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ABSTRACT

Beyond their outstanding beauty, stalagmites found in karstic caves may serve as proxies to
help improve our understanding of palaeoclimatology. The study of stalagmite laminae completed
with isotope datingmay reveal particularly useful, just as dendrochronology or the analysis of sed-
iment cores. While other proxies provide information on, e.g., past greenhouse gas concentration,
stalagmite growth is in essence related to the past hydrology and soil coverage above the caves.
Stalagmite growth stems from the precipitation and accumulation of calcium ions into calcite in
the residual film of water left by the successive drops impacting the stalagmites, each incoming
drop being responsible for the renewal of both these ions and of the liquid film. Nevertheless,
in previous models of stalagmite growth, little attention has been given to the aerodynamics and
hydrodynamics of drops falling from the cave ceiling onto the stalagmites, at the very origin of
stalagmite growth. In this work combining field and lab experimentation, as well as physical and
numerical modelling, we propose to analyse all elements of fluidmechanics involved from themo-
ment the drop leaves the stalactite tip until it reaches the stalagmite top. We can divide the drop
trajectory into distinct main steps: first, the drop falls freely into the air. Second, the drop impacts
the thin film covering the stalagmite, usually at velocities that have been shown sufficient to gen-
erate splash, accompanied with the formation of a crown and the ejection of secondary droplets.
Simultaneously, the ion contents of both drop and film are mixed together and redistributed in the
film. Finally, the film left by the series of drops is depleted through gravity-driven drainage while
the ions in solution precipitate.

Our first focus is to model the free fall of drops in caves. In previous models of stalagmite
growth, it was commonly accepted that drops fall along a straight vertical line from the stalactite,
thereby feeding the film from one central point. Through high-speed imaging of drops impacting
stalagmites from several caves, we however observe that the impact point position of the drops is
scattered, sometimes over several centimetres. We demonstrate that this dispersal has no external
cause and must, therefore, be self-induced. Through Langevin-like equations describing the posi-
tion and velocity of the drop free fall in response to gravity and aerodynamic forces, we rationalize
the observed dependence of the impact point dispersal on the falling height travelled by the drops.
We finally show that the impact point dispersal of the drops sets some constraints on the average
stalagmite width.

We then move onto lab experiments to study in detail the mixing occurring during the impact
between a drop and a film of similar radius and thickness as in caves, respectively. The impact out-
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come, mostly dictated by the retraction phase following the crown developing during the impact,
varies as a function of the film thickness and drop impact velocity. We investigate how the film
thickness is affected by this impact dynamics, as well as how the ions would be redistributed in the
film following the impact. We recorded high-speed top and side view movies of impacts on films
of controlled thickness. By using two different colours for the drop and the film and applying a
colorimetry technique based on Beer-Lambert law in the top viewmovies, we are able to assess the
mixing between the drop and the film. We also measured the film thickness right after impact in
all points from the impact position up to the unperturbed film free surface, and deduce how much
liquid would be added following one impact. We then further relate all these parameters to four
regimes that we identified based on the crown geometry measured from the side movies.

Afterward, we perform an analysis of the residual film filling and drainage dynamics by di-
rectly measuring the time evolution of the film thickness on various stalagmites in actual caves.
We complete these measurements with lab experiments conducted on an actual stalagmite. Three
phases are considered: the filling of the film starting from a dry stalagmite surface, the station-
ary state of this film reached after a certain number of drop impacts, and the sole drainage of the
film in response to an interruption of the drop inflow. The experimental measurements show that
the drop dripping period and stalagmite shape are the most important parameters influencing the
filling, stationary state and drainage dynamics of the film. Instead of only considering the average
width of the stalagmites, in this third part we attempt to rationalise how the particular shape of the
stalagmite affects the drainage of the film. A numerical resolution of Reynolds lubrication equa-
tion expressed in a curvilinear system of coordinates allows to model the filling of a thin film on a
stalagmite of general shape, as well as the sole drainage following an interrupted inflow of drops.
Using a set of parameters corresponding to the stalagmites studied in lab and in caves, we are able
to faithfully reproduce the drainage on the stalagmites from our dataset. From this analysis, we
also conclude that the drainage is either driven by the film thickness gradients on very flattened or
even horizontal stalagmite surfaces, while it depends on the stalagmite inclination in the case of
convex stalagmites. Both stalagmite shapes are commonly found in caves. The film drainage has
been omitted in previous stalagmite growth models and the film thickness was considered con-
stant over the entire stalagmite, at least over an average on many drop impacts. Nevertheless, the
results from our analysis show that these hypotheses are not always valid.

Finally, we gather ingredients from the former studies in order to model the complete pro-
cess of a drop addition into a thin film over a stalagmite of arbitrary shape, accompanied with the
gravity-driven drainage of this film and the precipitation of the ions brought by the drop into the
film. In addition to the drainage equation previously developed, we estimate the evolution over
time and space of the ion concentration in the film by using an advection-reaction equation, in
a limiting regime with no diffusion. An equation describing the stalagmite shape variation as a
consequence of the ion precipitation completes the model. We are therefore able to simulate a di-
versity of stalagmite shapes in response to variable entry parameters such as, e.g., the amount of
ions contained within the drops impacting the film. Our results emphasise how the dripping pe-
riod of the drops, along with the drainage and precipitation timescales, interact with one another
to produce different types of stalagmites. The addition of drop and thin film physics explored in
this work to existing models of stalagmite growth should help improve the robustness and accu-
racy of palaeoclimate reconstruction.
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RÉSUMÉ

Façonnées par les siècles, les stalagmites qui décorent le sol des grottes karstiques ne sont pas
juste d’époustouflantes créations de la Nature. Elles peuvent en effet aider à améliorer notre com-
préhension de la paléoclimatologie. L’étude des différentes lamines constituant les stalagmites,
couplée à la datation isotopique, peut se révéler particulièrement utile. D’autres techniques de
datation permettant de mieux appréhender les mystères de la paléoclimatologie incluent la den-
drochronologie, l’analyse sédimentaire ou encore l’analyse de carottes glaciaires. Ces dernières,
par exemple, fournissent d’importants renseignements sur l’historique des gaz à effet de serre dans
une région donnée, tandis que les variations visibles entre les lamines des stalagmites sont par
essence liées aux écoulements locaux passés et à la couverture naturellement présente au-dessus
des grottes. Les modèles de croissance de stalagmite existants ne considèrent pas l’aérodynamique
et l’hydrodynamique des gouttes tombant du plafond des grottes sur les stalagmites. Ces gouttes
sont pourtant essentielles à la croissance des stalagmites, puisque ce sont elles qui apportent les
ions calcium à l’origine du processus de croissance. Les ions en solution dans le film mince d’eau
recouvrant les stalagmites précipitent progressivement pour former de la calcite qui s’accumule
petit à petit, permettant à la stalagmite de grandir par ce biais. Chacune des centaines de milliers
de gouttes tombant sur une même stalagmite est donc responsable du renouvellement des ions
calcium en solution, ainsi que du film mince d’eau sur la stalagmite.

À travers ce travail qui combine desmesures expérimentales prises sur terrain et en laboratoire,
complétées par de la modélisation physique et numérique, nous proposons d’analyser chacune des
parties importantes de la trajectoire d’une goutte dans une grotte. Depuis son détachement au bout
de la stalactite surplombant la stalagmite sur laquelle elle finit par atterrir, une goutte tombant dans
une grotte n’a pas une vie que l’on pourrait qualifier de long fleuve tranquille. Cette goutte tombe
librement dans l’air depuis des hauteurs sous plafond qui peuvent parfois atteindre 20 ou 30m.
Parcourir une telle distance permet à la goutte d’atteindre une vitesse suffisante pour générer du
splash, ainsi que l’éjection de nombreuses gouttelettes, lors de son impact avec le film mince d’eau
recouvrant la stalagmite sur laquelle elle s’écrase. Au cours de chaque impact, les ions en prove-
nance de la goutte et du film se mélangent entre eux et sont redistribués dans le film. Parallèlement
aux impacts de gouttes qui le remplissent progressivement, le film se déplète par drainage le long
des parois de la stalagmite tandis que les ions en solution précipitent.

Nous commençons par nous pencher sur la chute libre des gouttes dans les grottes. Lesmodèles
de croissance des stalagmites précédemment établis ont pour habitude de considérer que chaque
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goutte tombe en parfaite ligne droite depuis la stalactite, remplissant ainsi le filmmince d’eau en un
unique point central sur la stalagmite. Nous observons pourtant à travers de nombreuses vidéos à
imagerie rapide enregistrées en grottes, que la position du point d’impact de la goutte est dispersée
et s’étale parfois même sur plusieurs centimètres. Nous démontrons à l’aide de divers arguments
que cette dispersion ne peut pas être expliquée par un facteur extérieur à la goutte, et doit dès lors
être induite par la chute de la goutte elle-même. Plus particulièrement, c’est l’interaction entre la
goutte et l’air au travers duquel elle tombe qui est responsable de la dispersion du point d’impact. À
travers des équations de type Langevin décrivant la position et la vitesse d’une goutte en chute libre
soumise à la résistance aérodynamique de l’air, nous expliquons la dispersion du point d’impact
observée en fonction de leur hauteur de chute. Finalement, nous relions cette dispersion à la taille
moyenne des stalagmites.

La deuxième partie de ce travail porte sur le mélange entre la goutte et le film au moment de
l’impact. L’impact d’une goutte sur un film mince s’accompagne de la formation d’une couronne
qui croît au cours du temps, et finit par se déchirer ou se rétracter vers son centre. L’issue finale
de l’impact dépend fortement de cette phase de rétraction, elle-même tributaire des conditions
d’impact, à savoir l’épaisseur initiale du film et la vitesse de chute de la goutte. Nous nous intéres-
sons à la façon dont l’épaisseur dufilm estmodifiée à la suite d’un impact, ainsi qu’à la redistribution
des ions en solution, découlant des variations d’épaisseur du film. Pour ce faire, nous utilisons à
nouveau l’imagerie rapide, cette fois afin d’enregistrer des vues de haut et de profil d’impacts de
gouttes sur des films d’épaisseur semblable à celles observées en grottes. Grâce à une technique
de colorimétrie basée sur la loi de Beer-Lambert, en colorant la goutte et le film de deux façons
différentes nous sommes en mesure d’estimer le niveau de mélange entre ceux-ci sur les vues de
haut. Nous parvenons également à mesurer l’épaisseur du film en tout point à la suite de l’impact,
du centre de l’impact au bord du film. De là, nous pouvons déduire la quantité de liquide ajoutée
au film à la suite d’un impact. Toutes les mesures effectuées peuvent finalement être reliées aux
divers régimes d’impact que nous identifions à l’aide des vues de profil.

Nous nous attardons ensuite sur l’équilibre existant entre le remplissage et la déplétion par
drainagedufilmd’eau résiduel recouvrant les stalagmites. Nous récoltons des données d’évolutions
temporelles d’épaisseurs de films sur de vraies stalagmites, en grottes ainsi qu’en laboratoire. Nous
considérons trois phases durant ces expériences : le remplissage progressif du film par des im-
pacts de gouttes successifs, l’état stationnaire du film atteint après un certain nombre d’impacts et
le drainage seul résultant de l’interruption des impacts de gouttes. Nos mesures révèlent que les
paramètres affectant le plus l’épaisseur du film sont la fréquence de chute des gouttes et la forme
de la stalagmite. C’est pourquoi, dans cette troisième partie, nous ne considérons plus seulement la
taille moyenne des stalagmites, mais également leur aspect géométrique. Partant de l’équation de
lubrificationdeReynolds quenous exprimonsdans un système curviligne, nous sommes enmesure
de modéliser l’évolution d’un film mince sur une stalagmite de forme quelconque non seulement
en réponse à un apport intermittent de gouttes, mais aussi lorsque le drainage seul opère. Nous
pouvons résoudre les équations que nous obtenons par le biais d’outils numériques et reproduire
fidèlement le drainage observé sur les stalagmites de notre jeu de données à l’aide de paramètres
d’entrée adéquats. L’analyse menée nous permet de plus de conclure que le drainage dépend prin-
cipalement des gradients d’épaisseur sur les stalagmites aux profils plans, voire horizontaux, tandis
qu’il est conditionné par l’inclinaison de la stalagmite lorsque celle-ci présente un profil plutôt con-
vexe. Ces deux types de stalagmites sont fréquemment rencontrés en grottes. Bien que le drainage
ait été omis des modèles de croissance de stalagmite existants et que ces derniers considéraient
le film d’épaisseur parfaitement constante sur toute la surface de la stalagmite, nous montrons à
travers cette étude que ces hypothèses ne sont pas toujours valables.
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Pour clôturer ce travail, nous ajoutons à notre modèle de drainage un ingrédient capital : la
précipitation des ions calcium en calcite. Le but de cette dernière partie est de modéliser la crois-
sance des stalagmites en incluant les différents impacts successifs des gouttes qui amènent des ions
calcium en solution, le drainage du film opérant entre deux impacts ainsi que la façon dont la con-
centration en ions dans le film varie en réponse au drainage du film et à la précipitation des ions
grâce à une équation d’advection-réaction négligeant la diffusion des ions. Nous complétons ce
modèle à l’aide d’une dernière équation décrivant la nouvelle forme prise par la stalagmite à la
suite de la précipitation des ions en solution. La croissance des stalagmites dans divers régimes
peut ainsi être étudiée. Celle-ci est tantôt dominée par le drainage du filmqui répartit les ions avant
que ceux-ci ne précipitent, tantôt uniquement présente là où la goutte a impacté la stalagmite. Un
autre paramètre important qui influe la croissance de la stalagmite est la concentration des ions
amenés dans chaque goutte qui impacte le film. À l’aide du modèle que nous avons développé,
nous sommes en mesure de produire différentes formes de stalagmites en réponse aux derniers
paramètres évoqués.

Ce travail décrit comment la physique des gouttes et du film peut être prise en compte dans
les modèles existants de croissance de stalagmite. Nous espérons que les éléments de réponse que
nous amenons aideront à améliorer la reconstruction paléoclimatique basée sur les lamines de
stalagmites en termes de précision et de robustesse.
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INTRODUCTION

Since the dawn of time, caves have been a source of timeless fascination [121]. Although they were
first used as simple natural shelters, nowadays they are the theater of curious relics from the past. From
bearing the oldest known cave paintings made by Neanderthals about 64000 years ago [113] to becoming
today’s unskippable touristic exhibitions, ideal setups for speleology aficionados and even decors of escape
games, caves have silently witnessed the evolution not only of mankind, but also of its environment.
Caves were actually there long before us, and have survived all types of major climate change events,
from frequent glaciation periods to rapid warmings, or even variations in the atmosphere state [76]. The
calcareous concretions found inside caves, commonly known as speleothems, are of greatest interest for
palaeoclimate studies and reconstruction [219]. Stalagmites, in particular, can reveal good palaeoclimate
proxies, just like sediments, ice cores, rocks, fossils or tree rings [76]. They can provide useful information
up to thousands of years ago. Understanding their growth may thus help gain insight into the past and
future evolution of local climate.

But if the story ends there, it does not start inside the cave. Water originating far upstream as a com-
bination of rainfall, evapotranspiration and runoff makes its way through the ground and the vessels of
the cave ceiling to reach stalagmites after a long and tremendous journey. Inside the caves, it appears
under the form of drops hanging from the ceiling. Without these drops, there would not be stalagmites.
Yet, in previously proposed mathematical models of stalagmite growth, the physical phenomena accom-
panying the drops were often omitted [20, 70]. Far from the idea behind Plato’s Allegory of the Cave,
in this work we only aim at exploring the various physical processes involved in the drop-stalagmite
interactions within the caves, and assess whether or not they should be taken into account. Although the
framework of this thesis is to improve stalagmite growth modelling, most chapters focus on fundamental
aspects of the drop physics through experimentation and theoretical work, sometimes completed by direct
in situ measurements. In this introduction, we start by reviewing the specific interest of stalagmites in
the context of palaeoclimatology reconstruction. We then continue by examining the entire trajectory of
the drop until it reaches the stalagmite, a trajectory that can be divided into several distinct steps detailed
afterward. From there, we further describe the content of the thesis and its chapters.

1. Stalagmites as palaeoclimate proxies
Over the last decades, an increasing number of proofs have contributed to the consensus regarding
the role played by human activities on climate forcing [119]. However, climate change itself is not
a novel phenomenon. The Earth has experienced a large number of glaciation periods, interrupted
by interglacial or warming events, for instance during the Quaternary [231]. The Quaternary is the
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latest period of the Cenozoic, i.e., the current geological era1, which starts from the penultimate
mass extinction event (the Cretaceous–Paleogene extinction event, which includes the extinction
of most non-avian dinosaurs), about 66Ma ago2 [40]. The Quaternary can be further divided into
two epochs: the Pleistocene, covering the most recent alternation of aforementioned repeated
glaciations, spanning from 2.58Ma to 11 700 a ago, and the subsequent Holocene, which contin-
ues until today [231]. Although these epochs cover long geological times, climate records have only
been monitored since the late nineteenth century. In particular, surface temperatures have been
recorded since the 1880s [126], while the monitoring of carbon dioxide atmospheric concentra-
tions started in the late 1950s [134]. Without delving into the historical Quaternary climate events
that occurred at much larger scales than the climate records at our disposal, it is therefore not
possible to develop a clear comprehension of contemporary climate. Long-term data, which are
essential for climate modelling, are only accessible through climate proxies.

Thebeginning of precise surface temperaturemonitoring is not purposeless. Even beforemod-
ern evidence of climate change, a number of observations and discoveries sparked the interest
of scientists for Quaternary climate study [231]. The second half of the eighteenth century wit-
nessed the birth of vertebrae palaeontology, which accompanied the discovery of mastodon fossil
remains [61]. Additionally, evidence of boulders and piles of rocks being displaced by ice, as well as
the presence of in-land glacier deposits, stemmed across Europe and, later, North America [231].
From there arose the premises of the theory on the alternation of glaciation and interglacial events,
simultaneously to the theory of evolution [10]. However, the causes of these glaciation events re-
mained unsolved at that time. Although explaining accurately these events is still an ongoing field
of research, a commonly accepted theory is that of Milankovitch [165], who hypothesised that the
changes in the relative position of the Earth with respect to the Sun are key to triggering glacia-
tion and warming events [165]. He investigated how the solar radiation reaching the surface of
the Earth is affected by changes in the orbital movements of the Earth, comprising the eccentricity
(the shape of the orbit), the obliquity (the tilt in the angle made by the axis of rotation and orbital
plane) and the precession (the direction of the axis of rotation). Owing to these changes in solar
radiation intercepted by the surface of the Earth, cooler summers may decrease snow melt, ulti-
mately contributing to the long-term growth of ice sheets through snow accumulation at specific
latitudes [231]. Milankovitch calculated that glaciation events should occur roughly every 41 000 a,
which corresponds to the obliquity cycle period and was later confirmed by an analysis of deep-
sea sediment cores revealing the same pe-
riodicity [109]. However, about 800 ka
ago, the cycle of glaciation events length-
ened to 100 ka, aligning with the eccen-
tricity cycle period, while reasons behind
this transition remain elusive. The sig-
nificance of climate proxies is revealed
through this example, which holds global
importance, but it is also evidenced by
many other examples from the literature
which focus on smaller timescales or local
palaeoclimatology studies [76, 231].

Figure 1.1: Examples of proxies used for palaeoclimatology.
Left. The skeleton of marine corals is used in

palaeoceanography. Right. Tree rings are used in
dendrochronology.

1The Cenozoic itself, with other eras, is part of the Phanerozoic, the current eon, which has started 538.8Ma ago. An
eon represents the largest geologic time, the second largest one being the era, followed by periods (e.g., the Quater-
nary) and epochs.

2The symbol a (annum) is only used in this chapter, so as to be consistent with the literature, while y (year) will be used
in the rest of the manuscript.
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The term palaeoclimatology refers to the study of ancient climates through the use of various
proxies, i.e., preserved materials serving as ancient climate archives. These archives can either be
physical, chemical or biological, and spans various geological times [76]. Proxies can provide infor-
mation on various parameters and environmental conditions, such as the atmosphere temperature,
the air mass trajectories, the carbon cycle, the ocean water salinity, the ocean stratification, the sea
level, the water mass circulation, or the intensity of rainfall [76]. These measurements are often
indirect and require a precise calibration of actual variables such as the temperature or isotopic
composition [225]. Palaeoclimatology is a general term which can become environment or proxy-
specific. For instance, palaeobotany refers to the statistical analysis of pollen data [207]. Pollen
spores falling to the bottom of lake basins and peatlands can be preserved in sedimentary layers.
If these sedimentary cores are well-dated and with the unique features displayed by pollen spores,
palaeobotany allows to reconstruct Quaternary vegetation history [207, 231], proving, e.g., that
an ensemble of plants which used to grow together no longer do, or documenting the invasion
and spreading of some past species [205, 226]. Palaeoceanography is another large subdomain of
palaeoclimatology, and involves the study of, e.g., the isotopic composition of phytoplankton, coral
skeletons (see Fig. 1.1), mollusk shells, or algae [193]. Dating techniques are of the upmost impor-
tance for these types of proxies, andmore generally for studies conducted on theQuaternary [231].
They allow to estimate, with more or less precision, the age of a material sample. Most widely used
dating techniques include, but are not limited to, (i) radioactive nuclide methods, which infer the
decay or buildup of radioactive isotopes within the material from concentration analysis, includ-
ing radiocarbon dating [213], (ii) radiative dosimetry methods, which are based on the analysis of
material radiation damage through, e.g., thermoluminescence [6], and (iii) qualitative and compar-
ative methods, such as, for instance, lichenometry, a novel technique used to estimate the age of
rock surfaces by measurement of incremental growth of lichens at the surface [118]. These meth-
ods can provide information from 10 to 107 a ago, none of them being able to accurately span the
entire time range [231]. They are therefore complementary and allow to cover almost the entire
Quaternary. Radiocarbon isotopes, e.g., can trace back measurements from up to 50 ka ago in
organic material and proxies containing carbonates.

Among qualitative and comparative dating methods, dendrochronology deals with the study
of tree rings, which are another form of annual increments (see Fig. 1.1) [91]. Recently, den-
drochronology helped unveil the cause of fall of the ancient Hittite empire, which is related to
the Late Bronze Age collapse and led to anarchy, uprisings, civil wars, famines and outbreaks of
diseases in neighbouring sovereign nations around 1200 b.c.3 [158]. The Hittite Empire was ri-
val to Egypt but had disappeared for unknown reasons, until its collapse was recently correlated
with a severe drought that lasted for a few years in a central area of the Empire, revealed by the
annual growth of local tree rings and their moisture content, measured through radiocarbon dat-
ing [158]. Other examples of environmental proxies of annual resolution include speleothems,
and most specifically stalagmites found in karstic caves. Speleothems present a number of physi-
cal and chemical characteristics which can be related to past climate evolution. The main interest
of speleothems, by contrast with proxies such as tree rings, lies in their potential for continuous
growth through thousands or even tens of thousands of years [35, 91]. Numerous studies have ex-
plored the relation between annually laminated layers of growth of stalagmites and local palaeocli-
mate history. One of the earliest indications of paleoclimate variations recorded by speleothems
originates from Devil’s Hole (USA), where records going back to 500 ka have been observed. The
periodicity of 100 ka exhibited by these speleothems, similar to the eccentricity cycle period of the
Earth, could be correlated with marine and ice proxies, thereby challenging the traditional orbital

3The abbreviations b.c. and a.d. refer to “before Christ” and “anno domini”, i.e., “from the birth year of the Christ”,
respectively.
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theory of climate change. Other examples of the implications of speleothems for palaeoclimate re-
construction include, e.g., records of the variations in monsoon activity, as exemplified by stalag-
mites from China caves [228]. We represent in Fig. 1.2 records of oxygen isotope variations, δ18O,
obtained by Wang et al. [228] from several stalagmites, juxtaposed to each other (note that the or-
dinate axis direction has been inverted for comparison with the other curve in the graph). The
stalagmites all come from caves found within areas dominated by monsoon seasons. Additionally,
the summer solar irradiance in the Northern Hemisphere is represented in Fig. 1.2 for the same
period, i.e., the past 2.25 ka. Both curves from Fig. 1.2 are approximately in phase (they actually
are in phase opposition), such that the oxygen isotope variations in stalagmites seem correlated
with the local solar irradiance. More recently, speleothem records could also be related to past
fire frequency and intensity, and thereby to antecedent climatic conditions leading to fire events
in Yonderup cave (Australia) [164], by comparison with well-documented recent wildfire events.

With such implications of speleothem records as proxies for palaeoclimate reconstruction, it
is necessary to get a clear understanding of both their formation and relation to their direct envi-
ronment. For instance, the partial fractures damaging the outer wall base of stalagmites, a com-
mon phenomenon in mid-latitude caves, was previously attributed to lateral flows of ice formerly
present in caves, while recent work seems to prove otherwise [204]. The thermoelastic stresses
within the expanding ice bodywould reach values equating and even exceeding the tensile strength
of stalagmite, causing a vertical uplift of the stalagmite through interface stress jump and suggest-
ing a connection between glacial climate variability and corresponding glaciation cycles of the
Pleistocene [204]. Additionally, we note that, despite the apparent synchronicity between the oxy-
gen isotope variations and solar irradiance in Fig. 1.2, disparities in the relative amplitudes of both
curves remain present. The oxygen isotope variations also display peaks and troughs uncorrelated
to the monsoon signal. In this work, we thus propose to investigate some physical processes re-
lated to stalagmite growth in karstic caves that have not been clearly comprehended yet, or at least
not in the particular context of stalagmites. Before diving into these various processes in Sec. 1.3,
we review a few fundamental aspects of these speleothems in the next section.
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Figure 1.2: Ensemble of oxygen isotope records4 from stalagmites in Hulu Cave, northeastern China (26° N, 105° E)
(from ∼20 ka b.c. to ∼50 ka b.c.), and various stalagmites from Sanbao Cave, central China (32° N, 110° E) (rest of
the graph), represented by the red line, juxtaposed to each other. The variations in the oxygen concentration, δ18O, is
plotted against the age of the stalagmites. The Hulu δ18O record were plotted 1.6 % more negative to account for the
higher values at Hulu Cave compared to Sanbao Cave. Northern Hemisphere summer solar irradiance (NHSI, up to
July 21) at 65° N is represented by the gray line. Isotopic values are plotted inversely, such that monsoon intensity
(indicating the percentage of summer rainfall in the annual rainfall total) increases upward, as indicated by the arrow.
Adapted from Wang et al. [228], Fig. 1 a, and Bradley [35], Fig. 8.5. Note that the original δ18O graph was drawn with
different colours, in correspondence with the 9 stalagmites analysed by Wang et al., which is not reproduced here.

4Vienna Pee Dee Belemnite reference scale for Carbon stable isotopes analysis.
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Figure 1.3: World karst aquifer map, adapted from Goldscheider et al. [102], showing already existing karst aquifers,
and karstifiable carbonate and evaporite rocks that represent potential karst aquifers.

1.1 Karstic caves and speleothem growth
Stalagmites, and more generally speleothems, are found in caves formed within karst landforms.
The erosion of the landscape over the surface of the Earth results from a combination of chemi-
cal weathering and mechanical transport, such as, e.g., soil creep or landslides [76]. In limestone
(calcium carbonate sedimentary rock), dolomite (calcium carbonate containing magnesium) and
gypsum (calcium sulfate dihydrate), chemical removal of rock masses by dissolution dominates
mechanical transport and leads to the formation of karst5. The various forms of karst represent
between 15% and 20% of the land areas on Earth, and are constituted mostly of calcium carbon-
ate rocks [102, 231]. The map from Fig. 1.3 represents the world distribution of karst aquifers al-
ready formed (carbonate rocks), and possibly currently under development (evaporite rocks) [102].
Limestone itself can differ depending on the formof theCaCO3 crystal, themostwidespread forms
being calcite, which is also the most stable form, and aragonite [143].

The development of karst therefore mainly results from the dissolution of soluble carbonate
rocks, which can lead to both surface and subsurface features and yield different karst landforms.
Surface features of karst may result from, e.g., the attack of rainfall on structural weaknesses of the
exposed rocks, leading to the formation of crevices, a famous example being the Burren pavements
from Ireland [76]. Subsurface karst features, on the other hand, result from water infiltration and
drainage from the water recharge to discharge point [89], and the accompanied subsurface rock
dissolution. This dissolution leads to the formation below the soil surface of open conduits or
cavities ranging from a few millimetres to several kilometres in length, and up to tens of metres
high, [89], i.e., caves. The presence of caves is one of the distinctive features of karst, compared to
other landforms. Only a small portion of existing caves is currently explored, the vast majority
of them being undiscovered or simply not accessible by humans [76]. Another important aspect
of karst landforms is that, given that they form and evolve over several millions of years, most of
them have been exposed to the alternation of glaciation and warming events from the Pleistocene.

5Karst is a germanized form of Kras, the original name of a carbonate plateau located north-east of the Adriatic Sea,
near Trieste (Italy). The exact area covered by Kras remains the subject of ongoing discussions [231].
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Speleothems formed within karstic caves, and particularly stalagmites, are therefore of great
interest for palaeoclimate reconstruction. In particular [56], (i) they have a worldwide presence
and are widely distributed (see Fig. 1.3), (ii) they are often well-preserved given the little variability
of environmental conditions (temperature, atmosphere composition) inside caves, (iii) they can be
precisely dated, and (iv) they contain a variety of palaeoclimate indicators. Speleothems can be
found in many geometric forms, although they result from the same chemical reactions. In the
following, we start by detailing the chemistry leading to speleothem formation and review a few
existing types of speleothems found inside of a cave in Sec. 1.2. While all cave formations exhibit
interesting features, from there we only focus on stalagmites, which are more useful for palaeocli-
mate reconstruction. We then describe how cross-sectional cuts of stalagmites are used as palaeo-
climate proxies in Sec. 1.5, with a particular emphasis on the dating techniques and palaeoclimate
indicators generally used in reconstruction studies.

1.2 Chemistry andmechanisms of speleothem formation
The chemical reactions leading to calcite dissolution or precipitation in karst systems have been
long well established. While dissolution occurs in limestone bedrocks, yielding, among others,
cave formation, precipitation often occurs within caves and is responsible for, e.g., the emergence
of stalagmites [35]. As aforementioned, the aragonite formof calcium carbonate is a less commonly
used proxy for palaeoclimate reconstruction than its calcite counterpart [141], primarily because
the aragonite form is metastable and may yield recrystallisation over existing speleothems. Calcite
also constitutes about 90%of karstic concretions [143]. Hence, only calcite formation is considered
here. Without detailing all the elementary reactions at play, we recall that, like most carbonate
compounds, calcite can be dissolved into an acid medium [174], yielding the reaction

CaCO3, (s) + 2H+ ⇆ Ca2+ + H2O+ CO2, (aq) , (1.1)

with CaCO3, (s) the calcite form of calcium carbonate and CO2, (aq) the dissolved carbon dioxide.
Note that the former reaction is a combination of three different attacks from the systemH2O-CO2

Soda straw Stalactite

Figure 1.4: Group of soda straws and stalactites hanging from the ceiling of Han-sur-Lesse cave (Belgium). Soda
straws are very thin concretions formed by accumulation of calcite rings around drops hanging from the cave ceiling.
Stalactites accumulate thicker deposit layers around the central cavity when other drops flow along the ceiling until
they reach the outer wall of the stalagmite, thereby precipitating on the outside of this wall and allowing the stalactite
to thicken. The ceiling shape of the photograph illustrates well how the drop trajectories inside and outside the drips
may enlarge stalactites. Some stalactites from the photograph even show features similar to flowstones (see Fig. 1.6 (a)).
The length of the labeled soda straw in the photograph is about 15 cm to 20 cm. Courtesy of P. Crochet [58].
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(a) (b) (c)

Figure 1.5: Stalagmite examples. (a) A large, human-size stalagmite from Han-sur-Lesse cave (Belgium) with micro-
gours forming on the outerwall and rimstones around the base. (b) Four very similar stalagmites, approximately 40 cm
to 60 cm tall, from Père Noël cave (Belgium). (c) A stalagmite constituted by a series of tiny stalagmite portions that
have only grown for a short time, stacked on one another. The ensemble may result from a group of close dripstones
either not active at the same time or that have been sequentially active before drying out for good. The resulting
concretion comes from Père Noël cave (Belgium) and should be about 60 cm to 80 cm tall. Courtesy of P. Crochet [58].

to the calcite surface [70]. We come back in Sec. 1.3 to the possibility of having ions and compounds
in solution at the surface of stalagmites. Simultaneously, the carbon dioxide CO2 is converted into
bicarbonate ions HCO−

3 as [174]

CO2, (aq) + H2O
k−

⇆
k+

H+ + HCO−
3 . (1.2)

In a lack of dissolved carbon dioxide CO2, (aq), the bicarbonate ions quickly reform with the pro-
tons in solution, promoting the reverse reaction. The global reaction of dissolution (→) and pre-
cipitation (←) of calcite into calcium ions is thus given by [174]

CaCO3, (s) + CO2,(aq) + H2O ⇆ Ca2+ + 2HCO−
3 , (1.3)

The above reaction is dominated by the amount of dissolved carbon dioxide in the solution. If the
partial pressure in CO2 is larger in the environment surrounding the solution, dissolved CO2, (aq)

will enter the solution and promote the direct reaction, i.e., the dissolution of calcite into calcium
ions. Conversely, if the dissolved CO2, (aq) inside the solution has a sufficient concentration, the
carbon dioxide will degas toward the outside of the solution and cause precipitation [174]. The
processes have very close kinetics of reaction, which is why they can both be found in karst. In
Eq. (1.2), the direct reaction rate is denoted k+ and the reverse one k−, both depending on the so-
lution temperature, pH, and dissolved excess ion concentrations. At 25 °C and pH ≲ 8, e.g., we
have k+ ≃ 3 × 10−3 s−1 and k− ≃ 2 × 10−3 s−1 [216]. Dissolution usually occurring in the lime-
stone right above the caves in closed system conditions continues inside the stalactites hanging
from the ceiling of the caves [35, 76]. On the other hand, for open systems such as stalagmites, the
partial pressure inCO2, (aq) is often larger than in the cave, in the vicinity of the stalagmite. Hence,
degassing of carbon dioxide from the film toward the cave atmosphere is at the origin of calcite
precipitation forming stalagmites [35, 76].
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Figure 1.6: Drip-& flowstones.
(a) Draperies are sheetlike
flowstones, here from Han-sur-
Lesse cave (Belgium), measuring
roughly 2m to 3m in length.
(b) Helictites, here from Aven
d’Orgnac (France), either grow
in a non-vertical direction or
change their growth direction
over time. The helictites in
the photograph are about 5 cm
to 10 cm long. Courtesy of P.
Crochet [58].

(a)

(b)

Dissolution and precipitation are thus responsible for the formation of all types of speleothems
inside karstic caves. Speleothems can grow downward from the ceiling, upward from the floor
or along cave walls. Drops of water can hang from cave ceilings and, instead of falling, remain
attached long enough for calcite rings to formdue to precipitation directly on the area surrounding
the drops. The accumulation of calcite rings leads to the formation of soda straws [56], as illustrated
in Fig. 1.4. If precipitation leads to further accumulation on the sides of the soda straw, additional
external layers of calcite may yield the formation of wider stalactites [56], as shown in Fig. 1.4,
which are nonetheless still hollow. Flowstones are large formations of calcite deposits usually
found close to cave walls [111], which can reach sizes of the order of several metres, as illustrated
by Fig. 1.6 (a) showing draperies, a particular flowstone. Rimstones are similar formations found
on the floor, often looking like staircases and presenting micro-gours at their surface, i.e., an array
of tiny basins of the order of the centimetre [111] (see Fig. 1.5 (a)). On the floor of caves, stalagmites
grow by accumulation of calcite layers deposited on top of each other. Examples of stalagmites are
shown in Fig. 1.5 (a-c). Stalagmites present a large variety of shapes themselves, to which we come
back further in the text. When a stalactite and an underlying stalagmite join each other, they may
form a complete column. Other varieties of speleothems are found in caves and are not limited
to calcite-based formations, including, e.g., helictites, i.e., speleothems that change their growth
axis because of capillary forces acting during the precipitation [35, 231] (see Fig. 1.6 (b)), aragonite
crystals (see Fig. 1.7), networks of pearls or pisolithes (see Figs. 1.8 (a-b)), coloured concretions due
to bacterial activity [105] (see Fig. 1.8 (b)), and many more.

Hence, stalagmites are not the only speleothems presenting a clear
sequence of growth. However, stalactites grow faster and are
formed both around a central conduit and by accumulation
on the already existing outer wall by non-trivial processes,
making them more difficult to interpret [56]. Other
types of concretions, e.g., helictites, involve additional
processes to the calcite precipitation, so that they are
not well suited for interpreting past signals either.
Stalagmites often present a clear chronological

Figure 1.7: Aragonite crystal needles from Clamouse cave.
Aragonite is a metastable form of calcite at cave temperatures. The
droplets in the photograph have a diameter measuring between roughly
2mm and 8mm. Courtesy of P. Crochet [58].
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(a)

(b)

Figure 1.8: Drop impacts on
a deep reservoir covering a
network of pisolithes in caves.
Pisolithes are grain-like calcite
formations resembling pearls,
with a diameter comprised
between a few millimetres and
about 3 cm. (a) Pisolithes in the
bottom of a small basin covered
by sand. The drop impact on the
liquid layer covering the basin
is accompanied by a growing
crown. (b) Large network of
blue pisolithes found in a South-
ern France cave, exhibiting a
surprising blue colour. Two
drop impacts producing central
jets can be seen impacting the
water surface. See Ch. IV on
drop impacts. Courtesy of P.
Crochet [58] ((a) and (b)).

axis growing upward and an annually sequenced, high-resolution stratification, making them ideal
for palaeoclimate reconstruction. To achieve this reconstruction, dating techniques must be used
to identify and calibrate specific periods in the temporal signal obtained from the stalagmite cross-
sectional cut [76]. We first review in the next section the exact physical processes at play that allow,
in addition to the calcite precipitation, the emergence of stalagmites. We then come back to the
dating of the yearly deposited layers of calcite forming stalagmites, along with their implications
for palaeoclimate reconstruction, in Sec. 1.5.

1.3 Narrative of a drop in a cave
Ions precipitating and leading to stalagmite growth are found in solution within a thin residual
film covering the stalagmite, which is fed by drops infiltrating the karst then dripping from the
ceiling of caves. Figure 1.9 depicts the trajectory followed by a drop until it falls onto a stalagmite.
Rainfall are responsible for renewing the water both above and below the ground. Once rainfall
drops approach the ground, they can be partially captured by the canopy of trees and plants. Splash
often occurs when drops impact plant leaves and twigs [144, 145], hence quantifying exactly the
amount of water actually reaching the ground can reveal tricky. Some drops also directly land
on the ground or flow along the sides of the trees, while runoff and evapotranspiration from the
soil and plants tend to diminish the quantity of water penetrating underground [83]. Although we
cannot estimate exactly the amount of water that actually reaches the interior of the cave, it can
be safely assumed that underground water recharge varies seasonally and regionally, as rainfall
do [56, 231].

As water drops travel through the atmosphere, encounter vegetation then infiltrate the soil,
they are progressively loaded with various ions and chemical species [35, 56], including dissolved
CO2, aswell as Ca2+ andHCO−

3 ions. Finally, whenwater reaches the ceiling of the cave, it can flow
through the end tip of stalactites [56]. Once the weight of the drop becomes sufficient, the drop
drips from the stalactite tip and falls, until it often encounters a stalagmite located beneath the sta-
lactite. The precipitation allowing the stalagmite to grow comes from the ions carried by the drop.
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Each drop falling from the above stalactite and impacting this film brings in new calcium and bi-
carbonate ions. The stalagmite growth rate depends on the concentration of these ions [18], which
is set by the dissolution of limestone upstream [70]. The calcium ions precipitate in the film as long
as the partial pressure pCO2 of the cave is sufficiently low, or that the partial pressure pCO2 in the
drop is sufficiently large [21, 68, 195]. The amount of dissolved CO2 gained from the vegetation
and soil above the cave by the drops can become very large compared to the partial pressure inCO2

in the cave atmosphere [70]. The partial pressure in CO2 in the soil can even reach 10% of the soil
atmosphere content [230]. The growth rate also depends on the dripping rate at which the water
within the film lying on the stalagmite is partially renewed. This rate varies with both inter-annual
and seasonal changes of recharge and weather events [95, 99]. Dripping rates are higher during the
rainy season [98], at least when the groundwater path upstream of the stalactite is sufficiently short
[161]. If the soil layer thickness above the cave is large, itwill act as a reservoir that can sustainmore
uniform dripping periods for longer periods of time [96]. The stalagmite growth rate also depends
on the temperature in the vicinity of the stalagmite [70], and on the plant and microorganisms in
the soil above the cave, which directly influence the carbon content of the drops [56]. It is also pos-
sible for drops to induce precipitation at higher altitudes where no vegetation is present above the
surface, since stalagmiteswere also found inmountains subjected to year-long glaciation, although
they present smaller growth rates [56, 70].

Finally, the growth rate depends on the thickness h of the liquid film, which typically ranges
between 50 µm and 300 µm [172]. The film likely results from a balance of the incoming flow
rate that drips from the associated stalactite [60] and the gravity-induced drainage along the sides
of the stalagmite, although there is currently no dedicated hydrodynamic model that rationalizes
this assumption [20]. By contrast, a model that couples equations of chemical kinetics and thin-
film hydrodynamics has already been proposed to describe the growth and shape of stalactites
[196, 197]. A complete model of the dissolution/precipitation kinetics of calcite coupled to the ion
transport by molecular diffusion within a thin water film was proposed and validated experimen-
tally by Buhmann and Dreybrodt [41, 42]. These authors then suggested a numerical model [68,
70] to estimate the vertical, time-averaged, growth rate of a stalagmite. The model was also com-
pared to ice and deep-sea core data by Kaufmann [133], who used temperature variations along
with changes in precipitation and soil coverage to derive stalagmite stratigraphies reflecting pale-
oclimate variations over long periods of time (> 300 000 a). Although Dreybrodt’s model yields
a good approximation of the average vertical growth rate (though once the film thickness is arbi-
trarily adjusted), it fails at capturing the horizontal heterogeneity of the lamina thickness, caused
e.g. by stalagmite roughness and curvature [20]. Therefore, it cannot reproduce the wide variety of
stalagmite shapes and sizes observed in a cave. Consequently, only cylindrical, regular stalagmites
(as shown in, e.g., Fig. 1.5 (b)) were used so far as paleoclimate proxies because of their apparent
regularity [17]. We come back to amore detailed description ofDreybrodt’smodel in the following
section, before reviewing the analysis of the laminae formed by the stalagmites in Sec. 1.5.

