Disjoint segmentation is characterised by segment size, whereas the length of segment size and 
overlap size characterise overlap segmentation. In a natural daily-life environment, the duration of different hand 
options differs. For example, dynamic activities’ duration is greater than transitional activities’ duration. Thus, the 
length of the segment size should capture enough information to decode the underlying patterns of the intended 
hand motions. Previously for ML-based MEC systems, it has been shown that overlap segmentation performs 
better than disjoint segmentation (irrespective of the sampling frequency) also, the performance of the MEC 
increases with the increasing length of the segment and overlap size7–9. However, the real-time application of 
MEC restricts keeping the length of segment size below 300 ms for the smooth operation of the designed MEC22.

For DNN-based MEC systems, however, the effect of segmentation parameters (segmentation type, segment 
size, and overlap size) on the MEC’s performance is unclear. Various researchers have employed different tech-
niques (either overlap or disjoint), segment, and overlap size for DNN-based MEC systems. Thus, it is necessary 
to identify the effect of segmentation parameters on the performance of a DNN-based MEC. In this study, we 
have employed both segmentation techniques with different windows (100, 150, 200, 250, 300, and 350 ms) and 
overlap sizes (20, 40, 60, and 80%) to investigate the effect of segmentation parameters. segmentation parameters.

Classification of data
A 2D convolutional neural network has been used for the classification of hand motions. Despite the availability 
of more complicated contemporary CNNs, the choice of a basic CNN was made to speed up the training phase 
and allow for the evaluation of the impacts of various pre-processing, architectural, and optimisation factors 
based on the peculiarities of the challenge. CNN creates many feature detectors by itself, called convolutional 
layers, and sorts the key characteristics necessary to enhance accuracy during training. This is accomplished by 
converging the filters with input patches, resulting in a receptive field. The classifier requires "spatial and temporal 
variation" for the network to recognise the input more successfully23. The network gains this capability through 
pooling. It not only helps to minimise distortions but also decreases the dimensionality of the input data, reduc-
ing the number of parameters to account for.

Furthermore, pooling is beneficial for extracting dominating characteristics that are rotational and positional 
invariant, allowing the model to be efficiently trained. As activation functions, rectified linear units (ReLU) 
were utilised to alleviate the problem of vanishing gradient and enhance training time. Individual filters can use 
receptive fields to learn with the same weights for all input patches. This field is then passed to the activation 
function. Finally, a fully connected layer transforms the 2D layer of features into a column vector. This flattened 
output is fed to a feed-forward neural network, and backpropagation is applied to every iteration of training. 
Over a series of epochs, the model can distinguish between dominating and certain low-level features in images 
and classify them using the SoftMax activation function.

Since CNN uses two-dimensional data arrays as input, the segmented data was transformed into sEMG 
images. The segmented signals were arranged to create sEMG images of the following dimensions: number of 
channels × number of samples in a segment. The CNN architecture was designed as shown in Fig. 3.

Hyperparameters
CNNs yield extraordinary outcomes; training a CNN necessitates mostly empirical approaches for tuning hyper-
parameters. Because the nature of the signal at hand is entirely random and varies substantially from subject 
to subject, a generalised set of parameters cannot be derived. However, the selection of these hyperparameters 
has a significant impact on the outcomes achieved. For complex problems, finding a single learning rate for 
convergence is hard. Adaptive learning-rate methods are preferred24. Despite the availability of recent adaptive 
optimisers, stochastic gradient descent with momentum (SGDM) has been chosen as an optimiser for CNN to 
test the capabilities of Bayesian optimisation.