1.4 Existing model of stalagmite growth
The model developed by Dreybrodt et al. [41, 42, 70] focuses on regular stalagmites, i.e., stalag-
mites forming a column of more or less constant diameter, of diameter comprised between 3 cm
and 10 cm. The model is based on an idea already proposed by Franke [90], that when a drop im-
pacts the ground below the stalactite, it spreads out radially and subsequently yields the apparition
of a thin disc of calcite through ion precipitation in the liquid left by the drop. The precipitation
would be the greatest at the centre and would cause the calcite disk to be thicker toward the centre
than the outer edges. This process would then be repeated for many drops, increasing the stalag-
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mite height by building up a “series of dome-shaped layered hoods one above the other”, to quote
Franke [90]. The stalagmite would then keep the same shape as long as the parameters determining
its growth remain constant [70].

Following this, in Dreybrodt’s model a few assumptions are made. (i) The model only con-
siders axisymmetric stalagmites and approximates the stalagmite surface as an n-points polygon.
An example is depicted in Fig. 1.10 (a). (ii) Once equilibrium is attained, the stalagmite is suppos-
edly subjected to the same vertical growth rate in all points. The growth rate allowing to calculate
the next stalagmite shape is then defined perpendicularly to the stalagmite surface. (iii) The drop
bringing in new ions would always land at the centre of the apex of the stalagmite, on a film with
constant and uniform thickness, denoted h, empirically measured as 100 µm [70]. (iv) In all points
of the stalagmite surface denoted η at a given time, the subsequent stalagmite surface is obtained
by adding a vertical growth increment∆η, mitigated by an arbitrary function decreasing with the
distance to the impact point. This growth rate function is defined in point iof the surface as follows:

∆ηi = ∆ηmax
Drey exp

(
−|P0Pi|

λ

)
, |P0Pi| =

i∑
j=1

∣∣Pj−1Pj
∣∣ , (1.4)

with λ a constant defined as the stalagmite radius and |P0Pi| the distance from point P0 to point Pi.
The increment ∆ηmax

Drey is the maximum increment at the dripping point position, i.e., in η0, corre-
sponding to∆ηmax

Drey = 0.1 cm/(∆t), with∆t the time needed for the stalagmite to grow by 0.1 cm
(we attribute the specific name of ∆ηmax

Drey to the maximum growth rate at the centre as we come
back to this parameter in Ch. VI). An equilibrium and a constant radius of λwould then be reached
after the stalagmite has grown from the floor by a height equivalent to twice its diameter, under
constant conditions of growth. This equilibrium shape would then grow up by translation along
the stalagmite axis, which is always oriented upward. As emphasised by Eq. (1.4), the growth rate
decreases with increasing distance from the central dripping point as a monotonic function, until
it reaches a null value after a certain distance.

Growth rates are computed according to the method already described by Curl [60]. Drops
of volume Vd and containing ions in a concentration cd fall periodically on the stalagmite and are
separated by a time t0. If a drop falls into the film of thickness h and of initial excess ion concen-
tration c6 lying on the stalagmite, according to Dreybrodt [70], either part of the film or all of it
should be replaced by the drop. After the drop addition to the film, the newly formed film should
thus end up with a new ion concentration c′, obtained as

c′ = (1− ϕ)c + ϕ cd , (1.5)

where ϕ is a mixing coefficient between the drop and the film (see Ch. IV for details). In Drey-
brodt’s model, a linear approximation of the calcite deposition is further made by using Fick’s law.
It is assumed that the precipitation flux, or the change in excess ion concentration in film, c, is pro-
portional to−αc, with α a fitting parameter having the dimensions of a length per unit time [70].
Hence, the change in excess ion saturation should evolve over time as

∂t c = −
αc
h

, (1.6)

6The excess ion concentration is defined as c =
([

Ca2+]
sat −

[
Ca2+]), where

[
Ca2+] is the concentration of the

calcium ions in solution, and
[
Ca2+]

sat is the saturation calcium ion concentration. Details are provided in Ch. VI,
although the parameter c is defined differently within that chapter than in the present section.
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Figure 1.10: Dreybrodt’s model illustrations. (a) Evolution of the stalagmite surface at successive times t and (t + 1)
fromDreybrodt’smodel [70]. The points P t
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i comes from Eq. (1.4). Drawing is copied from Fig. 10.3,
p. 259 in [70]. (b) Example of the evolution over time of stalagmite shapes created using Dreybrodt’s model, by varying
thedrippingperiod in between thedrops. The time span inbetween successive lines is 1000 y. Adapted fromKaufmann
2003 [133] (Fig. 13).

which admits a time exponential solution for the excess concentration c, with a decay time de-
noted tp = h/α that we will detail in Ch. VI. Combining these results and averaging the excess ion
concentration over time yields

∂t ⟨c⟩ =
αϕ cd

t0

[
1− exp

(
− t0

tp

)]
[
1− (1− ϕ) exp

(
− t0

tp

)] , (1.7)

where ⟨·⟩ designates the time average over the dripping period t0. Depending on the ratio be-
tween t0, the time period between two drops, and tp, the decay time of excess ion concentration
relative to Eq. (1.6), different regimes appear, denoted: (i) low flow, such that t0 ≫ tp, and (ii) high
flow, for which t0 ≪ tp. In the low flow regime, the supersaturation excess tends to zero before
a new drop arrives, while in the high flow regime, the supersaturation excess remains close to cd.
Dreybrodt further considers that, away from the stalagmite, the solution should have lost its su-
persaturation, i.e., all the ions should have precipitated into the film over a radius of deposition
called rsm, the stalagmite radius. The amount of ions brought by the drops precipitating over the
dripping period t0 should correspond to the average growth over this radius, i.e.,

Vd cd
t0

= ∂t ⟨c⟩ πr2sm . (1.8)

In the low flow regime, the stalagmite radius should become

rsm =

√
Vd

hϕπ
, (1.9)
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such that the radius decreases for increasing h, i.e., for a thicker film. In the high flow regime,

rsm =

√
Vd

πα t0
· (1.10)

Hence, in this regime, the stalagmite radius would decrease with increasing dripping period, i.e.,
with decreasing drop inflow. On the other hand, it increases with increasing fit parameter describ-
ing how fast the ions precipitate in the film,α. A largerαwould correspond to a faster precipitation
of the ions in solution.

The abovemodel was later used by Kaufmann [133], alongwith the inclusion of the effect of the
temperature on, e.g., pCO2 and, therefore, α (see Ch. VI), to reproduce stratigraphies of stalagmites
with variable parameters. This is illustrated by Fig. 1.10 (b) for a variable dripping period between
the drops, t0, assuming a common temperature variation for the three stalagmites presented in the
figure. Temperature records were derived from an ice core from Greenland over two glaciation
cycles, while other parameters in themodel were kept constant, except for t0 whichwas set to 100 s
(low flow), 10 s and 1 s (high flow) in Fig. 1.10 (b), respectively. The resulting shapes obtained by
Kaufmann depict how the aforementioned stalagmite radius fromEqs. (1.9) and (1.10) evolveswith
the dripping period of the drops, t0. The dripping period also affects the growth rate over time as
layers become thicker with decreasing t0.

We note that some physical processes observed to occur in caves are not captured by themodel
presented above, or that some simplifying hypotheses were made but may prove inadequate. We
list the issues that we are able to identify hereafter:
• First, the drops are assumed to always land at the apex of the stalagmite, which is contra-

dicted by empirical observations.
• The thickness of the film is assumed to remain constant over the entire stalagmite in the

model. The model produces curved stalagmite surfaces, as shown in Fig. 1.10, which re-
semble actual stalagmites. However, this suggests that the film could experience gradients
caused by, e.g., gravity-driven drainage, which should further be affected by the local surface
curvature and film thickness.

• Gradients appearing in the film should further be responsible for variations in the ion distri-
bution, while the only parameter affecting this concentration in the model is the inclusion
of the successive drops into the film, as shown by Eq. (1.5). In reality, the ions being dis-
placed in the film away from the drop inclusion position at the apex precipitate at the same
time as they are being carried away, which could lead to a decrease in c departing from the
apex. The growth from Eq. (1.4) also assumes that the vertical growth is constant along the
stalagmite while the growth perpendicular to the local surface decreases exponentially with
the distance from the apex of the stalagmite. Although the combinations of these effects
may yield a similar effect as having both h and c vary with the distance to the apex of the
stalagmite, there is no physical argument supporting the exponential profile considered in
Eq. (1.4). Depending on the time needed for the ions to precipitate with respect to the time
needed for the film to flow away from the apex of the stalagmite, various regimes of growth
could occur.

• To the best of our understanding, the mixing parameter is arbitrarily set to a constant value
in the simulations such as the ones shown in Fig. 1.10 (b), and no physical argument is pre-
sented to evaluate ϕ in the model derived by Dreybrodt [70], nor in the simulations made by
Kaufmann [133] where no mention of ϕ is made. However, several questions naturally arise
when considering the mixing occurring during the impact of a drop on a thin film: if the
drop experiences splash upon impact, how much liquid can be ejected away? Among these

14



ejections, which part originates from the impacting drop, and which part belongs to the ini-
tial film? Do these parameters depend on impact conditions such as the drop radius, the film
thickness, or the drop impact speed? Lastly, are there other relevant parameters affecting
this mixing? Without answering these queries, there is no physical rationale permitting to
assign a value to ϕ.

• Thedrops are also considerednot to produce anymovement in thefilm that could potentially
lead to a new distribution of ions into the film following a drop inclusion in the model.
However, as a drop impacts a thin film such as found in caves, it may experience splash and
yield liquid ejection away from the stalagmite [227, 235].

• In the low flow regime approximation yielding the stalagmite radius from Eq. (1.9), the ra-
dius is only set by the amount of ions brought into the film. This approximation consid-
ers that the decay time of the excess ion concentration, tp, is sufficiently shorter than the
dripping period between two drops, t0, for the ions to have entirely precipitated before a
new drop is brought into the film. At constant drop concentration cd, the amount of ions
that precipitate in between two drops should indeed increase with the drop volume and de-
crease with the film thickness. However, according to Eq. (1.9), the stalagmite radius would
decrease with increasing mixing factor between the drop and the film, ϕ, and reach a max-
imum value at ϕ = 1. In the low flow regime, if all the ions have precipitated between two
successive drops, c = 0 right before a new drop is added into the film according to Eq. (1.5),
such that a value of ϕ = 1 should yield the maximum possible amount of ions that may
precipitate into the film. Not finding that the radius increases in this case is therefore coun-
terintuitive, or at least indicates that some physical processes are not taken into account to
conclude whether these ions should yield a larger radius or a thicker layer of newly precipi-
tated ions. Note that this discussion can be made based on Eqs. (1.7) and (1.8) and thus does
not depend on the regime considered.

• In the high flow regime such that t0 ≪ tp, the concentration of ions in solution should reach
a steady-state because of the balance between the ions that precipitate in between two drop
inclusions into the film, and the ions brought by the succesive drops. However, Eq. (1.10)
suggests that rsm could continuously keep increasing for decreasing dripping periods, and
even reach infinite values. The continuous inflow should be constrained by other limits.

• While the stratigraphies presented in Fig. 1.10 (b) are based on actual palaeoclimate records,
they cannot be compared to stalagmite cuts thatwould correspond to the parameters used. It
is therefore difficult to asses the validity of themodel regarding the effect of, e.g., the dripping
period on stalagmite growth.

• Finally, we can also point out that the case where the film would eventually dry out is not
considered here. Even by setting ϕ = 0, because the drainage and evaporation of the film
are not taken into account, it is not possible to model the particular case where the dripping
period of the drops is long enough for the film to disappear in between impacts, while this
should clearly be the case for a stalagmite being only fed by one drop over several days [133].

In the light of these observations, wenote that some important physical processes are not taken into
account: (i) the aerodynamics of drops freely falling in caves, (ii) the interaction between the drop
and the residual film lying on the stalagmite as the drop impacts the film, (iii) the effect of gravity-
driven drainage on the film thickness evolution with time and space in between drop impacts, and
(iv) the comparison between the inflowof drops, i.e., their dripping period, with the drainage of the
film and precipitation of the ions in solution. We come back to these processes in Sec. 2. The next
section focuses on the annual growth of stalagmite laminae and the associated dating techniques.
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1.5 Properties and analysis of annually laminated stalagmites

In order to reconstruct palaeoclimate history from annually resolved proxies such as laminated
stalagmites, it is important to precisely date sections of the proxy, in this case of laminae from
the stalagmite cross-sectional cut [35, 231]. Speleothems such as stalagmites provide the oppor-
tunity to use different dating methods, including, but not limited to laminae visual identification,
radioactive nuclide dating which can be based on, e.g., the decay of 234U into 230Th, or even ther-
moluminescence [19]. The 234U into 230Th dating is a widely used technique and allows to date
samples back to about 500 ka. In addition to the precise dating of specific stalagmite portions, the
most common indicators inferred from stalagmites are the variations in oxygen and carbon iso-
topes found within the stalagmite [220]. Isotopes are chemical elements having identical atomic
number but different atomic masses, i.e., a different number of neutrons. In particular, the 18O
isotope, resp. 13C, is one of the stable isotopes of oxygen, resp. carbon, and represents approxi-
mately 0.1995% of the Earth’s oxygen, resp. 1.11 % of the Earth’s carbon [56, 134]. Measurements
of δ18O and δ13C are collected from stalagmite samples by isotope ratio mass spectrometry. Once
the sample is prepared, the extent to which the ions are deflected by the magnetic field inside the
mass spectrometer depends on their mass-to-charge ratio, such that the ratios of heavy to light
isotopes, i.e., of 18O/16O for instance, can be deduced from the sample. The measurements are then
expressed as δ18O, the variationswith respect to a standard variation. In otherwords, δ18Odoes not
represent the absolute variation between the contents in 18O and 16O within the stalagmite; δ18O
rather corresponds to the relative difference between 18O/16O from the sample and the standard
value of 18O/16O [56], therefore expressed in percents. Examples of the δ18O signals from several
stalagmites juxtaposed to each other are represented in Fig. 1.2 from Sec. 1. The isotopic variations
in δ18O are usually used for temperature and rainfall pattern reconstruction, while the variations
in δ13C contain information regarding the vegetation, soil and ecosystems above the cave at a spe-
cific period.

Relating, e.g., δ18O to rainfall history is possible because of isotope fractionation, a process
where isotopes are separated or distributed differently during physical or chemical processes be-
cause of their relative weight. Lighter isotopes, for instance 16O, tend to participate preferen-
tially in some processes such as evaporation or precipitation. During evaporation, the lighter
oxygen isotopes tending to evaporate more easily leave behind them a larger proportion of wa-
ter molecules containing 18O. Regarding carbon isotopes, photosynthesis, e.g., favors the use of 12C
rather than 13C isotopes. It is therefore not surprising for δ13C measurements from palaeoclimate
proxies to yield precious information on, e.g., past vegetation. During the precipitation of calcite,
the calcite and water isotopically exchange at equilibrium as

1/3 CaC18O3 + H16
2 O ↔ 1/3 CaC16O3 + H18

2 O . (1.11)

This relation was shown to only depend on temperature [78]. However, because isotope fraction-
ation can be sensitive to various processes, it is sometimes not possible to deduce, from a given
stalagmite sample, the exact processes at the origin of the isotope fractionation. The δ18O signal
should a priorimatches the δ18Ocomposition of local rainfall [170], which is usually known andde-
pends, among others, on the surface temperature. Additionally, isotope fractionation of 18Oduring
calcite precipitation depends on the cave temperature, as shown by Eq. (1.11) above. The combi-
nation of these two effects should yield a linear relation of 18O with the past temperature through a
stalagmite. [3] However, depending on the thickness of the soil layer above the cave, i.e., the water
reservoir feeding the stalagmite, it can become tedious to interpret δ18O variations collected from
stalagmite signals [56, 76]. This interpretation requires the knowledge of details about seasonal
and inter-annual variability, i.e., about growth rate variations, laminae thicknesses, mineral com-
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position of the stalagmite and possible presence of trace elements [219], and the comparison of the
signal from the stalagmite with other well-recorded signals from other proxies found in the same
area [56, 76]. Similarly, the composition of 13C in the stalagmite depends on the atmospheric car-
bon dioxide, the karst layer through which water infiltrates when loading in ions, and the carbon
dioxide produced within the soil about the cave [170]. Interpreting δ13C variations from stalag-
mites for paleoclimate reconstruction thus also faces challenges,
including the effects of vegetation and soil processes,
potential kinetic effects during calcite formation,
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Figure 1.11: Examples of laminae visible in stalagmite cuts, adapted from the literature. (a) Close-up photograph of
a stalagmite cut exhibiting laminae of variable thickness. The axis of growth is directly horizontally. The scale bar is
100 µm. Adapted fromTan et al. [211]. (b) Evolution of the laminae displayed by a stalagmite cut. A hiatus, correspond-
ing to a period of absence of growth, is visible at the bottom of the photograph. The scale bar is 1 cm. Adapted from
Baker et al. [20]. (c-e) Photograph of a stalagmite cross-sectional cut (c), and scanning electron microscopy pictures of
a portion of stalagmite displaying a high grain density calcite (d), and another portion corresponding to a low-grain
density calcite (e). The scale bars are 2 cm (c), and 20 µm (d-e). Adapted from Duan et al. [72]. (f-i) Examples of different
types of laminae: (f) visible laminae, (g) organic-based laminae, (h) chemical laminae revealed by UV fluoresence, (i)
laminae based on Sr traces. The scale bars are all 100 µm (f-i). Adapted from Baker et al. [19].
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and variations in the isotopic composition of carbon in the source materials [170]. Evaporation,
fast precipitation, an interruption during the growth, known as hiatus, or even microorganism
activity can also affect the isotope fractionation of both 18O and 13C.

Possible solutions to these issues involve the analysis of the fluid inclusions found within the
stalagmite sample, i.e., local trapping of tiny amounts of the water in which the stalagmite calcite
has precipitated at a given time in the past [65]. However, analysing sub-microliter volumes of
water without inducing artificial isotope fractionation may prove challenging [56, 76]. Another
widely used technique consists in performing a Hendy test on some lamina within the stalagmite
sample [110]. Isotope fractionation equilibrium conditions are verified if the CO2 degassing is
sufficiently low and there is no evaporation of the film. Hence, over a particular lamina, these
equilibrium conditions should yield a progressive change in δ13C from the stalagmite apex toward
the outer wall of the stalagmite because of the progressive precipitation, while the δ18O should
remain constant because the film thickness should remain sufficiently large to act as a reservoir
of 18O [110]. However, there is no dedicated model describing the evolution of the film thickness
with the distance to the stalagmite apex. Therefore, if isotope fractionation equilibrium condi-
tions are maintained along a specific lamina, the signal in δ13C and δ18O along this lamina should
not present any covariance, and there should not be any enrichment of δ18O so as to validate the
absence of film evaporation [110]. Evaporation of thin films as found in caves, which is one of
the physical processes involved in the isotope fractionation of 18O and 13C, is dependent of the
film thickness [92] as long as the pressure in the film overcomes the disjoining pressure (see Ap-
pendix B.5 from Ch. V). Hence, the drainage of the film should also affect 18O and 13C through this
process [92]. The limitations of theHendy test lie within the difficulty to ensure thatmeasurements
are performed along one and only one lamina, or the interpretation of the covariance between δ13C
and δ18O which may still results from actual paleoclimate variability. The most reliable technique
to asses potential out-of-equilibrium conditions of the isotope fractionation consists in verifying
whether signals from several contemporary stalagmites from the same area are related to one an-
other [56, 76], but this technique would imply the collection of several samples while caves should
remain as unperturbed as possible.

Hence, all these potential effects point out to the importance of measuring the thickness of the
laminae constituting the stalagmites as precisely as possible, and to be able to clearly asses the pro-
cesses that may induce physical isotope fractionation of 18O and 13C. A few examples coming from
the literature are shown in Fig. 1.11 and represent the variability presented along one lamina. Fig-
ure 1.11 (a) presents a close-up optical view of a stalagmite cut such that the growth axis is oriented
horizontally, from left to right. Tan et al. [211] have shown that measuring the successive laminae
thicknesses along different routes parallel to the growth axis (i.e., along different horizontal sec-
tions in Fig. 1.11 (a)) yields a variability of the in-between lamina thickness measurements, which
is visible in Fig. 1.11 (a). This effect is also clearly visible in Fig. 1.11 (b) where a stalagmite cut pre-
sented by Baker et al. [20] shows laminae of variable thickness and shape as the stalagmite grows
upward. Baker et al. [20] emphasised the lack of constraints existing on the estimation of the film
thickness that lead to calcite precipitation for a particular lamina. They tried to infer this thickness
from the global curvature of the various visible laminae in the stalagmite cut from Fig. 1.11 (b) by
approximating the thickness of the film, h, as constant and equal to Vd/Adome over a dome of sur-
face area Adome ≈ 2πr2dome, with rdome the dome radius and Vd the drop volume. They conducted
lab measurements on domes of various curvature radii and obtained a decreasing film thickness
with decreasing dome curvature radius rd to approximate the film thickness on each of the laminae
from Fig. 1.11 (b) in attempting to reconstruct local paleaoclimate variations [20]. As we will show
in Ch. V, this estimation can actually be improved.
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Figure 1.12: Examples of annual lamina growth rates from the literature. The main graph represents violin plots (a
violin plot is the combination of a kernel density plot showing the distribution shape of the data (coloured area), and
of a usual box plot, which includes the median (white dot ), the interquartile range (gray box), and the rest of the
distribution from which the outliers have been removed (gray line), to which we further added the mean (thick black
line)). From left to right, the violin plots show data of annual lamina growth rate, i.e., lamina thickness measured over
the course of a year, adapted from Fig. 5 in Asrat et al. [12] (green), Fig. 5 in Baker et al. [16] (red), Fig. 1 in Asmerom et
al. [11] (orange), and Fig. 5 in Linge et al. [149] (blue), respectively. The inset is adapted from Fig. 5 in Baker et al. [19],
and represents a histogram of the number of laminae corresponding to a given annual lamina growth rate, which
is approximated as a log-normal distribution by the authors. The data come from an ensemble of 39 time-series of
stalagmite laminae analysed in the articles reviewed and presented by Baker et al. [19].

Figures 1.11 (c), (d) and (e) correspond to the same stalagmite cross-sectional cut analysed by
Duan et al. [72]. Due to the aforementioned seasonal variability that may exist in δ18O and δ13C sig-
nals, the calcite may present variable porosity at different times, depending on the conditions of
precipitation. Laminahue therefore appears lighter or darker dependingonwhether the stalagmite
is fed during a drier or wetter season, respectively [72]. This is particularly visible in the laminae
shown in the stalagmite cut from Fig. 1.11 (c). A more compact calcite layer, resp. a less compact
one, as shown by scanning electron microscopy in Fig. 1.11 (d), resp. Fig. 1.11 (e), is therefore less
porous, resp. more porous. Although laminae can be defined as the annually deposited layers of
calcite on the stalagmite, other definitions of laminae in stalagmites may exist due to the recent ad-
vances in, e.g., the identification of annual variability of trace elements such as Sr or Mg [219]. In
Figs. 1.11 (f)-(i), we represent examples from Baker et al. [19] of the other types of laminae appear-
ing in stalagmites, or laminae obtained through unconventional dating methods for speleothem
growth. In Fig. 1.11 (f), physical, i.e., visible, laminae are formed from the aforementioned cal-
cite porosity variability. In Fig. 1.11 (g), the annual variability in organic matter concentration is
represented, which may reflect the seasonal transport of soil-derived material [19]. The organic
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matter variability may also appear through UV fluorescence, as shown in Fig. 1.11 (h). Finally, an-
nual variations in trace elements, Sr in the case of Fig. 1.11 (i), are known as chemical laminae [19].
It can further be noted that a same stalagmite may present different types of laminae, e.g., both
physical and chemical laminae can be measured from the same sample (see, e.g., Figs. 1.11 (f-i)).

In Fig. 1.12, we represent the annual growth rate evolution of physical laminae coming from
samples analysed in the literature. The times covered by the samples are indicated below the graph
and come fromdifferent geological times. The shortest record is the one fromBaker et al. [16] (red),
which only spans a century while the other records span ≲ 1000 a. Without detailing the specific
conditions relative to each stalagmite, we note in Fig. 1.12 that the annual growth rate of stalagmite
laminae (expressed per year y−1 and not per annum a−1) is comprised between about 10 µm y−1

and 1000 µmy−1. The four stalagmites illustrated present different distributions. Each distribution
is represented under the form of a violin plot, which corresponds to a combination of a usual
box plot and a kernel density plot, allowing to represent the exact distribution shape of the data
(see caption of Fig. 1.12 for details). The mean is also added to the violin plots. We note that the
stalagmites with the larger average growth rates also present a larger variability of growth rates
over the entire record, as exemplified by the shapes of the violin plots relative to the stalagmite
from Asrat et al. [12] (green) and the one from Baker et al. [16] (red). The distribution from Asrat et
al. [12] (green) is also very skewed, which is also indicated by the difference between the mean and
median values of the annual growth rate. The distribution from Baker et al. [16] (red), on the other
hand, only presents a few outliers. Regarding the distributions of Asmerom et al. [11] and Linge et
al. [149], they both present a smaller average annual growth rate, with no identified outliers.

The inset shows a histogram from Baker et al. [20], who reviewed and compiled the annual
growth rates measurements of all the laminae from 39 stalagmites analysed in the literature. The
ordinate axis thus represents the number of laminae corresponding to a specific annual growth
rate, all stalagmites considered. The mean annual growth rate from this distribution is 163 µmy−1,
while the median is 93 µm y−1 [19]. It is not surprising to obtain such different values since large
annual growth rates are less commonly observed. Large annual growth rates seem to correspond
to values above 250 µm y−1. If we assume that all the ions from the drops feeding the filmon the sta-
lagmite further precipitate completely, for 100 000 drops impacting the stalagmite per day (which
corresponds to a dripping period slightly inferior to 1 s), such a large growth rate would corre-
spond to a growth per drop of 6.8 × 10−12 m, which seems plausible with respect to the values of
lamina growth observed in Fig. 1.12. From empirical values observed in caves (see Ch. II), a drip-
ping period of 1 s corresponds to a large inflow. By contrast, an inflow of one drop per day would
yield a growth per drop of 6.8 × 10−7 m, which seems aberrant given that it would lead an almost
visible new layer of calcite at every drop. Hence, we can infer from these data that large growth
rates should be associated with short dripping periods, in accordance with the conclusions from
Dreybrodt’s model. Depending on the conditions at play, the location of the cave or the geological
time spanned by the record, the annual lamina growth of the stalagmites presented in Fig. 1.12 in-
dicates that very different distributions of annual lamina growth rates can be obtained, illustrating
once again the complexity of palaeoclimate reconstruction.

2. Outline of the thesis and contributions
In the light of the difficulties arising during the analysis of annually resolved stalagmites and short-
comings of existing models of stalagmite growth, in this work we propose to gain a better com-
prehension of the aerodynamics and hydrodynamics at play when drops impact stalagmites. Fol-
lowing our description of Sec. 1.3, we may divide the physical processes involving the drop and
the residual film lying on the stalagmite into distinct steps. We will omit the upstream path of the
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drop before it reaches the cave ceiling in our analysis, although it appears clear from Sec. 1.5 that
the water isotope enrichment in the soil above the cave encompasses non-trivial and poorly char-
acterised processes. We will exclusively focus on the drop trajectory once it has reached the tip of
a stalactite, which is illustrated by Fig. 1.13 and can be chronologically described as follows: (i) the
drop detaches from the stalactite tip and falls through cave air, (ii) the drop impacts the thin film of
residual liquid covering the top surface of the stalagmite, (iii) the film flows away from the stalag-
mite centre because of the gravity-induced drainage and, simultaneously, (iv) the ions in solution
precipitate to form calcite, thereby allowing the stalagmite to grow progressively. Other processes
at play involve but are not limited to: the diffusion of ions into the film, either in a parallel (∼ hor-
izontal) or perpendicular (∼ vertical) direction to the stalagmite surface, or the evaporation of the
film.

These processes present a distinctive feature: the timescale at which they take place. We denote
these timescales as depicted in Fig. 1.13. They are also summarised in Tab. 1.0, and recalled in
Tab. 1.2 from the auxiliary sheet. Under constant environmental conditions, the drops regularly
fall from the stalactites [90]. Two drops are separated by the dripping period, defined as t0. The
dripping period varies by several orders of magnitude, ranging approximately in [10−1 ; 107] s, i.e.,
from less than a second to several months [133]. The drop impact on the thin film covering the
stalagmite occurs during a short time called ti, which can be approximated as 2Rd/ud, where Rd

designates the drop radius and ud its falling velocity after the drop has fallen over a distance z
(see Fig. 1.13). Without even calculating precisely this timescale, it appears quite clear that the
impact time should be shorter than one second. As it will be demonstrated in Chs. III and IV, ti
actually is of the order of a few milliseconds. The drainage timescale, on the other hand, is more
difficult to evaluate, and so is the ion precipitation timescale. We denote by td the typical timescale
needed for the ions located in the film to spread out over a given distance. For instance, we could
define the drainage timescale as the time needed for the ions to travel a distance corresponding
to the radius of the stalagmite top surface. Similarly, the precipitation timescale can be seen as
corresponding to the time needed for a certain quantity of ions to have fully precipitated into
calcite, cancelling the excess ion concentration in the film. We denote this timescale tp. Because
the hygrometry in most caves is relatively high (see Ch. V for more details), the evaporation can be
disregarded at first order. The diffusion time of ions in solution can be approximated by ℓ2/D, with
ℓ the characteristic length of the direction considered, andD ∼ 10−9 m2 s−1 themolecular diffusion
coefficient order of magnitude of most species found in solution in caves [45]. The diffusion over a
length scale of the order of the film thickness of about 100 µm [20, 70, 133] yields a diffusion time
of approximately 10 s. On the other hand, for ions to cover a horizontal length of the order of a few
centimetres, e.g., if a distance of about 5 cm is taken over the stalagmite, this time becomes of the
order of three weeks. Hence, horizontal diffusion may be safely neglected. Vertical diffusion will
be discussed in the chapters focusing on drainage and precipitation as the three timescales have
the potential to be of the same order of magnitude. Additionally, given the eventuality that some
timescales might be of the same order, we expect several regimes of stalagmite growth to arise
when comparing them. Hence, among these processes, we note that the dripping period t0, the
drainage timescale td and precipitation timescale tp, in particular, should be compared. We gather
all these timescales in Tab. 1.0, along with other timescales that will be discussed throughout the
following chapters and that we will not comment for now. The auxiliary sheet also comprises the
general nomenclature and summarises the timescales presented here (see beginning of the chapter,
p. xxii, for details).

The outline of the thesis follows the aforementioned trajectory of the drop linearly, and can be
read in Fig. 1.13. Aiming at getting a better comprehension of processes involving drop impacts
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and film thickness variability in caves, we directly conducted exper-
imental measurements in caves when possible. We therefore start
by presenting the field campaigns that have been carried out in the
scope of this work in Ch. II. The next chapter, Ch. III, focuses on
the first part of the drop journey in cave, i.e., its free fall from the
stalactite tip until the drop reaches the underlying stalagmite top.
We then investigate the mixing occurring between the impacting
drop and the film lying on the stalagmite at impact in Ch. IV. The
gravity-driven drainage of the film is the subject covered in Ch. V.
Measurements from caves were obtained for Chs. III and V,
while in Ch. IV, we conducted lab experiments. In both
Chs. III and V, the experimental measurements are also com-
pleted by physical and numerical modelling of the physical
processes studied in these chapters. Finally, in Ch. VI, we
propose to model stalagmite growth by combining the ion
precipitation process to the results obtained from the previ-
ous chapter on drainage and the mixing results from Ch. IV.
We further add results from Ch. III at the end of Ch. VI.
Conclusions and perspectives are then presented in Chs. VII
and VIII, respectively. The main research chapters are there-
fore Chs. III, IV, V and VI, of which we detail the respective
contributions hereafter.

In Ch. III, we reveal the key features of drops impacting
thin films lying on stalagmites through high-speed imaging,
which had until then not been explored. We also propose
a theoretical model to describe the trajectory of the freely
falling drops, which allows us to compute both the termi-
nal velocity and position of the drops as they impact the sta-
lagmite. We are able to validate this modelling with the ex-
perimental data collected from the analysis of the high-speed
movies. In this chapter, we also measure the average radius
of stalagmites from various caves, and show that this radius
is set by the distribution of the impact point position of the
drops. We obtain a good correlation between the results of
our modelling and the radii measurements.

In Ch. IV, we conduct lab experiments of drops impacting
thin films in a similar range of thicknesses as in caves, using
once again high-speed imaging. We infer
the mixing occurring between the drop
and the film upon impact from the
videos, by using a colorimetry algo-
rithm that we developed. The total
ejected volume at impact, as well as the
proportion of the drop entering the film at
impact, can also be measured. We are thus
able to solve one of the issues arising
in the previously existing models of
stalagmite growth (see Sec. 1.4).
The mixing occurring between
the drop and the film is indeed

Figure 1.13: Structure of
the thesis according to the

evolution of a drop in a
cave. The studied

stalagmites are described
in Ch. II. Drop detachment

and free fall are part of
Ch. III. The mixing

occurring during the
impact of a drop on a thin

film is treated in Ch. IV.
The gravity-induced

drainage of this thin film is
extensively discussed in

Ch. V. Finally, a model of
stalagmite growth is

presented in Ch. VI. The
timescales defined in the
picture can be found in

Tab. 1.0.
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an important parameter in assessing the quantity of ions actually ending up in the solution in the
film on top of the stalagmite and subsequently precipitating. In this chapter, we also show that
stalagmites presenting a hollow centre and having a concave shape do not result from the splash
of drops at impact, to which their particular shape has been attributed [84].

In Ch. V, we once again collect measurements in caves, this time to estimate the evolution in
time and space of the thickness of the residual film lying on stalagmites, that we complete by lab
measurements conducted on an actual stalagmite. A physical model of the film drainage is also
obtained, allowing us to conclude that the drainage is either driven by the film thickness gradients
on very flattened or even horizontal stalagmite surfaces, or that it depends on the stalagmite in-
clination in the case of convex stalagmites. Both these stalagmite shapes can be witnessed in the
examples of Fig. 2.1 from Ch. II (see also Figs. 1.5 and 1.11 (b)). The film drainage has been omitted
in previous stalagmite growth models, and the film thickness was considered to remain constant
over the entire stalagmite. We show that this is not the case in Ch. V, and that, even over a time
average of drop impacts, assuming the film as having a constant thickness at first order might not
be a valid approximation. The analysis from Baker et al. [20], e.g., could be improved in the light of
the drainage modelling proposed in Ch. V.

Finally, in Ch. VI, we include elements from Chs. IV and V, along with ion precipitation, into
a coupled system of equations describing the growth of stalagmites over time and space. Solving
this system numerically allows observing the response of the stalagmite shape to entry parameter
variations. In particular, in this chapter, we show that the stalagmite growth, under constant con-
ditions, is mostly influenced by the ion drop content which may further precipitate, but also by
the comparison between two timescale ratios: the ratio of the dripping period t0 over the drainage
timescale td, and the ratio of the drainage timescale td and the ion precipitation timescale tp. Hence,
we add an additional parameter to the previously existingmodels of stalagmite growthdescribed in
Sec. 1.4, which only compared the dripping period of the drops to the ion precipitation timescale.

Variable Symbol Value/Range Chapter

dripping period t0 [0.1 ; 107]s III, IV, V and VI

drop impact ti [1 ; 5]ms IV

capillary effects tc 15ms IV

drainage td 12s V

precipitation tp [20 ; 2 × 104]s VI

viscous vertical diffusion tν [5 ; 280]ms IV

viscous horizontal diffusion tν,d 6 s IV

molecular vertical diffusion t↓ 10 s IV, V and VI

molecular horizontal diffusion t→ ∼ days IV, V and VI

Table 1.0: Summary of the imescales relative to all the physical processes accompanying the impact of a drop in
a cave: physical process associated with the timescale, symbol used, order of magnitude and related chapter(s). The
processes include the dripping of the drop, t0, drop impact, ti, capillary effects, tc, gravity-driven drainage of the film, td,
precipitation of the ions in solution, tp, viscous vertical and horizontal diffusion, tν and tν,d, molecular vertical and
horizontal diffusion, t↓ and t→. Some of the timescales presented in this table refer to ideas and analyses conveyed
in the subsequent chapters. The summary of the timescales can also be found in Tab. 1.2 from the auxiliary sheet (see
beginning of the chapter, p. xxii, for details).
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Finally, it should be emphasized that the work conducted in this thesis also provides novel
insight into several drop physics-related phenomena in situations that do not only appear in caves.
For instance, the mixing between a drop and a thin film could have implications in, e.g., the rain-
induced dispersal of pathogens between neighbouring plants [144, 145]. The drainage of a thin
film is also involved in other geophysical processes than stalagmite growth, e.g., in sedimentary
flows [167]. Butmore importantly, in the general context of palaeoclimate reconstruction, we hope
that getting a better understanding of the interaction between the drop impacts, the film evolution
and the ion precipitation will allow refining stalagmite growth modelling and help decipher the
origins of isotope fractionation in stalagmite samples analysed in the future. This work has also
led to the publication of peer-reviewed articles that are listed in p. 281.
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STALAGMITES

Because we are concerned with the fluid dynamics-related processes involved in stalagmite growth, we
visited several caves in order to take measurements directly on stalagmites. We describe hereafter the
stalagmites used for the studies conducted in Chs. III and V, respectively, with some overlaps existing
between the two datasets. We only focus here on the physical features of the stalagmites that should
directly affect the aspect of the laminae formed afterward, i.e., their average sizes and shapes. In each
case, the experimental techniques used and their potential drawbacks are discussed in the corresponding
Chapters.

1. Generalities
As aforementioned, the laminae formed throughout the entire life of a stalagmite, only revealed
in the stalagmite cross-sectional cut, have different features that possibly change over time. The
successive laminae usually present seasonal or yearly colour gradients thatmay be attributed to the
dripping period variability of the drops feeding the stalagmite [96, 97]. The colour changes usually
help distinguish the laminae from one another [231]. But the outline of the successive laminae
can also differ over time (Fig. 1.11). Tan et al. [211] further pointed out that the thickness of a
particular lamina could also vary depending on its horizontal position (Fig. 1.11 (a)), while Duan
et al. [72] showed that the porosity, or calcite grain density distribution, could change throughout a
particular lamina (Figs. 1.11 (d) and (e)). More particularly, the stalagmite in Fig. 1.11 (b) presented
laminae with curvatures oriented both upward and downward, shifting from one another as time
went by. We can qualify the outline of these laminae as either flattened out, convex or concave-
looking. From there, we can further classify the stalagmites in the same manner based on the sole
appearance of their summit, without considering the shapes of the former laminae lying below the
current visible profile of each stalagmite.

Examples of stalagmites with these typical shapes are shown in Fig. 2.1. Flat stalagmites such
as the one in Fig. 2.1 (b) have a very horizontal and smooth summit. Regarding the two other types,
we refer to convex and concave shapes in a similarmanner as in the case of polygons, i.e., a convex-
looking stalagmite has an upward curved profile such that all points of the surface can be connected
without getting out of the stalagmite, as seen in Fig. 2.1 (a). On the other hand, concave stalagmites
such as the one in Figs. 2.1 (c) i and ii have a dimpled summit that can be filled with water with a
sufficient amount of drops. An explanation advanced in some cases regarding the apparition of
this dimple is the splash that would only occur during certain drop impacts [20]. From there, the
resulting ion deposition would only cover the outer edge of the stalagmite top surface, and not
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the centre. But given the large falling heights of the drops and the thin residual films commonly
found on top of stalagmites, in most cases splash is promoted during drop impact in caves [227]. In
the same manner, if the variability in the dripping period of the drops has been related to changes
in the stalagmite average width [133], no relevant parameter can explain, for instance, why some
stalagmites have a flat top surface while some others have an almost rounded top, as it can be seen
by comparing Figs. 2.1 (a) and (b).
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Figure 2.1: Examples of stalagmite shapes found in caves and corresponding graphical representations. The average
top radius rsm is drawn in white in each picture, starting from the stalagmite axis of symmetry represented by a dashed
line (see Sec. 3.1). In each picture, the axes (r, η) relate to Eq. (2.1) and show the position from which we measured Ψ
and S in each case. The domain limit of 5 cm is also shown in (a) (see Sec. 3.2). The scale bars are 2 cm, except in (c) ii
where it is 5 cm. (a) Clam09 has a convex profile with an average top radius rsm = 2.4 cm. The profile of Clam09
can be represented as in (d) i with Ψ = −192 and S = 2 × 10−4. (b) Clam10 has a flat top of radius rsm = 2.8 cm,
with Ψ = −0.8 and S = 1.5. Its graphical representation is shown in (d) ii. (c) Org08 presents a central dimple filled
with water, which can be approximated as a concave profile. The height of the dimple is about 1 cm. The characteristic
radius rsm = 2.5 cm corresponds to the average of the outer and inner radii of the rim surrounding the dimple, as
indicated by the arrows around rsm in the profile viewof (c) i. In (c) ii, a top viewofOrg08 showshow imprecise it could
be to define a radius rsm corresponding to the mid-line of the outer rim contouring the dimple. The corresponding
shape is represented in (d) iii, withΨ = 26 and S = 0.6. (d)Graphical representation of the profiles defined byEq. (2.1).

Both Chs. III and V are articulated around data collected directly from cave environments.
In the next Section, we present the field campaigns that we conducted in order to gather these
measurements, constituted of high-speed movies of drop impacts, photographs of stalagmites and
thickness measurements of the residual film lying on top of the stalagmites. In Sec. 3, we describe
the physical aspects of the stalagmites from our datasets. In Subsec. 3.1, we only focus on the aver-
age size of the stalagmites, while in Subsec. 3.2, we consider in more detail the large variability dis-
played by stalagmite shapes. To conclude this Chapter, we compile some important measurements
in two tables, one relative to Ch. III (Tab. 2.1), the other relative to Ch. V (Tab. 2.2). A condensed
version of these two tables is also provided in the auxiliary sheet.
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2. In situ measurements
In total, three field measurement campaigns were conducted in karstic caves located in Southern
France. First, inMarch 2015 in Aven d’Orgnac1, where some preliminarymeasurements to Ch. III,
were made. Then, in June 2016, a more systematic and larger dataset, which is used in Ch. III, was
obtained in Aven d’Orgnac, Clamouse cave and La Salamandre cave by T. Gilet, S. Lejeune, J.-C.
Maréchal and M. Maréchal [172]. A few complementary pictures were also provided by F. Bourges
from Bétharram, Gargas and Niaux caves and Gouffre d’Esparros. Finally, in March 2022, addi-
tional measurements relative to the study conducted in Ch. V were taken in Aven d’Orgnac and
Clamouse cave by J. Parmentier and K. Bulthuis. The Aven d’Orgnac, Clamouse cave and La Sala-
mandre cave are located in Ardèche, Hérault and Gard, respectively, which are neighbouring de-
partments. The other four caves are all located close to the Pyrenees.

Before diving into the description of our measurements, we recall that measurements relative
to Ch. III are reported in Tab. 2.1, and those relative to Ch. V in Tab. 2.2. The following items
are common to both tables: we specify the cave in which the measurements relative to a particular
stalagmite were taken, as well as the position of the
stalagmite based on the most common name at-
tributed to the rooms and distinctive concretions
from each visited cave. We attributed a name and
number to each stalagmite based on their cave of
origin, the number having no particular meaning.
For instance, the first stalagmite on which we con-
ducted measurements in Clamouse cave is labelled
Clam01. Several stalagmites were common to both
datasets, hencewe kept the same numbering in both
Tabs. 2.1 and 2.2. We also attributed a specific
colour and symbol to each stalagmite from Tab. 2.1,
both of which will be reported in the graphs rela-
tive to Ch. III. We proceeded in the same manner
for Tab. 2.2 and Ch. V. It should be noted that, if
symbols are simply there to identify the stalagmites,
the colours have a particular meaning and differ for
both Chs. III and V. In the case of Ch. III, the colour
simply indicates the cave of origin while in Ch. V,
the colour is related to the shape of the stalagmite.

All the visited caves present a large variability
of ceiling heights, numerous types of active and
inactive concretions and other peculiarities such
as the ones presented in Sec. 1.2. A remark-
able concretion is the Pomme de Pin stalagmite
from Salle de Joly in Aven d’Orgnac, that we
illustrate in Fig. 2.2. Although this iconic sta-
lagmite is 11m tall, it is still smaller than the
25m to 30m ceiling of Salle de Joly. Due to its
height, we could unfortunately not include this

Figure 2.2: ThemajesticPomme de Pin stalagmite
from Aven d’Orgnac, with a total height of 11m.
Courtesy of P. Crochet [58].

1The aperture visible in the ceiling of Fig. 2.2 is what gives it its “Aven” denomination, in opposition to caves having
side natural entrances or no natural entrance at all.
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stalagmite into our datasets. Nevertheless, during the first two campaigns from 2015 and 2016,
a total of 65 shorter stalagmites were used to conduct measurements (at most 2m tall). In this
case, we were interested in assessing whether the trajectories followed by the drops landing on
these stalagmites had any effect on subsequent stalagmite growth. Hence, we measured the falling
heights of these drops and took still pictures of the stalagmites so as to be able to measure their
average top radius rsm, which was done according to Sec. 3.1. Out of this dataset, we also recorded
high-speed videos of drop impacts on 14 of these stalagmites. More information regarding the
analysis of these movies is provided in Ch. III. The measurements relative to these 14 stalagmites
are the measurements reported in Tab. 2.1. The falling height z was measured for all individuals
by laser telemetry. For large falling heights (up to 26m), uncertainty in the measurements might
reach 50 cm, owing to the very irregular ceiling, and the difficulty to precisely point at the emitting
stalactite. However, because this uncertainty remains smaller than 5%, we did not report it in the
tables nor in the graphs. In addition, we timed the estimated dripping period t0 of the drops falling
on each stalagmite. We do not report the measurements relative to the stalagmites for which we
only had still pictures as they do not appear anywhere but in one graph from Ch. III. The raw data
are nevertheless available in the Supplemental Material3of Parmentier et al. [172].

During the 2022 field measurement campaign, our goal was to assess the thickness variations
of the residual film lying on top of the stalagmite in response to stalagmite shapes and other param-
eters, such as the dripping period of the drops. We thusmeasured the film thickness as a function of
time in a precise location on a total of 14 different stalagmites, some of which having already been
considered in the study of Ch. III. Additionally, a stalagmite from Aven d’Orgnac was used for the
labmeasurements, to whichwe refer as Lab01. We either stopped the inflow of the drops andmea-
sured the response of the film thickness afterward, or, starting from a dry stalagmite, we measured
the progressive filling of the film after a certain amount of drops had fallen onto the stalagmite. The
measurements were performed using two techniques thoroughly described in Ch. V. Additionally,
we collected information on the surroundings of the selected stalagmites: dripping period t0 and
falling height z of the drops, and temperature T and relative humidity RH in a close vicinity of the
stalagmite. The dripping period of t0 corresponds to the average± s.d. made over at least 30 mea-
surements for dripping periods t0 ≲ 2min, but only over about 10 measurements for t0 > 2min.
Temperature and relative humidity measurements were obtained thanks to a hygro-thermometer.
Getting a significant amount of film thickness measurements required at least 1 h to 2 h, hence RH
and T for a given stalagmite correspond to the average ± s.d. of about 15 measurements taken
over this time span. We also took photographs of the stalagmites from different angles (side and
top views) in order to describe their physical aspects, this time according to Sec. 3.2. From these
photographs, we measured the shape and scale factor Ψ and S, respectively, associated with each
stalagmite. All the measurements relative to this last field trip are reported in Tab. 2.2. We also
report in Tab. 2.2 the stalagmite radius rsm obtained according to Sec. 3.1, in addition to Ψ and S.
The type of measurements that we were able to take is indicated as well, i.e., thickness measure-
ments during the filling of the film and/or during sole drainage using either the mass-based or
distance-based technique (see Ch. V). In the particular case of Lab01, we only used the laser sen-
sor (see Ch. V). Finally, we note that the parameter tdrain0 comes from a fit on the drainage curves
obtained for each stalagmite and will be detailed in Ch. V.

2Available in the Orbi entry relative to this manuscript, or the Royal Society’s website. See PDF version for direct
hyperlinks.
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3. Stalagmite geometry
In both Chs. III and V, we will include the physical aspect of actual stalagmites into our measure-
ments. For the sake of simplicity, we limit our study to axisymmetric, candlestick-like stalagmites.
We tried to select the studied stalagmites according to this criterion, i.e., no stalagmite from the
datasets should have been exposed to former, now inactive drips that may have enlarged its overall
size and could affect themeasurements. We also only selected stalagmites that were active and only
fed by one drip at the time of the measurement campaign. Our analysis of the drop free fall from
Ch. III will mostly be concerned with the position at which the drops impact the stalagmite, such
that there is no need to consider the geometrical variations of the studied stalagmites but only their
average size. The drainage of the film, however, could likely be influenced by the local slope of the
stalagmite top surface, hence we will need a more detailed description of the studied stalagmite
shapes in Ch. V.

3.1 Average top radius
In a first approach, we only focus on the average size of the stalagmites, without considering the
intricate details of their geometry. Nevertheless, we still need to acknowledge that stalagmites
do not all look the same. We consider the three aforementioned profiles illustrated in Fig. 2.1:
flat, convex and concave. Defining a characteristic radius for flat and concave stalagmite is rather
straightforward. Flat stalagmites indeed exhibit a horizontal and smooth summit with an easily
identifiable radius rsm. Concave stalagmites can also be characterized by a radius rsm corresponding
to the size of their dimple. We measure both the outer and inner radii surrounding the rim around
the dimple and take the average of these two measurements as our average top radius rsm.

In the case of convex stalagmites, attempting to proceed in the same manner can prove ar-
bitrary. However, we note that, among our dataset, the top part of convex stalagmites is often
surrounded by an outer wall with a more or less constant angle, as illustrated by the stalagmite
from Fig. 2.1 (a) and in Fig. 2.3 below. We tried to measure the radius corresponding to the tran-
sition between the very curved top part of the stalagmite and this uniformly inclined wall. This
transition usually occurs about 1 cm to 3 cm below the apex of the stalagmite. Hence, this radius
corresponds to the top of convex stalagmites and should be more or less equivalent to our two
other characteristic radius definitions (flat and concave). In Fig. 2.3, we illustrate the average radii
of the three stalagmite types schematically. In practice, we used the average of several measure-
ments and, whenever possible, measured the radius from different angles (side and top view) to
average out the small irregularities at the stalagmite surface.

2rsm2rsm2rsm

Convex Flat Concave

Figure 2.3: Schematic radius rsm for each stalagmite type. The purple line over the convex stalagmite schematic shows
the more or less uniform outer wall inclination often displayed by these stalagmites.

3.2 Shape variability formalism
Because all the studied stalagmites can be considered as axisymmetric, it is possible to describe
their shape as a function of the sole radial coordinate r (in cm) taken from the stalagmite axis, as
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shown in Fig. 2.1 for each stalagmite type. We designate by η the stalagmite height (in cm) starting
from either the centre of the apex of convex and flat stalagmites, or from the centre of the dimple of
concave stalagmites, as shown in Fig. 2.1. A simple representation for concave stalagmites, i.e., the
most complex of the precited shapes, is to assimilate them to fourth-order polynomialswith noodd
powers in order to reproduce the change in concavity between the centre and the outer wall of the
stalagmite. By adjusting the coefficients of such polynomials, we could also easily represent convex
and flat stalagmite profiles. We consider all the stalagmite profiles over a unique domain limit
starting from the stalagmite axis of symmetry illustrated in Fig. 2.1, i.e., we only look at them for
|r| ≤ 5 cm. Few stalagmites from our datasets present an apex or top surface with a larger radius
(seeTab. 2.2). ForClam09 shown inFig. 2.1 (a), e.g., wemeasure η = −5.23 cmat a radius r = 5 cm.
Hence, it is a priori not necessary to take into account the entire stalagmite outer wall. Moreover,
some stalagmites may be really small and not even reach a radius of 5 cm at their basis, such as, e.g.
Clam10 which is presented in Fig. 2.1 (b). Taking a too large domain size would thus not allow to
capture its shape very precisely. We will further verify that restricting ourselves to this truncated
domain is an adequate assumption in Ch. V.

-25 -20 -15 -10 -5 -1 0 1 5 10 15 20 25

−1000
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−100
0

100
S = 1, R′ = 5

Ψ

η
′

convex (Ψ < 0) concave (Ψ > 0)

0 R′

perf. horiz. (S = 0)

Figure 2.4: Examples of shapes obtained by Eq. (2.1) for variable Ψ, at a fixed value of S = 1. The graph shows the
nondimensional stalagmite height η′ produced by the equation on a domain of radius R′ = 5. The colour indicates
the general shape as described per Fig. 2.1: more convex shapes are drawn in red and more concave ones in blue.
Flat stalagmites are associated with in-between colours for |Ψ| ≲ 1. Perfectly horizontal stalagmites correspond to
the green line for S = 0.

In Ch. V, we will also cover into more detail the decoupling in the characteristic vertical and
horizontal length scales that we use to nondimensionalize our variables. In order to describe the
stalagmites in a uniformmanner, wenondimensionalize the stalagmite heightη byusing the typical
film thickness order of magnitude of 100 µm. For the radial coordinate r, we use a length of 1 cm.
Hence, we now write as η′ = η/100 µm and r′ = r/1 cm our nondimensional coordinates. Using
the following fourth-order polynomial:

η′(r′ ; S,Ψ) = S (r′)2
(
Ψ− (r′)2

)
, r′ ≤ R′ , S > 0 , (2.1)

we describe all three shapes by simply tuning what we denote (i) the shape parameter Ψ, and (ii)
the scale S, a coefficient related to the size of the stalagmite. The radius R = 5 cm represents the
truncation of the physical domain, corresponding to a nondimensional radiusR′ = 5. A negativeΨ
yields a parabolic shape while a positiveΨ induces a small protuberance at a distance r′ =

√
2Ψ/2
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from the centre, representative of the change in concavity. We are thus able to reproduce the shape
of both convex and concave stalagmites. Using S = 0 would lead to a perfectly horizontal profile,
although in practice S → 0 suffices since the case S = 0 induces an indeterminate stalagmite
size. In Fig. 2.4, we show examples of the shapes obtained with Eq. (2.1) for variable Ψ, at a given
scale S = 1. We represent 12 profiles η′(r′) produced by varyingΨ from -25 to 25. We further note
in Fig. 2.4 that small values of |Ψ| yield profiles with a very flattened top. We thus consider our
stalagmites as flat if they correspond to |Ψ| ≤ 1 without considering their sign. On the other hand,
we can consider our stalagmites to be convex, resp. concave, wheneverΨ < −1, resp. Ψ > 1.

In order to find the values of Ψ and S that correspond to the stalagmites from our dataset,
we use side photographs that we took of each stalagmite from various angles. We then contour
the stalagmite outline to gather n pairs of dimensional data points (̂r, η̂) (in cm), with the axes
positioned as illustrated in Fig. 2.1 for each stalagmite type. We nondimensionalize our results as
described above, with 100 µm for η̂ and 1 cm for r̂, before proceeding to adjust Eq. (2.1). We can
express the relation between our data points as

η̂i ≈ SΨ r̂2i − Sr̂4i , 0 ≤ i < n− 1 . (2.2)

Next, we define the following vector of experimental data points: η =
[
η̂0 . . . η̂n−1

]
∈ R(1×n) ,

and the design matrix

R =

[
r̂20 . . . r̂2n−1
r̂40 . . . r̂4n−1

]
∈ R(2×n) .

We designate by β =
[
SΨ −S

]
∈ R(1×2) the parameter vector. In the least square sense, we find

by means of the normal equations that this parameter vector is given by

β = η RT (RRT)−1
. (2.3)

In Figs. 2.1 (d) i-iii, we additionally show the general representation of the stalagmite profiles from
Figs. 2.1 (a-c), respectively, i.e., Eq. (2.1). We note that Clam09 has a very large negative shape fac-
tor Ψ = −192 ≪ −1, associated with a small scale S = 10−4. By contrast, Org08 is concave and
corresponds to a shape factor Ψ = 26 ≫ 1, with a scaling S = 0.6 close to unity. Regarding
Clam10, we obtainΨ = −0.8, as expected for a flat stalagmite, for a scalingΨ = 1.5 close to unity
as well. To be more precise, we could not consider stalagmites as axisymmetric and take into ac-
count all the little bumps visible at their surface. Nevertheless, they all present both variable sizes
and shapes, as indicated by the large span of Ψ and S values, and not making these assumptions
would increase the number of parameters describing the stalagmite profiles. With the domain of
fixed radius R = 5 cm (or R′ = 5) over which we consider the stalagmites, and with the rela-
tive simplicity of the equations presented in this section, we are now able to easily describe the
stalagmites from our dataset with a common formalism.
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Cave Room / Concr. Name Sb. Nb. videos Date z [m] h [µm] rsm [cm]

Clamouse Salle à Manger Clam01 50 06.16.16 8.70 50 4.5

Cimetière Clam02 50 06.16.16 1.20 125 2.7

Cimetière Clam03 10 06.16.16 0.29 90 2.4

Below Cimetière Clam04 49 06.16.16 15.60 60 5.7

Orgnac Tour de Pise (SJ) Org01 56 03.24.15 – 06.13.16 23.80 255 6.7

Pomme de Pin (SJ) Org02 27 03.25.15 – 06.13.16 20.10 130 5.0

Near Salle Glory (SJ) Org03 50 06.14.16 2.55 300 3.7

Near Salle Petit (SJ) Org04 48 06.14.16 3.85 170 2.8

Blocs Cyclopéens (SJ) Org05 50 06.14.16 21.50 90 6.8

Cône d’Éboulis (SJ) Org06 42 06.14.16 25.20 60 8.5

Salle Glory Org07 7 03.25.15 4.50 – 3.7

La Salamandre Pomme de Pin Sal01 43 06.15.16 25.60 40 6.7

Cierges Sal02 50 06.15.16 21.60 60 6.9

Grands Massifs Sal03 50 06.15.16 16.00 110 5.8

Table 2.1: Cavemeasurements database: high-speedmovies (Ch. III). From left to right – Cave in which high-speed videos of drop impacts on stalagmites were recorded. – Most
usual name of the room/closest neighbouring concretion where the stalagmite is found (SJ stands for Salle Joly). – Name that we attributed to the stalagmite. – Symbol associated
with each stalagmite in the graphs presented in Ch. III (the colours indicate the corresponding cave). – Number of high-speed videos analyzed for each filmed stalagmite. – Date(s)
at which videos were recorded. – Falling height z between the top of the stalagmite and the tip of its corresponding stalactite. – Residual film thickness h on top of the stalagmites. –
Stalagmite average top radius rsm estimated as defined in Sec. 3.1.
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Cave Room/Concr. Name Type z [m] t000 [s] RH [%] T [°C] Sb. rsm [cm] Ψ S tdrain000 [s] Meas.

Clamouse Cimetière Clam02 1.2 31.4± 3.6 91.8± 0.8 15.7± 0.1 2.7± 0.3 1.2 0.04 16.9

Cimetière Clam05 2 53.3± 0.5 91.1± 1.3 15.2± 0.1 2.9± 0.6 2 0.5 19.5

Below Cimetière Clam06 2.9 4.9± 0.4 90.0± 4.7 16.4± 0.1 2.5± 0.2 -168 0.05 –

Salle à Manger Clam07 7.6 3.0± 0.9 95.8± 1.2 16.0± 0.1 9.4± 0.5 -375 10−4 7.8

Salle à Manger Clam08 8.2 59.6± 1.3 86.5± 0.8 17.1± 0.1 6.2± 0.3 -0.6 1 –

Near Excentriques Clam09 0.05 1.1± 0.0 92.0± 1.0 16.7± 0.1 2.9± 0.1 -192 2 × 10−4 14.1

Near Couloir Blanc Clam10 6.4 767.1± 26.3 91.8± 0.4 15.8± 0.1 2.0± 0.2 -0.8 1.5 247

Orgnac Pomme de Pin (SJ) Org02 20.1 10.5± 0.5 92.1± 0.6 13.1± 0.1 5.0± 0.9 0.5 2 × 10−3 –

Near Salle Glory (SJ) Org03 2.6 6.5± 0.5 78.6± 0.5 14.7± 0.1 3.7± 0.8 21.5 0.8 6.9

Near Salle Petit (SJ) Org04 3.9 88.3± 3.5 88.3± 1.6 12.3± 0.2 2.8± 0.2 12 1.4 5.6

Salle Glory Org07 4.7 201.8± 2.4 94.2± 0.8 12.3± 0.1 3.7± 0.4 16 5 –

Near Salle Petit (SJ) Org08 5.6 88.3± 1.8 88.4± 1.4 12.3± 0.2 2.5± 0.2 26 0.6 100

Pomme de Pin (SJ) Org09 22.7 2.9± 0.9 95.3± 0.5 11.7± 0.1 7.0± 0.2 -88 2 × 10−4 16.7

Cône d’Éboulis (SJ) Org10 25.5 6.2± 0.4 93.4± 0.8 12.4± 0.5 7.6± 0.4 -9.7 5 × 10−3 22.7

Orgnac µfluidics Lab Lab01 0.05 – – – 7.5± 0.6 -120 2 × 10−3 –

Table 2.2: Cave measurements database: drainage (Ch. V). From left to right – Cave from which the stalagmite comes. – Most usual name of the room/closest neighbouring
concretion where the stalagmite is found (SJ stands for Salle Joly). – Name that we attributed to the stalagmite. – Estimated shape of the stalagmite profile (flat, convex, concave). –
Falling height of the drops impacting the stalagmite, z. –Dripping period of the drops, t0. – Air relative humidity in the vicinity of the stalagmite averagedduring themeasurements, RH.
–Air temperature in the vicinity of the stalagmite averaged during themeasurements,T. – Symbol associatedwith each stalagmite in the graphs presented inCh. V (the colours indicate
the corresponding shape, except for the lab stalagmite which is identified by the orange colour). – Stalagmite average radius estimated as defined in Sec. 3.1. – Shape parameter Ψ of
the stalagmite profile, defined by Eq. (2.1). – Scale S of the stalagmite profile, defined by Eq. (2.1). – Estimated time of the first film thickness measurement, tdrain0 , used with Eq. (5.65),
as described in Sec. 5.4.3. – Type ofmeasurements takenwith the stalagmite: filling and/or drainage , using either the weighing technique , the dial gauge or the optical sensor .
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In Ch. III (see next page), we present findings coming mostly from high-
speed imaging of drop impacts on stalagmites recorded in caves, completed
by a few lab experiments. The methodology is reviewed in Sec. 1.

Observations from caves regarding the drop detachment from the stalactite
tip and the impact on the stalagmite top are summarised in Sec. 2. A note-
worthy feature of drops impacting stalagmites in caves is the non-negligible
scattering exhibited in the impact point position of these drops. We pos-
tulate that the scattering comes from the drops deviating from their initial
vertical trajectory during their fall. We show that this deviation has no ex-
ternal cause and must, therefore, be self-induced.

In Sec. 3, we model the drop free fall into the air by a simple application of
Newton’s second law. Theparticularity of ourmodelling lies in the inclusion
of a randomly-oriented lift component in the aerodynamic force acting on
the drop. Two Langevin-like relations describe the position and velocity of
the drop in Subsec. 3.2, allowing us to characterise the scattering in the drop
impact point position as a function of the falling height of the drop.

In Sec. 4, we show that there exists a relation between the scattering ob-
served in the drop impact point position and the average width of stalag-
mites measured in the previous chapter and reported in Tab. 2.1.

• Highlights (Ch. III) •
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DROP FREE FALL

As aforementioned, drops have been assumed to always land on the apex of the stalagmite in models
describing stalagmite growth [20, 189, 190]. As we will show in this chapter, this is not always the case.
We thus investigate how the aerodynamics of falling drops could actually set some constraints on the
average stalagmite width. We report high-speed imaging measurements of radius, velocity and impact
point position of drops falling on stalagmites from several different caves, as well as in a more controlled
lab setting. We then show that these measurements are correlated to the height of fall of the drops and
we propose a theoretical model to rationalise this fact. We finally relate the distribution of the drop
impact point position to the average width of stalagmites, that we measured according to Ch. II. Further
discussion regarding the implications of our findings on modelling stalagmite growth are discussed in the
subsequent chapters.

1. Imaging from caves

To investigate and attempt to model the free fall of drops in caves, what better starting point is
there than direct field observations of drops falling on actual stalagmites? Given the length and
time scales at play though, monitoring closely the entire fall of a drop in a cave would prove tech-
nically complicated. Drops are indeed millimetric objects falling over possibly several metres for
less than a few seconds. We recorded instead high-speed side view movies of (i) drops dripping
from2 stalactites, and (ii) drops impacting various stalagmites, using a PhantomMiroM110 colour
camera (5400 fps). A total of 582 high-speed movies on 14 stalagmites were recorded, then anal-
ysed using image processing tools. Still side and top view photographs of 65 stalagmites were also
taken, including the ones for which high-speed movies are available. The stalagmites come from
7 different caves from the South of France and are thoroughly described in Ch. II. In particular,
the stalagmites for which high-speed movies were recorded are Clam01–Clam04 from the Cla-
mouse cave, Org01–Org07 from the Aven d’Orgnac and Sal01–Sal03 from the Salamandre cave
(see Tab. 2.1). The high-speed movies were recorded by setting the tripod holding the camera in
place next to the stalagmite (or stalactite tip) such that the entire stalagmite top part and first few
centimetres of the stalagmite body were visible, with minimum bank angle. Front lighting was
ensured by a powerful LED lamp while the recording of the movies was started manually through
a computer. Hence, all videos relative to one stalagmite were obtained in identical conditions. As
explained in Ch. II, stalagmites used for taking measurements relative to Chs. III and V can all
be considered as axisymmetric and related to only one active drip. Since both the drops and the
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stalactite from which they originate are relatively axisymmetric too, we may assume that the two-
dimensional distribution of the horizontal impact point position of the drops is also axisymmetric.
Hence, only looking at the drop impacts in one vertical plane should be enough to characterise the
entire distribution, as long as there is a sufficient amount of drop impacts recorded per stalagmite.
On average, 42 videos were taken for each stalagmite (details are provided in Tab. 2.1). The main
sources of error in the measurements resulting from image analysis in these videos should thus be
the poorly lit cave environment and the resolution of the videos (640 × 480 px for a field of view
of roughly 15× 20 cm2).

Additional measurements made for all individual stalagmites include the falling height of the
drops z and stalagmite average top radius rsm. Although stalagmites can be classified according to
their shape (flat, convex or concave), only the averagewidth of the stalagmiteswill be considered in
the present chapter. Examples are provided in Sec. 3.1 fromCh. II for each type of stalagmite shape.
Regarding the subset of stalagmites for which high-speed videos were recorded, we also measured
in each video the drop radius Rd and vertical impact velocity ud. The drop vertical and horizontal
radii were measured in each frame (from∼ 30 to 80 frames depending on the stalagmite and drop
velocity), then the average from all frames was taken for each video. As shown in Fig. 3.5 (b) from
Sec. 3.1, the field of view in the movies only shows the last ∼ 10 cm of the drop fall. The impact
velocity ud was obtained by taking the difference in vertical positions of the drop in the first frame
in which it appears, and in the last frame before it impacts the stalagmite, then by dividing this
distance by the time spent between both frames.

Finally, we also measured the horizontal impact point dispersal in the position of the drops.
Since the analysed stalagmites can all be viewed as axisymmetric, we simply measured the hori-
zontal distance x between the axis of symmetry of the stalagmite top and the impact position of
each drop, as shown in Fig. 3.4 (a) from Sec. 2.2. An example of resulting distribution of x is shown
in Fig. 3.4 (b) for Sal01. The distribution of x can be approximated not only as axisymmetric but
also as Gaussian. We verified this latter assumption by performing a Kolmogorov-Smirnov sta-
tistical test for the distributions obtained on all our stalagmites, with a 5 % significance level. We
thus consider that the distribution of x is entirely characterised by its standard deviation, and we
denote this parameter∆:

∆ = s.d.(x) .

Since the distribution is Gaussian, the error made in the measurement of ∆ was estimated as fol-
lows, using a significance level of 1 %: N∆2/ς2 ∼ χ2

N−1, where N is the sample size, ς is the actual
standard deviation of the entire population of drops impacting a stalagmite and χ2

N−1 is the chi-
squared distribution with N − 1 degrees of freedom. Values of Rd, ud and ∆ are reported in the
Supplemental Material1 of Parmentier et al [172].

A complementary set of free fall measurements (Rd, ud(z) and∆(z)) was performed in a labo-
ratory setting that offersmore controlled conditions. Water drops of 2.32-mm radius were pushed
out of a 2-mmdiameter tube thanks to a syringe pump (WPI, AL-1000) at a flowrate of 200µL/min.
The release height was varied between 15 cm and 400 cm, which determined the impact velocity
of the drop on the substrate. To prevent any parasitic air currents that could interfere with the
drops, the splash column was isolated by a rigid plastic tube of diameter equal to 20 cm, which was
sufficient to neglect the aerodynamic interaction of the falling drop with the tube.

1Available in the Orbi entry relative to this manuscript, or the Royal Society’s website. See PDF version for direct
hyperlinks.
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2. Drops travelling through cave air
From its formation at the tip of a stalactite to its disintegration on top of the stalagmite underneath,
the trajectory followed by a drop in a cave is not as simple as it seems. We describe it point by point
in the present section, starting from the dripping of the drop in Sec. 2.1, then we continue with the
drop impact in Sec. 2.2.

2.1 Dripping from the stalactite tip
We show in Fig. 3.1 a sequence from a high-speed movie taken in Aven d’Orgnac, during which a
drop detaches from a stalactite tip of outer radius equal to rst = 2.2mm. When water reaches the
tip of the stalactite, it forms a growing pendant drop (Figs. 3.1 (a-c)). Once the drop becomes suf-
ficiently heavy, surface tension can no longer hold it still, and the drop falls [8, 238] (Figs. 3.1 (d-i)).
The drop radius measurements described in the former section and reported in the Supplemental
Material1 of Parmentier et al. [172] suggest that Rd is fairly constant in cave, with a value for all
drops of 2.63 ± 0.18 mm (average ± s.d. in all the radii related to all the stalagmites), and close
to the capillary length of water λc =

√
γ/ρg = 2.73mm, with γ ≃ 70mNm−1 the water surface

tension. The mass of the pendant growing drop of equivalent radius Rd is md = 4/3πρR3
d and its

weight is md g, with g the gravitational acceleration. The maximum drop weight that can be bal-
anced by surface tension forces is of the order of 2πγrst. Because the stalactite is formedby the drop
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+10ms
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Figure 3.1: Evolution of a growing pendant drop (a), forming a neck (b), detaching (c) and falling from a stalactite tip
(d) in Orgnac cave, salle de Joly. The sequence shows the drop from (a) at most 50ms before it detaches in (d), to (i)
at least 50ms after. The most pronounced shape variations of the drop appearing on the first few centimetres of its
trajectory can be seen in the photographs (e-i). A satellite droplet formed because of the detachment of the main drop
can also be seen in (e-i) and is emphasised in (j), with a radius of 500 µm. The stalactite tip radius is equal to 2.2mm
and the drop formed has a radius Rd = 2.68mm. The left scale bar refers to pictures (a-d) and (f-i), and the right one
to picture (e) only. Both scale bars are 1 cm.
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itself, the tip radius of the stalactite should approximately match the drop equivalent radius, i.e.,
rst = kRd where k is a proportionality constant. With k = 2/3 of the order of unity, the drop
radius Rd would be estimated as

√
3kγ/2ρg = λc, which corresponds to our measurements. The

parameters involved can be considered as more or less constant in the temperature and pressure
ranges encountered in caves (seeCh. II). Hence,Rd should also be fairly constant fromone stalactite
to another and in between different drops falling from a given stalactite [59].

The size of the drop, Rd, can still slightly depend on the water flow rate feeding the stalac-
tite [98]. This flow rate is inversely proportional to the dripping period t0 separating two succes-
sive dripping events from the same stalactite, which is observed to vary seasonally, possibly from
less than a second to several months, i.e., t0 ∈ [10−1, 107] s. When t0 ≲ 1 s, the drop volume de-
creases and satellite droplets of significant volume form [98]. This phenomenon differs from what
we observe in Fig. 3.1 (j), where a tiny satellite droplet of about 500 µm radius appears right after
the drop has started to fall. Its presence results from instabilities appearing when the neck of the
pendant drop pinches off during the drop detachment from the stalactite [238]. The volume of this
satellite droplet is almost 200 times smaller than the main drop volume and is thus negligible, by
contrast with the regime where t0 ≲ 1 s. Nevertheless, the drop formation from stalactites always
remains in the periodic dripping regime (contrary to jetting or chaotic dripping) since the capillary
time of the drop tc =

√
4ρR3

d/(3γ) ≃ 15ms is always smaller than t0 [52] (see Chs. I and IV).

(a) (b)

(c) (d) (e)

−0.6ms +0.6ms

+1.9ms +3.1ms +4.4ms

Figure 3.2: Time sequence of the impact of a drop on stalagmite Org02, with crown formation and fragmentation.
(a) The flattened drop right before the impact. (b) Formation of the crown after the drop has started to crush on the
stalagmite. (c) The crown grows and is accompanied by the formation and ejection of secondary jets destabilising into
droplets. (d) Fragmentation of the crown. (e) The puddle left by the drop in the film has reached a value rc = 2.1 cm
(see Sec. 2.1 from Ch. IV). The impacting drop has a radius Rd = 2.68mm and velocity 9.28m s−1. All frames (a-e) are
separated by 1.25ms. The upper left scale bar relative to (a-b) is 5mm while the bottom right one refers to (c-e) and
is 2 cm.

During the first few centimetres of fall, the drop detaching from the stalactite is also subjected
to strong shape variations and mostly alternates between oblate (horizontal radius > vertical ra-
dius) and prolate (horiz. < vert.) shapes [4, 24], as it can be seen in Fig. 3.1 (f-i). These internal
oscillations result from the elongated shape of the drop upon detachment from the stalactite and
the effect of surface tension, which causes the drop to recover to a more spherical shape [238].
Secondary modes of oscillations are also present [26] but cannot be easily seen in the photographs
fromFig. 3.1. Thesemodes correspond to the first spherical harmonics ℓ obtained by linear analysis
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for a free drop and have the following Rayleigh frequency [142, 209, 238]:√
γ

3πmd

ℓ(ℓ+ 2)(ℓ− 1) . (3.1)

The damping time of these modes is given by

2R2
d

ν(2ℓ+ 1)(ℓ− 1)
, (3.2)

where ν ≃ 10−6 m2 s−1 is the water kinematic viscosity. Modes ℓ = 2, 3 and 4 are associated with
frequencies of 29Hz, 55Hz and 86Hz, respectively. The corresponding damping times are 2.26 s,
810ms and 420ms, respectively. These times correspond to a fall of about14.4m for ℓ = 2, 2.9m
for ℓ = 3, and 90 cm for ℓ = 4 (see Sec. 3.1). Due to the large cave ceilings, most drops landing
on stalagmites should no longer be subjected to internal oscillations for ℓ ≳ 4. The second and
third modes, however, were still visible in our videos for short falling heights, as in the case of,
e.g., Clam03 (z = 30 cm). Nevertheless, it is expected that neither of these oscillations affect the
fall trajectory nor the impact of the drop. Moreover, the drop equivalent radius was estimated
by considering both the vertical and horizontal radii of the drop and the oscillations should not
affect the measurements either. After these internal modes of oscillations are damped, the drop is
flattened out in response to aerodynamic forces and remains oblate
for the rest of its fall.

(a) (b) i

ii

Figure 3.3: Two instances of non-traditional drop impacts on stalagmites. (a) Drop impact in a splash-cup stalagmite
(Org07), with a small pisolite inside. The photograph was taken 15 ms after the initial impact. The scale bar is 1 cm. (b)
Liquid sheet detaching from the surrounding wall of a convex stalagmite (Org01). The rim of the sheet was enhanced
to be more visible in both photographs, which were respectively taken 10.2ms (i) and 13.8ms (ii) after the beginning
of the impact. The scale bar is 5 cm.

2.2 Impacting the stalagmite top
The fall of the drop is eventually hindered by the stalagmite underneath the stalactite from which
the drop originates, this stalagmite being usually covered by a thin residual filmofwater. Figure 3.2
depicts the impact of a drop on the flat top of Org02 at different times. Due to its long fall (z =
19.4m), the incoming drop of radius Rd ≃ 2.61 mm is slightly flattened (Fig. 3.2 (a)). It impacts
the stalagmite at a velocity ud ≃ 9.39m s−1. The impact is accompanied by the formation of an
inclined crown growing over time (Figs. 3.2 (b)). Secondary jets destabilising into droplets are
ejected from the edge of the crown (Fig. 3.2 (c)). The crown then fragments into many droplets
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without retracting (Fig. 3.2 (d)). Finally, the rim surrounding the liquid puddle left by the crushed
drop into the film reaches its maximum visible extension of radius rc ≃ 2.1 cm (Fig. 3.2 (e)). A
comprehensive study of highly-accelerated drop impacts on thin films is provided inCh. IV,with rc
defined more precisely in Sec. 2.1 from Ch. IV. On the other hand, the drop impact on a concave
stalagmite looks different, as shown in Fig. 3.3 (a) on Org07. Instead of forming a circular crown,
the crushed drop is deflected during its spreading by the curved stalagmite top, and, in the case
presented in Fig. 3.3 (a), by the presence of a small pisolite. The liquid is ejected away in a few
preferential directions constrained by the shape of the stalagmite. Secondary jets and droplets
also form but are much larger and slower than in the case of a flat stalagmite. In Fig. 3.3 (b), a
drop impacts the side of the convex stalagmite Org01. Although impacts on the very top of convex
stalagmites resemble those from Fig. 3.2, in this case we note the formation of a liquid sheet in a
preferential direction too, in a similar manner as those observed on inclined substrate edges [144].
We observe the liquid sheet forming and growing at a certain angle from the stalagmite outer wall
in Fig. 3.3 (b) i, then detaching and fragmenting into secondary droplets away from the stalagmite
in Fig. 3.3 (b) ii.

It is also observed that drops in caves donot fall along vertical straight lines. Indeed, drops orig-
inating from a single punctiform stalactite impact the underlying stalagmite at different positions,
sometimes scattered over several centimetres. Figure 3.4 (a) shows a collage of five drops coming
from one stalactite but landing on different spots on the same stalagmite (Sal01), up to 13.2 cm
apart. In Fig. 3.4 (b), we show the complete histogram of the distance between the impact point
position of the drops that fell on Sal01, and the axis of symmetry of this stalagmite, defined as x
in Sec. 1. We also remind in Fig. 3.4 (b) the introduction of the parameter ∆ as the standard de-
viation of this distribution; in this case, we obtain ∆ = 3.75 cm. Although the drops all detached
from the same point in the same conditions, they experienced different falls. This dispersal may
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Figure 3.4: Dispersal in the drop horizontal impact point position. (a) Drops coming from the same stalactite fall in
different locations on the stalagmite Sal01, from La Salamandre cave. The image was obtained by superposing frames
showing the trajectories followed by five drops landing on this stalagmite. For each drop, the frames used are all
separated by 740 µs, from the moment the drop appears in the field of view up to right before impact. The scale bar
is 1 cm. (b) Histogram showing the entire distribution of the distance between the impact point position of the drop
and the axis of symmetry of the stalagmite, x, for the 43 drop impacts that were recorded on Sal01 (blue bars). The
orange line represents the corresponding probability density function drawn with the standard deviation ∆ of the
distribution (if this distribution was normalized). With a falling height of z = 25.6m, the value of∆ obtained for this
stalagmite is 3.75 cm, with an average stalagmite radius rsm = 5.5 cm.
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set some constraints on the overall stalagmite shape and width, which we will attempt to model
in the following Section. As seen above, depending on the position on which the drop lands and
stalagmite curvature, the impact itself can take various forms. The impact variability can in turn
affect the local subsequent stalagmite growth. We will only focus on the drop free fall and impact
point position rather than on the complete drop impact in this Chapter. Ensuing the observations
from this Section, our primary goal is to model the scattering witnessed in the impact point po-
sition of the drops, which we will complete by an estimation of the drop velocity at the end of its
fall, and verify whether we can relate it to the average stalagmite radius.

3. Drop velocity and impact point dispersal
In this Section, we model the entire drop trajectory according to our observations. This allows us
to derive (i) a relation between the drop impacting velocity, ud, and the drop falling height, z, in
Sec. 3.1, and (ii) a relation between the scattering observed in the drop impact point position, ∆,
and the drop falling height, z, in Sec. 3.2. We also compare our modelling to the experimental
measurements of ud and∆, obtained according to the methodology described in Sec. 1.

In Fig. 3.5 (a), the impact velocity ud of the analysed drops (average± s.d. in all videos relative
to one stalagmite) is represented as a function of their falling height z. Data obtained in caves and
in a lab setting are in good agreement with each other. The velocity ud increases non-linearly with
the falling height z, and seems to reach a saturation value for large falling heights (z > 20 m). In
Fig. 3.7 (a), we show the measured standard deviation ∆ of the impact position distribution (s.d.
in all the measurements relative to one stalagmite) as a function of the falling height z. The impact
point dispersal ∆ increases almost linearly with z. Again, data obtained in caves and more con-
trolled lab conditions overlap. Figures 3.5 (b) and 3.7 (b) remind how ud and∆weremeasured (see
Sec. 1). Based on our observations, we reckon that the scattering in the impact position cannot be
attributed to a factor specific to caves. For example, while the small irregularities at the surface
of the stalactite might give the drop some initial horizontal momentum when this latter detaches,
such momentum would be systematic and would not lead to a Gaussian dispersal. The local wind
originating from the venting of the cave might also induce some additional drift to the drop. How-
ever, such a contribution seems negligible. For example, a maximum airflow rate of the order of
160 000m3 d−1 was measured at the open-air entrance of the first room (Salle de Joly) of the Aven
d’Orgnac [34]. Because the cave cross-section is about 2500m2, the background air speed should
be of ∼ 0.7mm s−1. A drop falling at more than 8m s−1 takes less than 4 s to achieve a 30-m fall
andwould be deviated atmost by 3mmdue to background air currents. Hence, these latter cannot
explain the scattering in the drop impact point. Moreover, the same distribution is observed in all
the caves and in the lab, where the drop fall is protected from parasitic air currents. The apparent
random deviation in drop trajectory must therefore be self-induced.

We propose to model the influence of these aerodynamic forces – reflecting the randomly-
oriented vortices – on the trajectory of the falling drop through a Langevin-like equation. The
drop position is X = x + zez, where x = (x, y) is the horizontal position vector, and ez is a
vertical unit vector oriented upward with respect to the downward drop trajectory (the vertical
position z differs from the drop falling height and is only used in this paragraph). The velocity and
acceleration of the drop are given by Ẋ = ẋ+ uez and Ẍ = ẍ+ u̇ez, respectively, with u = ż. The
motion of a falling drop of mass md satisfies Newton’s second law:

md Ẍ = −md gez + F , (3.3)

where md g is the weight and F is the aerodynamic force. This latter comprises the drag, opposed
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to the drop motion, and an additional lift component in a plane perpendicular to the drop motion:

F = −CD

ρaA
∣∣Ẋ∣∣

2
Ẋ− CL

ρaA
∣∣Ẋ∣∣

2
E× Ẋ , (3.4)

where ρa ≃ 1.2 kgm−3 is the air density, A is the cross-sectional area of the drop perpendicular
to its motion direction, E is a unit vector of random direction in the plane perpendicular to Ẋ
and CD and CL are the drag and lift coefficients, respectively. The lift appearing in the former
equation is caused by the loss of symmetry in the wake of the falling drop, as explained in more
detail in Sec. 3.2.

3.1 Drop velocity
Since the drop is axisymmetric (axis ez) and its motion is mostly vertical (CL ≪ CD, which will be
verified later), we expect both |ẋ| ≪ u⇒ |Ẋ| ≃ u and (ez × E) · Ẋ≪ ez · Ẋ. Consequently, the
vertical component of the lift is negligible in comparison to the vertical component of the drag,
and the vertical projections of Eqs. (3.3) and (3.4) become:

u̇ = g− CDρaAu2

2md

· (3.5)

The drag coefficient CD depends on the Reynolds number of the drop in the air Re = 2Rdρau/µa,
where µa ≃ 18 × 10−6 Pa s is the dynamic viscosity of air. This dependence is here approximated
by [73]

CD =


24
Re

(1 + c1Re2/3) for Re < Rec ,

0.45 for Re ≥ Rec ,
(3.6)

which is valid for at least Re < 105. For a hard sphere, Rec ≃ 1000 and c1 ≃ 0.175. However,
the drops are flattened in response to aerodynamic forces (see Figs. 3.1 (f) and 3.2 (a)). Their de-
formation is resisted by surface tension, so dimensional analysis [181] suggests that the effective
horizontal surface A is

A = πR2
d + 2πc2

ρaR3
du

2

γ
, (3.7)

with c2 to be determined. Moreover, as the drop is liquid, it might not satisfy the same no-slip
condition as a hard sphere. However, since tangential stresses remain continuous at the water/air
interface, the ratio of characteristic velocity in the water vs. in the air should be of the order of
the ratio between dynamic viscosity in the air vs. in the water: Uw/Ua ≃ Uw/ud ∼ µa/µ. Be-
cause the water viscosity is around a hundred times larger than the air viscosity, recirculation
velocities inside the drop should not overcome a hundredth of the vertical translation velocity of
the drop. Consequently, the no-slip condition should apply in first approximation and the falling
drop should experience the same drag force as a hard sphere.