Bayesian optimisation was used to optimise section depth, initial learning rate, stochastic gradient descent 
momentum, and L2 regularisation strength. The "section depth" option governs the network’s depth. The net-
work has three sections, each with identical section-depth convolutional layers. As a result, the total number of 
convolutional layers is three 3*(section depth). Thus, the number of parameters and quantity of computation 
required for each iteration is almost the same for varied section depths. Table 1 shows the hyperparameter search 
space that was chosen.
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Results
While the study aimed to optimise both segmentation parameters and CNN hyperparameters, an experiment 
was initially undertaken to investigate the impact of segmentation parameters on MEC performance. The same 
architecture as shown in Fig. 1 was used to train, validate, and test the CNN with network section depth (3), 
learning rate (0.003), momentum (0.8383), L2 regularisation strength (0.0939), and minibatch size (256). All 
these parameters were empirically determined for all 20 patients. The data for each individual were randomly 
divided into three categories: training (70%), validation (20%), and testing (10%). To avoid overfitting, the 
training sEMG images were randomly flipped along the vertical axis and randomly translated up to four pixels 
horizontally and vertically. The classification error rate (CER) has been obtained for each subject and is defined 
as the measure of a model’s prediction error in comparison to the real labels. CER is represented as a percent-
age (%). To validate the results, a one-way analysis of variance (ANOVA) test and Tuckey’s honest post hoc test 
were used to determine the statistical significance of the results. A p-value of 5% was considered significant to 
reject the null hypothesis.

Segmentation parameters
Both segmentation strategies with varied segment and overlap sizes were tried for all individuals to determine 
which segmentation methodology (disjoint or overlap), segment size, and overlap size is most suited to translate 
sEMG signals into sEMG images considering the performance of the MEC system. Figure 4 shows the CER for all 
participants using disjoint and overlap segmentation strategies. The CER across four overlap sizes was averaged 
for overlap segmentation to get the mean CER.

Figure 4 shows that the performance of CNN fluctuates differently depending on the increment in segment 
size for both segmentation approaches. As the segment length increases for disjoint segmentation, the perfor-
mance of the CNN gradually decreases. As shown in Fig. 3, the segment sizes of 100 and 150 ms resulted in the 
lowest CER for all subjects. Based on statistical analysis, it was determined that segment sizes of 100 ms and 
150 ms yielded the most significant results, with the lowest mean CER of 25.2% and 26.9%, respectively, and 
outperformed the other tested segment sizes (p-value < 0.05). However, no significant change in CER between 
segment sizes of 100 and 150 ms was identified (p-value > 0.05). In contrast, during overlap segmentation, the 
mean CER drops until the segment size of 200 ms and then begins to increase, as seen in Fig. 4. The segment size 

Figure 3.   Base architecture of the CNN. In the base architecture, 3 convolutional blocks have been used, where, 
each convolutional block is comprised of a 2D convolutional, batch normalization, and ReLU layer.

Table 1.   The hyperparameter search space for the proposed Bayesian optimization.

Parameter Search space

Learning rate [1e − 4 1e − 2]

Stochastic gradient descent momentum [0.8 0.98]

L2 regularization strength [1e − 10 1e − 1]

Network section depth [1 3]
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of 200 ms resulted in the lowest mean CER of 17.2%. However, there was no significant difference in the mean 
CER of segment sizes 200 ms and others (p-value > 0.05), except for 350 ms (p-value < 0.05).

The influence of overlap size on CNN performance for the overlap segmentation technique has also been 
explored, and the findings are shown in Fig. 5. The performance of the CNN improves with increasing overlap 
size across all subjects. The overlap size of 80% resulted in the lowest mean CER of 12.7%, outperforming the 
overlap sizes of 20% and 40% (p-value < 0.05). There was no significant difference in performance between overlap 
sizes of 60% (mean CER: 16.5%) and 80% (mean CER: 12.7%) (p-value > 0.05). The mean CER of disjoint and 
overlap segmentation approaches is shown in Fig. 6. Observing the results, it is evident that the mean CER shows 
an upward trend as the segment size increases in disjoint segmentation. In contrast, during overlap segmenta-
tion, the mean CER declines until the segment size of 200 ms, at which point it begins to increase. The overlap 
segmentation outperforms the disjoint segmentation statistically (p-value < 0.05).

Hyperparameter optimization
The optimal segmentation parameters obtained from the trial findings (segmentation technique = overlap; seg-
ment size = 200 ms; overlap size = 80%) were used in a subsequent Bayesian optimisation experiment. In Bayesian 
optimisation, identifying the hyperparameter search space is a subjective job that substantially impacts the results. 
The number of function evaluations determines the amount of time required to optimise the CNN using Bayes-
ian optimisation. Thus, it is critical to integrate domain knowledge to achieve better optimisation results with 
fewer function evaluations. The hyperparameter search space selected is based on expert subject knowledge4–7. 
The number of function evaluations in this experiment was set at 30.

Table 2 displays the results of the Bayesian optimisation for all the subjects. A mean CER of 0.08 ± 0.03 was 
obtained on the testing set. Furthermore, a comparison of the CERs for validation, testing, and 95% confidence 
interval testing demonstrates that the improved CNN fits the data without over or underfitting.

Optimal hyperparameters
Table 3 shows each subject’s optimal hyperparameter combinations determined through Bayesian optimisation. 
The supplied viable hyperparameters are acquired solely from the validation set, and the same hyperparameters 

Figure 4.   CER (%) vs. segment size for both disjoint and overlap segmentation techniques across all subjects.

Figure 5.   The effect of overlap size on the performance of MEC in terms of CER (%).
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are then utilised to assess the model’s performance using the testing set. The results in Table 2 show that optimised 
hyperparameters reduce generalisation error quite well. Over iterations, the optimisation was carried out in the 
graphical processing unit (GPU). Every layer optimises to minimise the objective function.

This study only performed 30 function evaluations (iterations), but it can be increased for better optimisa-
tion. However, even if we increase the number of iterations, Bayesian optimisation will automatically cease once 
it achieves the maximum optimal values. Figure 7 depicts the number of iterations required using Bayesian 
optimisation to achieve the minimal objective function for all individuals. Although the maximum number of 
iterations was set to 30, the Bayesian optimisation reached the minimal objective function in less than 20 itera-
tions for most subjects. Furthermore, using Bayesian optimisation, a single set of hyperparameters is evaluated on 
all participants to investigate the generalizability of the identified hyperparameters. Averaging the learning rate 
(0.0048), momentum (0.9058), and L2 strength (0.0097) yielded the generalised hyperparameters. In contrast, 

Figure 6.   The performance comparison of disjoint and overlap segmentation techniques in terms of mean CER 
(%). For the overlap segmentation technique, the CER of all overlap sizes has been averaged to get the mean 
CER.

Table 2.   Bayesian optimization results for all subjects. The results are presented in terms of classification error 
rate (%).

Subject Validation Testing 95CI testing

1 0.08 0.10 0.08 0.11

2 0.10 0.11 0.09 0.13

3 0.09 0.12 0.10 0.14

4 0.10 0.12 0.10 0.13

5 0.06 0.07 0.05 0.08

6 0.08 0.09 0.07 0.11

7 0.11 0.12 0.10 0.14

8 0.15 0.18 0.16 0.21

9 0.08 0.08 0.07 0.10

10 0.06 0.06 0.05 0.08

11 0.06 0.06 0.04 0.07

12 0.08 0.09 0.07 0.11

13 0.07 0.07 0.05 0.08

14 0.08 0.09 0.07 0.10

15 0.03 0.04 0.03 0.05

16 0.07 0.08 0.07 0.10

17 0.05 0.06 0.04 0.07

18 0.03 0.05 0.04 0.06

19 0.06 0.08 0.06 0.09

20 0.03 0.05 0.03 0.06

Mean ± std 0.07 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.10 ± 0.04
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the mode of the individual section depths has been chosen for the generalised section depth variable, which is 
2. Based on these hyperparameters, a single generalised architecture was constructed for all subjects. Figure 8 
depicts the designed architecture. The data for each subject were randomly divided into three sections: training 
(70%), validation (20%), and testing (10%). Image augmentation, as previously described, was used on training 
sEMG images before model training. An average CER of 0.09 ± 0.03 was obtained on the testing set.

Discussion
Low generalisation and a high training burden are always major challenges that impede MEC technology adop-
tion. DNNs have the potential to improve generalisation while reducing the MEC system’s training burden 
because of their high generalisation capacity. The developed system should have maximum accuracy while 
adhering to the real-time MEC restrictions for greater system feasibility and validity in real-time MEC applica-
tions. Using CNN as a basic network structure, this paper investigates a gesture recognition framework based on 
sEMG and Bayesian optimisation for the construction of a MEC system with good generalisation. Furthermore, 
the effect of segmentation parameters on system performance was explored to determine the appropriate input 
size for a CNN-based MEC.