Time integration of Eq. (3.5) gives the relation between the falling height of the drop z and its
impacting velocity ud as

z =

∫
ud

0

udu

g− CDρaAu2

2md

· (3.8)

This relation is compared to the corresponding experimental results in Fig. 3.5. A least-square fit
on velocity data (both from caves and lab) gives c1 = 0.198 and c2 = 0.029. The terminal veloc-
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ity u∞ ≃ 10.51m s−1 is reached by the drop when

md g =
1
2
CD,∞ρaA∞u2

∞ , (3.9)

where CD,∞ and A∞ are obtained by substituting u = u∞ in Eqs. (3.6) and (3.7), respectively. This
terminal velocity, associated with the fairly constant size of cave drops, yields an upper bound on
the Reynolds number of Re ∼ 3500, which is still within the range of validity of Eq. (3.6). While
the drag-induced deformation of the drop significantly affects its falling velocity, we note that it is
not sufficiently large to induce some in-flight fragmentation, as experienced for example by large
raindrops [182]. Indeed, the criterion for such fragmentation is ρaRdu2

d/γ > 15. Given the size
constraint on drops originating from stalactites, satisfying this criterion would require the falling
velocity to reach 17m s−1, which is well beyond the terminal velocity u∞ = 10.51m s−1.
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Figure 3.5: (a) Impact velocity ud of the drop as a function of the falling height z, measured in both cave and lab settings
(symbols), compared to the prediction given by Eq. (3.8) (solid line in orange) for parameters c1 = 0.198 and c2 = 0.029,
with a drop radius Rd = 2.64mm. It should be noted that some error bars are not visible. The dashed line shows
the terminal velocity u∞ = 10.51m s−1 that drops may reach based on these experimental data. Hollow symbols
represent lab data corresponding to a drop radius similar to the drop radiusmeasured in caves. Solid symbols (in red ,
green and blue ) represent cave data, each marker corresponding to a stalagmite from Tab. 2.1 for which high-speed
videos were recorded. (b) Example of impact velocity measured on a video relative to Clam01 (symbol ). Images
are obtained by superposition of frames separated by 740 µs until the end of the drop fall. The distance between the
positions of the drop when it first appears in the field of view and right before it impacts the stalagmite (represented
by the green line) is 14.1 cm. Both positions are separated by 16.3ms (88 frames at a rate of 5400 fr s−1), hence the final
velocity of this drop is approximately equal to 8.65m s−1. The corresponding velocity given by Eq. 3.8 is 8.18m s−1

for z = 8.7m and Rd = 2.63mm. The scale bar is 10 cm.

3.2 Drop horizontal deflection
Thevortex-inducedvibrations of the trajectory of a sphere falling into air is a complexphenomenon.
Although the drop is actually deformable, in this sectionwewill neglect the oscillations of the drop
shape and assume that it is a rigid sphere of constant volume. During the fall of the drop, the first
vortices appear in its downstream wake at Re ≃ 212, namely after a distance of z ≃ 1.3 cm. Before
that, the flow is perfectly axisymmetric and no lift force is exerted on the sphere. This is illustrated
by Fig. 3.6 (a) adapted from Bouchet et al. [33], in which we observe that the lift coefficient CL in a
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plane perpendicular to the sphere trajectory increases from 0 with the Reynolds number. The first
emitted vortices are non-axisymmetric and in counter-rotation with one another. They randomly
develop around a longitudinal plane of symmetry containing the sphere center. A lift force vary-
ing in magnitude and whose direction is contained within the symmetry plane also appears above
Re ≃ 212 [79]. A second Hopf bifurcation appears at about Re ≃ 273, as shown in Fig. 3.6 (a), in
which case vortices become periodically emitted, the plane of symmetry selected by the former
bifurcation being preserved [33, 79]. An example is shown in Fig. 3.6 (b) with experimental pho-
tographs adapted from Johnson and Patel [124], obtained at Re = 300. The sequence shows an
entire period of vortex emission in the very near wake of the sphere. Moreover, the vortices take
the shape of large-amplitude hairpins aligned in the same direction, leading to a lift force constant
in direction but whose magnitude oscillates around a non-zero mean2 [79].

As theReynolds number further increases to 320, a secondary frequency of trajectory vibration
appears but is three times smaller than the primary frequency [33]. The wake becomes irregular
but the planar symmetry is still conserved up to Re = 355, corresponding to a distance z = 3.8 cm.
Beyond this value, the wake becomes fully three-dimensional and chaotic [79]. Two examples of
instantaneous lift coefficient CL evolving with time in a plane perpendicular to the flow direction
are shown in Fig. 3.6 (c), for Re = 3700 (Fig. 3.6 (c) i) and Re = 10 000 (Fig. 3.6 (c) ii). Both are
adapted from simulations obtained by Yun et al. [237]. We observe that the lift coefficient indeed
varies in a random manner in sign and in amplitude. The break of symmetry in the wake past the
drop is thus responsible for the apparition of the lift force in Eq (3.4), and the trajectory followed
by the drop appears to vary randomly. Falling heights typically found in caves are usually much
greater than a few centimetres, thus the landing point of the drops is always scattered.

We assume that two successive vortex shedding events are separated by a time T, which is
related to the Strouhal number of the flow defined by

St =
2Rd

udT
· (3.10)

On average, the time T separating two vortex emissions decreases with increasing Reynolds num-
ber. There is currently no analytical model that relates the Strouhal number St to Re for falling
spheres. In the particular regime of Re ≳ 273, the Strouhal number associated with the vortex
emission is St = 0.127 [79]. Additionally, experimental data [2] suggest that St increases with Re,
typically during the first 5m of fall, up to approximately 0.9. Then St decreases with increasing Re
but, in the range covered in caves, remains larger than 0.5. The St(Re) experimental data of Achen-
bach et al. [2] are here approximated by a cubic polynomial in the range Re < 3500.

We also hypothesise that the vortices emitted from a falling drop do not interact with the tra-
jectory of the next drop. This is most likely true if the dripping period t0 between two drops is
larger than the time over which vortices fade away by viscous dissipation. By comparing the iner-
tial and laminar viscous dissipation terms in the mechanical energy budget derived from Navier-
Stokes momentum equation, this time might be estimated as ρaR2

d/(4µa) ≃ 1 × 10−1 s. In the
visited caves, the smallest dripping period t0 relative to stalagmites for which high-speed videos
were recorded was of the order of 2 s (see Tab. 2.1). Hence, in the present case, we may consider
that the passage of a drop does not affect the trajectory of subsequent ones.

2The hairpin pattern is not visible in Fig. 3.6 (b).
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(a) Bouchet et al. 2006 [33]
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Figure 3.6: Evolution of the lift acting on a sphere with time and Reynolds number. (a) Graph adapted from Bouchet
et al. 2006 [33], Fig. 11 – The lift coefficient CL develops from an originally null value as Re increases above 212.
Markers come from simulations. Regimes separated by dotted lines are respectively referred to as steady axisymmetric,
steady non-axisymmetric and unsteady non-axisymmetric by the authors. The dashed line starting from the secondHopf
bifurcation (at Re = 273) corresponds to an extrapolation of the subcritical regime. (b) Photographs adapted from
Johnson and Patel 1999 [124], Fig. 41 – Complete sequence of vortex emission in the periodic regime, at Re = 300,
for an entire period T. The blue dye shows the near wake of the sphere obtained experimentally. Photographs are all
separated by T/5. (c) Graphs adapted from Yun et al. 2006 [237], Fig. 5 – Instantaneous lift coefficient measured in a
plane perpendicular to themain flow direction, from simulations performed at Re = 3700 (i, orange) and Re = 10 000
(ii, blue). The legend in i refers to both i and ii curves.
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The impact point dispersal ∆ is estimated as a function of the falling height z, by considering
the horizontal projection of Newton’s second law of motion from Eq. (3.3):

mdẍ = − 1
2
CDρaAuẋ+

1
2
CLρaAu2e , (3.11)

where e = E × ez is a vector of random horizontal direction that is almost unitary since the
drop velocity is almost vertical. We neglect the drop deformation, which is here a second-order
term, thus the cross-sectional area A is now approximated by πR2

d. No exact relation between the
lift coefficient CL and the Reynolds number Re could be found in the literature over the entire
range of Re values covered by the falling drop, i.e., up to Re ∼ 3500. However, the instant lift
coefficient has been computed from numerical simulations at peculiar Re by several authors, as
reported in Tab. 3.1. All coefficients presented in this table correspond to the root mean square
value computed over a time period during which at least a few tens of vortices were shed. An
example is presented in Fig. 3.6 (c) ii, in which we note that the absolute value of CL is bounded by
about 0.1, which verifies our hypothesis that CL ≪ CD. In Tab. 3.1, it can further be observed that
the lift coefficient remains of constant order of magnitude (except at Re = 3700, where the shear
layer separates laminarly from the sphere whereas turbulence occurs within this layer [186, 237],
see Fig. 3.6 (c) i). The average value of all the lift coefficients presented in Tab. 3.1 is CL = 0.067.
Equation (3.11) can be made dimensionless by defining τ = t/T, x = x/(uT) and ẋ = ẋ/u:

ẍ = −cDẋ+ cLe, (3.12)

where cD = (3ρa/4ρ)(CD/St) and cL = (3ρa/4ρ)(CL/St).
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Figure 3.7: (a) Standard deviation∆ of the distribution of the impact point position as a function of the falling height z.
The orange solid curve is obtained by solving numerically the recurrence relations from Eqs. (3.13) and (3.14) and by
varying the parameters u, T, Re, St and CD at each vortex emission. The lift coefficient CL is set to 0.067, as an average
across Reynolds numbers of the root-mean-square values found in the literature (see Tab. 3.1). Hollow symbols cor-
respond to data obtained in a lab setting for drops of radius Rd = 2.32 mm. All the solid symbols (in red , green and
blue ) represent experimental measurements obtained in caves with high-speed videos (see Tab. 2.1 for symbol corre-
spondence). The solid black line shows the analytical solution obtained at constant drop velocity in Eqs. (3.19)–(3.21),
while the dashed lines represent the asymptotic solutions of this analytical solution in the regimes for which ncD ≪ 1
(left) and ncD ≫ 1 (right). (b) Examples of drop impact point positions deviating from the axis of symmetry of the sta-
lagmites (corresponding to the green dashed line). Images are obtained by superposition of frames separated by 740 µs
until the end of the drop fall. Measurements are shown in the case of Clam01 (symbol ), with the two distances rep-
resented by the red arrows equal to 3.2 cm (left) and 2.7 cm (right). The scale bar is 10 cm.
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The horizontal position and velocity of the drop can be obtained by first integrating Eq. (3.12)
over one period T between two successive shedding events denoted (n − 1) and n, respectively,
i.e., for τ ∈ [n− 1; n]. We assume that the lift component of the aerodynamic force remains con-
stant in magnitude and direction over this shedding period. The horizontal position xn and veloc-
ity ẋn after the nth shedding event are therefore related to the position xn−1 and velocity ẋn−1 at
the (n− 1)th shedding event through the following Langevin-like recurrence relations, where we
define α = exp (−cD):

xn = xn−1 +
(1− α)

cD
ẋn−1 +

cL
c2D

(α− 1 + cD) e , (3.13)

ẋn = α ẋn−1 +
cL
cD

(1− α) e . (3.14)

The dimensional standard deviation of the horizontal position is by definition

∆ =
√
⟨xn · xn⟩ = uT

√
⟨xn · xn⟩ , (3.15)

where ⟨. . .⟩ denotes an ensemble average over many falling drops. It is calculated based on the
non-dimensional standard deviation

√
⟨xn · xn⟩, obtained bymultiplying and averagingEqs. (3.13)

and (3.14):

⟨xn · xn⟩ = ⟨xn−1 · xn−1⟩+
(1− α)2

c2D
⟨ẋn−1 · ẋn−1⟩+ 2

(1− α)
cD

⟨xn−1 · ẋn−1⟩

+
c2L
c4D

(α− 1 + cD)
2 , (3.16)

⟨ẋn · ẋn⟩ = α2 ⟨ẋn−1 · ẋn−1⟩+
c2L
c2D

(1− α)2 , (3.17)

⟨xn · ẋn⟩ = α ⟨xn−1 · ẋn−1⟩+
α (1− α)

cD
⟨ẋn−1 · ẋn−1⟩+

c2L
c3D

(1− α) (α− 1 + cD) . (3.18)

Since the lift direction e is assumed to be random and uncorrelated with the drop horizontal po-
sition and velocity, both ⟨xn · e⟩ and ⟨ẋn · e⟩ vanish, and ⟨e · e⟩ = 1.

These coupled recurrence relations can be solved numerically from rest initial conditions to
find∆. We consider that the velocity u(z) increases at each vortex emission n according to Eq. (3.8),
and that Re, St and CD vary accordingly, which is why Eqs. (3.16)–(3.18) cannot be integrated an-
alytically. Nevertheless, an analytical solution at constant u is presented hereafter. Solving the
recurrence relations with the average value CL = 0.067 yields the numerical solution∆(z) shown
in Fig. 3.7. The model captures very well the measurements ∆(z), without any fitting parameter.
The root mean square error (RMSE) in all the measurements is 7.8mm, the main contribution to
this error coming from the measurements obtained at large falling height z. Although this error
seems larger than the measurements made at small falling height z, by taking the root mean square
error for z ≤ 4m (the height reachable in lab), weonly haveRMSE = 3.7mmwhile for z > 4m,we
obtain RMSE = 8.9mm. For the smaller falling heights, we actually obtain∆(z ≤ 4m) = 3.4mm
on average, which is of the same order as the RMSE made on these measurements, the radius of
the drop Rd, and the maximum deviation that a drop subjected to parasitic air currents can pos-
sibly sustain (see discussion on page 41). Hence, with all these contributions it is not possible to
state whether the error comes from the model failing at capturing the impact point dispersal for
small z or if the deviation observed between themeasurements and themodel comes from external
factors, or even from errors in the image analysis process.
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Regarding the measurements at mid and large falling height (z > 4m), on average the relative
error between the prediction and the actual value of∆ is of about 24%, which indicates that there
might be other second-order effects to take into account to better capture the free fall of the drop.
These effects may include but should not be limited to: (i) the background air currents, (ii) the de-
formability and internal oscillations of the drop [238], (iii) the recirculation velocity field inside the
drop, (iv) the possible initial shift that could appear because of irregularities around the stalactite
tip/lab dripping tube surface, (v) the Magnus effect if the drop is subjected to an initial rotational
speed [39], and (vi) the variability in the dripping period of the drop, especially the seasonal vari-
ability in caves that leads to drop volume variations [98].

Authors Re [–] CCCrms
L [–]

Bagchi 2003 [14] 107 0.091

Bagchi 2003 [14] 261 0.058

Johnson 1999 [124] 211–250 0–0.062

Bouchet 2006 [33] 212–330 0–0.068

Plouhmans 2002 [173] 300 0.060

Plouhmans 2002 [173] 500 0.058

Bagchi 2003 [14] 609 0.081

Plouhmans 2002 [173] 1000 0.167

Yun 2006 [237] 3700 0.006

Jones 2008 [125] 10 000 0.033

Yun 2006 [237] 10 000 0.046

Table 3.1: Root mean square value of the lift coefficient C rms
L around a sphere, obtained by several authors at various

Reynolds numbers Re. The value of C rms
L corresponds to the average made on at least a few tens of vortices shed in the

wake past the sphere.

3.2.1 Analytical prediction at constant fall velocity

Since Re, St, and then cD and cL directly depend on the increasing fall velocity u, the recurrence
relations of Eqs. (3.16)–(3.18) can only be solved numerically. We may nevertheless seek for an
analytical solution by imposing a constant velocity ud, i.e., constant cD and cL. The solution to
Eqs. (3.16)–(3.18) starting from initial rest conditions x0 = 0 and ẋ0 = 0 is

⟨ẋn · ẋn⟩ =
c2L
c2D

1− α
1 + α

(
1− α2n) , (3.19)

⟨xn · ẋn⟩ =
c2L
c3D

1− αn

1 + α

[
(α− 1) (1 + αn) + cD (1 + α)

]
, (3.20)

⟨xn · xn⟩ =
nc2L
c2D

+
c2L
c4D

(1− α) (1− α2n)

1 + α
− 2c2L

c3D
(1− αn) . (3.21)

The resulting curve at constant parameters is shown inFig. 3.7withRd = 2.63mm, ud = 10.5m s−1

the limit terminal velocity, T = 2.5ms the vortex shedding period reached above z ≃ 1m (which
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corresponds to a peak frequency of 400Hz), St = 0.2 the Strouhal number, CD = 0.45 as for a
hard sphere, and CL = 0.067. We note that the general trend followed by both the model and the
measurements is well captured by this approximation at constant ud. Due to our choice of param-
eters and particularly the fact that we used the terminal velocity, the analytical prediction is with
no surprise larger than the measurements overall, with a RMSE of 3.4 cm.

3.2.2 Asymptotic regimes

In the limit case where ncD ≪ 1, orαn → 1, the drop does not have a velocity sufficient to generate
significant drag, which can therefore be neglected. This approximately corresponds to a falling
height z ≲ 0.5 cm. In this case, the leading term in Eq. (3.21) becomes proportional to c2Ln3/3. As
ncD ≫ 1, or αn ≪ 1, corresponding here to z ≳ 25m, the leading order becomes ∼ c2Ln/c2D.
These two asymptotes are represented by the dashed lines in Fig. 3.7. Between the two asymptotic
regions, which corresponds to the range of values covered experimentally, ⟨xn · xn⟩ is thus in an
intermediate regime that can be approximated as proportional to n2. Therefore, from Eq. (3.15),
∆ increases linearly with n. Considering St, T and v as constant during the whole drop trajectory,
n can be estimated proportional to z, hence ∆ is more or less proportional to z too in the range
covered in cave and in lab, as observed in Fig. 3.7.

3.2.3 Timing of the dropmovement

From Eq. (3.8), we can additionally compute the time tfall taken by a drop to complete a fall of
length z. This time is represented inFig. 3.8 (a), inwhichweobserve that tfall increasesmonotonously
with z, with two different slopes. In the region where z ≲ 10m, it is known from Fig. 3.5 that the
impact velocity of the drop ud increases with z. Around z ≃ 10m, the concavity in the curve of ud
changes before it approaches the terminal velocity u∞ for large falling heights. It is thus not sur-
prising to observe the change of slope in the curve tfall(z) around z ≃ 10m as well. Below this
value, tfall approximately follows a curve∼ z1/2 while for z ≳ 10m, we have tfall ∼ z, as illustrated
in Fig. 3.8 (a). A drop of radius Rd = 2.63mm falls over 1m during approximately 440ms, while
a 10-m fall for this drop takes about 1.75 s.
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Figure 3.8: (a) Time tfall taken by the drop to complete a fall of height z with the two asymptotic regimes tfall ∼ z1/2

(z < 10m) and tfall ∼ z (z > 10m). The time tfall was computed using Eq. (3.8). The dashed line shows the value z =
10m above which the velocity of the drop ud becomes close to u∞. (b) Time period T between two successive vortex
shedding emissions, with asymptotic regime T ∼ z−1 (z < 10m), obtained using Eqs. (3.8) and (3.10), with data from
Achenbach et al. [2].
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Additionally, in Fig. 3.8 (b), we represent the timeperiodTbetween twovortex shedding events
as a function of the drop falling height z. The curve was obtained by using Eq. (3.10) and the ap-
proximate evolution of St(Re) fromAchenbach et al. [2], as well as the instantaneous velocity of the
drop. We observe that T decreases as a/z up to z ≳ 10m, value upon which it reaches a stationary
value T ≃ 0.7ms. This is consistent with the observation that both ud and St have also reached a
limit value.

4. Link with stalagmite width
The scattering observed in the impact point position of the drops can sometimes compare to sta-
lagmite sizes, with the largest value measured in the visited caves being ∆ = 4.6 cm. The impact
point dispersal can be solely related to the falling height of the drops. We report in this section our
findings regarding the link that may exist between the dispersal observed and the average width of
stalagmites originating from one drip.

4.1 Relation to the impact point dispersal observed
As described in Ch. 3.1, we measured the stalagmite radius rsm taken as an average along the en-
tire stalagmite body of 65 stalagmites from 7 different caves, as well as the falling height z as-
sociated with them. In Fig. 3.9 (a), we present the measured radius rsm as a function of the dis-
persal ∆. The values used for ∆ either come from measurements1 or from the model developed
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Picts. (Tab. 2.1)
Vids. (Tab. 2.1)

(a) (b)

z≪
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Figure 3.9: (a) Average stalagmite radius rsm as a function of the impact point dispersal ∆, either measured from the
high-speed videos or computed using Eqs. (3.16)–(3.18). Each symbol (in grey , light green , dark green , orange
, purple , red and blue ) represents a single stalagmite, with one colour per cave (see Tab. 2.1 and Supplemental

Material from Parmentier et al. [172]1). Markers which differ from dots relate to the stalagmites for which high-
speed videos were recorded (see Tab. 2.1 for symbols correspondence, where the actual dot symbol relative to some
stalagmites was here replaced by a drop shape ). The solid line shows the linear regression fromEq. (3.22). The dashed
horizontal line corresponds to the radius derived byCurl [60] (forRd = 2.63mmand δ = 100 µm). The two grey filled
areas represent the intervals of values reached by the maximum extension of the crown radius during the drop impact
in the film, rc, and the equivalent red spot radius left by the drop in the film after the impact, Req, in lab experiments,
the larger one corresponding to Req and the darker one to rc (see Ch. IV for definitions). (b) Illustration of the effect of
the dispersal in the impact point position of the drop: on the left, z is small and there is almost no dispersal, leading to
smaller stalagmites, by contrast with the large dispersal generating a larger stalagmite radius on the right.
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in the former section providing the relation ∆(z) (see Eqs. (3.16) to (3.18)). There is a significant
correlation between the stalagmite radius rsm and ∆. A linear regression with a coefficient of de-
termination of R2 = 0.86 indeed yields

rsm(∆) = rsm,0 + 1.73∆ , (3.22)

where rsm,0 = 2.19 cm is the intercept with the axis ∆ = 0 (corresponding to no fall-induced
dispersal).

For very small falling heights (z ≲ 0.5m), there is almost no scattering in the impact point
position of the drops, meaning that the drops always fall very close to the centre of the stalagmite.
The stalagmite width is therefore very close to the minimum rsm,0 observed in Fig. 3.9 (a). As the
falling height becomes larger, rsm is expected to increase accordingly because of the growing impact
point dispersal. In particular, the slope of Eq. (3.22) is close to 2 and, for a Gaussian distribution,
the probability that a drop falls on such a surface is at least 90%. The two situations are depicted
in Fig. 3.9 (b).

4.2 Initial drop spreading upon impact andminimum stalagmite width
All the drops filmed with high-speed imaging splashed at impact (Fig. 3.3) in caves, in contrast to
an assumption of previous models of stalagmite growth [20]. During the impact, the drop crushes
into the residual film to form a crown surrounded by a rim that grows with time, the crown corre-
sponding to the contour wall of a circular cavity formed at the impact position of the drop. More
detail regarding this phenomenon is provided inCh. IV.The cavitymade by the crushed drop in the
film reaches a maximum size rc that compares to the minimum stalagmite radius observed rsm,0.
From the experimental data presented in Ch. IV obtained in a lab setting, we have rc ∈ [3.8 ; 6.2]Rd

or [1.0 ; 1.6]cm in the present case (measurements corresponding to z = 0.5m and z = 4m). We
additionally measured the maximum cavity radius reached by the drops in the high-speed movies
taken in caves, and found that rcavec ≃ 1.83±0.28 cm (average± s.d. in all videos). This value is very
close to our range coming from labmeasurements, although rcavec is a little higher since rc increases
with z and that falling heights are larger in caves than in the lab. Our lab experiments also reveal
that the drop mixing with the film lying on top of the stalagmite during the impact leaves a spot of
equivalent radius denoted Req in the film, close to rsm,0 as well. The spot radius Req spans over a
wider range of [2.5 ; 7.2]Rd, or [0.6 ; 1.9]cm. Both radii are illustrated in Fig. 3.9 (a), where it should
be noted that we used the full range coming from lab and cave for rc, i.e., [1.0 ; 1.8]cm.

Curl [60] had already computed a minimum stalagmite radius close to rsm,0, by dividing the
drop volume by the estimated film thickness δ as rCurl ≃

√
(4/3πR3

d) / (πδ). For δ = 100 µm,
which is the typical order of magnitude of films found on stalagmites, we obtain rCurl = 1.6 cm.
A radius rCurl = rsm,0 would actually correspond to δ ≃ 50 µm, which is a thickness commonly
found after the film has experienced some gravity-induced drainage, as explained in Ch. V. Al-
though for typical orders of magnitude found in situ, rCurl is close to our observations, it fails at
capturing the influence of the film thickness on the minimum stalagmite width as rCurl decreases
with δ and predicts a stalagmite radius of rCurl = 0.9 cm for, e.g., δ = 300 µm, a film thickness
value that was measured on some stalagmites from Fig. 3.9 (see Tab. 2.2).

Theminimumradius rsm,0 thus seems to be setmostly by the size of the spreading drop onto the
stalagmite, with both rc and Req varying little with the falling height of the drop. Using the bounds
of our experimental intervals for rc and Req, we find that rsm,0/rc ∼ 1.2 − 2.2, and rsm,0/Req ∼
1.2 − 3.3. Therefore, the minimum stalagmite radius rsm,0 is always at least a little larger than the
maximum expansion of the drop impacting the stalagmite, and sometimes much larger. This may
be due to the widening of the stalagmite owing to the gravity-driven drainage of the water film,
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which is not taken into account here (see Ch. V). This drainage is expected to vary with the shape
and overall curvature of the stalagmite, hence the wide span in the value of the ratio rsm,0/rc (resp.
rsm,0/Req).

5. Conclusion
In this chapter, we modelled the free fall of drops dripping from stalactites in caves, until they
fall onto the stalagmite underneath. Starting from Newton’s second law that we projected onto
the vertical direction and integrated over time, we obtained an equation describing the velocity of
freely falling drops in Sec. 3.1. We took into account the deformabiliy of the drops into the drag
force, which induced the appearance of two fitting parameters into the model. The cave and lab
measurements agree well with the modelling of the velocity, which presents a limit value at large
falling heights, of about∼ 10m s−1.

While they all originate from a single punctiform point, drops landing on a stalagmite present
the particularity of being scattered at impact, sometimes over several centimetres. We showed
that this dispersal is not correlated to an external factor and therefore has to be self-induced. We
postulated that the dispersal exhibited by the drop trajectory comes from the vortices shed in the
wake of the drop. We took this into account in the modelling of the drop free fall, by including a
randomly-oriented lift component in the aerodynamic force acting on the drop. Integrating the
equations in between the successive vortices shed in the wake of the drop, we obtained Langevin-
like recurrence equations describing the position and velocity of the drop. There is currently no
analytical model describing the lift acting on a spherical, deformable object in a cross flow. We
therefore approximated the lift coefficient acting on the drop by gathering numerical results from
the literature. Even without any fitting parameter, we noted in Sec. 3.2 that the results from the
experiments and the modelling agree well with one another. The model derived in this chapter
should be applicable to the free fall of drops but also of similar objects.

Finally, we connected the average stalagmite width to the aerodynamics of the drop free fall.
The stalagmite width is not only governed by the saturation size of the spreading drop into the
film, rc (orReq), but it is also andmostly conditioned by the dispersal of the drop impact position,∆,
as ourmeasurements revealed. Because this dispersal increaseswith the falling height of the drops,
so does the stalagmite average radius. Large stalagmites originating from a single stalactite should
thus most likely be found in cave parts with higher ceilings. While our measurements and model
respectively show and explain the correlation between stalagmite width, impact point dispersal
and falling height, the stalagmitewidthmay also be significantly influenced by several other factors
affecting its growth, which will be the subject of the following chapters.
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Drops dripping from stalactites and impacting stalagmites are captured through
high-speed imaging, as described in Ch. II and in Sec. 1. The main features exhibited
by drops freely falling in caves, summarised in Sec. 2, are (i) their constant radius, (ii)
their impacting velocity increasing with falling height, and (iii) the dispersal in their
impact point position, albeit a fixed initial dripping position at the stalactite tip.

We model the fall of the drop in Sec. 3, starting from Newton’s second law in which
we include the non-negligible interaction (drag and lift) of the drop with the sur-
rounding air. A vertical projection and time integration of the drop free fall equation
lead to a relation between the drop impacting velocity and falling height in Sec. 3.1. A
good agreement is obtained between the experimental data and themodellingwhich
includes two fitting parameters due to the drag dependence on the drop deforma-
bility.

We show that the dispersal exhibited by the drop impact point position must be self-
induced, and further postulate that it should be caused by the vortices randomly
shed in the drop wake. This is taken into account in the modelling from Sec. 3.2
by assuming a random orientation of the lift acting on the drop. In lack of a model
describing the lift on a deformable object such as a drop, we approximate it by the
lift on a hard sphere, obtained from numerical simulations conducted by different
authors at various Reynolds numbers.

In Sec. 3.2, we use a discrete time integration of the horizontal projection of New-
ton’s second law to derive recurrence relations for the position and velocity of the
drop at each vortex emission. From there, we further obtain an equation for the dis-
persal in the drop impact point position distribution. Once again, data coming from
cave and lab settings are in good agreement with the model, which implies no other
fitting parameter than the deformability correction in the drag law.

In Sec. 4, we relate the average top radius of a collection of stalagmites described in
Ch. II to the dispersal in the impact point position of the associated drops, and, from
there, to the falling height of these drops.

.

• Summary (Ch. III) •
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In Ch. IV (see next page), themixing and ejections produced by the impact of
a drop on a thin film are studied. In Sec. 1, we review the generalities of drop
impacts on thin films in a film thickness range close to the one observed in
caves.

The present chapter focuses solely on lab experiments. The methodology
for producing and observing impacts from both side and top views using
high-speed imaging is described in Sec. 2. The top view of the impacts, in
particular, allows to decipher the mixing between the drop and the film by
coloring them with two different dyes. We analyse the recordings thanks
to image analysis tools and a colorimetry-based algorithm, that we describe
briefly in Sec. 2.2, and in more detail in Appendix B.1.

Section 3 addresses the phenomenological aspects of the impacts from the
side and top views. We classify them in four distinct scenarios. The geome-
try of the crown producedwhen the drop impacts the film, i.e., the side view,
allows us to gain a deeper insight into the mixing between the drop and the
film as seen from the top.

In Sec. 4, we present a set of indicators inferred from the high-speed record-
ings. In Sec. 4.1, we focus on the geometrical features of the impacts while
in Sec. 4.2, we cover various aspect of themixing and splashing at impact. In
particular, we are able to measure the amount of liquid ejected away during
the impact, as well as the amount of liquid originating from the drop actu-
ally entering the film. We also compare our findings with the literature.

The results are discussed in Sec. 5, with an emphasis on how each of the
four scenarios affects the mixing between the drop and the film, as well as
the liquid ejected away during the impact.

• Highlights (Ch. IV) •
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DROP IMPACTONTHINFILM

After having only considered the constraints set by the aerodynamics of freely falling drops on the average
stalagmite width, we now explore how a drop and the film covering a stalagmite interact during the
impact of the drop on this film. In particular, we investigate the mixing occurring between the drop and
the film, with the aim of measuring the amount of liquid originally from the drop actually entering the
film. We are also interested in assessing the amount of liquid ejected away during the impact in the case
where splash occurs. However, the findings from this chapter on the sole mixing and ejected volume at
impact do not allow us yet to draw direct conclusions regarding the diversity of stalagmite shapes found
in caves. We indeed need to take into account the interplay of all the physical processes, namely the
drop free fall, the drop impact on thin film itself, the gravity-driven drainage of the film and the ion
precipitation, which will be done in the subsequent chapters.

1. Overview
Despite the great shape variability exhibited by stalagmites in caves, these stalagmites all originate
from the successive drops impacting the thin film covering them, thereby bringing in new ions
in solution, which later precipitate and allow for the stalagmites to grow [70]. The distribution
of ions following each impact results from the balance between the distribution of ions already
in the film before the impact, the amount of ions brought by the drop in the film at each impact,
and possibly the amount of ions leaving the film due to splashing. Owing to the sometimes very
high cave ceilings (up to 25m, see Ch. II), we observed in Sec. 3.1 from Ch. III that drops landing
on stalagmites may reach impacting velocities up to 10m s−1, similarly to large raindrops [182].
However, as we also noted in Sec. 2.1 from Ch. III, by contrast with raindrops [224], the radius
of the drops originating from stalactites is fairly constant and close to the capillary length, i.e.,
Rd ≃ 2.7mm. Given these size and speed, most drop impacts on stalagmites lead to splashing. In
caves, drops having a fall as short as 30 cm would actually splash when impacting the underlying
film, independently of its thickness [227]. Hence, the in-between impact ion distribution depends
on the mixing occurring between the drop and the film during the impact, but also almost always
on the amount of ions ejected away at impact.

Drop impacts in general have beenwidely studied for the past decades [179, 235], partly because
of their ubiquity in many industrial processes such as spray painting and cooling [37], microelec-
tronics soldering [151], or crop spraying [221]. They also have multiple natural occurrences, e.g.,
the aeration of ocean surfaces [64], soil erosion [17, 18, 130], or the rain-induced foliar spreading
of pathogens in crop fields [100, 144, 145]. A few studies have already characterised drop impacts
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on thin liquid films for which h/(2Rd) ≲ 10−1, as in caves. However, they focused mostly on the
splash morphology [55, 127, 146, 188, 239], and more particularly on the splashing threshold [54,
185]. The influence of the fluid viscosity [7, 86, 239] was also investigated, as well as the underlying
surface roughness [27, 54], or the (im)miscibility between the drop and the film [51, 136, 234]. Er-
soy and Eslamian [80, 82] further characterised the various physical processes at play that induce
mixing between the drop and the film during the collision. However, several features of drop im-
pacts on thin films related to the mixing between the drop and the film have not been quantified
yet, e.g., the proportion of the incoming drop volume which is ejected away in the splash droplets,
or how much liquid coming from this drop would actually end up in the film after the impact. The
knowledge of these quantities could also be useful in other contexts, e.g., to rationalise some of the
mechanisms of rain-induced pathogen dispersal in between plant leaves [145].

In this chapter, we thus investigate themixing and ejection processes as theywould occurwhen
drops impact stalagmites in caves. We therefore aim at studying drops with a large falling height,
i.e., which are highly accelerated, impacting on thin, miscible films. To reduce the number of pa-
rameters which can possibly affect the impact, we concentrate on drop impacts on horizontal films
uniformly spread out, i.e., with a constant thickness in space. To study the impacts, we perform
laboratory experiments and record side and top views of high-speed movies of such impacts in a
range of parameters close to actual cave values. Image analysis is used to describe the geometry of
the crown from the side. Regarding the top view recordings of the impacts, we use different dyes
to colour the drop and the film prior to the impact in order to identify the liquid coming from
either one of them. We observe that several outcomes arise from the impacts that we conducted,
depending on the initial film thickness, and have a strong influence on the final retraction phase
of the crown formed during the impact, and on the amount of liquid simultaneously ejected. The
retraction phase is further found to be responsible for the variability of the shape left by the drop
in the film after the impact, and, therefore, for the mixing between the drop and the initial film.

We start by describing the experimental methodology in Sec. 2. Prior to the recording of the
impacts, we manually measured the thickness of the film according to the technique presented in
Subsec. 2.1.2. The colorimetry technique is detailed in Subsecs. 2.2.1 and 2.2.2. From the parameter
range covered in the experiments, we conduct a dimensional analysis in Sec. 2.3, which allows us
to classify the various impact outcomes observed in distinct scenarios in Sec. 3. These scenarios
further affect the Results presented in Sec. 4. Crown geometry indicators inferred from the side
view of the impacts are presented in Subsec. 4.1, whilemixing parameters are shown in Subsec. 4.2.
The size and spreading of the spot left by the drop in the film, in particular, are investigated. We
are also able to infer the amount of liquid left by the drop in the film post-impact, the total quantity
of liquid ejected away, as well as the part of liquid initially in the film which is ejected away. The
results are finally discussed in Sec. 5, with an emphasis on the effect of each scenario on all the
measured variables.

To extend the study of this chapter, elements of discussion regarding the effect of film thickness
gradients on the crown formed at impact are provided in Subsec. 1.1 fromCh.VIII. In Subsec. 1.2 of
the same chapter, we also show an example of two drops impacting the same film successively, but
separated by a distance of 5Rd and an interval of 3min. Despite this large distance in regard of the
size of the spot usually left by the drop in the film, and the long time period separating the impacts
with respect to the impact time itself (see Sec. 3 in the present chapter), a non-negligible interaction
can be witnessed between the spots left by the two drops. Finally, Sec. 1.3 from Ch. VIII provides
insights into the mixing inside the secondary droplets ejected away at impact, which support the
results obtained in Sec. 4.2 from the present chapter.
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2. Producing, recording and analysing impacts
The following subsections describe our experiments of drops impacting on thin films with high
velocity. More specifically, we first give an overview of the experimental methodology in Sub-
sec. 2.1.1, along with the corresponding experimental parameters. We further describe the quanti-
ties measured in the high-speed recordings of the impacting drops. We then explain how we mea-
sure the thickness of the filmswith precision in Subsec. 2.1.2. A short summary of the colorimetry-
based algorithm used to analyse the experiments is provided in Subsec. 2.2. The colorimetry algo-
rithm is also thoroughly detailed in Appendix B.1. We finally carry out a dimensional analysis in
whichwe consider all the characteristic timescales at play and variables involved in the experiment
in Subsec. 2.3. All the measured variables and fluid properties are summarised in Tabs. 4.2 and 4.3.

2.1 Drop impact measurements

2.1.1 Experimental procedure

The experimental setup is schematized in Fig. 4.1 (a). Water drops were released one at a time from
a given height. They fell and impacted a filmofmiscible liquid at rest. Thefilmof thickness h laid on
a horizontal solid surface of negligible roughness. Water has a density ρ ≃ 1000 kgm−3, a surface
tensionγ ≃ 70mNm−1 and a kinematic viscosity ν ≃ 10−6 m2 s−1 at room temperature (20±2 °C).
The drops were formed at the tip of a 2 mm diameter plastic connector (Cole-Parmer, polypropy-
lene Masterflex adapter fitting), with a flow rate of 5 µLmin−1 imposed by a syringe pump (WPI,
AL-1000). The syringe pump operated until a drop was produced, then it was stopped during
the video recording and data processing. The drop fall was protected from potential parasitic air
currents by a 20 cm diameter rigid tube, which was sufficiently large to neglect the aerodynamic
interaction of the falling drop with the tube. The impact position could however still vary by a
few millimetres for large falling heights as the drops could interact with the vortices shed in their
own wake [172] (see Ch. III). High-speed movies of the impacts were recorded from the top using
a Phantom Miro M110 colour camera (6200 fps), and from the side with a Photron Fastcam Mini
UX monochrome camera (4000 fps). In the top view, 1 cm corresponds to 125 px and the field of
view is roughly 40 × 40mm. In the side view, 1 cm corresponds to 230 px and the field of view
is 55 × 45mm. The top camera was inclined by a very small angle with the vertical (5° − 10°). A
comparison between a few matching side and top view measurements of the radius of the cavity
made by the crushing drop in the film ensured that this tilt angle did not significantly affect the top
view lengths, hence no correction was applied.

The liquid filmwas dispensed onto a hydrophilic tape (Adhesive Research, ARflow 93210) fixed
to an underlying stiff plate thanks to a sandwiched layer of double-sided, white tape. The hy-
drophilic tape has a thickness of 102 µm, a negligible roughness, and advancing and receding con-
tact angles of 20° and≲ 1°, respectively. The surface of the film corresponded roughly to a 40 mm
side square. The film was carefully deposited with a syringe and spread out evenly by gently tilting
the plate until the entire tape surfacewaswet. Theaveragefilm thicknesswas varied between65 µm
and 500 µm by dispensing the corresponding liquid volume on the tape, and measured pointwise
manually prior to the impact (see section 2.1.2).

The side movies were analysed using image processing tools, which allowed to measure geo-
metrical parameters related to the impacting drop and subsequent crown development, all listed
hereafter and shown in Fig. 4.1 (b) i (see also Appendix Table 4.2). The drop radius and velocity
were measured in all the side movies. The drops all had the same radius Rd = 2.3± 0.1mm. The
falling height was varied between 50 cm and 4m, leading impact velocities ud to be comprised be-
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1Figure 4.1: Experimentalmethodology. (a) Experimental setup used to release droplets from a given height onto a thin
underlying film, and record the impacts from both top and side views. i. Plastic tube in which the drops fall. ii. High-
speed colour camera used to record impacts from the top. iii. Falling droplet of radius Rd and impact velocity ud,
both measured from the side view (see (b)). iv. Four lamps placed in the corners of the balance. v. Stages used to
displace the needle above the film, horizontally and vertically; the vertical stage is motorized and automated. vi-
viii. Needle and balance used to take pointwise manual thickness measurements (see (c)) of the liquid film spread
on a horizontal hydrophilic tape. ix. High-speed monochrome camera used to record impacts from the side. (b) i.
Side-view geometrical measurements of the crown: crown height w, top radius rt, cavity radius in the film rc and
inclination θ. The drop schematic of (a) iii has a size corresponding to the actual drop that produced the crown shown
in this case. ii. Four examples of raw data graphs of θ(t), w(t), rt(t) and rc(t), respectively, during a period of twice
the capillary time tc defined in Sec. 2.3 (15ms), for h = 150 µm and z = 1m. In each graph, the green area shows the
portion on which measurements are averaged as described in the text, and the average is represented by the red line.
(c) Needle with glued aluminium sphere used for measuring the local film thickness, entering (i-ii) and leaving (iii-iv) a
green film of thickness h = 170 µm. i. The needle and sphere right before the sphere touches water. ii. The meniscus
formed when the sphere touches the film. This event produces a decrease in the mass read by the balance since a part
of the film weight is supported by the needle. The needle is moved further downward and the mass increases once the
sphere touches the bottom surface of the film. The needle is then moved upward. iii. The shape of the meniscus right
before it separates from the sphere. iv. The droplet left on the sphere 4 s afterwards. v. A zoom on this droplet hanging
on the bottom half of the aluminium sphere. Both appear green because of light reflections from the green film.

58



tween 2.9m s−1 and 6.6m s−1. The measurements of ud have a mean relative error of 3 % (i.e., the
average of the errors made in each movie analysis). The crown inclination θ, namely the angle
made by the crown with the horizontal, varies between 50° and 105° during crown growth, with a
relative error of 3 % on average for all the movies. The measurements correspond to the mean in-
clination from2ms to about 10ms after the beginning of the impact for thicker films (h ≳ 100 µm).
They were only taken up to 6ms for thinner films to avoid taking measurements during the crown
fragmentation (see Section 3.1). The measured ranges of crown maximum height w, top and bot-
tom radii rt and rc are w/Rd ∈ [3 ; 10], rt/Rd ∈ [5 ; 9] and rc/Rd ∈ [4 ; 8]. These variables are
independent: they cannot be related by a simple geometrical relation as the curvature of the crown
wall changes in response to the film thickness, i.e., for a given rt/rc ratio there might be different
values of θ and w. The measurements of w, rt and rc all correspond to the average of the 5 largest
values measured during the crown growth. The average relative errors are respectively of 12 % (w),
11 % (rt) and 8% (rc). The error made when measuring the first two variables is due to the unstable
rim, which altered the detection of the crown/air interface in the video. Examples of raw data ob-
tained for θ(t), w(t), rt(t) and rc(t) are shown in Fig. 4.1 (b) ii during the beginning of the impact,
i.e., during the crown growth (t ≲ tc) and beginning of the retraction (t > tc), with tc the capillary
time defined in Section 3. For falling heights smaller than 1m, the maximum length j reached by
the Worthington jet emitted at the end of the retraction is such that j/Rd ∈ [3 ; 10], with a relative
error of 15 %. This length was taken in the last frame before the first secondary droplet pinches
off. The large error in j comes from the possible inclination of the jet (see, e.g., Fig. 4.6 (c) iii) which
might occur in a plane orthogonal to the field of view.

2.1.2 Manual film thickness measurements

To estimate the film thickness, we used the average value of mechanical pointwise measurements
taken in 3 to 5 spots separated by 1-2 cm, close to the centre of the film. As depicted in Fig. 4.1 (a),
measurements were performed using a Ohaus Pioneer X balance (precision of 0.1mg) and a nee-
dle attached to a high-precisionmotorized translation stage (smallest displacement of 0.1 µm). The
balancewas protected from parasitic air currents by vertical glass windows. Two other translation
stages permitted to move the needle horizontally. A Thorlabs Kinesis stepper actuator controlled
via an automated routine allowed to displace the needle vertically by discrete steps. At each step
the needle wasmovedwith a velocity of 250 µm s−1, then it remained still until the next instruction
(acceleration/deceleration of 1mm s−2). Although the displacement of the stagewas almost instan-
taneous, the needle position and the mass on the balance were recorded only about every second,
owing to the acquisition frequency of the balance. A small aluminium spherewas glued to the tip of
the hollow needle in order to avoid capillary rise (Fig. 4.1 (c)). Once this sphere reached the water
free surface, a small meniscus appeared, which translated into a small decrease in the mass read by
the balance (Fig. 4.1 (c) i-ii). As the needle was moved further down, the sphere ended up touching
the solid surface (tape) beneath the water film, increasing this time the mass read by the balance
(Fig. 4.1 (c) ii-iii). Both these events allowed to obtain the difference in position of the needle and
therefore the height of the water film at a given horizontal location. During this procedure, steps
of 1 µm were used before the sphere could touch the water free surface. Then the step size was
increased to 15 µm such that the measurement time did not exceed 1-2min. As soon as the sphere
touched the solid surface beneath the film, the needle was moved upward once then downward
again, this time by steps of 1 µm. On average, the standard deviation of the manual film thickness
measurements is 3 µm. The relative error ranges from 3% for thinner films (≲ 100 µm), to 1 % for
larger ones (≳ 250 µm). Some liquid (volume corresponding to a sphere of radius 300 ± 20 µm)
remained on the tip once the sphere had come out of the water because of this meniscus, as seen
in Fig. 4.1 (c) iv-v, which had usually evaporated between two successive measurements.
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2.2 Mixing measurements by colorimetry

2.2.1 Film thickness and concentration profiles

To observe the mixing between the drop
and the film after impact as well as the
potential variations in film thickness,
we have developed a colorimetry-based
algorithm to analyse top view images of
the experiments approximately 1 s post
impact. For this purpose, we combined
two food dyes to colour the drop and the
film differently: red (Azorubine, E122) and
green (corresponding to 3/4 of yellow,
Tartrazine, E102, and 1/4 of FCF blue,
E133). When bought, these commercial
dyes were already in solution, with a fixed
but unknown concentration. We subse-
quently diluted them in deionised water,
with proportion (volume fraction) pr and pg

for the red and green dyes, respectively.
The colorimetry measurement is described
in detail in Appendix B.1. It relies on the
assumption (checked in Appendix B.2) that
in a given optical and lighting set, there is
a bijective relation between the (R,G,B)
on-screen colour triplets and particular
values of the thickness and concentrations
of dyes in the film. This bijection can be for-
malized by considering the Beer-Lambert
absorption of the light beam in the different
media crossed from the light source to
the camera, as well as the Fresnel reflec-
tion/refraction at the interfaces between
these media. In this manner each colour
channel may be independently related
to the film thickness and dye concentra-
tions. The equations obtained are further
approximated by quadratic relations. To
estimate at best the coefficients therein, we
first used calibration pictures for which
we imposed h, pr and pg and recorded the
corresponding RGB pictures. A total of
175 water films were used, with thick-
ness ranging in the same interval as in our
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Figure 4.2: Example of an impact experiment (a) and mea-
surements obtained with the colorimetry-based algorithm
(b-c): (a) Top view picture of the spot left by the drop in the
film about 1 s after the impact. The initial film thickness
was h = 103 µm and the drop had a fall of 2m. The white
dot in the centre of the photograph corresponds to the im-
pact point. (b) Red dye proportion left in the film after the
impact, normalized by the proportion in the drop, pr/pr,d.
(c) Film thickness difference between after and before the
drop impact on the film, h′ − h (in µm).

experiments (and thus as in caves). Both the red and green proportions were varied between 0 and
0.075. These values were empirically chosen in order to yield distinguishable on-screen variations
in the given thickness range. Calculations were not performed for each pixel but rather in 0.8mm
(≈ 10 px) side square cells, where the median value of each colour channel was computed. A 4mm
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(≈ 50 px) wide stripe was also cut around the pictures to avoid seeing the physical edge of the tape,
leaving a field of view of 32mm× 32mm (40× 40 cells) to analyse.

Once the calibration was performed, from every given (R,G,B) triplet, we could infer the film
thickness and red and green dye composition in a thin film of arbitrary local composition. An
example of the shape observed about 1 s after the impact is shown in Fig. 4.2 (a), in the case of a
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Figure 4.3: Colorimetry calculation (·c) of the thickness
and red dye proportion of a calibration film: (a) Initial pho-
tograph taken with the Phantom Miro M110 high-speed
camera. (b) Red proportion pr,c computed at each point in
the frame of (a), divided by the actual proportion pr,m =
2.5 %. (c) Thickness hc computed at each point of (a). Green
dye proportion was set in every point to pg = 5%.

drop falling from 2m on a film of initial
thickness 103 ± 1 µm. In the actual exper-
iments, we were interested in computing
the post-impact film thickness h′ and the
proportion of liquid coming from the drop,
which were a priori unknown. In order
to obtain them, red and green dyes were
mixed in equal proportion pr,d = pg = 0.05
in the initial drop, while only green dye
in the same concentration (pg = 0.05)
was present in the initial film. Therefore,
the green dye concentration remained
constant in time and space, independently
of the mixing of the drop and the film,
while the red dye concentration revealed
the parcels of fluid that originated from
the initial drop. Hence, we are left with
two independent variables h and pr to be
determined. We change variables and define
the partial film thicknesses in red and green
respectively as hr = prh and hg = pgh.
Since there are only two independent
variables, the relation between the (R,G,B)
channels and the partial thicknesses (hr, hg)
gives an overdetermined system that is
solved in the least square sense. Although
neglecting the blue channel would yield
a system that is not overdetermined, the
procedure appeared more robust when the
blue channel was considered. From the
measurement of hg given by the analysis
of the (R,G,B) values in every cell, we
deduced the film thickness as h = hg/pg.
We further inferred the red dye proportion
as pr = hr/h. Examples of measure-
ments obtained with this algorithm are
shown in Fig. 4.2 (b) and (c). The diagram of
Fig. 4.2 (b) shows the red dye proportion left

in the film after the impact from the picture of Fig. 4.2 (a), compared to the initial red proportion
in the drop pr,d. The film thickness variation h′ − h between after (h′) and before (h) the impact is
shown in Fig. 4.2 (c).
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2.2.2 Comparison betweenmanual and colorimetrymeasurements of the film thickness

Pointwise manual film thickness measurements were performed for the calibration process. They
were alsomade before the impacts to ensure the film thickness uniformity. Special carewas needed
to level the balance, since a slight tilt angle of only 0.1° from the horizontal would would yield
a 50 µm difference between two points located 30mm apart in the film The leveling was achieved
by manually adjusting the balance legs in response to any film thickness variation larger than 5 µm
that was potentially observed between two points in the film. Pointwise thickness measurements
further allowed getting a rough estimation of the average thickness of the deposited film. This es-
timation is useful for the colorimetry measurement which is based on Newton-Raphson iterative
method and therefore requires an initial guess. Knowing the mean thickness of the film also al-
lowed verifying the results provided by this algorithm. In Figs 4.3 (b) and (c) the results computed
by the algorithmare represented for a given calibrationfilmof proportions pr,m = 2.5 % and pg,m =
5%, shown in Fig. 4.3 (a). The manually measured thickness hm for this film was 135.8± 2.1 µm
(average ± standard deviation over several successive measurements on the same film, taken at
different locations).

Additionally, in Fig. 4.4 the film thickness computed using the colorimetry measurement and
spatially averaged, hc, is plotted against the averagemanual film thickness measurement, hm, for all
the experiments using the pictures taken ante impact. The coefficient of determination obtained
by linear regression is 0.91. Markers in the graph go from green to red as they get further away
from the bisector line. The upper left inset of the graph shows a histogram detailing the number
of experiments as a function of the relative error between the average manual and colorimetry
measurements, |hm− hc|/hm. About 65% of the total number of experiments have a relative error
smaller than 10%, and 92% of the experiments have a relative error smaller than 20%. The lower
right inset of Fig. 4.4 (a) shows the coefficient of variation (c.v.) of hc in space (i.e., for different
cells of the same film), as a function of the corresponding average film thickness hm. Because it is
computed in every point of the picture, the c.v. is a measure of the spatial heterogeneity of the film
thickness. The median (2.1 %) and interquartile interval ([1.1 ; 3.6]%) of the c.v. distribution for all
the experiments are represented respectively by a green horizontal line and a shaded area in the
back of the inset. The c.v. of hc thus seems equivalent to the error made when measuring the film
thickness manually before the impact (ranging between 1 and 3%). Similarly to the colorimetry
measurement, the error on hm should thus mostly come from the heterogeneity of the film rather
than from the measuring technique itself.

Because in reality the film is simply a very flat puddle, it is not surprising to find the same order
of magnitude in the errors induced by the spatial heterogeneity obtained with the two methods.
The c.v. is typically higher at smaller h as it is more difficult to spread a large puddle of very low
thickness, even on a hydrophilic substrate. The edges of the film therefore appear whiter on screen
since there is less liquid, yielding an increased inhomogeneity of the film in the zone observed
during the impact. In some cases this error can be large, as illustrated in Fig. 4.4 (b). In each of them,
a square indicates the margin that was removed for the calculation so as not to see any edge of the
tape below the film. Nevertheless, the thickness gradient seems visible in picture i, which translates
into an average colorimetry thickness hc = 66.3 µm smaller than hm = 88 µm. Therefore, when
taking the whole picture into account in the calculation of hc, a large difference between hm and hc
appears but this error does not come from the evaluation of the thickness by the algorithm. In
Fig. 4.4 (b) ii the thickness is correctly estimated as there is only an error of 2 % on the average
value. Moreover, we cannot see the edge of the tape in the computation zone in the photograph.
Overall, the errors mostly come from the puddle physical edge which might still appear in the
pictures (hc ≲ hm in 70% of the cases), but measurements may also be sensitive to tiny differences
in the lighting setup or to the positioning of the camera, i.e., elements that had to be put back in
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1Figure 4.4: (a) Parity plot between spatially-averaged film thickness hc computed from colorimetry measurements
and corresponding film thickness manually measured and averaged, hm, prior to the impact. Symbol colour is greener
(redder) for markers located closer to (further away from) the axes bisector. The left inset of the graph in (a) shows a
histogram representing the number of experiments per range of relative error between manual and numerical mea-
surements, |hm − hc|/hm. The bins are 2 % wide. The second inset in (a) shows the coefficient of variation (c.v.) of hc,
i.e., over different cells of the same film, as a function of hm. The c.v. can be seen as ameasure of the spatial heterogene-
ity of the film, and therefore as a characteristic error bar on hm. The shaded area in this inset shows the interquartile
range and the green horizontal line the median of the c.v. of hc. (b) Examples of colorimetry and manual measure-
ments, sometimes leading to larger errors in the average film thickness estimation because of, e.g., the visibility of the
puddle edge (see i), with correspondence in the graph from (a).

place each day the experimentwas carried out. In Fig. 4.4 (b) iii we observe an error of 6 % between
the two spatially averaged thickness values, but this time hc is larger than hm due to such effects.
The measurements from subsection 4.2.1 are based on integration over a smaller region, hence
such spatially dependent effects on the edges should not affect the results.

2.3 Dimensional analysis

The times and nondimensional numbers involved in the following dimensional analysis are all
gathered in Tab. 4.2. Most of them were already mentioned in Ch. I, and can also be found in
Tab. 1.2 from the auxiliary sheet. In the considered configuration, the impacting drop first crushes
on the film for a time scaling as the impact time, defined as

ti =
2Rd

ud
· (4.1)

This time is ≲ 1ms in the range of velocities covered by the experiments. The radially spreading
crown formed upon impact [235] has a lifetime of the order of the capillary time, defined as

tc =

√
4ρR3

d

3γ
≃ 15ms . (4.2)

This timescale is also characteristic of the lifetimeof liquid sheets expelled into the air fromdroplets
impacting on poles or close to solid edges [145, 223]. A viscous boundary layer is formed along the
bottomwall as the film is pushed by the impacting drop. It diffuses through the entire film thickness
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in a timescale of the order of
tν =

h2

ν
· (4.3)

For the film thicknesses considered here (i.e., from 65 µm to 500 µm), this time ranges from 5ms
to 280ms. By contrast, the time of viscous diffusion over a distance equivalent to the drop radius
is about tν,d = R2

d/ν ≃ 6 s. Finally, molecular diffusion also has a role after the impact, although
it occurs at a much larger timescale than the other phenomena at play. When considering sub-
nanometer particles and ions with a diffusion coefficient D ∼ 10−9 m2 s−1, the vertical diffusion in
a 100 µm thick film would take a time

t↓ =
h2

D
, (4.4)

of about 10 s to homogenize the concentration over the entire film height. To diffuse such particles
horizontally over a few millimetres, the corresponding characteristic timescale t→ = R2

d/D would
be of the order of 90min.

The impacts involve seven quantities (Rd, ud, ρ, ν , γ, D and h) that may all be expressed in
terms of mass, length and time units. Hence, four nondimensional numbers govern the impacts
and may be defined by comparing the characteristic timescales. First, the ratio (tc/ti)

2 gives the
Weber number defined as

We =
2ρRdu2

d

γ
· (4.5)

It compares the inertia of the drop to its surface tension and ranges in [525 ; 2750] in our experi-
ments, as seen in the phase diagram of Fig. 4.5. The measurement errors made when evaluating Rd

and ud give a mean relative error of 9 % when calculating We. Second, the ratio tc/tν,d leads to
the Ohnesorge number, which indicates how much viscosity modifies the balance of inertia and
surface tension at drop scale,

Oh = ν

√
ρ

2γRd

· (4.6)

It takes a constant value of 1.7 × 10−3 with a relative error of 2 %. A third ratio
√

tν/tc yields the
dimensionless number

h⋆ =
h√
ν tc

, (4.7)

which is a normalization of the film thickness by the thickness reached by the boundary layer in
the film over the capillary timescale. A unit value for h⋆ corresponds to h = 115.3 µm. As also
shown in Fig. 4.5, h⋆ ∈ [0.6 ; 4.3] with a relative error of 6 %. Additionally, the Péclet number Pe
may be defined to compare the molecular diffusion and convection timescales. The convection
timescale is here chosen as the timescale over which the impact-induced convection is damped, i.e.
the viscous diffusion time, so

Pe =
t↓
tν

=
ν

D
∼ 103 (4.8)

and molecular diffusion can be neglected during the first seconds after impact, which are fully
dominated by convection (a different definition of the Péclet number is provided in Ch. VI, which
corresponds to the definition of the auxiliary sheet).

As We ≫ 1 and tν/ti ≫ 1 for all our impacts, the capillary and diffusive timescales are much
larger than the impact time. Hence, while inertia dominates the first stages of the impact, capillary
and viscous forces should only compete in the later crown development. Even higher We values
could be observed in situ as cave ceilings are sometimes located up to several tens of meters above
the ground [70]. Droplets in caves having falling heights going from 5 cm to 50m would yield
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We ∈ [70 ; 7000] and Oh of about 2 × 10−3 at a temperature of 12 °C [117], which are close to the
experimental conditions of our impacts. The film thickness ranging from 50 µm to 500 µm would
lead h⋆ values to be comprised between 0.4 and 4, i.e., a very similar range to ours. The particles
found in the residual water film covering stalagmites, e.g., calcium ions and carbon dioxide, have
diffusion coefficients of the same order as the dye molecules in our experiment, such that Pe ≫ 1
in caves as well. During the impact, convective transport is therefore much more effective than
molecular diffusion. For impacts of actual stalagmites, molecular diffusionwould play a significant
role at a timescale comparable to those of ion precipitation and gravity-driven drainage, which are
out of the scope of this chapter.

3. At the juncture between two domains
Drop impact on a thin film bridges the gap between twomicrocosms: impacts on a dry wall and on
a deep liquid reservoir. For impacts on dry wall, the liquid left by the drop recoils at the end of the
movement. It forms an almost circular liquid puddle surrounded by short tails reminiscent of the
fingering occurring during the impact [145]. Drop collision with a dry wall has been extensively
studied, most authors focusing on the splashing threshold [168] or the maximum spreading radius
reached by the impacting drop [53, 103, 139]. These quantities change for instance in response to
substrate roughness [184], surface wettability and properties [9, 137], inclination [93] or curvature
[155], parameters that vary much in nature. In the other limit, the drop impinges on a deep pool,
i.e., of a depth h that is at least of the order of the drop radius Rd. This regime can be observed
for some stalagmites with a concave summit that forms a small pool filled with water [172]. The
impact produces an upward-moving cylindrical liquid sheet, the crown, due to the kinematic dis-
continuity between the crushing drop and the formerly resting liquid pool [179, 235]. Instabilities
in the rim of this crown formed at impact are responsible for the appearance of small ligaments
which subsequently destabilise into secondary droplets [54, 146, 239]. For more viscous fluids the
droplets ejected from the crown typically appear in the later stages of the impact or may not be
observed at all [185, 239]. As the crown grows radially and encounters new fluid from the pool, it
thickens progressively and its height increases [55]. The diameter of the ligaments and subsequent
ejected droplets grows accordingly [145, 239]. The crown also surrounds a hemispherical cavity
growing in the liquid pool, which eventually recedes as the crown breaks up. Its typical maximum
size is of the order of a few centimetres for our drop size [30, 157]. A Worthington jet may pro-
trude from the centre of this crater and pinch off into several droplets [146, 177, 233]. Because of
the strong surface and bulk perturbations caused by this dynamics, the mixing between the drop
and the liquid pool is pretty effective. Once the fluid is back to rest, mixing is usually completed
through molecular diffusion in all directions [80]. Furthermore, most secondary droplets fall back
into the pool as they typically do not have enough horizontal momentum to travel more than a few
centimetres away from the impact point (i.e., if such deep pool conditions were observed in caves,
the ejected droplets would likely impact on the stalagmite again) [177].

Most stalagmites are covered by a film of water that is very thin in comparison with the im-
pacting drop size [172]. In a similar manner to drop impact on a deep pool [77, 131, 157, 179],
this type of impact leads to the formation of an ascending crown, yet presenting a smaller incli-
nation. The crown wall surrounds a cavity of thickness smaller than that of the initial film. Even
in the early expansion stages, the rim on the perimeter of the crown also turns into tiny ligaments
that subsequently break into secondary droplets due to the high kinetic energy of the impacting
drop [227]. Cossali et al. [55] provided a detailed description of the crown radius, height and rim
thickness evolutionwith time aswell as the number of ligaments and droplets ejected from the rim,
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Figure 4.5: Previous page. Phase diagram (h⋆, We) of the reported experiments and correspondence with the various
scenarios discussed in Sec. 3. For each, themonochrome side view shows the typical shape of the crownduring impact,
while the colour top view shows the post-impact mixing pattern. (a) Very thin film (h⋆ < 1), crown fragmentation and
circular red spot: i. Low We (h⋆ = 0.57, We = 525), ii. High We (h⋆ = 0.61, We = 2740). (b) Intermediate regime
(h⋆ ≳ 1), crown retraction and random-like mixing pattern: i. High We (h⋆ = 1.31, We = 2740), ii. Intermediate We
(h⋆ = 1.31, We = 1675). (c) Thick film (h⋆ ≳ 1.75), low We: post-impact central jet protrusion (h⋆ = 1.81, We = 525).
(d) Thick film (h⋆ ≳ 1.75), high We: crown folding (h⋆ = 4.37, We = 2250). Background colour grading of the central
graph indicates that scenario transitions are continuous. The area delimited by the white dotted line in the bottom
right of the central plot represents the range of values covered in Ersoy and Eslamian [80]. The dashed black line shows
the splashing criterion developed by Cossali et al. [54]: We/Oh2/5 = 2100 + 29 (h⋆)1.44. The scale bars are 1 cm.

in a range corresponding to (h⋆,We) ∈ [11 ; 43] × [300 ; 840], with Oh = 1.9 · 10−3. Fedorchenko
andWang [86] derived amodel describing the velocity of cavity submergence, central jet formation
and crown ejection in impacts on film sufficiently thick to produce a Worthington jet. Wang and
Chen [227] also explored the influence of viscosity on the impact outcome by varying the Ohne-
sorge number between 0.02 and 0.1 for (h⋆,We) ∈ [1.6 ; 16.8] × [380 ; 3000]. However, the range
corresponding to thin films like those found on stalagmites has not been explored yet.

Our experiments reveal four main impact scenarios in different regions of the (h⋆,We) di-
agram of Fig. 4.5, which are denoted scenarios A to D and described in the following sections1.
They fall within the splashing limit derived by Cossali et at. [54] as a function of We, Oh and h⋆:
We/Oh2/5 = 2100 + 29 (h⋆)1.44. In scenario A (orange), for all We and very thin films (h⋆ < 1), the
crown tears apart before the end of its expansion. In contrast, in scenario B (red) for which h⋆ ≳ 1
for all We, the crown reaches a maximum height and retracts without breaking up. Scenarios C
(green) and D (blue) correspond to large film thicknesses, for which h⋆ ≳ 2. Scenario C is mostly
characterised by the appearance of a central jet after the impact at low We. In scenario D, at
high We, the crown retracts by folding upon itself. These scenarios thus differ in terms of the
shape of the crown and related geometrical parameters, such as the inclination [86], and the later
breaking and retraction of the crown [187]. Accordingly, the observed stains left by the drops in
the film present various shapes and patterns. The total volume of liquid ejected during impact is
consequently also directly affected by We and h⋆. The transitions between the various scenarios
are not of first order though but rather continuous. This is illustrated by a colour gradient in the
phase diagram at the centre of Fig. 4.5, while examples of typical impact sequences for various
h⋆ and We are shown in Fig. 4.6 (a-d). Each subfigure in Fig. 4.6 shows frames (i-iii) taken from
matching high-speed visualizations of the impacts from both side (in monochrome) and top views
(in color). Each combination (a-d) of top and side views of one particular impact shows similar
features (e.g., the crown growth), but due to the difference in impact dynamics, from one subfigure
(a-d) to the other the corresponding instants shown are not the same. The last top view picture (iv)
corresponds to the convection-induced mixing pattern. It is obtained at about 1 s (or equivalently
65 tc) after impact, i.e., when convection flows have vanishedwhilemolecular diffusion has not had
the time to smooth horizontal concentration gradients yet. Noteworthy features of these impact
scenarios are visible in Fig. 4.5 (a-d) as well.

3.1 Crown fragmentation (scenario A)
Crown fragmentation is observed for very thin films, i.e., such that h⋆ < 1, and mostly for strong
impacts, at We ≳ 1000. This phenomenon was also observed by Wang and Chen [227], who re-
ported crown wall fragmentation for h⋆ = 1.63, We = 2010 and Oh = 0.04 in water-glycerol

1In Figs. 4.5 and 4.6, scenarios A to D correspond to their lowercase counterparts (a) to (d).
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1Figure 4.6: Side (monochrome, upper pictures, s) and top (color, bottom pictures, t) views of the impact sequences
described in Sec. 3. For (a-d), i. shows the crown growth (st) and iv. the convection-induced mixing pattern (t). (a)
Very thin film (h⋆ < 1), intermediate We: ii. Crown break-up into ligaments (st), iii. Ligament fragmentation (st),
v. Fingering-like pattern in the film (t). (b) Transitional regime (h⋆ ≈ 1), high We: ii. Crown maximum extension (st),
iii. Retraction (st). (c) Thick film (h⋆ > 1), low We: ii. Crown decline (st), iii. Post-impact central jet formation (st).
(d) Thick film (h⋆ > 1), high We: ii-iii. Crown folding (st), v. Crown capillary waves (s), vi. Fingering in the film (t).
The scale bars are 1 cm. Videos corresponding to the pictures shown are available in the Supplemental Material of
Parmentier 2023 [171].
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solutions. The impact time, viscous diffusion time and capillary time are arranged as follows:
ti < tν < tc. In other words, the beginning of the impact is dominated by inertia as it is typ-
ically the case at high We [157, 223]. The crown expansion is decelerated primarily by viscous
dissipation in the film, which considerably slows down the outward motion of the crown basis
while the crown top keeps expanding thanks to its inertia. This translates into a very thin and
inclined crown wall formed at impact (Fig. 4.6 (a) i), which becomes unstable and breaks into sev-
eral thin sheets before it even starts to retract toward the centre in response to capillary forces
(Fig. 4.6 (a) ii) [86, 227]. The maximum extension reached by the rim at the top is larger than the
radius of the cavity formed in the film, i.e., rt/rc > 1. The liquid sheet almost immediately (≲ 5ms)
turns into ligaments that subsequently break to form more secondary droplets (Fig. 4.6 (a) iii), in a
very similar manner to when an impacting drop spreads beyond the edge of a solid substrate, and
subsequently fragments. [145, 223]. Compared to the other regimes, the ligaments and droplets
ejected both during the growth and fragmentation phases are small and fast [187] (radii and veloc-
ities of the order of [0.07 ; 0.25]Rd and [0.3 ; 0.8]ud, respectively). At the same time, we observe
red filaments propagating throughout the crown (Fig. 4.6 (a) i-ii). Although it is obvious that these
filaments come mostly from the drop because of their color, no quantitative measurement of the
mixing level between the drop and the film during crown growth could be inferred from such
visualizations.

Radial convective retraction followed by expansion strokes is usually observed after an im-
pact in a deep pool or on a dry wall [128, 179, 235]. However, in this case the liquid left from
the crushing drop in the film only seems to retract without expanding much afterwards, except
for late molecular diffusion-driven expansion. The viscous forces should indeed rapidly dissipate
any remaining kinetic energy left following the impact, once the crown has torn apart. Hence,
the mixing pattern right after impact in this case simply corresponds to a circular, very red spot.
This spot is surrounded by a whiter zone that seems to indicate some depletion in the film di-
rectly around the impacted area, possibly because of the absence of rapid expansion and retraction
strokes (Figs 4.5 (a) ii and 4.6 (a) iv). Outside of this region, the film appears to be left unaffected by
the passage of the crown, except for a few thin radial tails. These tails come from the coalescence of
the last ligaments breaking at the end of the crown fragmentation with the underlying film. Even
though the coloration of the spot left by the drop seems rather uniform, its border is surrounded by
a blurry zone where we distinguish some fingering pattern, similar to that observed for an impact
on a dry wall (Fig. 4.6 (a) v) [80]. For impacts on very thin films at low Weber number (We < 1000),
the crown does not really fragment, per se, but still breaks into ligaments before retraction actually
starts. An example is shown in Fig. 4.5 (a) i. The spot left by the drop post impact is much blurrier
and presents larger, more visible tails due to the coalescence of these ligaments with the film.

3.2 Crown retraction and decline (scenario B)
Scenario B is observed for high-We impacts on moderately thin films (roughly for 1 ≲ h⋆ ≲ 2 at
We ≳ 2000) and for thinner films in the case of intermediate We impacts (e.g., for 0.75 ≲ h⋆ ≲ 1.5
atWe ≲ 1000). In the ranges considered the ratio between the viscous and capillary timescales tν/tc
approaches 1, while the impact time ti is very small compared to both tν and tc. The crown formed
during the impact is more inclined than in scenario A, but it is not vertical yet (Fig. 4.6 (b) i) [157].
The diameter of the crown rim is also larger than the diameter of the cavity formed by the crushing
drop. As h⋆ increases and the crown has a longer lifetime, some additional features appear that are
shared by scenarios B, C and D. The crown becomes thicker over time and so do the ligaments and
ejected droplets [55, 62]. It reaches its maximum height then starts retracting toward its centre
without tearing apart (Fig 4.6 (b) ii) as capillary restoring forces overcome inertia. As the transition
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between the various regimes is not sharp but rather continuous, some incomplete fragmentation
might still occur before the end of the retraction phase; otherwise the crown tends to shrink and
collapse (Fig 4.6 (b) iii) [148]. At the very end of this retraction phase only a few thick ligaments
reminiscent of the rim collapse in an unpredictable manner, creating random post-impact mixing
patterns. While these patterns present a great shape variability, they have a few common features:
the spreading distance does not significantly vary and they typically present a more reddish region
near the impact point, surrounded by volutes of less concentrated red areas (Figs 4.5 (b) i and ii,
Fig. 4.6 (b) iv). The red filaments propagating through the crown wall tend to mix more with the
fluid coming from the film as they have a longer lifetime (Figs 4.6 (b) i-ii). Finally, a few capillary
ripples can be observed in the film directly surrounding the impact zone (Fig. 4.6 (b) iii t) [80, 235].
They start from the basis of the crown toward the unperturbed free surface of the film and become
wider and last longer as the film gets thicker (Fig. 4.6 (b) ii-iii). This feature is also exhibited in
the following scenarios (Fig. 4.6 (c) ii-iii and (d) ii-iii). After the crown retraction, these capillary
waves dissipate rapidly the remaining kinetic energy from the impact.

3.3 Jetting (scenario C)

For even thicker films (h⋆ ≳ 1.5), the ratio tν/tc ≫ 1, indicating that capillary forces become
significant players before the viscous diffusion layer reaches the free surface of the film. The three
timescales are ordered as ti < tc < tν . Although the crown behaviour and ensuing mixing pattern
depend strongly on the film thickness, for larger h⋆ the influence of We becomes critical too. At
low We (1 ≪ We ≲ 1000), because the crown has little kinetic energy, it reaches a relatively
small height with an almost vertical inclination (Fig 4.6 (c) i). It is also much thicker and produces
larger and slower secondary droplets (Fig 4.6 (c) ii) [55, 62]. The peculiarity of these impacts is
the uprising central Worthington jet [229, 233] produced at the very end of the retraction phase
(Fig 4.6 (c) iii), similarly to what is observed for deep liquid reservoirs (h⋆ > 4 [86, 131, 187]). It
is due to the capillary restoring forces which induce a strong recoil of the crown, pushing all the
liquid at once in the centre of the cavity.

Ersoy and Eslamian [80] already identified several mechanisms of mixing at play in a range
close to ours, as indicated by thewhite dotted frame in the central diagramof Fig. 4.5. They covered
impacts for We ∈ [120 ; 300] and h⋆ ∈ [3.5 ; 13.8], i.e., with smaller kinetic energies and for
thicker films. Nevertheless, similarities exist between such impacts and our measurements in the
particular range relative to this section. They observed that expansion-retraction strokes induce
mixing directly in the central cavity during the impact, while surface capillary waves propagating
outside of this cavity lead to mixing around the impinged area. Ersoy and Eslamian [80] further
noted that themotion of the crownwall itself, alongwith the ejection of secondary droplets, causes
an outward flow over the film free surface outside of the crown, further enhancing the mixing.
Additionally, we notice in the side view some capillarywaves in the crown, just below the rim. They
converge back at the impact point where they propagate through the Worthington jet [233], which
may enhance its destabilisation and pinch off into one or several droplets. The observed mixing
patterns present similarities with scenario B: owing to this central jet breaking into droplets that
fall back in the film, the central concentrated red area is typically surrounded by more diluted
twirls (Figs 4.5 (c)).

As the transitions between the various observed regimes are not sharp, for thinner films, onsets
of jets more reminiscent of a mere wave might be visible. Nevertheless, only the waves sufficiently
high to produce at least one dropletwere considered as actual jets. Calculations performedbyYarin
andWeiss [229] predictedno jet emergence between h⋆ = 0.04 and1,whichwas later corroborated
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by Fedorchenko and Wang [86] and corresponds to our observations as well. Premises of jets only
appear above h⋆ ≃ 1, and the jet length increases drastically with h⋆.

3.4 Crown folding (scenario D)

Again in the thick film region (h⋆ ≳ 2), very strong impacts (We ≳ 1000) lead to the formation of
higher crowns also oriented almost vertically (Fig 4.6 (d) i) [62, 227]. In this case the characteristic
timescales are still arranged as ti < tc < tν , although the impact time is much smaller than the
capillary time: tc/ti ≳ 20 in contrast to tc/ti ≲ 10 in the former regime. In all the other regimes
the crown curvature is mostly oriented outward, but in this case the crown starts bending inward
at the end of the growth phase due to capillary forces (Fig 4.6 (d) ii) [229]. The diameter of the top
rim is thus smaller than that of the cavity formed in the film: rt/rc < 1. While in the other cases
the retraction starts at the bottom of the crown and propagates to the top, here the crown summit
folds and collapses before the crown basis starts retracting. Additional capillary waves may also be
observed directly in the crown, right beneath the collapsing rim (Fig. 4.6 (d) v). In some cases air
entrapment at this stagemay even cause the appearance of a large bubble [179] having a lifetime of a
few seconds (Appendix B.4). While the rim is already collapsing, the basis of the crown still grows
and feeds the rim, which consequently thickens excessively and produces massive blobs whose
size is comparable to that of the impacting drop (Fig 4.6 (d) iii). The interaction between these
large portions of fluid seems unpredictable and produces wider mixing patterns, where the red
dye seems globally more uniformly concentrated. Although the patterns obtained look irregular,
they all consist of a very few twirls whose red borders fade awaymore gradually in the initial green
film than in the other regimes (Figs 4.5 (d) and 4.6 (d) iv). Red filaments in the crown are more
scarcely distributed than in the former scenarios. The fingering pattern in the cavity formed by the
crushed drop is still visible but this time it crosses the interface between the crown and the film
(Fig. 4.6 (d) vi). Some red volutes evenly spread out around the collapsing crown may be observed
in the film. Once the collapse comes to an end the convective motion set in the film slightly pushes
andmixes up these volutes of red fluid. As depicted in the central diagram of Fig. 4.5, the transition
between scenarios B and C (low We) occurs for smaller h⋆ than between B and D (high We).

3.5 Second-order phenomena

Drop impact on thinfilmat highWebernumber displays drop impact-relatedphenomena generally
observed in other contexts, including the aforementioned crown formation and fragmentation,
Rayleigh-Taylor and Rayleigh-Plateau instabilities causing the rim break-up into ligaments and
subsequent ejected droplets, bubble entrapment or jetting at the end of the retraction phase [179,
187, 229, 235]. A very similar phenomenon to the fingering characteristic of drop impacts on
dry wall may also be observed in Figs 4.6 (a) v and (d) vi [128]. Some additional mixing might be
induced away from the central red spot left by the impacting drop due to the ejected dropletswhich
fall back into the film. These droplets may be seen bouncing and coalescing partially or completely
before reentering the film [101, 122]. Depending on their concentration, number and distance of
ejection, they might induce some additional calcium ion deposition and subsequent growth away
from the impact point on actual stalagmites. In the present videos, except for the droplets which
fell back very close to the impact point, all these droplets were viewed as an average ejected volume
without further consideration.
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4. Results

This section presents the measurements obtained from the side and top views of the impacts, as
described in Sec. 2. Raw data are available in the Supplemental Material. The first part focuses on
the crown geometry observed from side-view high-speed movies. The second part of the section
aims at describing the mixing between the drop and the film using the top view of the impacts.
All subsequent graphs are represented as a function of the nondimensional film thickness h⋆ and
for various bins of We. One symbol in the graph shows the mean ± s.d. over an ensemble of 4
to 5 points, on average, obtained for close h⋆ and We values and considered as belonging to the
same bin. Some points in the graph exhibit a very small standard deviation or may not have one
in the uncommon cases (5 % of all the measurements) where there is only one measurement in the
corresponding (h⋆,We) bin. The range of h is divided into 10 µm (hh⋆ = 0.086) wide bins between
60 µm (h⋆ = 0.5) and 170 µm (h⋆ = 1.5). Then the width of the bins is progressively increased
up to h = 500 µm (h⋆ = 4.3). In terms of Weber number, the smallest bin, for We ∈]500 ; 1000],
corresponds to the impacts after which jetting is observed for thicker films, i.e., when h⋆ ≳ 1.5
(Fig. 4.6 (c)) while the highest one, for We ∈ [2000 ; 3000[, shows the impacts for which the crown
folds upon itself before retracting when h⋆ ≳ 2 (Fig. 4.6 (d)). The third bin represents the interme-
diate values, namely the transitional regime (Fig. 4.6 (b)). For very thin films (h⋆ < 1), no matter
the Weber number the scenario is always the same and corresponds to the crown fragmentation
(Fig. 4.6 (a)).

4.1 Crown geometry

Measurements obtained from the side view of the impacts are described in Fig. 4.1 (b) and reported
in Fig. 4.7. Figure 4.7 (a) shows the average inclination angle θ of the crown during the growth
phase, i.e., between 2ms and 10ms after the beginning of the impact (or 6ms in Scenario A). This
inclination increases with h⋆ and exceeds 90° for h⋆ ≳ 2. In Fig. 4.7 (b) we report the ratio be-
tween the maximum radial extension of the top and bottom of the crown, rt/rc (the maximum
being computed as the average of the 5 largest measurements). It decreases with increasing h⋆ and
becomes lower than 1 for h⋆ ≳ 2, in accordance with the evolution of θ. Figure 4.7 (c) represents
the maximum height w reached by the crown. Since for a small film thickness (h⋆ ≲ 2), the ra-
tio rt/rc is more or less constant while θ increases, the maximum height w reached by the crown
increases as well. The maximum height w then seems to reach a limit value at large film thickness
(h⋆ ≳ 2). While θ and rt/rc are almost independent of We, the maximum height reached by the
crown is greatly affected by We as it goes from 3.6Rd to 10.3Rd when h⋆ ≳ 2 (averages obtained
with respectively the 5 largest and smallest measurements). Figure 4.7 (d) shows the evolution of
the maximum length j of the jet protruding from the film in scenario C, before it pinches off. Al-
though the maximum height reached by the crown in scenario C is small, the maximum length of
the jet compares to the height of the crown fromscenarioD.Very short jets are already observed for
some experiments when h⋆ ≲ 1.5, but not systematically. Their length seems to increase sharply
with h⋆ when h⋆ ≃ 1, then more slowly once h⋆ ≳ 1.5. The graphs from Fig. 4.7 are completed
using data obtained by Fedorchenko and Wang [86] (θ, j), and by Cossali et al. [55] (rt/rc, w) in a
similar range to ours. Except for one value of θ taken at h⋆ = 0.4, these data usually correspond to
the upper limit of our range, with h⋆ ≳ 4. They are in good agreement with our observations. The
jet was also reported and measured by Fedorchenko and Wang [86] for a very large film thickness
(h⋆ = 46.3) at We > 1000, which is typically observed in the deep pool limit of impacts on wetted
walls [146, 177, 233].
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1Figure 4.7: Crown geometry parameters, as described in Sec. 2 and in Fig. 4.1 (b). (a) Average inclination θ of the
crown during the growth phase (solid symbols). The dotted line corresponds to θ = 90°. A comparison is made with
data from Fedorchenko and Wang [86] for h⋆ = 0.4 and h⋆ = 4 (hollow symbols). (b) Ratio between the radii of the
top rim and the cavity expanding in the film, rt/rc (solid symbols). The hollow symbol shows the value obtained by
Cossali et al. [55] for h⋆ = 25.4 with rt = 5.3Rd and rc = 6.2Rd. The dotted line shows the case where rt = rc. The
insets respectively represent rt and rc normalized by the drop radius Rd. (c) Maximum height w reached by the top
rim of the crown at various We, normalized by the drop radius Rd (solid symbols). The inset shows the measurement
relative to h⋆ = 4.4 from Scenario C, compared to data from Cossali et al. [55] (hollow symbols)), obtained for h⋆ ∈
{11.1, 25.4, 43}. (d) Maximum length j of the jet emitted following the crown retraction at low We, normalized by the
drop radius Rd. A comparison is made with data from Fedorchenko and Wang [86] for h⋆ = 46.3 at various We. All
measurements are shown as a function of the nondimensional film thickness h⋆. The legend from (d) is the same for all
four graphs. Symbols correspond to various intervals of We: circles for We < 1000, squares for 1000 < We < 2000,
and diamonds for We > 2000. The colour of the symbols refers to the scenarios described in Section 3.