The experimental results show that the proposed optimisation method is useful in implementing compre-
hensive myoelectric control systems. The results revealed a strong association between segmentation parameters 

Table 3.   The identified sets of hyperparameters for all the subjects resulted from Bayesian optimization.

Subject Learning rate Momentum L2 strength Section depth

1 0.0007 0.9795 4.06E − 02 2

2 0.0098 0.8897 1.59E − 07 3

3 0.0014 0.8948 7.36E − 02 3

4 0.0026 0.9703 1.32E − 05 2

5 0.0069 0.8826 2.94E − 10 2

6 0.0100 0.8028 4.85E − 05 2

7 0.0027 0.9762 1.32E − 10 2

8 0.0094 0.8580 3.91E − 09 3

9 0.0024 0.9697 6.05E − 04 2

10 0.0097 0.8041 1.07E − 10 2

11 0.0018 0.9656 8.59E − 03 2

12 0.0063 0.9160 2.21E − 08 3

13 0.0056 0.8660 2.98E − 10 3

14 0.0017 0.9795 1.45E − 10 2

15 0.0030 0.9365 7.16E − 07 2

16 0.0021 0.9799 1.42E − 06 2

17 0.0090 0.8036 1.10E − 05 3

18 0.0014 0.9781 1.14E − 10 3

19 0.0050 0.8591 2.80E − 03 2

20 0.0056 0.8039 6.78E − 02 2

Figure 7.   The number of iterations to reach the minimum objective function during hyperparameter 
optimization using Bayesian optimization.
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and system performance regarding segmentation parameter optimisation. It has been discovered that the overlap 
segmentation technique considerably outperforms the disjoint segmentation strategy (p-value < 0.05). A distinct 
trend has also been noted for both types of segmentation approaches. The performance of the CNN degrades as 
the length of the segment size increases using the disjoint segmentation technique. The segment size of 100 ms 
demonstrated the best performance, with a mean CER of 25.2%. In contrast, with overlap segmentation, extend-
ing the duration of the segment size increases system performance until 200 ms and then begins to decrease. 
Because overlap segmentation is defined by the length of the segment and the length of the overlap, the influ-
ence of overlap size on system performance has also been explored. It has been discovered that increasing the 
length of overlap size enhances system performance regardless of segment size. The best results were obtained 
with an overlap size of 80%. Each segmentation strategies exhibit different performance patterns, which could 
be attributed to the number of input images (sEMG) produced by both segmentation algorithms.

The number of input images reduces as the length of the segment size increases during segmentation. This 
could be one of the possible explanations for disjoint segmentation. For example, at a segment size of 200 ms, 
disjoint segmentation produces 208 input images. Overlap segmentation, however, avoids this problem by incor-
porating samples from the previous section. The number of input images for overlap segmentation is 261 (20% 
overlap), 348 (20% overlap), 523 (20% overlap), and 1048 (20% overlap). Another key element to consider is 
capturing enough information from the raw sEMG signal to decipher the intended hand gesture. Because smaller 
segment sizes create more segments and hence more input sEMG images for training, the optimum performance 
for overlap segmentation should have been found at the smallest segment size. This is not the case; one of the 
reasons for the disparity is the information acquired in the segment size to decode the intended hand motion.

According to previous research on this topic, a segment size of at least 200 ms collects enough information 
to interpret the underlying pattern of the intended hand gesture7–9. The findings mentioned above are consistent 
with prior reports. Furthermore, while this is the first study to investigate DNN-based MEC, the given findings 
are partially consistent with ML-based MEC systems. Various studies have found that the performance of ML-
based MEC systems improves with increasing segment size for both segmentation strategies. The best segment 
size for disjoint and overlap segmentation has been reported to be 250–300 ms and 275–300 ms, respectively7–9. 
Furthermore, it is reported that for ML-based MEC systems, overlap segmentation with an overlap size of 90% 
outperforms disjoint segmentation.