From these geometrical measurements we may define a crown shape factor as

ψ =
w cot θ

|rt − rc|
· (4.9)

The evolution of ψ with h⋆ is shown in Fig. 4.8 (b). For h⋆ < 1, the crown shape is more or less
the same for all We. But then as the film thickness increases beyond h⋆ = 1.5, the shape factor
decreases with increasing h⋆, and it does more sharply for lower We. When the ratio ψ is close
to 1, the crown profile almost looks like a straight line (Fig. 4.8 ii). When the shape factor is larger
than 1, the inclination θ made by the crown interface is smaller than arccot (|rt − rc| /h), i.e., the
corresponding crown has a convex profile. By contrast, a value of ψ smaller than 1 represents the
opposite case, i.e., a concave crown shape. These two cases are illustrated in Fig. 4.8 (a) i and iii,
respectively. The change of sign in ψ corresponds to the case where θ > 90° (Figs 4.8 iii and iv).
In the thin film region (h ≲ 1), the crown thus typically takes a convex shape, while in the thick
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film region (h ≳ 2) there is a change of curvature or even a crown whose bottom spreads out more
than the top rim.
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1Figure 4.8: Crown shape factor and retraction velocity components. (a) Examples of crown shapes shown in the
graph of (b): i. h⋆ = 0.56, We = 1675, shape factor of 1.39, ii. h⋆ = 1.1, We = 1675, shape factor of 1.09, iii. h⋆ = 4.3,
We = 525, shape factor of -2.24 and average velocity ratio of 1.98, and iv. h⋆ = 4.3, We = 2740, shape factor of 0.37
and average velocity ratio of 0.95. Two frames showing the main retraction direction of the crown are added in iii
and iv, with a correspondence in the graph from (c). The scale bars are 1 cm. (b) Crown shape factor ψ, and (c) ratio
of crown retraction velocity components χ, both computed as a function of the nondimensional film thickness h⋆.
The dashed line from (b) at ψ = 0 corresponds to a change of sign when θ = 90°. The other dashed line at ψ = 1
corresponds to the change from a crown convex profile to a straight profile. In (c) the two dashed lines are drawn at
χ = 1 and χ = 2. The symbol colours correspond to the scenarios identified in Section 3. The legend is the same in
both graphs.

One might also compare the vertical (from top to bottom) and radial (inward) retraction veloc-
ities of the crown. The vertical retraction velocity ẇ is estimated right after the maximum height is
reached in each experiment. The radial component corresponds to the average of ṙt and ṙc, again
measured right after both radii reach their maximum. Estimations of the ratio χ = 2ḣ/ (ṙt + ṙc)
are taken for each experiment by using the derivatives of quadratic fits made in the w(t), rt(t) and
rc(t) curves, obtained between tc and tc + 5ms. On average for all the experiments in a given sce-
nario, the maximum in the w(t), rt(t) and rc(t) curves is observed at about the same time. This
time has a value of 16.4 ± 2.7ms on average for all the impacts in the central jet case (scenario C,
We ≲ 1500) and 14 ± 1.4ms in the crown folding case (scenario D, We ≳ 1500), so both are very
close to tc. The ratio χ is equal to 2.06 ± 0.21 in the jetting case and to 1.13 ± 0.28 in the crown
folding case (averages ± s.d. of all the experiments corresponding to scenarios C and D, respec-
tively). In other words, in scenario C the crown height decrease occurs much faster than the radial
retraction, which then continues in the film after the crown has disappeared and allows for the
jet to protrude. On the contrary, in scenario D both components of the retraction velocity are
similar, hence the folding observed. These measurements correspond to the observations from
Figs 4.6 (c-d) i and ii. The evolution of the ratio χ with the film thickness is shown in Fig. 4.8 (c).
At low and intermediate We, this ratio increases with the film thickness for h⋆ ≲ 1.5. Then for
h⋆ ≳ 1.5 it reaches a limit value which is larger at lower We. For the highest We, a maximum is
observed around h⋆ ≃ 1.5 then a limit value close to 1 is reached in the thick film region. Two
short sequences from scenarios C and D are shown in Figs 4.8 (a) iii and iv, respectively, where the
difference in the retraction motion of the two crowns is visible.
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4.2 Mixing and thickness variations
Mixing level indicatorsmay be inferred from the film thickness variation and red proportionmaps
taken after each impact (Figs 4.2 (b) and (c)). We first consider the physical extension and scattering
of the spot left by the drop in the film post-impact. We then deduce the quantity of water ejected
during the impact, aswell as the average proportion coming from the initial drop into the ejections.
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1Figure 4.9: Nondimensional equivalent radius Req of the red stain left by the drop in the film, defined in Eq. (4.11): (a)
Measurements ofReq as a functionof the nondimensional initial film thickness h⋆, divided in three bins ofWe. Thegrey
anddotted bands represent themaximumspatial extensionRdry/Rd reachedby a dropon a drywall betweenWe = 500
and We = 3000. These boundaries are estimated using the results from Laan et al. [139] (dots) and Gordillo et al. [103]
(plain), respectively. The symbol colours correspond to the scenarios observed in Section 3. The roman lowercase
letters show the location of the examples from (b) in the graph. (b) Examples of radii computed according to Eq. (4.11)
and superimposed with the corresponding initial photographs, for the following ranges of parameters: i. very thin
film, high We, ii. thin film, intermediate We and iii. thick film, low We. Picture i also shows the (r, ϑ) coordinates
used to compute the integral from Eq. (4.11). The equivalent radius and drop impacting point are represented in each
photograph by a white dashed circle and a white dot, respectively. The scale bars are 1 cm.

4.2.1 Equivalent moments of the red dye proportion distribution

The red spot left in the film by the crushed drop varies greatly in shape and size (see Fig. 4.5).
To estimate the size variations of this spot, we first define the kth-order moment of the red dye
proportion in the film as follows:

Mk =

∫ 2π

0

∫ ∞

0
pr(r, ϑ) rk+1dr dϑ , (4.10)

where r andϑdenote the cylindrical coordinates in a frame centered at the impact point (Fig. 4.9 (b) i).
The impact point position is measured in the high-speed colour videos, at the closest frame right
after the drop starts crushing. The red dye concentration pr is measured at about 1 s after the im-
pact, as shown in the example of Fig. 4.2 (b). The normalized first-order moment represents an
equivalent red spot radius Req, defined as

Req =
M1

M0
· (4.11)
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Using the normalized second-order moment, it is likewise possible to define the variance of the
distribution as

σ2
eq =

M2

M0
− R2

eq . (4.12)

If the red proportion distribution is a Dirac function centered in r = R⋆, then Req = R⋆ and
σeq = 0. If the distribution is uniform for r ≤ R⋆ and null for r > R⋆, then Req = 2/3R⋆ and
σeq = R⋆/(3

√
2). The evolutionof the equivalent red spot radiusReq with h⋆ is shown inFig. 4.9 (a),

for the same three bins of We as in the previous section. Figure 4.9 (b) shows examples of the radii
obtained in several cases, which are drawn directly in the corresponding pictures. For the sake of
comparison, the maximum radius that would be reached by a drop colliding with a dry wall, Rdry,
is also represented in Fig. 4.9 (a). The dry radius Rdry increases with We, hence it is represented
as a band corresponding to the bin We ∈ [500; 3000] with estimations from Laan et al. [139] and
Gordillo et al. [103], respectively. In the same manner, Fig. 4.10 (a) shows the evolution of σeq
with h⋆, with illustrations in Fig. 4.10 (b).
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1Figure 4.10: Nondimensional second order moment σeq of the red proportion in the film post impact, defined in
Eq. (4.12): (a) Measurements of σeq as a function of the nondimensional initial film thickness h⋆, for three bins of We.
The colours represent the various scenarios described in Section 3. The roman lowercase letters show the locations
of the examples from (b) in the graph. The inset represents the second-order moment divided by the equivalent ra-
dius, σeq/Req. The dashed line in the inset corresponds to the theoretical uniform distribution value of 1/(2
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2). (b)

Examples of radii Req (dashed, black) and Req±σeq (dashed, white) superimposed with the corresponding initial pho-
tographs, for the following ranges of parameters: i very thin film, high We, ii. thin film, intermediate We and iii. thick
film, low We. The white dots show the impact points. The scale bars are 1 cm.

We observe in Fig. 4.9 (a) that Req increases monotonously with the initial film thickness h⋆

and reaches a limit value at h⋆ ≳ 2. The radii measured at h⋆ < 1 are small compared to the dry
radius Rdry. Additionally, the variation of the radius with We is less pronounced when there is a
film than when there is none [128, 168]. The dry radius Rdry indeed goes from 5.3Rd at We = 500
to 7.5Rd at We = 3000 (averages obtained with [103, 139]). On the other hand, the largest differ-
ence observed between Req values at a given thickness range for We = 500 and We = 3000 is of
about 0.4Rd. We get rid of the h⋆ dependence by defining Req(We) = Req(h⋆,We)/Req(h⋆), i.e.,
each radius measurement corresponding to one experiment is normalized by the average made in
all the measurements corresponding to its bin of h⋆, disregarding We. An anova test performed
for Req(We) (i.e., for all We from Section 3 rather than for the three bins of Fig. 4.9) yields a p-value
of 2 × 10−5. The influence of We on Req is thus statistically significant although it is lesser than
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the influence of h⋆. The correlation coefficient between the normalized Req(We) and all the We
from Section 3 is −0.33, i.e., the equivalent radius slightly decreases when We increases. This is
visible in Fig. 4.9 (a) up to h⋆ ≲ 2, the corresponding bins representing most experiments (14 bins
out of 17 bins of h⋆). The standard deviation σeq also increases with h⋆, as seen in Fig. 4.10 (a). In
the same manner as Req, the value of σeq is very small for h⋆ ≲ 1, while it reaches a more or less
stationary value when h⋆ ≳ 2. An anova test performed on σeq(We) in the same manner as for
Req(We) gives a p-value of 8 × 10−3, i.e., the influence of We on σeq seems significant. The correla-
tion coefficient of σeq(We) is −0.20, so σeq also decreases slightly with We. The inset of Fig. 4.10
shows the second-order moment σeq over the equivalent radius Req. They were computed for each
experiment, then divided into bins and averaged. By averaging the measurements corresponding
to the four scenarios identified in the previous section, we obtain the following values for σeq/Req:
A) 37.6 ± 2.7 %, B) 44.1 ± 1.8 %, C) 43.7 ± 0.8 %, and D) 45.6 ± 2.1 % (average ± s.d. on all mea-
surements corresponding to a given scenario, see Fig. 4.5). The variation of the area covered by the
red stain in the film is thus less pronounced in scenario A than in the others, and is also closer to
the theoretical uniform distribution case for which σeq/Req = 1/(2

√
2) ≃ 35%. In scenarios B, C

and D, the order of magnitude of σeq/Req is the same, although a small difference may be observed
between scenarios C and D.

(a) Impacting drop, Vd

(b) Film before impact, Vf

(c) Ejected droplets, Ve

(d) Film after impact, Vf′

ud

Vd )e

Vd )f ′

2Rd

pr,d, pg

h

Vf )e Vf )f ′

pg

h′
Vd )f ′ Vf )f ′

pr, pg

Vd )e

Vf )e

1Figure 4.11: Drop, film, dye proportions and volume distribution nomenclature. (a) Impacting drop containing both
red and green dyes in respective proportions pr,d and pg. The drop has a radius Rd, a final velocity ud and a volume Vd

split into two contributions: Vd )e which goes into the ejections, and Vd )f ′ which remains in the film after the impact.
(b) Initial film containing only green dye in proportion pg, of supposedly uniform thickness h and of volume Vf divided
into Vf )e, the ejected part, and Vf )f ′ , the remaining part. (c) Post-impact ejected droplets of unknown red volume
fraction and of total added volume Ve coming from the sum of Vd )e, the ejected volume initially in the drop, and
Vf )e, the ejected volume initially contained in the film. (d) Post-impact film of both unknown thickness δ′ and red
proportion pr, and of known green proportion pg. Its volume Vf ′ corresponds to the addition of Vd )f ′ , the volume
going from the impacting drop into the film, and Vf )f ′ , the part already in the film before the impact and which has
not been ejected.

4.2.2 Ejected volume

We infer both the total ejected volume during the impact and the drop proportion left in the film
from the raw measurements of film thickness and red dye proportion (see Fig. 4.2). As described
in Fig. 4.11, we denote the impacting drop volume Vd, the initial film volume Vf and the final film
volume Vf ′ . This film has a supposedly uniform thickness h before the impact and unknown thick-
ness h′ after the impact, where the latter may vary in space. The total volume of all the ejected
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droplets is Ve. The drop volume Vd may be split into two contributions: one going into the im-
pacted film, Vd )f ′ , an the other going into the ejections, Vd )e. The same holds for the initial film
volume Vf that we may split into the part Vf )f ′ remaining in the film and the part Vf )e that joins the
ejected droplets. The total ejected volume Ve therefore corresponds to Vd )e + Vf )e, whereas the
film volume after impact Vf ′ is equal to Vf )f ′ + Vd )f ′ . We call φe the ejected ratio, namely the ratio
of the total ejected volume Ve over the impacting drop volume Vd, and write

φe =
Vd )e + Vf )e

Vd

= 1− (Vd )f ′ + Vf )f ′)− (Vf )e + Vf )f ′)

Vd

= 1− Vf ′ − Vf

Vd

= 1− 1
Vd

∫
S
(h′ − h) dS .

(4.13)

The integration domain S corresponds to the 40× 40 cells on which h and pr are obtained by col-
orimetry (see Fig. 4.2 (c)). In practice it is equivalent to a 35-40mmside square, which is sufficiently
large to take into account the thickness variations and yield an almost null difference (h′−δ) away
from the impacted area (see Fig. 4.2 (c)). By averaging |h′ − δ| over all the cells outside a disk of
radius 2Req centered on the impact point, we obtain values going from 0.05 µm to 5 µm (averages
of 30 best and worst cases), with a mean for all the experiments of 3 µm. Most of the worst cases
correspond to the thinner films (h⋆ ≲ 1), for which the lighting may induce some errors on the
edges of the pictures (see Section 2.2). The integration domain is also sufficiently small so that
the ejected droplets that could fall into the film are neither seen in the pictures nor taken into ac-
count [55]. The only exceptions are the very slow and large droplets which induce mixing directly
in the impacted zone at the end of the crown retraction or jet pinch-off. For very large film thick-
nesses (h⋆ ≳ 4), as shown by, e.g., Figs 4.5 (d) and 4.10 (b) iii, the surroundings of the impacted
area might sometimes be truncated when this area has a size close to S, although cases with a very
visible truncation were left apart (see Appendix B.4). Around h⋆ ≃ 4, the colorimetry hypotheses
become less valid (see Appendix B.3) and there are fewer experiments. Although the exact results
relative to these cases should thus be taken with precaution, they should not affect the conclusions
relative to the following graphs.
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Figure 4.12 shows the ejected proportionφe as a function of h⋆. Our values are shown for h⋆ ≥
0.56 (solid symbols) and compared to data from Yarin and Weiss [236] taken above the splash-
ing threshold. These authors computed φe by summing the volume of all the secondary droplets
that they measured in their experimental photographs, Ve, and by dividing this sum by the im-
pacting drop volume Vd. They did not represent their experimental values as a simple function
of the Weber number or nondimensional film thickness, but rather as a function of the combi-
nation u = We1/2 (h⋆)3/4 Oh−1/8. Their range of parameters is such that OhYarin = 1.8 × 10−2,
WeYarin ∈ [250; 1500] and h⋆Yarin ∈ [0.8; 2], with the ejected proportionmeasured between u = 18.4
and u = 32.4. To adapt this to our range of parameters, we used Oh = 1.7 × 10−3 and We = 1500,
and inferred from u that h⋆ ∈ [0.21; 0.38]. We also represented their error bars which were es-
timated at 14% of φe. As seen in Fig. 4.12, the ejected proportion first increases sharply with h⋆,
going from about 0.2 to 1 (black crosses). Then, for h⋆ ≳ 1, the proportion φe decreases with in-
creasing h⋆ and reaches a limit value of about 0.6 at large film thickness, i.e., such that h⋆ ≳ 2.
This behaviour seems approximately independent of We. In other words, the film volume post-
impact Vf ′ is larger (φe < 1) than the initial volume Vf , though only slightly (φe ≃ 1) around
h⋆ ≃ 1. In this case, as much liquid is ejected as brought by the incoming drop. The average film
thickness therefore remains constant although it is no longer uniform in space 1 s after the impact
(see Fig. 4.2 (c)). At lower film thickness in our data (solid symbols), it is difficult to distinguish the
results obtained for the two highest bins of We (We > 1000), but the measurements corresponding
to scenario C overall seem to exhibit a lower ejected proportion (i.e., a larger volume going into the
film at small We). Additionally, our data are in the continuity of data from Yarin and Weiss [236].
The maximum value reached by φe for thin films in our range is 1.03 with a relative error of 2 %
(average on 5 largest measurements). The average relative error in our measurements is 5 %.
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1Figure 4.13: (a) Proportion of the volume coming from the drop left in the film after the impact, φd )f ′ , as defined in
Eq. (4.14). The dashed line shows the limit case for whichφd )f ′ = 0.5. (b) Ratio of the film volume lost in the ejections
over the initial drop volume, φf )e, as defined in Eq. (4.15). The dashed line shows the case for which φf )e = 0.1.
Measurements are shown as a function of the film thickness h⋆ and for three bins of We. The colours correspond to
the different scenarios observed and described in Section 3. The legend is the same in both graphs.

4.2.3 Drop proportion left in the film post-impact

The proportion of the impacting drop that remains in the film after impact is defined as the ratio
of the volume coming from the drop and remaining in the film following the impact, Vd )f ′ , over
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the impacting drop volume Vd:

φd)f ′ =
Vd )f ′

Vd

=
1

Vd

∫
S

prh′

pr,d
dS . (4.14)

Although the integration domain S is arbitrary, it is much larger than the impinged area. As it
may be seen in Fig. 4.2 (b), the red proportion in the film pr is zero far from this zone, i.e., when
r > Req + σeq. Contributions to the integral are thus negligible away from the impact region
and the choice of S does not affect the computed integral, except in the already discussed case of
very thick films for which h⋆ ≳ 4. The evolution of φd)f ′ with h⋆ is shown in Fig. 4.13 (a). We
observe that φd)f ′ overall increases with the film thickness. The Weber number does not seem to
significantly influence this evolution. At h⋆ < 1, the proportion of the drop left in the film post
impact is quite small, about 0.1. Hence, a large amount of the initial drop volume ends up in the
ejections. Then φd)f ′ increases with h⋆, such that the proportion of the impacting drop going into
the ejections decreases. For h⋆ ≳ 2, the ratio φd)f ′ also appears to reach a stationary value of
about 0.5.

The sum of the two latter quantities can be related to another proportion:

φf )e =
Vf )e

Vd

= (φe + φd)f ′)− 1 . (4.15)

The proportion φf )e compares the volume of fluid initially in the film and ejected away at impact,
to the fixed drop volume. It is shown as a function of h⋆ in Fig. 4.13 (b). The variations in the graph
should mostly come from additive numerical errors, given that this ratio is calculated from other
numerical values rather than raw measurements. We observe that φf )e remains close to 0.1. Little
fluid originating from the film therefore goes into the ejections. In other words, most of the initial
film fluid remains in the film.

5. Discussion
The differences between scenarios observed qualitatively are also visible in the measurements de-
scribed in the previous section. The main difference between the scenarios is the ordering of the
capillary and viscous diffusion timescales tc and tν . In scenario A (h⋆ < 1) the high kinetic en-
ergy of the drop is mostly transferred to the top part of the expanding crown. At the same time
viscous forces quickly slow down the motion of the crown near the film. Since nothing prevents
the further extension of the top part of the crown (tν < tc), fragmentation occurs due to the large
velocity gradients appearing between the top and the bottom of the crown. Then, as the thickness
is increased (h⋆ ≳ 1), retraction of the crown is observed in scenario B. The expanding crown is
again slowed down at its basis due to the viscous forces propagating from the solid surface to the
free liquid surface of the film. But at the same time, given that tν ∼ tc, capillary forces tend to
shrink the crown. Increasing further the film thickness (h⋆ ≳ 2), the crowns obtained in scenar-
ios C and D are oriented perpendicularly to the film free surface, or even start bending inward
before completing their expansion phase. The capillary forces act sooner than the viscous forces
in the film (tc < tν ), thereby preventing a large extension of the crown top part as in the first two
scenarios, while dissipation in the film only slows down the crown basis later.

Following these observations, it is not surprising to see that all the crown geometry parameters
and mixing level indicators depend strongly on h⋆, and that most mixing level indicators are cor-
related to the crown geometry (see Table 4.1). In scenario A, the viscous dissipation slowing down
the crown basis translates into a very inclined and convex-looking crown, which is corroborated
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Mixing and thickness
variation

Crown geometry Thickness
θ rt/rc w h⋆

Req 0.96 -0.86 0.50 0.88
σeq 0.93 -0.84 0.56 0.87
φe -0.86 0.95 -0.28 -0.90
φd)f ′ 0.91 -0.88 0.44 0.90
φf )e 0.42 -0.18 0.63 0.36

Table 4.1: Correlation coefficients between the mixing level indicators (equivalent moments Req and σeq, ejected
proportion φe, proportion of the drop volume going into the film φd )f ′ , and proportion of the film going into the
ejections φf )e) and the crown geometry parameters (inclination θ, ratio of top and bottom radii rt/rc and height w),
compared with the correlation coefficients obtained between the mixing level indicators and h⋆.

by the measurements of θ, rt/rc, w and of the crown shape factor ψ > 1 (Figs 4.7 and 4.8). Re-
garding the post-impact mixing in scenario A, the red dye is distributed on a very small radius Req,
in an almost uniform manner given that σeq/Req is close to the theoretical uniform distribution
in this case. Such a distribution is consistent with the fragmentation of the crown observed and
the viscous dissipation occurring rapidly, thereby preventing any further convective motion in the
film that would lead to more mixing. In scenario B, measurements relative to the crown geome-
try correspond to the balance between the viscous dissipation and capillary forces, which yields
a shape factor ψ close to 1. Because of the crown retraction at the end of the impact, mixing is
increased and larger values are obtained for both Req and σeq. The ejected volume proportion φe

is close to 1 in scenario A, i.e., there is as much liquid ejected away during the impact as in the
incoming drop. The ejections also mostly contain liquid from the drop as the proportion of drop
liquid in the ejections corresponds to 1 − φd)f ′ ≳ 0.9. Then, as h⋆ increases and fragmentation is
no longer observed (scenario B),φe decreases whileφd)f ′ increases, i.e., there is a larger proportion
of the drop going into the film and a smaller one into ejections, which also represent a lower total
volume.

In scenario C and D, because the capillary forces act much sooner than viscous dissipation in
the film, θ ≳ 90° and ψ < 1, in a consistent manner with the observed inward orientation of the
crown. Both the jet protrusion and crown folding induce additional mixing compared to the sole
retraction of the crown of scenario B.The liquid falling back into the film after the end of the initial
impact indeed seems to expand the mixed area as Req becomes larger. Consistently with the red
volutes surrounding the post-impact red spot in the film, the standard deviation σeq also increases
with h⋆ in scenarios C and D but at a slower rate, and the resulting concentration profile is almost
uniformly distributed since σeq/Re remains close to 0.45. In both scenario C and D, once h⋆ ≳ 2,
the ejected proportionφe approaches the same stationary value of about 0.6, i.e., some liquid from
the drop is added in the film locally. The proportion of the drop left in the film post-impact, φd)f ′ ,
also seems to reach a limit value of about 0.5 when h⋆ ≳ 2. This bound could possibly result from
the truncationof the images at very large film thickness. Nevertheless, althoughφd)f ′ might further
increase with h⋆ in reality, it does not seem to get close to 1 for very large film thicknesses. The
ejections produced by a drop impacting a liquid film thus seem to always contain liquid initially
from the drop in a significant proportion. On the other hand, the ratio of the volume originating
from the film and ejected away at impact, over the initial drop volume, φf )e, remains close to 0.1
once h⋆ ≳ 1. Hence, in a consistent manner with the other observations, very little liquid coming
from the film is ejected away.
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The Weber number also affects crown geometry parameters, mostly in the case of scenarios C
and D. In particular, a higher We results in a much higher crown, as shown in Fig. 4.7 (c). Corre-
spondingly, large differences are observed between scenarios C and D in the crown shape factor ψ
and the ratio of the retraction velocity components χ (Figs 4.8 (b) and (c)). The ratio of velocity
components is notably representative of the different mechanisms involved during the retraction
phase of these two scenarios. Unlike the crown geometry parameters, the mixing level indicators
(Req, σeq, φe, φd)f ′ and φf )e) do not significantly vary with We. Specifically, the ejected volume
should mostly depend on the first stages of the impact, i.e., the crushing of the drop in the film and
the crown growth. Since the crowns observed in scenarios C and D present different geometries,
it is therefore surprising to observe similar values of φe in both cases once h⋆ ≳ 2.

The relatively minor influence of We is in contrast with the dynamics of drop impact on a dry
wall, in which case the splashing threshold or maximum extension of the radius formed at impact
depend strongly onWe [53, 103]. This radius is alsomuch larger than the equivalent red spot radius
obtained in scenario A (h⋆ < 1) [53, 103, 139]. Nevertheless, retraction and expansion strokes are
also observed for impacts on a dry wall [53, 179, 235], and the final size of the spot left by the drop
on the wall is usually smaller than Rdry, i.e., this final size and the value for Req as h⋆ → 0 might
be expected to become very close. The major difference in our experiments is the presence of the
initial liquid film which decreases the viscous forces acting to slow the motion of the growing
crown during the impact. All our experiments also lie within regimes where ti < tν . The case
where ti ≈ tν corresponds to a film thickness h⋆ = 0.15 (18 µm) at We = 500 and h⋆ = 0.23
(26 µm) at We = 3000, i.e., a range that we could not explore, but that was partly described by
Yarin and Weiss [236] (Fig. 4.12).

In Table 4.1, we report the various correlation coefficients computed between the mixing level
indicators (Req, σeq, φe, φd)f ′ and φf )e) and the crown geometry parameters (θ, rt/rc and w). As a
comparison, the correlation coefficients with h⋆ are added in the last column. We observe that the
red spot radius and second-order moment, Req and σeq, along with the proportion of the drop left
in the film post-impact, φd)f ′ , overall increase with increasing crown inclination θ and decreas-
ing ratio of the top and bottom crown radii rt/rc, still in accordance with the previous discussion.
Indeed, a very inclined crown wall typically leads to early fragmentation and a small red spot con-
taining very little water coming from the drop, while for θ > 90° and rt/rc < 1, the longer lifetime
of the crown allows themixing between the drop and the film to last longer and to occur on a larger
area. It is thus also not surprising to see that these mixing level indicators are not strongly corre-
lated to the height of the crown. Conversely, the ejected proportion φe decreases as θ increases,
and increases with rt/rc. A very inclined crown indeed allows the ejections to actually leave the
impacted zone and not to fall back into the film after the impact. The proportion of volume initially
in the film and ejected away at impact,φf )e, was found to remain almost constant (see Fig. 4.13 (b)),
and is also observed to vary only little with the crown geometry parameters.

Besides the rapid expansion and retraction of the crown, the impact is also responsible for
the emergence of waves at the free surface of the film, or even directly in the crown in scenar-
ios C and D. According to Ersoy and Eslamian [80], capillary waves should participate in the mix-
ing between the drop and the film. Measurements based on our movies yield wavelengths of
1.62 ± 0.05mm (average ± s.d. on 49 experiments for which h⋆ ≳ 1.3, see the raw data table
from the Supplemental Material), similarly to their findings. Capillary waves should be emitted
as soon as the drop has crushed and the crown starts growing [80, 235], although they were not
visible in Fig. 4.5 (a). The local Capillary number in the film during the first stages of the impact
is Ca = νρ ṙc/γ, with ṙc the edge velocity of the radially expanding cavity in the film, in this case
measured for t < tc. In scenario A for very thin films at high We, ṙc ∼ 1-2m s−1. From Jalaal
et al. [120], based on a linear analysis of the lubrication theory we may estimate the wavelength
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of capillary waves in a thin viscous film of thickness h⋆ = 0.75 as λ ≃ 5.03h/Ca1/3 = 1.6mm
[63, 80]. According to the lubrication equation, the exponentially decaying ripples in the film have
a damping time of about td = 3µλ4/(16π4h3γ) = 0.2ms, i.e., much smaller than the total crown
formation and break-up timescale of a fewmilliseconds, and of the same order as our frame period
of 0.16ms. In scenario B, e.g., for h⋆ ≳ 1, at We = 2750, the crown wall expands at a velocity of
about ṙc ≃ 0.5m s−1. The damping characteristic time of the capillary ripples td is in this case of the
order of 2ms. The capillary ripples thus also fade away before the other phenomena at play may
even interact with them, and may help dissipate the remaining kinetic energy of the crown after
it starts to retract toward the center. However, in the case of scenarios C and D, e.g., for h⋆ = 2,
the crown wall moves at a smaller velocity ṙc ≃ 0.05− 0.1m s−1, yielding a damping time of the
capillary ripples td ∈ [25 ; 100]ms, which is comprised between tc and tν . During the last stages
of the impact in particular, these capillary ripples could help dissipate the kinetic energy of any
secondary droplet or blob of liquid that falls back into the film following the retraction phase of
the crown. These waves could thus be more likely to prevent any further expansion of the spot left
by the drop in the film following the impact, rather than to enlarge the size of the spot. This would
be consistent with the observation that σeq/Req does not vary significantly between scenarios B, C
and D.

6. Conclusion
Theprogressive filling of a thin filmby successive drops ofmiscible liquid is a phenomenon appear-
ing in the particular applicative context of stalagmite growth in karstic caves, but is also commonly
encountered in other applications [235]. However, few studies are concerned with the hydrody-
namics at play when drops impact thin films [86, 227], especially regarding the mixing that may
occur both between the drop and the film, and into the ejections typically produced by these im-
pacts [80]. Gaining a deeper insight into the variations of ion distribution at the timescale of single
drop impacts would nevertheless allow us to better comprehend the growth of stalagmites and the
potential differences that they exhibit in terms of, e.g., shape and size. We thus investigated in this
chapter the impact of a drop on a very thin film in a laboratory setting with the aim of determining
how the drop content is distributed into the film upon impact. We varied the Weber number We
and nondimensional film thickness h⋆ in a range close to what is observed in actual caves. We
identified several impact scenarios depending on these parameters, going from a very inclined and
rapidly growing crown that fragments early to a short, slow and thick crown that produces an
uprising central jet lately. The distribution of these scenarios sheds light on the influence of We
and h⋆ on the final outcome of the impacts. All the measured quantities are strongly correlated
to the initial film thickness h⋆. Part of them (crown geometry parameters and ejected proportion)
were further corroborated or completed by data from the literature in ranges close to ours. On the
other hand, only some crown geometry parameters such as themaximumheight, shape and retrac-
tion velocity depend on We. Additionally, most of the mixing level indicators, such as the red spot
radius and ejected proportion, are strongly correlated to the crown inclination and spatial extent.

In particular, the mixing level indicators between the drop and the film that we introduced
depend mostly on h⋆ and not significantly on We. Both the equivalent radius of the spot left by the
drop Req and the corresponding second-order moment σeq increase with h⋆ in the first two sce-
narios due to the transition from a crown fragmenting and disappearing in scenario A to a crown
retracting and collapsing in a random manner for B. For scenarios C and D, Req and σeq seem to
reach stationary values as the crown retraction dynamics (jet appearance or folding) enhances the
spreading of the crushed drop in the film even more. The lack of influence of We on the equivalent
radius is opposed to what is observed for impacts on dry walls. The ejected proportion φe first
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takes a more or less constant value of about 1 in scenario A, i.e., as much volume as brought by the
drop is ejected away during the impact, nomatter whether it came from the drop or the initial film.
Then this proportion decreases for scenario B, meaning that a certain part of the drop volume is
added to the film following the impact, increasing the thickness locally. The ejected proportion fi-
nally reaches a stationary value at large film thickness in scenarios C and D, despite the differences
exhibited in the shape and retraction velocity ratio of the crown in these two cases. The proportion
of the initial drop remaining in the film following the impact φd)f ′ overall increases with the film
thickness in a consistent manner with the observations of the various scenarios.

All these measurements indicate that the film thickness directly influences the distribution of
red in the film following the impact, aswell as the volume and concentration of the droplets that are
ejected away. Translated to caves, this would mean that the ion distribution in the residual water
film covering stalagmites varies from one impact to the other depending on the film thickness,
and so would the precipitation and accumulation of these ions and subsequent stalagmite growth.
Accordingly, the film thickness seems to be locally affected by each impact. Although this thickness
was thought to remain constant and uniform on actual stalagmites, such measurements added to
the dispersal in the impact point position of the drops show that it should not be the case. The film
thickness could still displaymore uniformity in between impacts separated by long periods of time
(≳ 15min) because of the other processes at play, such as the gravity-driven drainage of this film
(see Ch. V).Therefore, concluding regarding the direct influence of one drop impact on subsequent
stalagmite growth is not possible without considering drainage and precipitation. This chapter has
nevertheless shown that considering a constant film thickness over time and space in attempting
to model stalagmite growth is not always an hypothesis that should be made. Conversely, we only
considered drop impacts on almost horizontal films to simplify the studymade in this chapter. The
successive drop impacts on stalagmites may nonetheless present different features when less ideal
conditions are encountered, as it was shown in Sec. 2 from Ch. III (see Fig. 3.3). The interaction
between drop impacts localised close to each other in a short period of time (∼ 1-100 s), or the
presence of film thickness gradient, may both affect the spots left by the drops in the film in a non
negligible manner. Preliminary experiments cover these possibilities in Ch. VIII.
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Appendix
This Appendix is divided as follows: Sec. A contains tables summarising the nomenclature appear-
ing throughout the chapter, then the colorimetry algorithm is detailed in Sec. B.

A. Nomenclature
Tables 4.2 and 4.3 gather thewater physical properties, characteristic scales, nondimensional num-
bers andvariables presented in this chapter. Both tables originally come fromParmentier et al. [171].
They therefore contain some overlapping data with Tabs. 1.1 and 1.2 from the auxiliary sheet.

SYMBOL VALUE/RANGE UNITS DESCRIPTION
Water physical properties

ρ 1000 kgm−3 Density
ν 10−6 m2 s−1 Kinematic viscosity
γ 70 mNm−1 Surface tension
D ∼ 10−9 m2 s−1 Dye diffusion coefficient

Characteristic scales
Timescales

ti [0.7 ; 1.5] ms Drop crushing time
tc 15 ms Capillary time
tν [5 ; 280] ms Viscous diffusion timescale over h
tν,d 6 s Viscous diffusion timescale over Rd

t↓/→ 10/90 s/min Concentration homogenization timescale
by vertical/horizontal diffusion

td [0.2 ; 200] ms Capillary ripples damping time

Length scales
δ(h⋆ = 1) 115 µm -

Rdry [12 ; 18] mm Maximum radius of drop impacting on dry wall
λ 1.6 mm Capillary ripples wavelength
λc 2.7 mm Capillary length

Other
ṙc [0.05 ; 1] ms−1 Cavity expansion velocity
Vf [10−7 ; 10−6] m3 Film volume

Nondimensional numbers
Oh 1.7 · 10−3 - Ohnesorge
We [525 ; 2750] - Weber
Pe 1000 - Péclet
h⋆ [0.4 ; 4.3] - Film thickness

tν/ti [3 ; 400] - Ratio of viscous diffusion and drop crushing
timescales (Reynolds)

Table 4.2: List of physical properties and characteristic scales and corresponding symbols, with their definition and
typical values (see Sec. 2.3 for variable definitions).
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SYMBOL VALUE/RANGE UNITS DESCRIPTION
Side view measurements

Impacting drop
Rd 2.3 mm Radius
ud [2.9 ; 6.6] ms−1 Velocity

Film
h [65 ; 500] µm Thickness

Crown geometry
θ [50 ; 105] ° Inclination
rt [10 ; 20] mm Top radius
rc [8 ; 18] mm Cavity radius
w [6 ; 22] mm Height
ψ [−2.2 ; 1.8] mm Shape factor

Crown retraction
j [8 ; 22] mm Jet length
χ [0.3 ; 2.3] mm Retraction velocity ratio

Top view measurements
Colorimetry measurements

pr [0 ; 0.05] - Red dye proportion
pg 0.05 - Green dye proportion
hr [0 ; 25] µm Red partial film thickness
hg [0 ; 25] µm Green partial film thickness

Equivalent moments
Req [6 ; 16] mm Equivalent red stain radius
σeq [2 ; 5] mm Second-order moment

Proportions
φe [0.6 ; 1] - Ejected volume proportion
φd)f ′ [0 ; 0.5] - Drop volume proportion left in the film
φf )e [0 ; 0.1] - Ejected film volume over initial drop volume ratio

Table 4.3: List ofmeasured quantities and corresponding symbols, with their definition and typical values (see Sec. 2.1
for side view variable definitions and Secs. 2.2 and 4.2 for top view variable definitions).

It should be noted, though, that in Tab. 1.2 from the auxiliary sheet, the exact definition or range of
parameters presented may slightly differ from the ones in the above tables, because the parameters
in Tab. 1.2 correspond to the entire document while Tabs. 4.2 and 4.3 refer only to the present
chapter. This is the case for, e.g., the Péclet number that we evaluated differently in Ch. VI. Because
the role of this nondimensional number in Ch. VI is more relevant to the entire manuscript, we
presented the version of Ch. VI in Tab. 1.2.
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B. Colorimetry measurements

In the following sections, we go over the detailed calculations of the colorimetrymeasurement. We
first apply Beer-Lambert law to our experimental setup and approximate the resulting equation in
Subsec. B.1. We also review the method used to fit the coefficients appearing therein. Finally, we
show how we can retrieve the thickness and red dye proportion of a given picture based on a
calibration performed beforehand in Subsec. B.2.

B.1 Colorimetry measurement

In the following, the subscripts r and g respectively stand for the red and green dyes. The R,G and
B subscripts represent the red, green and blue colour channels of the camera sensor, each having
values that range from 0 to 1. We consider the reflectance of light over a thin film of thickness h
containing several dyes i (i ∈ {r, g}) at concentrations ci (inM). The incident light is non-polarized
and normal to the water surface, with an intensity spectrum I0(λ). According to Fresnel equa-
tions, a fraction αI0(λ) is reflected at the water/air interface, while the remainder (1− α) I0(λ)
is transmitted into the water. The coefficient α depends on the refraction index of water, which
is relatively independent of wavelength in the visible range, so α ≃ 0.02. The transmitted light
is then partly absorbed by the dyes according to Beer-Lambert’s law, so the intensity of the light
impacting the bottom surface of the water film is

I1(λ) = (1− α) I0(λ) exp

[
−h
∑

i

ciεi(λ)

]
, (4.16)

where the optical path length simply equals the film thickness h, and εi represents the molar ex-
tinction coefficient of each dye in solution (in M−1 m−1).

Again, only a fraction βI1(λ) of this light is reflected at the bottom of the water film. This light
is once more absorbed by the film, so the intensity of the beam returning to the water/air interface
is

I2(λ) = β I1(λ) exp

[
−h
∑

i

ciεi(λ)

]
. (4.17)

Finally, a fraction (1−α)I2(λ) crosses thewater/air interface and reaches the camera. Sinceα≪ 1,
subsequent reflections are neglected. The light spectrum arriving onto the camera sensor is there-
fore [

α + β(1− α)2 exp

(
−2h

∑
i

ciεi(λ)

)]
I0(λ) . (4.18)

Each sensor j of the camera (j ∈ {R,G,B}) will receive a signal Xj integrated over the wavelength
spectrum:

Xj =

∫ ∞

0

[
α + β(1− α)2 exp

(
−2h

∑
i

ciεi(λ)

)]
I0(λ)Sj(λ)dλ , (4.19)

where Sj(λ) is the camera spectrum, namely the sensitivity of sensor j to a given wavelength λ.
From this equation, it is not possible to determine h and ci without knowing the spectra of incident
light I0(λ), absorption εi(λ) and camera Sj(λ). However, in the limit where hciεi ≪ 1, a Taylor
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series approximation of the exponential can be considered, which yields:

Xj ≃
∫ ∞

0

[
α + β (1− α)2

]
I0(λ)Sj(λ)dλ

−
∑

i

hci

∫ ∞

0
2β (1− α)2εi(λ)I0(λ)Sj(λ)dλ

+
∑
i,k

h2 ci ck

∫ ∞

0
2β (1− α)2εi(λ)εk(λ)I0(λ)Sj(λ)dλ

+O
[
(hcε)3I0Sλ

]
≃ Aj − h

∑
i

Bij ci + h2
∑
i,k

Cikj ci ck

(4.20)

with Cikj = Ckij. In the limit where there is no film on the white substrate, i.e. h = 0, all R, G and B
values observed on screen should be close to 1. In otherwords, the coefficients Aj can all be set to 1.
Additionally, the dyes are only diluted in water and their concentrations ci solely depend on the
proportions of dye in water, defined as pr and pg for the red and green dyes in the film, respectively,
and pr,d the proportion of red dye in the incoming drop. The products Bij ci and Cikj cick can thus
be replaced by their nondimensional counterparts B′

ijpi and C′
ikjpipk, respectively.

Previous calculations hold in each point of the picture captured by the sensor only if the light-
ing is perfectly uniform throughout the entire film. In reality, it is not the case. There were several
lamps, each of them placed in a corner of the setup and oriented as perpendicularly as possible
to the underlying film, since right above this film were placed the releasing drop device as well as
the camera. To take that effect into account, the (R,G,B) values can be viewed as the product of
two independent contributions: the absorbance of the light by the various dyes, and the spatial
non-uniformity of lighting. The film thickness and the dye proportions should also vary with the
position. The three parameters (h, pr and pg) are also not independent. In the case of the calibra-
tion pictures, the film thickness is measured beforehand and considered as uniform and therefore
known in every position. On the other hand, in the experiments, asweused the same greenpropor-
tion in both the drop and the film, whether it is prior to or after the impact, pg = 0.05 everywhere
(see Section 2.2). In any case only the products pih are unknown. We therefore consider the partial
thicknesses in red and green, defined as hr = prh and hg = pgh. The former equation thus reduces
to

Xj(x) =

[
1−
∑

i

B
′

ijhi(x) +
∑
i,k

C
′

ikjhi(x)hk(x)

]
ℓj(x) , (4.21)

where ℓj(x) is the factor accounting for the lighting non-uniformity relative to channel color j at
position x. The notation from the last relation does not imply a summation on index j.

a) Coefficient fit

The fitting parameters relative to all colour channels R, G and B can be found independently from
each other. As an example, we focus on the red component that we denote by a matrixR ∈ RM×N,
whose elements are Rmn. To find these coefficients, M = 175 dyed water films of known thickness
and fixed red and green proportions were photographed with the same colour high-speed camera
and lighting conditions. A 50-px wide stripe (which corresponds roughly to one and a half times
the capillary length) is first removed on each side of the 512 × 512 px pictures in order not to see
the physical edges of the tape nor the diminution of the film thickness towards zero. The picture
then obtained is divided into 40 × 40 10-px side square cells, sorted from 1 to N = 1600 using
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Calibration picture

I

J

(I, J)
↓
n

Median in each cell
1Figure 4.14: Cutting of pictures in square cells and numbering.

the index n. The spatial median of the intensity of each colour channel is taken in every cell, such
that Rmn is the median of the red component in the nth cell of the mth experiment, as shown in
Fig. 4.14. For each calibration experiment, there are actually two pictures divided in cells in which
themedian is computed, then the average of thesemedians is used in thematrixR. The first picture
is taken right after measuring the thickness of the film. Both pictures are taken when the substrate
is horizontal, but the second one is taken after gently tilting the plate back and forth to avoid seeing
any thickness variation thatmight have been caused by the needle tip entering and leaving the film.

Based on Eq. (4.21), a design matrixD ∈ RM×P contains partial film thicknesses for all the cal-
ibration experiments, with P the number of dye absorption coefficients stored in an unknown vec-
tor c ∈ RP×1. Each experiment corresponds in thedesignmatrix to the row

[
1 hr hg h2

r hrhg h2
g
]
.

In addition to that, we also look for a vector ℓ ∈ RN×1 that accounts for the spatial lighting non-
uniformity. In the case of the red channel, the fitting vectors are written as

c =


1
−BrR

−BgR

CrrR

2CrgR

CggR

 and ℓ =


ℓ1,R

...

ℓN,R

 .

We aim at finding the (P + N) unknown coefficients that minimise the objective function

E = R−D c ℓT ≈ 0 (4.22)

in the least square sense. This may be achieved by minimising the sum of the residualsR which
corresponds to the Froebenius matrix norm of the former expression, or its square for the sake of
simplicity:

c, ℓ : min
c,ℓ
R2 = min

c,ℓ
tr
(
ETE

)
. (4.23)
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1Figure 4.15: Lighting coefficients ℓj(x) relative to Eq. (4.21), for (a) j = R, (b) j = G and (c) j = B. Coefficients were
obtained by solving Eq. (4.22) in the least-square sense with a Newton-Raphson technique.

Cancelling the derivatives ofR2 with respect to c and ℓ each gives a set of P and N equations:

∂cR2 = DTR ℓ− ℓTℓDTD c = 0 , (4.24)
∂ℓR2 = RTD c− cTDTD c ℓ = 0 . (4.25)

To solve these equations for c, ℓ, Newton-Raphson method is applied, in which case we denote by
xk the root vector at iteration k and f the set of functions:

xk =

[
c
ℓ

]k

, f =
[
∂cR2

∂ℓR2

]
. (4.26)

The corresponding Jacobian matrix is given by

J =


− ℓTℓDTD DTR− 2DTD c ℓT

RTD− 2 ℓ cTDTD −cTDTD c I

 · (4.27)

At the (k + 1)th iteration, we have xk+1 = xk − J−1(xk)f (xk), with all elements of x0 initialized to
1. The unknowns are indeed for the most part lighting variation coefficients that should be close
to 1. Convergence is attained once the norm of the error between two iterates,

∥∥xk+1 − xk
∥∥, goes

below an arbitrary threshold of 10−3.

b) Coefficient values

The coefficients representing the dye absorption and found with the calibration technique de-
scribed here above are shown in Table 4.4, for the three colour channels. Despite the difference
between their orders of magnitude, the series from Eq. (4.21) converges. As an example, we may
consider the on-screen colour variations in a point of a 100 µm-thick film containing red and green
dyes both in proportions of 0.05. The variations due to, e.g., BgR and BgG, would be respectively
BgR pr h⋆ = 7× 0.05× 0.86 = 0.30 and BgG pg h⋆ = 0.06 . Since they appear in Eq. (4.21) as decre-
ments from 1, adding green in the film expectedly induces a larger variation to the red component
than to the green one, yet they are both in the same range of values. For, e.g., a very thin film
(h⋆ ≪ 1) containing only green dye, the green component would be almost 1. Additionally, the
lighting spatial variations represented by the ℓ vector from Eq. (4.21) are shown in Figs 4.15 (a-c),
for all three colour channels. It can be seen that for a given j value, the light exposure is greater
in the corners, whilst it decreases towards the centre of the picture. This is due to the four lamps
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j Brj Bgj Crrj Crgj Cggj

R 0.1 7.0 -6.2 -3.1 20.7

G 12.9 1.4 61.5 13.6 3.0

B 11.8 7.7 67.9 19.2 49.1

Table 4.4: Absorption coefficients from c relative toEq. (4.21), for all three colour channels. Coefficientswere obtained
by solving Eq. (4.22) in the least-square sense with a Newton-Raphson technique.

placed in the corners of the experimental setup. The camera sensor has a less intense, broader
spectral response to the blue colour than to the red and green, which translates into Fig. 4.15 (c) by
sharper variations around the edges.

B.2 Retrieving the thickness and concentration in an arbitrary picture

Using the colour and lighting coefficients found with the calibration pictures, two out of the three
parameters (film thickness, proportions of red and green dyes) can be retrieved based on an arbi-
trary picture. As aforementioned, before the impact the film had a uniform thickness and green
proportion always fixed to pg = 0.05. The impacting drop contained both red and green dyes of
known proportions pr,d and pg, the latter having the same value as in the film. After the impact the
green dye proportion is therefore known everywhere in the film. Computing the post-impact film
thickness and red proportion in each point allows to assess how the drop and the film are mixing
directly after impact.

To do so, we proceed in the same manner as for the calibration and first divide the post-impact
picture of the film in 40 × 40 10-px side square cells, in which the median of red, green and blue
components are computed. Focusing once again on the red component, we therefore get a vector
r ∈ RN×1 containing all the red values of the N cells into which the picture was divided. The
unknown is this time thematrixD ∈ RN×P where each row

[
1 hr hg h2

r hrhg h2
g
]
corresponds

no longer to the average values taken by the partial thicknesses in a given experiment, but to the
partial thicknesses in a given point of the film. We aim at solving the following equation:

r = LD c , (4.28)

with L ∈ RN×N the diagonal matrix containing all the values from vector ℓ. As the system is
non-linear with respect to the partial film thicknesses, it cannot be solved directly, nor for the
entire picture at once, and computations should be made independently for all cells. To find the
values of hr, hg in each case n of the discretized picture, we proceed by applying once again the
Newton-Raphson technique. In this case we look in each cell n of the picture for the unknown
vector xn =

[
hr,n hg,n

]T with hi,n the partial film thickness in the nth cell. We also rewrite and
cancel Eq. (4.21) such that it becomes the set of functions fj,n to solve:

fj,n =
(

1−
Xjn

ℓjn

)
−
∑

i

Bijhi,n +
∑
i,k

Cikjhi,nhk,n = 0 . (4.29)

The derivatives of fj,n with unknowns hi,n, which correspond to the Jacobian matrix element Jji,n,
are given by

Jji,n = −Bij + 2
∑

k

Cikjhk,n . (4.30)
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Since there are three colour channels and two unknowns, the Jacobian Jn in each cell is a (3 × 2)
matrix that we use to compute the vector xk+1

n at the (k + 1)th iteration as follows: xk+1
n = xk

n −
J+n (xk) f n(xk), with J+n =

(
JTnJn
)−1 JTn .

The error is computed as the absolute difference between two consecutive iterates of the vec-

tor containing all xn, defined as Xk =

x
k
1
...
xk

N

 ∈ R(2N×1) , namely
∣∣X(k+1) − Xk

∣∣ . Convergence is

reached out when this error goes below an arbitrary threshold of 10−3, which typically occurs after
about 5 iterations.

B.3 Checking the hypotheses underlying the colorimetry measurement

a) Thickness variation of a thin film on a planar substrate

Mechanical thickness measurements were mostly taken close to the centre of the film because of
the strong curvature exhibited by the film interface toward the edges of the substrate. Due to this
curvature, spatial variations also appear to be greater in the colorimetry measurements. We may
verify over which spatial extent a thin film keeps a thickness close to its maximum thickness h0 =
100 µm. We assume that the film lies on a horizontal substrate of side W = 40mm and has a
symmetric shape. In two dimensions, the liquid/air interface of the film can be modelled using the
Young-Laplace equation [63]:

ρgh(x)− γd
2h

dx2 = K , (4.31)

where K is a constant pressure jump. The boundary conditions are h(0) = h0 and h(W/2) =
h(−W/2) = 0 µm. Introducing the capillary length λc =

√
γ/(ρg) = 2.73mm ≪ W, we find

that the solution to the former equation reduces to

h(x) = h0

(
1− cosh (x/λc)

sinh (W/(2λc))

)
. (4.32)

The distance from the centre over which the film thickness is decreased by 3% is 1.04 cm. On the
other hand, after a distance of 1.5 cm, the film thickness only reaches 84% of h0. It is therefore not
surprising for the colorimetry measurement technique to produce the spatial variations shown in,
e.g., Fig. 4.3 (c), nor to get differences between average manual and colorimetry measurements, as
shown in the graph of Fig. 4.4 (a).

b) Verification of the hypothesis made on hciεi

In approximating the exponential from Beer-Lambert’s law by a Taylor series (see Eq. (4.20)), we
assumed that hciεi ≪ 1 was true for all the dyes used (red, yellow and blue). We verify this hypoth-
esis in the present section. The following calculations are made using h = 100 µm ∀i, i ∈ {r, y, b}.
In the impact experiments, proportions of red and green pr,d = pg = 0.05 were used. These
correspond to actual concentrations cr = 1038 × 10−6 M, cy = 524 µM and cb = 106 × 10−6 M
in the drop and the film as measured by a spectrometer. The molar extinction coefficients of
the dyes at their respective absorption peak wavelengths are εr(516 nm) = 20 097M−1 cm−1,
εy(428 nm) = 22 974M−1 cm−1 and εb(630 nm) = 100 661M−1 cm−1 [49, 104, 212]. We thus
obtain that hcrεr = 0.21, hcyεy = 0.12 and hcbεb = 0.11, i.e., these values are all≪ 1. For films with
thicknesses larger than 500 µm we would no longer be able to apply the algorithm as we would get
hcrεr → 1, hence the upper limit of the range considered here.
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B.4 Substrate area and dismissed experiments

The tape on which the liquid film was spread out has an average side of about 40mm. A cavity
formed in the film reaching a maximum radius rc of about 10-15mm should therefore not interact
with the edges of this substrate. For larger film thicknesses (h⋆ ≳ 2), the maximum radius rc may
be closer to 20mm. Hence, larger tapes of sides close to 55-60mm were used in this case but
the field of view remained the same as it did not prevent to see the crown expansion dynamics.
However, the limited area of the film could still possibly affect the impact in two cases: (i) if the
drop were to land too close to an edge, (ii) if capillary waves reflecting on the film outer borders
were interacting with the developing cavity or during the retraction phase. In the first case, it
would not be surprising that the crown behaviour changes in response to an impact that would
occur at less than one times the maximum rc value from the edge. This may be seen in Fig. 4.16 (a)
for h⋆ = 1.3 and We = 2750 where the impact point is located at 8mm from the closest border
(Fig. 4.16 (a) i), while themaximumvalue of rc in this range is typically 13mm. The crown partially
breaks upwhen itmeets the edge (Fig. 4.16 (a) ii). The remaining part of the crown is expelled in the
opposite direction in an asymmetric manner, creating an elongated post-impact mixing pattern
in the film (Fig. 4.16 (a) iii). As the trajectory of the drop free fall is protected from parasitic air
currents, such kinds of impacts only arise when the falling height becomes sufficient for the drop
to be self-deviated [172], in this case above 3 m of fall, or for We ≳ 2000. Whenever this issue was
encountered, corresponding data were therefore not taken into account.

The reflection of capillary waves should not affect the impact dynamics either. As aforemen-
tioned the tape size is chosen to ensure that there is at least a 10mm space around the crown
at its maximum extension. The velocities ṙc take values comprised between roughly 1m s−1 and
0.1m s−1 (see Section 5). A capillary wave front propagating at the same celerity [120] would need
respectively 20ms and 200ms to cover a distance of 10mm back and forth. These two bounds
correspond to scenarios A and D, for which capillary ripples have respective damping times of
the order of 0.3ms and 30ms (for, e.g., h⋆ = 0.5 and h⋆ = 2.5). These ripples would therefore
fade away before having the chance to interact with the crown. Another cause, although rarely
observed, for dismissing experiments from scenario D is the possible entrapment of an air bubble
due to the crown folding upon itself. An example is shown in Fig. 4.16 (b) in the case of a vary
large bubble, having a 13mm radius. The bubble having a lifetime of several seconds prevents the
underneath final mixing pattern to be analysed as it cannot be seen in the final frame of the movie,
whose duration is only about 1 s.

-0.2ms +20ms +1 s

(a)

i ii iii

(b)

1Figure 4.16: Possible rejected experiments: (a) Impact occurring too close to an edge, in this case at a distance of 8mm
of the upper border of the film in thefield of view. Theparameters are h⋆ = 1.3 andWe = 2750. Themaximumradius rc
of the cavity in the film is 13mm. (b) Air entrapment in the case of an impact for which h⋆ = 4.3 and We = 1675. The
scale bars are 1 cm.
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In Sec. 2, we detail the experimental methodology used to produce and record side
and top views of drop impacts on thin films, using high-speed imaging. We present
the colorimetry-based algorithm used to analyse the top view movies of the impacts
in Sec. 2.2 (and Appendix B.1). We compare the colorimetry-based and manual mea-
surements in Sec. 2.2.2.

In Sec. 3, we review the geometrical features of the impacts and classify the impacts
in four distinct scenarios. The differences arise from competing physical processes:
(i) the inertia from the impact, (ii) the capillary effects in the crown and (iii) the
viscous friction within the film. Based on a dimensional analysis, we define three
nondimensional numbers: the Ohnesorge number, which is constant, the Weber
number, We, and the nondimensional film thickness, h⋆. The distribution of the sce-
narios depends on both We and h⋆.

In Sec. 4, we present both geometrical indicators of the crown formed upon impact
and mixing-related quantities. The crown geometry, presented in Sec. 4.1, is mostly
function of the film thickness h⋆, except for the crown height and retraction velocity
ratio which vary with We. The measurements obtained are further compared with
measurements from the literature.

In Sec. 4.2, we define and measure equivalent moments characterising the dye dis-
tribution coming from the drop into the film. The equivalent spot radius, Req, and
second-order moment σeq, are observed to increase with the film thickness h⋆ be-
cause of the improved mixing at impact.

We also infer the proportion of volume ejected at impact with respect to the initial
drop volume,φe, from the colorimetry algorithmmeasurements. The proportionφe

increases with the film thickness h⋆ for h⋆ → 1−, then reaches ∼ 1 around h⋆ ≈ 1.
Then φe decreases for increasing h⋆ > 1, until it reaches ∼ 0.6 beyond h⋆ = 2. A
proportionφe = 1 indicates that as much liquid is ejected away at impact as brought
into the film, but does not indicate the origin of the liquid (from the drop or the
initial film).

We also report measurements for φd)f ′ , the proportion of liquid originally from the
drop entering the film at impact with respect to the drop volume, and for φf )e, the
proportion of liquid initially in the film ending in the ejections at impact. Both in-
crease with h⋆. All the results are finally discussed in Sec. 5.

.

• Summary (Ch. IV) •
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In Ch. V (see next page), we study the drainage process of a thin residual film
lying over stalagmites through experimental and numerical measurements
of film thicknesses varying in time and space.

In Sec. 2, we present the experimental methods used to record thickness
measurements during the filling, stationary phase and sole drainage phase
of thin films over stalagmites in caves and in lab. The curves obtained are
illustrated in Sec. 3. The drop inflow and stalagmite shape affect the most
the thickness of the film.

Thedrainage ismodelled usingReynolds equation expressed in a curvilinear
coordinate system in Sec. 4.2. From the equations, it can be deduced that the
drainage is either dominated by the thickness gradients in the film over flat
stalagmites, or by the stalagmite wall inclination for convex stalagmites.

Numerically solving the drainage equations allows us to systematically vary
the parameters influencing the film drainage in Sec. 5. The model presents a
good agreement with the experimental measurements. The numerical sim-
ulations, and cave and lab experiments converge to the same results already
obtained by simple theoretical scalings in Sec. 4.3.

• Highlights (Ch. V) •
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DRAINAGEOFATHINFILM

Following our discussions on drop impact point dispersal and mixing at impact, we now try to es-
tablish the effect of the gravity-induced drainage on subsequent stalagmite growth. The amount of ions
precipitating in a particular location on the stalagmite is directly proportional to the local thickness of the
film and could be affected by any velocity gradient disrupting the apparent immobility of this film. We
thus aim in this chapter at assessing how the film thickness over the entire stalagmite varies in response
to the inflow of drops brought into the film, the curvature of the stalagmite underneath, and environ-
mental parameters such as the local temperature and relative humidity in the cave. To achieve this, we
collected film thickness measurements on stalagmites in caves, completed by lab experiments that were
also conducted on a real stalagmite. Starting from Reynolds lubrication theory expressed in a curvi-
linear coordinate system, we then model the drainage process as a function of the stalagmite shape and
size. Finally, we relate the results of our model to the observations made in situ. Part of the discussion in
this chapter is also concerned with exploring the filling dynamics of the film when an inflow of drops is
actuated on an initially dry stalagmite surface.

1. Gravity currents in various contexts

Because of the hydrophilic character of calcite, stalagmites are naturally covered by very thin films.
Some exceptions include stalagmites that exhibit unique shapes such as concave stalagmites, for
which the dimple at their top, having an outer wall up to∼ 1 cm tall, can be filled by a thick pool
of water. Wet stalagmites in caves are nevertheless not the only occurrence where thin films can
be found. Thin film flows arise in endless natural and industrial situations, including free soap film
drainage [23], synovial fluid flow in joints [159], Bretherton bubbles forming in narrow tubes [38],
ice sheet deformation [43], oil and gas transport in pipes [153], or bearing lubrication [156]. Thin
film flows inherently exist because of the coexistence of multiple phases, which can stem from flu-
id/liquid or liquid/solid interaction [138]. The motion of a thin liquid film around a solid is very
dependent on the solid geometry [85], as it is the case with optical fiber coating [74] and wall cor-
rugation in industrial chemical processes [132], or on the deformability of the substrate, as in, e.g.,
hydraulic fracturing [203] or elastic Hele-shaw cells [150]. We can also mention the propagation of
thin films in channels and other confined configurations, which appear in pollutant leakage from
porous reservoirs in geological CO2 storage [241], or radioactive waste disposal [154]. Among
all thin film flows, we are interested in thin liquid layers propagating on solid substrates, such
as stalagmites, in response to competing viscous and gravity effects, usually advancing primarily
horizontally and following a liquid front, the so-called gravity currents [29].
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A gravity current can either be induced by a given liquid volume spreading onto a substrate,
or it can result from a constant flow feeding it [116, 198]. In both cases, the resulting behaviour
of the thin film formed by the gravity current varies with the boundary conditions considered or
with the other competing physical processes at play. Permeable media, for instance, induce partial
fluid loss during the film drainage [153, 154], while phase change occurs in lava flows [107]. Inertia
effects can become of importance too and induce high-Reynolds number phenomena, as with, e.g.,
dam break [166]. In many configurations concerned with thin film drainage, self-similar solutions
can be derived [106, 116]. Usually, both the film thickness and the position of the front of the film
can be expressed as power laws of time [154]. In the particular case of the drainage of a film over
the edge of a solid substrate, it is found that the film thickness decays as t−1/3 [106]. If capillary
effects are taken into account in the case of porous media, the thickness decreases as t−1 when the
film flows over the edge of the porous substrate, and as t−1/5 when the fluid only flows above the
substrate and into the pores of the medium but does not go beyond the edge of the substrate [153].
If inertial effects arise when drainage from the edge of a liquid reservoir is considered, this law
becomes t−2 [166].

Based on what is known of thin film drainage, we can thus only but expect the film thickness
evolution on a stalagmite to be conditioned by the geometric configuration, i.e., by the shape of
the stalagmite. Although the literature concerned with thin film drainage and gravity current is
abundant, there is no dedicated general model describing the film as a function of the shape of
the substrate underneath, but rather a collection of cases particularised to the geometry of their
respective problems [154]. In this chapter, we focus on how the underneath stalagmite shape af-
fects the film evolution in time and space in order to better understand how this film may, in turn,
affect subsequent stalagmite growth. Our primary goal is to describe the drainage of a thin film
only subjected to gravity and viscosity, flowing over the edge of a substrate of general shape. We
achieve this by using Reynolds lubrication theory expressed in an axisymmetric curvilinear coor-
dinate system. Another peculiar and important aspect of thin film drainage on stalagmites is the
succession of drops feeding the film. Periodically interrupted inflows feeding the film are usually
not taken into account inmodelling thin filmdrainage [154, 198], although they could be of interest
for geophysical or industrial chemical applications, such as trickle-bed reactors [108]. From this
general description of the filling and drainage dynamics of the film, we aim at particularising the
thickness evolution for a set of actual stalagmites. We therefore took film thickness measurements
on various stalagmites from caves and in a controlled lab setting, using complementary experi-
mental techniques. Comparing these measurements to both our numerical results and theoretical
arguments will finally allow us to draw conclusions regarding the potential influence of the film
thickness evolution on subsequent stalagmite growth.

We start by describing the methodology followed to collect film thickness measurements in
both cave and lab settings in Sec. 2. Next, in Sec. 3, we present a selection of experimental curves
obtained in caves for various stalagmite shapes. In the same section, we also examine the peculiar-
ities exhibited by the film thickness measured in the lab in response to parameters that we could
not arbitrarily vary in caves, such as the dripping period of the drops. In Sec. 4, we model the film
thickness evolution in time and space for a given stalagmite shape. Stalagmite shape formalism
has been detailed in Ch. II. A numerical resolution of the equations obtained allows us to vary the
same parameters as in the caves and in the lab in Sec. 5. Conclusions are finally presented in Sec. 6.

2. Experimental measurement techniques
We describe in this section the experimental techniques used in both cave and lab settings to mea-
sure the time evolution of the film thickness on various stalagmites. Even in the lab, we had ac-
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cess to an actual stalagmite on which we conducted experiments, rather than using an artificial
substrate. Added to the lab stalagmite, a total of 14 stalagmites from actual caves were used (see
Tab. 2.2 from Ch. II). All the stalagmites are described in Ch. II, with a detailed explanation of the
modelling of their shapes. We first explain how the measurements were taken in caves using a
distance-based technique (Sec. 2.1.1) and a mass-based one (Subsec. 2.1.2), before showing how
we completed our dataset by lab measurements, obtained with the help of a precise optical sensor
(Sec. 2.2).

i. Stalactite

ii. Thermo-hygrometer

iii. Umbrella

iv. Tripod

v. Stalagmite

i. Paper towel
ii. Balance

(c) Mass measurements

(a) Dial gauge setup assembly (b) Dial gauge measurements

i. Servo motor
controller

ii. Motorized actuator
iii. Support structure

iv. Magnet

v. Dial gauge

vi. Water film
vii. Stalagmite

viii. Meniscus

1

2

3

4

5

d0

d1

Figure 5.1: Experimental setups used to record film thickness measurements in caves with a distance-based (a-b)
and a mass-based (c) technique. (a) Assembly used to perform measurements based on the positioning of a dial gauge.
(i) Stalactite whose outflow of drops is stopped by the umbrella below. (ii) Portable thermo-hygrometer used to record
the relative humidity and temperature in the vicinity of the stalagmite. (iii) Umbrella blocking the flow of drops. (iv)
Tripod holding the support structure of the dial gauge. The beige frame emphasizes the part of the setup detailed in (b).
(v) Stalagmite. (b) Operation of the dial gauge measurements. (i) Servo motor controller through which the actuator is
operated, either manually or via a computer. (ii) Motorized actuator used to displace the magnet, connected or not to
the needle of the gauge. (iii) Support structure holding the actuator and dial gauge in two separate parts, mounted on
metallic discs and threaded shafts. The bottom disc of the structure includes a spirit level ensuring perpendicularity
between the probe needle and the stalagmite surface. (iv) Magnet. (v) Dial gauge with mobile needle. (vi) Water film
lying on top of the stalagmite surface. (vii) Stalagmite. (viii) Close-up of the meniscus formed when the needle end
reaches the water film. The operation of the measurements is the following, with the red arrows indicating the direc-
tion of the magnet and/or the needle of the dial gauge: (b1) The tripod and support structure are positioned in such a
way that the needle of the gauge enters in contact with the stalagmite surface. The distance read is d0. (b2) The magnet
is brought close to the needle, which moves upward until it attaches to the magnet. (b3) The actuator displaces the
needle further upward since it is now attached to the magnet, until the needle gets out of the water. (b4) The actuator
displaces the needle downward in a continuous manner, until it gets close to the water film interface. (b5) The actuator
is then operated step by step to move the needle further downward, until a meniscus is formed when the needle end
touches the water. The distance read is d1. (c) Measurements based on the weighing of a small piece of paper towel
only require: (i) paper towel, and (ii) a balance able to take accurate measurements around∼ 100mg.
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2.1 In situ
Two measuring techniques described hereafter were used in caves: (i) pointwise high-precision
comparative measurements of the water/air and water/solid interface positions (Figs. 5.1 (a-b)),
and (ii) comparative mass measurements between dry and wet pieces of paper towel of known
surface (Fig. 5.1 (c)).

2.1.1 Distance-based measurements

The distance-based measurements of the film thickness were obtained thanks to a homemade ap-
paratus built around a Tesa Digico 305M mechanical dial gauge (resolution of 1 µm, precision of
2 µm, Fig. 5.1 (b) v). As shown in Figs. 5.1 (a) iv and (b) iii, thewhole systemwasmounted thanks to
an ensemble of metallic discs and threaded shafts on a Manfrotto 290 tripod. The gauge was either
connected or not to a magnet fixed at the tip of a high-precision motorised translation actuator
(precision of 0.1 µm, Figs. 5.1 (b) ii and iv). The actuator was displaced vertically via a Thorlabs
Kinesis servo motor controller (Fig. 5.1 (b) i). To take the measurements, the needle of the dial
gauge was first positioned on top of the stalagmite in order to touch the solid surface of the stalag-
mite, beneath the residual water film, without being connected to the magnet (Fig. 5.1 (b1)). The
first value read by the gauge corresponds to distance d0. By approaching the magnet to the gauge
needle through the translation actuator, the gauge needle was taken out of the water (Figs. 5.1 (b2)
and (b3)). The needle was the only moving part. The gauge itself remained in a fixed position dur-
ing the entire procedure. Afterward, the actuator allowed to displace the needle downward first by
hand, then by discrete automated steps of 1 µm every second once it became close to the water-air
interface of the film (Fig. 5.1 (b4)), until it touched this latter by forming a meniscus visible to the
naked eye. When this happened, the actuator was stopped manually (Fig. 5.1 (b5)). The distance
then read by the probe corresponds to d1, yielding h(t) = |d0 − d1(t)|, the local film thickness at
time t. The metallic needle of the gauge had a 2mm-diameter spherical tip, such that the menis-
cus formed was axisymmetric. Additionally, the air temperature T and relative humidity RH were
measuredwith a Testo 610 infrared thermo-hygrometer in a close vicinity of the stalagmite, before
and after recording the film thickness (Fig. 5.1 (a) ii). The relative humidity RH gives the ratio of
the partial pressure of water vapor in the air at temperature T, relative to the saturation pressure
of water vapor at the same temperature, i.e., RH = pH2O(T)/pH2O, sat(T).

This first technique allowed to take several successive pointwisemeasurements in one location.
To avoid the inflow of drops falling from the stalactite in the film during the measurements, an
umbrella was placed above the stalagmite before positioning the dial gauge (Fig. 5.1 (a) iii). The
time atwhich the last drop fell into the filmwas carefully recorded, aswell as the time atwhich each
measurementwas taken afterward. Since the setupwasnot displaced in betweenmeasurements for
a given stalagmite and location, the distance d0, corresponding to the stalagmite solid surface, was
readwith the gauge only before and after all thewater/air interfacemeasurements d1(t)were taken.
Doing so allowed both to avoidwasting precious time in betweenmeasurements and to ensure that
the setup had not move during the entire procedure. One measurement of the water/air interface
position could indeed take up to several minutes, especially when the film had already thinned as
it became more and more complicated to make sure that a meniscus had formed between the film
and the needle tip. The entire procedure could take about 5 to 15min depending on the stalagmite
shape and film initial thickness. We have already used a similar technique to take film thickness
measurements of the order of 100 µm in a more controlled lab setting [171] (see Sec. 2.1.2 from
Ch. IV). An average error of 3 µm was observed, which we can round up to ∼ 5 µm given the
precision of the dial gauge. Measurements falling below 50 µm should thus be interpreted with
caution.
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The major technical challenges of this measuring technique were (i) the difficult positioning of
the tripod around the stalagmite that ensured no bank angle of the setup, (ii) the short time frame
permitted to position the setup since the drainage process started as soon as the inflow of water
was stopped, (iii) the maximum relative humidity that the dial gauge was allowed to undergo for
proper operation (about 80%), and (iv) the difficult identification of the meniscus in a poorly lit
environment. To ensure the horizontality of the whole device, a spirit level was added on the actu-
ator mounting support (Fig. 5.1 (b) iii). As it was not possible to incline the device with precision,
measurements were taken on the very top of the stalagmite summit for convex stalagmites in or-
der to ensure as much perpendicularity as possible with the underlying liquid film. For concave
stalagmites, measurements were taken in the middle of their cavity or on a sideways horizontal
part whenever possible (see Sec. 3 from Ch. II for stalagmite description). To avoid any problem
due to the high humidity environment, an insulating casing was added around the actuator. The
dial gauge, however, was simply held in place by a screw and could easily be put on and taken off
the setup in order to be dried out properly between measurements made on different stalagmites.
The gaugewas able to operate when the relative humidity was higher than 80% but could not work
for a whole day in this environment.

2.1.2 Mass-based measurements

Thesecondfilm thicknessmeasurement technique used in caveswas based onweighing. A 100 µm-
thick film spread on a 5 cm-radius flat stalagmite surface weighs about ∼ 800mg. Using a VWR
SE1202 balance (resolution of 1mg, precision of 10mg, Fig. 5.1 (c) ii), we first recorded as the
mass m0 of a dry, roughly 3 cm× 3 cm piece of ZVG 1-ply white paper towel made from cellulose
(Fig. 5.1 (c) i, fiber diameter of 15 ± 6 µm). Knowing the surface density of the paper towel ρS =
84.7 ± 4.1 gm−2, the exact area of the piece of paper, S, could be inferred from m0. The square
of paper towel was then carefully deposited onto the stalagmite and patted out gently in order to
absorb the water of the film underneath, only over the paper towel surface. Doing so usually took
about 5 s to 10 s but can be considered as instantaneous in regard of the drainage timescale. Be-
cause of the orientation of the cellulose fiberswhich are parallel to the stalagmite surface and of the
relatively small size of the piece of paper towel compared to the entire wet stalagmite area, water
was also absorbed from the sides of the piece of paper towel. Details on how to correct the mea-
surements accordingly and regarding the error estimation are provided in Appendix A. The mass
of the wet paper towel piece was then recorded as m1, such that∆m(t) = (m1(t)− m0)was the to-
tal mass of water collected from the residual film on the stalagmite at time t. These measurements
allowed to obtain the spatially averaged thickness hS(t) of the water film over the surface S covered
by the piece of paper towel as follows: hS(t) = ∆m(t)/ (ρwS), with ρw ≃ 1000 kgm−3 the water
density. In comparison with a stalagmite typical size, it could be assumed that S was small and
that the thickness of the film did not vary much over the area covered by the paper towel, although
this assumption would become less valid if measurements were taken on a very curved surface. It
could also be assumed that, although the paper towel thickness was not perfectly uniform, it was
sufficiently thick to host all thewater from the film underneath, hence this should not have affected
the thicknessmeasurements. Empirical testing yields a limit thickness comprised between 500 µm
and 600 µm. Beyond this, the film can no longer absorb all the water at the measurement location.
Finally, the pieces of paper towel were stored in a hermetically sealed environment to ensure that
they did not absorb or lose any water before taking the measurements.

Although this techniquewas invasive and only allowed to get spatially averaged thicknessmea-
surements, it was rapid (∼ 10 s vs. ∼ 10min for gauge measurements) and required no other
instrument than the balance. It was used in two situations: either when the dial gauge-based appa-
ratus could not be set in place around the stalagmite for drainage measurement, or to obtain filling
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measurements. In the first case, the time at which the last drop fell into the film before taking the
measurementswas carefully recorded, and the umbrellawas placed above the stalagmite to prevent
any further filling of the film when taking the mass measurement. After taking the measurement,
we removed the umbrella and waited for a sufficient amount of drops to fall onto the stalagmite in
order to ensure that the filling-depletion dynamics of the film had reached a stationary state, i.e., a
few hundreds of drops when the dripping period t0 was of the order of the second and a few tens
of drops when it was closer to a minute (which should be enough based on empirical observations,
see Sec. 5.1.1). The weighing procedure was then repeated by increasing the amount of time spent
between the positioning of the umbrella and the measurement, and the piece of paper towel was
placed in the same location for each measurement.

Regarding the filling measurements, we started by completely drying out the whole surface of
the stalagmite. We waited for a number of drops n to fall onto the stalagmite and cover it by a thin
film of water. We then blocked the inflow of drops with the umbrella and carefully collected the
water that had spread out on the stalagmite following the impacts, using the paper towel, as close
as possible to the centre of the stalagmite. We then repeated the whole procedure for various n,
with typical values for a given stalagmite comprised between n = 1 and n = 1001.

2.2 In the lab
Additional film thickness measurements were made in the lab on the top part of an artificially wet-
ted stalagmite, using an optical sensor. The controller of the sensor cannot endure condensation
nor a relative humidity > 85%, thus it would have been risky to bring it into caves. This tech-
nique allowed to continuously record the thickness of the film in one precise location. Both the
stationary thickness reachedwhen successive drop impacts feed the film and the drainage-induced
depletion of the film could be assessed for the following variable parameters: temperature T, rela-
tive humidity RH, dripping period between two successive drops t0, drop impact point position r0,
and distance between the drop impact point and sensor positions, ∆d = |r − r0|. The ranges of
parameters covered in the experiments are detailed in Sec. 3.1.

Film thickness measurements were obtained with a coaxial laser displacement sensor from
Keyence, comprising a CL-P030N sensor head and a CL-3000 controller unit (Figs. 5.2 iii and ix).
The unit was connected to an Aim & Thurlby Thandar Instruments EL301R power supply (24 V,
0.3 A, Fig. 5.2 ii). The sensor head had a 38 µm spot diameter, i.e., it allowed to take pointwise mea-
surements on the stalagmite over which the sensor was installed. The sensor horizontal position
could be varied but the sensor head was always placed at about its focal distance of 3 cm above the
stalagmite surface to be operated properly, and as perpendicularly as possible to the surface al-
though a small inclination (≲ 2°) should not yield significant errors. The stalagmite was stuck into
the central aperture of a Thorlabs MB4560A/M aluminum breadboard (Fig. 5.2 vii). This allowed
to ensure a tight positioning of the stalagmite through additional shafts screwed to the table, and
to collect the water flowing on the sides of the stalagmite right under the table when the stalagmite
was wet. The stalagmite had been stored for a long time in the lab and had entered in contact with
contaminants such as, e.g., dust or sebum, hence some parts of the surface might no longer have

1In the case of wide stalagmites for which the falling height of the drops is very large, a large dispersal is observed
in the drop impact point position (see Ch. III). Hence, when n ≲ 10, we did not impose the value of n but rather
waited for a succession of drop impacts located not too far from the stalagmite centre to occur, i.e., below half the
stalagmite radius and not at opposite positions on the edge of the stalagmite. When n ≳ 10, we relaxed this condition
but we took the measurement right after a drop impact close to the center. The measurements for small values of n
were repeated so as not to introduce any bias due to the impact point position of the last drop in the measurements.
The number of possible repetitions was nevertheless dependent on the dripping time t0 which could sometimes be of
several minutes.
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been as hydrophilic as they would have in an actual cave. To cover the entire surface by a thin film
of water, we thus first gently poured a volume of about 10 cL of water by hand over the stalag-
mite. Once the stalagmite was wet, there was no issue in maintaining the film during a long time
by impacting it with a succession of drops. The drops were dispensed thanks to a Watson Marlow
Sci-Q 205U peristaltic pump (Fig. 5.2 i, the peristaltic pump inner tube had a diameter of about
1mm) connected to a PVC Schlauch transparent 3-mm inner diameter plastic tube whose tip was
left raw but carefully cut (Fig. 5.2 viii, 5-mm outer diameter). The drops had an average radius
of 2.3±0.1mm (average± s.d. in 60 measurements made by image analysis of side view movies of
drops detaching from the tube). In order to avoid splashing at impact and, hence, liquid ejections,
the end of the tube was placed about 2 cm to 3 cm above the stalagmite surface [235]. The volume
added in the film by each drop was therefore 53.6±5.7 µL (average± s.d. in all the measurements).
The error committed in the drop radiusmeasurements yields an accuracy of 4.5 % on the computa-
tion of their volume. The peristaltic pump allowed to vary the flow rate between 22mLmin−1 and
0.006mLmin−1, which corresponds to an average dripping period between successive drops t0 go-
ing from≲ 1 s to 120 s, respectively. The dripping period t0 was alwaysmeasured directly from the
experimental curves given the eventuality that a simple bending or bulge in the drop dispensing
tube could cause t0 to vary in between experiments. The tube was nevertheless not moved during
the recordings, so it can be safely assumed that t0 remained constant for a given experimental curve.

Enclosure

i. Peristaltic pump
+ water reservoir

ii. Power supply

iii. Keyence unit

iv. Stalagmite

v. Thermo-hygrometer

vi. Humidifier
vii. Table with aperture

+ water discharge
viii. Water tube outlet

ix. Sensor head

Figure 5.2: Experimental setup used to record film thickness measurements in a lab setting. The green area refers to
the part of the setup that is placed in a plastic enclosure and covered by black curtains, i.e., elements iv-ix. (i) Peristaltic
pump providing a constant inflow of water drops to wet the stalagmite. Water is pumped from a reservoir through a
plastic tube. (ii) Power supply of the sensor controller unit. (iii) Controller unit of the sensor, which collects measure-
ments from the sensor head and communicates them to a computer (photograph: courtesy of Keyence Corporation).
(iv) Top piece of a stalagmite from Aven d’Orgnac used to take the measurements. The stalagmite is stucked in the cen-
tral aperture of a breadboard table, with additional shafts to maintain it in place. The side arrow shows the path taken
by water flowing along the stalagmite into the discharge, below the breadboard. (v) Portable thermo-hygrometer used
to record the relative humidity and temperature in the enclosure. (vi) Commercial humidifier that allows increasing
the relative humidity up to 97% in the cage. (vii) Table with central aperture used to hold the stalagmite in place (pho-
tograph: courtesy of Thorlabs, Inc.). (viii) Close-up view of the outlet of the tube, where drops are formed. (ix) Head
of the sensor, connected to the controller unit. The scale bar in the photograph relative to viii and ix is 1 cm.
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Tomimic as best as possible the cave environment, the whole setupwas placed in a transparent
plastic enclosure surrounded by black curtains, such that it was insulated from external lighting
and humidity (Fig. 5.2). A humidifier with a small fan (Nor-tec air cooler, Schou Company A/S)
was added in the enclosure in order to modify the relative humidity and temperature inside the
enclosure (Fig. 5.2 vi), possibly with an ice bath. The air conditioning system of the room where
measurements were taken indeed underwent failure during a few nights2. A Testo 610 thermo-
hygrometer allowed to record these two parameters for each experiment (Fig. 5.2 v). The sensor
head was in conformity with the IP67 standard, which ensures its liability even in very humid en-
vironments, or environments prone to liquid ejections. Relative humidity and temperature mea-
surements were taken at least at the beginning and the end of the experiments, then averaged.

Using the optical sensor, we first recorded the distance d0 between the sensor head and the sta-
lagmite surfacewhen it was dry. We then spread the aforementioned 10 cL of water by hand on the
stalagmite and started the dispensing of drops in order to create and maintain a thin water film on
the stalagmite. We then live recorded the distance d1(t) between the sensor head and the liquid/air
interface. The film thickness therefore corresponded to hr(t) = |d0 − d1(t)| at time t, in position r.
The acquisition frequency of the sensor was set to 1 kHz, which is supposedly sufficiently high
to observe any thickness variation due to drainage or evaporation. It however does not allow to
clearly observe the thickness variations that would be due to the crushing of the drop in the film
as this phenomenon occurs during a time close to 1ms, i.e., the time of acquisition. Moreover, the
early stages of the drop impact in the film would have provoked strong variations in the curvature
of the liquid interface, and therefore of the angle between the interface and the sensor head. When
the drop dispenser tip was close to the sensor head position, high peaks could thus be observed in
the signal corresponding to the liquid interface height.

3. Observations and phenomenology
This section first describes with the actual environmental conditions that we encountered in caves,
as well as the parameters that we varied in a more controlled lab framework. We then present
typical curves of film thickness vs. time obtained in both cases and focus on the parameters that
influence the most the filling and drainage processes at play.

3.1 Parameter range
The environmental data relative to the stalagmites shown in Tab. 2.2, i.e., the associated falling
height of the drops z, the dripping period t0 of the drops, the temperature T and relative humid-
ity RH of the air in the vicinity of the stalagmite, are summarised in Fig. 5.3 (a). Additionally,
the graph shows how these parameters were varied during the lab experiments. The dripping pe-
riod t0 observed in caves ranges from 1 s to about 12min. For 7 stalagmites, the drop dripping
period is ≲ 10 s and for 6 others, it is comprised between 30 s and 3min. In the lab, we var-
ied the dripping period, t0, from less than 1 s to about 2min by varying the rotation speed of the
peristaltic pump. Hence, we could cover the same range as in caves, except for the longest cave
dripping period of 12min. Regarding the temperature range, we have T ∈ [16; 24] °C, which is
a little higher than the range observed in caves, T ∈ [11; 17] °C, but still close to it and partially
overlapping it. The relative humidity reached in the lab enclosure spans over a wider range than
in caves, with RH ∈ [62; 96] % in the lab and RH ∈ [79; 96] % in caves.