The second complementary goal of the research work was to use Bayesian optimisation to optimise the CNN 
hyperparameters for a MEC system. Because DNN algorithms are data-driven, identifying a suitable set of 
hyperparameters for any DNN-based MEC system is challenging. As previously stated, various hyperparameter 
optimisation strategies have been presented. However, finding the ideal set of hyperparameters takes significant 
time and computer resources. On the other hand, Bayesian optimisation provides a straightforward technique 
to tackle the challenge of determining the minimum objective function in a relatively short period and with 
relatively low computational resources. Because the acquisition function aids in swiftly locating the search space, 
the objective function is only conducted in a specific region space. Since it creates a posterior distribution over the 
objective function, the Gaussian function is utilised to track analytically. Figure 9 depicts the function evaluations 
for different optimisation methods, demonstrating how the minimum objective is attained through iterations. 
The objective function evaluates the samples collected by the acquisition function in each iteration, and the 
samples are added to the data to update its posterior according to Bayes’ theorem. Thus, the hyperparameters 
are adjusted throughout the layers, and global optimisation is performed across the validation set, lowering the 
time required and boosting the model’s performance.

The results demonstrate the capabilities of Bayesian optimisation in minimising the CER on validation data. 
The hyperparameters identified on validation data are generalised enough to test the model using the testing 
dataset to produce comparable results. The average testing CER of 0.08 ± 0.03 on all subjects has been achieved. 
Table 4 compares different optimisation techniques in terms of the required number of function evaluations, 

Figure 8.   The generalized architecture of CNN. The architecture was designed using the combinations of 
hyperparameters identified through Bayesian optimization. The number of section depths was set to 2, thus, 
resulting in the 2 convolutional blocks. Where, each convolutional block is comprised of a convolutional, batch 
normalization, and ReLU layer.
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optimisation time, and average CER on the testing set. The comparison with manual, grid and random search 
methods depicts the superiority of Bayesian optimisation in terms of average CER. The results show that Bayesian 
optimisation outperforms the random, grid, and manual search optimisation techniques. The grid and random 
search methods obtained comparable results; however, the required number of function evaluations and opti-
misation time is significantly large as compared to the Bayesian optimisation.

Finally, we would like to highlight the limitations of the study. Firstly, the study is conducted to optimise an 
offline MEC system. The previous research shows that the performance of an offline and online MEC differs. Thus, 
online experimentation should also be conducted to validate the efficacy of the presented optimisation param-
eters. Secondly, the presented optimisation parameters (segmentation and hyperparameters) have been validated 
and tested on sEMG data recorded from 20 healthy subjects in a subject-specific configuration. The identified 
set of optimal segmentation and hyperparameters may induce higher variability in a subject-independent con-
figuration. Thirdly, this study uses the surrogate function based on Gaussian Process to minimise the objective 
function. In an exploration and exploitation trade-off, the surrogate function drives the proposition of new points 
to test. An acquisition function that encourages too much exploitation and too little exploration will lead to the 
model residing only minima it finds first. An acquisition function that encourages the opposite will not stay 
at a minimum, local or global, in the first place. For better optimisation results, the surrogate function should 
create a hierarchical process acting as a generative model for domain variables instead of defining a predictive 
distribution. In the future, Tree Parzen Estimators (TPE) as a surrogate function should be investigated to further 
enhance Bayesian optimisation’s performance to optimise the MEC system’s hyperparameters25.

Conclusion
This paper presents a CNN-based, fully optimised MEC framework. sEMG data from 20 healthy volunteers 
were recorded, corresponding to 10 dynamic and transitional hand gestures. Segmentation parameters (seg-
mentation techniques, segment size, and overlap size) and hyperparameters of the CNN have been optimised. 
A rigorous empirical experimentation protocol has been implemented to identify the best possible combination 
of segmentation parameters for the segmentation parameters. Moreover, for optimising the hyperparameters 
of the CNN, a framework based on Bayesian optimisation has been implemented. The results demonstrate the 
superiority and generalisation of the identified set of segmentation parameters and hyperparameters compared 
to the other optimisation techniques. The framework is expected to be further improved and applied in MEC 
prostheses and exoskeleton devices.
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