2This affects some of the measurements presented in the following section.
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Figure 5.3: Ranges of parameters covered in the lab experiments and in the two caves. (a) Dripping period t0 as a
function of the relative humidity RH, for variable temperature T. The range of temperature reached in the lab (red
colour bar) is higher than in the caves (blue colour bar), although there is an overlap between the two, hence there are
two temperature colour bars. Dots and diamonds refer to lab experiments, and triangles to caves. The data relative to
the lab measurements are also sorted according to the distance ∆d between the sensor and the impact point position
of the drops: the sensor was either placed very close to the impact point (∆d ≤ 1 cm) or away from it (∆d ≥ 2 cm).
Finally, the markers relative to the lab measurements surrounded by a white (resp. dark) contour represent measure-
mentsmade in position r0 (resp. r1). Both positions are shown in (b). The grey rectangle shows the dripping period and
environmental data corresponding to the filling and variable impact point experiments. (b) Example of the positioning
of the drop dispensing tube and sensor head above the stalagmite, separated by a distance ∆d. The dispensing tube is
positioned in r = r0 or r = r1, which correspond to the centre of the entire stalagmite or the centre of the summit
part only, respectively, given that the layers of the stalagmite are not perfectly aligned. The purple dots show that the
impact point position can be varied in a random manner in some additional experiments. The scale bar in (b) relates
to the stalagmite picture and is 10 cm.

To avoid any splashing at impact (see Fig. 5.34), we positioned thewater tube outlet at only 2 cm
to 3 cm above the stalagmite surface in the lab [227]. Hence, the impact position of the drops was
fixed and we knew precisely the volume of water entering the film at each impact. As illustrated in
Fig. 5.3, the stalagmite is quite large and we positioned the tube outlet in two positions, denoted r0

and r1: because the stalagmite top layer is slightly shifted compared to the underneath layers (see
Figs. 5.2 and 5.3 (b)), r0 is positioned in such a way that it would correspond to the overall axis of
symmetry of the entire stalagmite body, while r1 should be very close to the centre of the summit
part. From the drop impact point position, we placed the sensor head at a distance ∆d which can
be either ≲ 1 cm, i.e., as close as possible to the drop impact point, or ≳ 2 cm. In the second case,
the goal is to capture film thickness variations at a finite distance from the incoming liquid source
in the film.

In Fig. 5.3, the markers relative to caves correspond to the environmental conditions in which
both drainage and filling measurements were taken, as described in Secs. 2.1 and 2.1.2. On the
other hand, the lab experiments shown in Fig. 5.3 mostly correspond to drainage experiments,
i.e., we started to record the film thickness once the film fed by successive drops had reached a
stationary state, then we interrupted the inflow of drops and kept recording the film thickness
no longer fed by any drop. We tried to replicate each lab experiment shown in Fig. 5.3 in very
similar conditions, for identical dripping rates and close values of T (±1 °C) and RH (±5%). We
additionally performed 5 experiments for which we manually varied the impact point position of
the drops rwhile keeping the sensor at a constant position, i.e., we carefully moved the tube outlet
by hand while keeping it at a vertical distance of 2 cm to 3 cm from the stalagmite surface and for
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a constant dripping period t0 = 1 s (see Fig. 5.3 (b)). We also performed 7 experiments for which
the impact point position remains fixed in r0 but for t0 varying over time. These experiments allow
to observe the filling of the film as in caves. The 12 experiments with either variable impact point
position r or variable dripping period t0 were recorded for T = 18.7± 1.6 °C and RH = 87± 2%.

3.2 Raw data examples
We introduce in this section a few examples of filling and drainage curves coming from both the
caves and the lab. The relative influence of each of the parameters that we varied can be easily
inferred from the curves shown.

3.2.1 In situ

We performed two types of measurements on the stalagmites in caves (see Tab. 2.2): (i) starting
from an initially dried out stalagmite, we measured the film thickness h after a succession of Nd

drops have impacted the stalagmite, and (ii) we also measured the film thickness evolution with
time t after interrupting the inflow of drops falling into the film in a stationary state (we will come
back to the possible stationary states observed in caves at the end of the discussion, see Subsec. 6).
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Figure 5.4: Examples of filling curves obtained in situ, showing the measured film thickness h as a function of the
number of drops Nd that fell on Clam02, Clam09, Org02, Org03 and Org09, starting from an initially dry stalagmite.
Graphs are sorted according to the shape of the stalagmites (see Tab. 2.2), for (a) two flat stalagmites, Clam02 (Ψ = 1.2,
S = 0.04) and Org02 (Ψ = 0.5, S = 2 × 10−3), (b) two convex stalagmites, Clam09 (Ψ = −192, S = 2 × 10−4) and
Org09 (Ψ = −88, S = 0.02), and (c) a concave stalagmite, Org03 (Ψ = 21.5, S = 0.8). Measurements for flat and
convex stalagmitesweremade at the centre/highest point of the summit, and in the centre of the dimple for the concave
stalagmite. In every graph, the maximum number of drops Nd ≥ 100 simply corresponds to the first measurement
made on the stalagmite, when it was certain that the film had been in stationary state for a long time. All the long-
term film thickness measurements h(Nd ≥ 100) correspond to an average made in several measurements but error
bars are often too small to be seen in the graphs (≲ 10 µm). The same holds for part of Org02 and Org09 data points,
which may correspond to the average of 2–3 measurements obtained for close n values given the large falling height
and, consequently, the dispersal in the impact point position of the drops falling on these stalagmites. Otherwise,
each marker corresponds to a single measurement. All measurements were taken using the weighing technique. The
dashed line in (b) shows as an example the stationary film thickness hC09

s reached by the film on Clam09 (see Sec. 4.4.2).
The y–axis is the same for all three graphs. The duration t of the experiments is additionally represented in the upper
x-axes (colored lines represent Org02 (a), Org09 (b) and Org03 (c), grey lines correspond to Clam02 (a) and Clam09
(b)). The dripping period t0 corresponding to each stalagmite can be found in Tab. 2.2.
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Figure 5.5: Examples of drainage curves obtained in situ, showing the measured film thickness h as a function of
time t for Clam02, Clam05, Clam07, Org03 and Org10, starting from when the periodic inflow of drops falling in the
film is interrupted at a time t = 0. Graphs are sorted according to the shape of the stalagmites (see Tab. 2.2), for (a)
two flat stalagmites, Clam02 (Ψ = 1.2, S = 0.04) and Clam05 (Ψ = 2, S = 0.5), (b) two convex stalagmites, Clam07
(Ψ = −375, S = 10−4) and Org10 (Ψ = −9.7, S = 6 × 10−5), and (c) a concave stalagmite, Org03 (Ψ = 21.5, S = 0.8).
Measurements were taken at the center/highest point of the stalagmite summit for Clam02 (dot markers), Clam05,
Clam07 and Org10. The square markers relative to Clam02 correspond to measurements made at about 1 cm from
the centre of the summit. The measurements relative to Org03 were also taken on the edge of the stalagmite dimple,
toward the inside of the dimple. Most points correspond to the average made in 2–3 measurements. Measurements
were all made using the dial gauge, except forOrg03 forwhichwe used theweighing technique, and for Clam07where
both techniques were used (then the average of the measurements from both techniques was taken for Clam07). The
y–axis is the same for all three graphs.

We present here examples of the measurements obtained using either the weighing or distance-
based technique (indicated in Tab. 2.2). The filling of the film is illustrated by Fig. 5.4 for flat (a),
convex (b) and concave stalagmites (c), as a function of the number of drops Nd since all stalag-
mites are associated with different dripping periods t0. The corresponding times are added above
each graph. The film thickness wasmeasured at the centre of the stalagmite summit for the flat and
convex cases, and at the centre of the dimple for the concave stalagmite. We observe in each graph
that the film thickness h increases monotonously with the number of drops brought into the film,
at first sharply. Then h seems to reach a stationary state for large Nd, which is not the same for all
stalagmites though. An example of the stationary film thickness reached by the film on Clam09 is
drawn in Fig. 5.4 (b). In the particular cases of Org02 (a) and Org09 (b), the falling height of the
drops is quite large (z ≳ 20m). Hence, their impact point position is normally distributed with a
standard deviation of∼ 2 cm, as explained in Ch. III. Most measurements shown in Fig. 5.4 rela-
tive to these two stalagmites therefore correspond to the average made for several close Nd values
according to the procedure described in Sec. 2.1.2. Despite the fact that all the stalagmites have
different shapes, sizes and associated dripping periods, the stationary film thickness hs remains of
the order of 100 µm to 300 µm. Counterintuitively, the largest value of hs is observed for Org9,
which is a convex stalagmite (Fig. 5.4 (b)) with very inclined walls that could enhance the drainage
process. Understanding the possible influence of the shape factor Ψ, the scale factor S and the
dripping period t0 on hs is thus not straightforward.

Figure 5.5 shows other examples of graphs representing the film thickness h as a function of
time t, in the case of the drainage following the interruption of the drop inflow. Once again, the
measurements are shown for flat (a), convex (b) and concave stalagmites (c). The film thickness was
measured at the centre of the stalagmite summit for flat and convex cases, except for one curve
(square markers) relative to Clam02 in Fig. 5.5 (a) which shows the film thickness at about 1 cm
from the center, but still on the summit. It should be noted that the radius of Clam02 is 2.7 cm and
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that there is almost no dispersal in the drop impact point position for this stalagmite (z = 1.2m,
dispersal ≲ 1mm). Hence, the measurements relative to this curve were made halfway between
the source of liquid entering the film and the surrounding inclined wall of the stalagmite. We
observe in Figs. 5.5 (a) and (b) that the film thickness h at the centre of the stalagmite decreases
with time t, at a slower rate as t increases. The film thickness away from the centre also decreases
but starting from a smaller initial value and at what seems to be more or less the same rate as in the
centre (Fig. 5.5 (a)). Coincidentally, although the stalagmites for which measurements are shown
in Fig. 5.5 (a) exhibit different sizes and have different associated dripping periods t0, it is difficult
to distinguish the two curves taken at the centre of the stalagmites from the graph. The same holds
for the curves of Fig. 5.5 (b). Except during the first minute when the film thickness h is clearly
larger on Clam07 than on Org10, both curves seem very similar. Measurements relative to the
concave stalagmite in Fig. 5.5 (c) were taken in one location on the rim surrounding the central
dimple of Org03, close to the dimple rather than close of the outer stalagmite wall. Hence, we note
without surprise that the film thickness h remains far from zero after 5min, by contrast with the
curves from (a) and (b).

3.2.2 In the lab

We now focus on the raw data obtained in lab controlled conditions, but similar to the curves
from the previous section. We present lab experiments for which we varied one of the parameters
from Sec. 3.1 at a time. All the responses of the film thickness to these environmental parameters
could be verified for different subsets of experiments than the ones shown in the following, and
the observations should thus not depend on the selected curves. We also review in Appendix B.4
the details of a drop impacting a thin film at very low velocity, by contrast with the impacts lead-
ing to splashing that we covered in Ch. IV. The repeatability of the measurements is illustrated in
Appendix B.1.

a) Film thickness variations caused by the drop dripping period

Several examples obtained in a lab setting of the film thickness evolutionwith time, h(t), are shown
in Fig. 5.6. These measurements were made on Lab01, with the inflow of drops feeding the film
and the head of the sensor positioned at the apex of the stalagmite, such that the dripping point
was in r0 and the distance between this position and the laser beam was ∆d ≤ 0.5 cm. Each
time a drop was brought into the film, the thickness recorded by the sensor therefore increased
instantaneously (∼ 10ms) in regard of the timescale of the experiment (∼ 10min). The curves
correspond to measurements taken during two phases: (i) when the film has already reached a
stationary state, so that the successive drops brought into the film cause its thickness to oscillate
between two values, hmin and hmax, and (ii) when the inflow of drops is stopped, so that the main
process at play is the gravity-induced drainage. Although we do not see the transient part before
the film reaches its stationary state, a sufficient time (∼ 5min) has passed before the beginning of
the curves displayed in Fig. 5.6 (as well as all the following graphs). Hence, these curves should not
depend on conditions such as the presence of an initial film. The 6 recordings shown in Fig. 5.6
were obtained in similar environmental conditions (T = 18.8±0.7 °C, RH = 90.2±0.8 %, average
± s.d. in the average measurements made for each experiment) for various dripping periods of the
drops, with t0 ranging between 0.9 s and 14.4 s.
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Figure 5.6: Example of film thickness recordings as a function of time in a lab setting, with variable dripping period t0,
and environmental conditions T = 18.8 ± 0.7 °C and RH = 90.2 ± 0.8 % (average ± s.d. in all the curves). The
dripping point was positioned in r0 with ∆d ≤ 0.5 cm. The dripping period was varied from t0 = 0.9 s (red curves)
to t0 = 14.4 s (orange curves). (a) First 15 s of the stationary film thickness evolution with time h(t), while the film
was fed by successive drops at a dripping period t0. (b) Film thickness evolution with time h(t). For the first 1min, the
film in stationary state was fed by successive drops at a dripping period t0, as in (a). The gray filled area shows the 15 s
drawn in (a). The inflow of drops was interrupted at t = 1min. For t > 1min, no more drops were brought into the
film. The upper right inset shows the average film thickness

(
hmax + hmin

)
/2 during the stationary phase (t ≤ 1min)

as a function of the dripping period t0, with hmax and hmin illustrated in the penultimate curve from (a). The lower
right inset shows the difference

(
hmax − hmin

)
as a function of the dripping period t0.

In Fig. 5.6 (a), we only see the first 15 s of the recorded stationary phase duringwhich the film is
periodically fed by drops. The film thickness thus periodically increases sharply from hmin to hmax,
which corresponds to the addition of a drop in the film. Then, the film thickness decreases at a
slower rate from hmax to hmin in between impacts. Figure 5.6 (b) shows the stationary phase dur-
ing 1min before the inflow of drops is interrupted, then the sole drainage for 4min. We observe
once again the film thickness oscillating between hmax and hmin, then for t ≥ 1min, the film thick-
ness decreases, at first quickly. For t ≳ 2min, the decrease of the film thickness becomes slower,
similarly to our former cave measurements. Additionally, the upper inset in Fig. 5.6 (b) represents
the average of the minimum and maximum values reached by the film thickness during the first
phase,

(
hmax + hmin

)
/2, for each experiment (hmax and hmin computed as the averages of all the

peak values). The lower inset shows the difference between these two values,
(
hmax − hmin

)
.

In Fig. 5.7, we further represent two sequences of successive impacts on Lab01 with variable
dripping period t0 over time. The temperature and relative humidity were kept constant in each
case (T = 18.9 °C, RH = 86% in (a) and T = 17.5 °C, RH = 92% in (b)) and the dripping point was
positioned in r0 with∆d ≤ 0.5 cm. The film was also already in a stationary state at the beginning
of each curve. In Fig. 5.7 (a), the dripping period t0 remained at a constant value of 1 s for t ≤ 1min
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Figure 5.7: Thickness time evolution h(t) of a film fed by a drop inflow with variable dripping period t0, in a lab
setting. (a) For t ≤ 1min, the dripping period t0 = 1.0 s (blue part), for 1min < t ≤ 5min, t0 = 4.9 s (orange part), for
5min < t ≤ 9min, t0 = 13.6 s (red part) and for t > 9min, t0 = 1.8 s (green part). Parameters are T = 18.9 °C and
RH = 86%, with dripping point position in r0 and sensor-dripping point distance∆d ≤ 0.5 cm. (b) For t ≤ 1min and
t ≥ 9min, the dripping period t0 = 1.2 s (red part), and for 3min ≤ t ≤ 5min and 7min ≤ t ≤ 9min, the dripping
period t0 = 2.6 s (orange part). For 1min ≤ t ≤ 3min (red) and 5min ≤ t ≤ 7min (orange), the drop inflow was
stopped. Parameters are T = 17.5 °C and RH = 92%, with dripping point position in r0 and sensor-dripping point
distance∆d ≤ 0.5 cm. Times mentioned in the caption are roughly estimated, especially in the case of (b).

before it was changed to t0 = 4.9 s for 1min < t ≤ 5min, then changed again to t0 = 13.6 s for
5min < t ≤ 9min and, finally, to t0 = 1.8 s for t > 9min. In Fig. 5.7 (b), the dripping period t0
is fixed at 1.2 s for t ≤ 1min and t ≥ 9min, and changed to 2.6 s for 3min ≤ t ≤ 5min and
7min ≤ t ≤ 9min. For 1min ≤ t ≤ 3min and 5min ≤ t ≤ 7min, the inflow of drops
was stopped so the only visible process is the drainage. We observe in Fig. 5.7 (a) that the film
thickness adapts its value in only a few drop impacts, irrespective of whether the dripping period
is increased or reduced. This is also true in the presence of a very thin film of water, as it can be
seen in Fig. 5.7 (b). Although the film does not increase its thickness from an initially null value, we
can still relate the number of drops to the change in average thickness from such graphs, similarly
to our cave measurements.

As it can be seen in Figs. 5.6 and 5.7, hmin and hmax depend on the dripping period t0 of the
drop, and so do the average and difference of these two values. The drops brought into the film
should have more or less the same volume, and almost no variation is observed from one drop to
another, as it can be seen in both figures. However, the average ± s.d. over the 6 values shown
in
(
hmax − hmin

)
, in the lower inset of Fig. 5.6 (b), is 95.2 ± 8.3 µm, i.e., there is a relative vari-

ation of 9 % that cannot be attributed to an error of the sensor alone. It can likewise be seen in
Fig. 5.7 (a) that the difference

(
hmax − hmin

)
is larger for shorter dripping periods t0. We also note

in Fig. 5.7 (b) that the thickness reached by the film is not dependent on the film history since the
averages± s.d. in the four portions of the curve are: (i) for t0 = 1.2 s (red parts), 156.2 ± 25.0 µm
(t ≤ 1min) and 155.3 ± 25.5 µm (t ≥ 9min), and (ii) for t0 = 2.6 s (orange parts), 113.1 ± 30.9 µm
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(3min ≤ t ≤ 5min) and 111.4 ± 30.0 µm (7min ≤ t ≤ 9min). In other words, the dripping
period t0 seems to dictate the value of both hmax and hmin for otherwise identical conditions (see
also Appendix B.1 with examples of repeatability of the experiments).

These observations can be rationalised as follows: the average film thickness
(
hmax + hmin

)
/2

decreases with increasing dripping period t0 as the average film thickness should mostly depend
on the total flow rate feeding the film. This flow rate is inversely proportional to t0 and, hence,
diminishes with increasing t0 (see Sec. 4.4.2). For larger dripping periods, t0 > 1 s, drainage should
have already set in place and it is thus not surprising to observe smaller hmin values. But we also
note that the added thickness at each impact,

(
hmax − hmin

)
, decreases with increasing dripping

period t0 when t0 ≳ 3 s, and therefore with decreasing local film thickness before impact hmin. As
we showed in Ch. IV, the maximum radius rc reached by a drop impacting a thin film decreases
with increasing film thickness [80, 86, 171]. However, in the experiments presented here, there
is no splashing at impact nor any crown formation but rather a puddle that is deposited onto the
film and subsequently mixes within this film (see Appendix B.4). Our conclusions regarding the
maximum spreading radius of the drop in the film should nevertheless still apply here. A drop
impacting a thicker film is expected to reach a slightly smaller maximum spreading radius [50, 82,
171]. The added thickness at each impact,

(
hmax − hmin

)
, should thus be smaller, as it can be seen

in both Fig. 5.7 and the inset displaying the thickness difference in Fig. 5.6 (b). This effect can only
be observed because we do not measure the thickness directly at the centre of the impact but at a
distance∆d; otherwise the added thickness value at constant drop volume,

(
hmax − hmin

)
, should

be the same for all dripping periods. Below t0 ≲ 1 s, once again because of the positioning of the
sensor which is not exactly at the centre of the impact, we may not capture the entire spreading
of the drop in between impacts separated by a short dripping period t0 ≲ 1 s. We rather capture
the competing capillary and viscous effects during the impact. Hence, in this regime, the thickness
variations observed in the stationary phase of Fig. 5.6 only result from the drop crushing in the
film while drainage should be the main effect dictating both hmin and hmax in between successive
impacts for t0 > 1 s.

b) Displacement of the sensor

In Fig. 5.8, we report examples of the film thickness measured away from the drop impact point
position. First, in Fig. 5.8 (a), we compare the film thickness variations measured by positioning
the sensor at various distances from the fixed drop impact point position, set in r = r1 (see Fig. 5.3).
The dripping period was kept constant at t0 = 1.2 s while the distance between the sensor and the
impact point,∆d, was set to about 0.5 cm, 5 cm on a slightly curved part of the stalagmite, and 7 cm
near a more or less flat edge of the top part of the stalagmite, as shown in Fig. 5.8 (d). An example
for ∆d = 2 cm is also shown in Appendix B.2. In the first part of Fig. 5.8 (a), the film thickness is
represented when an inflow of drops feeds the film for t ≤ 1min, with an emphasis made on a few
impacts in the inset of the graph, and in the case of the sole drainage for t > 1min. We observe
that the film thickness at a distance of 5 cm exhibits the same periodicity as close to the impact
point position of the drops for t ≤ 1min. However, the increase in h(5 cm) following the addition
of a drop in the film is slightly delayed and not as sharp as in the case of h(0.5 cm). Moreover, the
average film thickness is smaller for ∆d = 5 cm. The variation between hmax and hmin is not as
large for∆d = 5 cm as for∆d = 0.5 cm either. These observations are not surprising considering
that the drop impact should mostly be felt on a radius of about 1 cm, as discussed in page 179. The
curve obtained for ∆d = 7 cm looks different as there is no evident periodicity. The average film
thickness is also smaller than in the two other cases and remains almost constant, except for small
variations of the order of≲ 10 µm (maximumdifference between twopoints from the curve shown
in Fig. 5.8 (a) is 7.6 µm). Hence, although the film may be in stationary state, horizontal thickness
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gradients can appear in between different horizontal positions because of the drop impacts in the
film and drainage at play. During the second part of Fig. 5.8 (a), for t > 1min, only the drainage is
experienced by the film in the three positions. Similarly towhatwe observed in the former section,
the curves for∆d = 0.5 cm and∆d = 7 cm look alike and do not seem affected by the position of
the sensor, the only difference being the film thickness from which the drainage starts. The curve
relative to∆d = 5 cm seems less smooth than the two other ones and has a slightly different slope
(which was also observed in other curves obtained at this position). This might be caused by the
local curvature of the stalagmite at the position where the sensor was placed, which is less flat than
in the two other positions, or possibly by the dewetting detailed hereafter.

In Fig. 5.8 (b), we positioned the sensor as indicated by the blue dot in Fig. 5.8 (d) and manually
varied the impact point positionof the drops in a randommanner for 5min, before interrupting the
drop inflow for another 3min. Thedripping period cannot be inferred directly from the curve here
but should be t0 ≃ 1 s, i.e., there should be around300drop impacts in the left part of the graph. The
film thickness locally increases and decreases rapidly in response to the impacts occurring close to
the sensor position. Small variations are also felt when the impact is located at a few centimetres
of the sensor, as in Fig. 5.8 (a), which allows the film to keep an average value over time of 89 ±
34 µm. Even with impacts occurring away from the sensor position and drainage taking place
in the mean time, the dripping period is sufficiently small to maintain a film significantly thicker
than the 25 µm reached after 3min of sole drainage. Another experiment made with the same
parameters, except for the dripping period t0 ≃ 3.5 s, leads to an average film thickness of 72 ±
30 µm. For a stalagmite as large as Lab01, the dispersal in the impact point position should have
a standard deviation ∆ close to 3 cm (see Ch. III). Hence, if the dripping period is not sufficiently
short (i.e., if the drainage timescales is shorter than t0), on average there will not be enough impacts
around the entire stalagmite tomaintain a filmas thick as presented in Fig. 5.8 (b), and the thickness
averagedover timewill be closer to the values observedduring the sole drainage process (∼ 30 µm).
Although this example does not suffice todrawconclusions regarding the balance between the drop
impact point dispersal and film drainage, we note the possible importance that the impact point
dispersal can have on local film thickness variations and, possibly, on the ion distribution in the
film following an impact.

Finally, we present in Fig. 5.8 (c) examples of the final part of the drainage curves at two posi-
tions, i.e., before reaching an almost null film thickness. The dripping point was placed in r = r1.
The red curve relates to ∆d = 0.5 cm, whereas the purple curve corresponds to ∆d = 5 cm, as
indicated in Fig. 5.8 (d). Because of its poor surface state, Lab01 is no longer as hydrophilic as sta-
lagmites found in situ. The film thus experiences dewetting once it becomes sufficiently thin [178].
First, in the case of the curve obtained at ∆d = 0.5 cm, we observe that the film thickness dimin-
ishes smoothly until about 10 µm. From there, small oscillations can be perceived in the curve. As
the film originally covering the entire stalagmite dewets, it forms individual puddles [63] which
keep evaporating and draining, thus varying the local film thickness and area of the puddles in a
non straightforwardmanner [94, 232]. This process could be responsible for the oscillations seen in
the red curve. Similar oscillations are observed in the purple curve corresponding to ∆d = 5 cm,
for t ≳ 1min. We also note that, before these oscillations appear, the drainage occurs at a com-
pletely different rate than for ∆d = 0.5 cm owing to the local change of curvature of the stalag-
mite. Additionally, the film thickness starts increasing again after t ≳ 2min. Because the sensor
was positioned away from the impact point on a slightly curved edge, water keeps draining from
whatever remains in the centre of the total stalagmite top surface. However, what we observe here
is the puddle inflating because of this extra amount of liquid. Once the film has split into multiple
puddles, it does not recover its original shape [232] and can no longer cover the entire stalagmite
unless we reiterate the experiment. Although drainage is a slow process and it would be ideal to
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1Figure5.8: Examples of film thicknessmeasurements in a lab setting, with variable sensor/drippingpoint distance∆d.
(a) Time evolution of the film thickness h(t) for dripping period t0 = 1.2 s, dripping point positioned in r1, T = 18.8 °C
and RH = 86%. The inflow of drops is interrupted at t = 1min. The distance between the sensor and the dripping
point was set to∆d ≤ 0.5 cm (red curve),∆d = 5 cm (orange curve) and∆d = 7 cm (green curve). The corresponding
positions of the sensor are indicated in (d) by dots of the same colour as the curves. The gray filled area corresponds to
the section of the graph shown in the inset. (b) Film thickness h(t)measured by positioning the sensor as indicated by
the blue dot in (d), and by manually varying the impact point position of the drops in a random manner while keeping
the falling height of the drops at ≲ 5 cm, with T = 18.3 °C and RH = 88%. The dashed line and gray filled area
represent the average and standard deviation of the film thickness during the first 5min, equal to 89± 34 µm. For t ≥
5min, no more drops impact the film. (c) Film thickness time evolution h(t) during the late part of the sole drainage,
following an interruption in the drop inflow with t0 = 1.2 s, dripping point in r1, T = 18.8 °C and RH = 86%. The
distance between the sensor and the dripping point was set to∆d ≤ 0.5 cm (red curve) and∆d = 5 cm (purple curve),
with correspondence in (d). (d) Top view of Lab01. The white dots show the two possible positions of the dripping
point r0 and r1 (see Sec. 3.1). The colour dots correspond to the positions at which the sensor was placed in the graphs
from (a-c). The scale bar is 10 cm.
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perform measurements (such as the slope of the curve) over a time as long as possible to minimise
errors, these measurements should be made with precaution. Undesirable effects could otherwise
arise and yield an incorrect interpretation of the drainage process at play. We illustrate the dewet-
ting on Lab01 in Fig. 5.9
hereafter.

Figure 5.9: Example of
dewetting on Lab01.
Left. On the entire
stalagmite.
Right. Close-up view.
For scaling, see Fig. 5.8 (d).

c) Influence of the relative humidity and temperature

We show in Fig. 5.10 (a) film thickness measurements relative to two experiments carried in the
same conditions, except for the relative humidity RH in the enclosure containing the setup. The
dripping tube of the drops was positioned in r0 while the sensor was placed at a distance ∆d ≤
1 cm from it, the dripping period was set to t0 = 1.1 s and the temperature was T = 18.7 °C.
The relative humidity in the enclosure was maintained at RH ≳ 90% and RH ≲ 70% in the
experiments relative to the orange and green curves, respectively. The first part of Fig. 5.10 (a)
shows the stationary behaviour of the film fed by successive drops. After t = 1min, the inflow of
drops was stopped and only the drainage process takes place. The inset shows the time evolution
of the thickness of a thin film deposited on a 3 × 3 cm2 piece of hydrophilic tape rather than on
the stalagmite, measured during 30min. The film was placed on a balance and the recording was
obtained byweighing themass of the film, thus the thickness shown in the graph corresponds to the
spatially averaged thickness of the film, h. The balance is equipped with vertical windows forming
a cage. The relative humidity inside the enclosure thus formed was maintained at RH ≈ 95%.

We observe in Fig. 5.10 (a) a constant vertical shift between the two curves during both the
filling and drainage phases. The difference (h(RH = 90%)− h(RH = 70%)) between the average
hmax (resp. hmin) values of both curves is about 19 µm (resp. 26.1 µm), while the average of the
difference between the thickness h(t ≥ 1min) of both curves is 25.5 µm. The only varying param-
eter between the curves is the relative humidity in the vicinity of the stalagmite, which directly
affects the evaporation rate that is proportional to pH2O, sat (1− RH) [114, 214]. The evaporation
rate is thus less important at larger RH given that, at constant temperature, the saturation vapor
pressure pH2O, sat remains constant. This is consistent with the shift of the entire curve observed. A
larger evaporation rate at lower RH should also explain the origin of the larger difference observed
between the hmin values from the two curves during the filling phase. The evaporation thus sets
in quickly, even while the drop is still completing its spreading into the film. We could think of
evaporation as a constant outward flux of water that can be subtracted to the dripping flux. There-
fore, an increase of relative humidity should have the same effect as a decrease of dripping period,
which is suggested by the similarity between the first parts of Fig. 5.6 and Fig. 5.10 (a). The inset
of Fig. 5.10 (a) additionally shows that a thin water film subjected to a high relative humidity can
feature very little thickness variations over a long period of time, which is what we observed in
caves. The average ± s.d. over the entire time period of the graph is indeed 491 ± 2 µm. The liq-
uid is close to the equilibrium between evaporation and condensation [13, 114]. Consequently, we
note that for large RH values (≥ 80%), the film thickness in the drainage experiments can remain
of the order of 30 µm to 40 µm for severalminutes (see Fig. 5.6) while it is clear that the green curve
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1Figure 5.10: Example of the film thickness evolution with time h(t) in a lab setting, with dripping point position r0
and sensor distance to the dripping point ∆d ≤ 0.5 cm. In both cases, for t < 1min, the film is in stationary state
and fed by successive drops at constant dripping period t0 = 1.1 s, then the inflow of drops is stopped at t = 1min.
(a) Time evolution of the film thickness for constant temperature T = 18.7 °C and variable relative humidity. The
orange curve, resp. green curve, corresponds to RH ≲ 70%, resp. RH ≳ 90%. Variability in the RH(t)measurements
over the entire experiments is ≲ 2%. The inset shows an example of spatially averaged film thickness evolution with
time h(t) during 30min, for RH ≳ 95%. In this specific case, the curve was obtained by depositing a thin water
film on a 3 × 3 cm2 piece of hydrophilic tape and by weighing the mass of water on the tape. The relative humidity
was maintained at a large value by adjoining the humidifier from Sec. 2.2 to the balance and by closing the remaining
windows of the balance enclosure. (b) Time evolution of the film thickness for constant relative humidity RH = 88%
and variable temperature. The blue curve, resp. red curve, corresponds to T = 15.7 °C, resp. T = 22.1 °C. Variability
in T(t) measurements over the entire experiments is ≲ 0.2 °C. The inset shows the sole drainage process in a log-log
scale beyond the gray line from the main graph, for t = 1min to t = 1min + 5 s.

fromFig. 5.10 (a) obtained at RH = 70% tends to 0more quickly. In Appendix B.3, we further note
that it would take only 5min for the film thickness to decrease by 10 µm over its entire surface by
evaporation in the case when RH ≤ 70% (assuming that the evaporation rate is constant over
the surface and does not depend on the film thickness), while it should take more than 15min
if RH ≥ 90%.

Figure 5.10 (b) represents two other similar curves, for which we varied the temperature while
keeping a constant relative humidity RH ≈ 88%. The temperatures relative to the red and blue
curves were T = 22.1 °C and T = 15.7 °C, respectively, i.e., there is a difference of 6.4 °C between
both cases. The main graph of Fig. 5.10 (b) also represents the successive drop impacts feeding the
film for 1min, which are then interrupted for t ≥ 1min. The inset shows both curves in a log-log
scale during the first seconds following the interruption of drop inflow, for t ≥ 1min. By contrast
with Fig. 5.10 (a), we note that the two curves do not exhibit strong differences during the filling
phase or the very beginning of the drainage process (t ≲ 5 s). The average stationary film thick-
ness

(
hmax + hmin

)
/2 does not vary significantly and is equal to 149.5 µm for T = 15.7 °C, and

to 150.0 µm for T = 22.1 °C. But the average film thickness difference
(
hmax − hmin

)
(average in

all the differences between successive peaks) is 4 µm smaller at larger temperature (T = 22.1 °C).
Such discrepancy could not be entirely inherited from the small volume variations of the drops
entering the film. The Ohnesorge number of the drops (see Ch. IV), Oh = ν

√
ρ/ (2γrd), indeed

goes from1.9 × 10−3 at 15.7 °C to 1.6 × 10−3 at 22.1 °C and exhibits a non-negligible 15 % difference.
This difference stems from the fact that the viscosity of water decreases with increasing tempera-

115



ture, going from ν = 1.138 × 10−6 m2 s−1 at T = 15 °C to ν = 9.554 × 10−7 m2 s−1 at T = 22 °C. A
lower viscosity decreases the thickness of the lamella formed by a drop impacting a dry surface and
increases its spreading velocity [7, 206], thus it can be expected that the same holds for the puddle
spreading onto the film during the impact on a thin film here (see p. 179). The thickness differ-
ence

(
hmax − hmin

)
at each impact is indeed slightly smaller at the higher temperature, i.e., smaller

viscosity. As a comparison, we recall the time of viscous drag in the film necessary to stop the
spreading drop, which can be approximated as tν = R2

d/ν . The value taken by tν is 4.6 s at 15.7 °C
and 5.5 s at 22.1 °C. Hence, we note a difference of 20 % between the two cases.

The two curves then depart from each other during the drainage phase, beyond the initial 5 s
during which they overlap. After 1min past the drop inflow interruption, the thickness differ-
ence between the two curves is about 5 µm, a discrepancy that cannot be attributed only to the
sensor nor comes from the viscosity change (which should lead to an opposite thickness variation,
i.e., a faster drainage in response to a larger temperature). We observed in the previous section
that dewetting of the film could be promoted because of the deteriorated surface state of the sta-
lagmite [178]. We noted during the experiments that dewetting occurred more easily at a higher
temperature. We show in Fig. 5.9 a photograph of the film after dewetting has occurred. Changes
in water surface properties all indicate that the film should spread out more easily and experiences
less dewetting at higher temperature as both water viscosity and contact angle decrease with in-
creasing temperature [201]. The most likely explanation is that evaporation becomes sufficient at
higher temperature for the film to becomemuch thinner on the sides of the stalagmite, thereby pre-
venting it from covering the entire stalagmite when it is no longer fed by drops (see Appendix B.3).
The curves from Fig. 5.10 indeed indicate that the film can quickly become locally very thin when
evaporation becomes important. In this case the relative humidity was kept constant but the vapor
saturation pressure increases with temperature, which promotes the evaporation process [117].
From there, dewetting should occur more easily on the outer edge of the stalagmite since the film
thickness has become too low for the film to maintain its shape, as it could be seen in Fig. 5.8.
Hence, we cannot directly assess the effect of the temperature on the drainage process directly
from our lab measurements on the long term. Regarding only the early part of drainage (t ≲ 5 s),
the temperature does not seem to affect drainage significantly.

It should be noted that none of the above effects could be primarily attributed to the pos-
sible temperature difference between the film and the surroundings. Although the water drops
leaving the dripping tube are not at the same temperature as the air in the enclosure since they
come from a large tap water reservoir outside of the enclosure at about T0 = 15 °C, the wa-
ter in the film should have more or less the same temperature as the air. In particular, we can
consider a thin water film spread on Lab01 with uniform thickness h ≃ 100 µm, and surround-
ing air temperature T∞ = 22 °C. The time t needed for this film to reach T = T∞ is given by
T(t) = T∞− (T∞ − T0) exp (−t/k), k = λ/(ρ cp h

2
), where λ = 0.6WK−1 m−1 is the water ther-

mal conductivity and cp = 4187 J K−1 kg−1 is thewater specific heat capacity [117]. Thefilmactually
needs less than 1 s to reach the same temperature as the surrounding air in these conditions. Hence,
it can be safely assumed that the film almost instantaneously reaches the same temperature as the
surrounding air when varying the experimental conditions.

3.3 Summary
From our observations made in situ and in a lab setting, we reckon that several physical processes
may affect the thickness evolution of the residual film lying on a stalagmite. Starting from either
an initially dry stalagmite or a stalagmite already covered by a very thin film of water (h ≲ 30 µm),
adding drops in the film will result in an increase of the film thickness h in the vicinity of the drop
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impact point. For a periodic dripping period, the film thickness keeps increasing until it reaches a
stationary state, during which it oscillates between a maximum value hmax when a drop is added,
and aminimumvaluehmin once thedrophas spreadout and that drainage has occurred for a time t0.
The first transient part when the film thickness increases progressively is what we call the filling
phase. The filling time needed for the film to reach a stationary state depends mostly on the area
and curvature of the surface that must be covered by water underneath the film, i.e., the shape of
the stalagmite, and on the dripping period t0 of the drops. The film thickness difference during the
filling phase,

(
hmax − hmin

)
, ismostly set by the drop volume added to the film. Nevertheless, small

variations appear in
(
hmax − hmin

)
because of the exact position of the sensor with respect to the

spreading of the drop at impact, leading to local
(
hmax − hmin

)
variations of the order of∼ 20 µm.

Beyond this initial filling phase, the thickness of the film quickly responds to variations in the
dripping period of the drops. The minimum and maximum film thicknesses reached during the
stationary phase, hmin and hmax, both seem to increase with shorter dripping periods. The local
film thickness also depends on the distance to the impact point position. The response of the film
thickness to the inflow of drops is the strongest close to the impact point position of these drops
(∼ 1 cm), but these variations can be felt away from the impact point too. An aperiodic sequence
of drops or dispersal in the impact point position results in film thickness variations in both time
and space, but the spatially averaged film thickness still remains of the same order of magnitude
as observed for a periodic dripping period with no impact point dispersal. Additionally, we could
note throughout all the presented curves that the position in r0 or r1 of the dripping point did not
affect our measurements significantly, as both these positions are located on the very flattened out
central portion of the stalagmite. Hence, we can consider all the measurements without sorting
them according to this parameter.

When the inflow of drops is interrupted, the major remaining process occurring is the gravity-
induced drainage of the film. A transient phase during which the film thickness decreases quickly
is observed at first, followed by a decrease at a slower rate. For very large times, in the absence
of other physical processes, the thickness seems to decrease infinitely slowly, indicating it should
follow a negative power law with time. Nevertheless, evaporation and dewetting appear in the
experimental curves taken in a lab setting. We observe that the evaporation rate depends mostly
on the relative humidity in the stalagmite enclosure, or, more simply, on the partial water pressure.
This dependence may vertically shift the entire film thickness curve by a non-negligible offset, e.g.,
of about 20 µm if RH is varied from 70% to 90%. By contrast, the temperature does not affect
much the stationary film thickness, and does not seem to have much influence on the early part
of the drainage either. Because dewetting occurs during the experiments, our ability to provide
detailed insights regarding the later part of the drainage is limited. Dewetting of the film can be
observed after a few minutes, inducing small perturbations in the local film thickness, though still
large enough to be measured by the sensor. Because we cannot assess the exact evaporation rate
acting on the film as a function of T and RH, wewill limit our study to the influence of the dripping
period and stalagmite shape on the film thickness evolution.

Other parameters that may influence the filling and drainage processes include the roughness
[194] and porosity [153] of the stalagmite surface, but we will assume that their effects can be ne-
glected in regard of the dripping period and stalagmite shape. The volume of the drops should
also have a crucial role but it does not vary much in the range that we observed in caves and could
be kept constant during the lab experiments. For dripping periods t0 < 0.8 s, satellite droplets
are more likely to form in caves and decrease the average volume of the drops falling from stalac-
tites [98], thereby affecting the film thickness. However, we did not observe it in our cave mea-
surements as they all correspond to t0 ≳ 1 s. Finally, a major difference between cave and lab
measurements is the splashing usually observed at impact in caves. As we are not yet concerned
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with the amount of ions that can enter the film in this chapter, we will consider for now on that
the entire drop volume is added to the film at each impact.

4. Modelling
This section focuses on the mathematical modelling of the film thickness as a function of time
and space. The proposed model, derived in Sec. 4.2, relies on Reynolds equation [66, 116, 180].
From there, we infer scaling laws in Sec. 4.3 by comparing the order of magnitude of the different
terms involved in the non-linear equations obtained. We then particularise our initial problem to
a perfectly horizontal plane and to a cone of constant opening angle in Sec. 4.4. This allows us
to derive the boundary conditions aiming at best representing actual stalagmites. The numerical
resolution of the equations describing the drainage is presented in Sec. 4.5.

4.1 Mass balance
Among the possible inflows and outflows (in m3 s−1) that can add or remove liquid from the film
lying on a stalagmite in a very humid environment, we can list: (i) Qdrip, the inflow brought by the
successive drop impacts and Q spl, the ejected liquid resulting from the splash at impact, (ii) Qevap,
the evaporation (and condensation) flux, and (iii)Qdrain, the drainage flux. We consider that the ions
in solution are dilute enough and do not add any mass. As we already did in the lab experiments,
for the sake of simplicity we will not consider the splash at impact here since it differs according
to the drop velocity and film thickness. We can also safely assume that, at least in caves and when
RH ≳ 80% in the lab, Qevap can be neglected in regard of the other fluxes. If the film is in a
stationary state, we are thus left with a balance between the successive, discrete drop additions in
the film, Qdrip, and the drainage flux Qdrain as

Qdrip = Qdrain . (5.1)

Otherwise, if the film is not in stationary state and if we consider as an approximation that it has a
uniform thickness over the stalagmite top surface3, we have

πr2sm∂th = Qdrip − Qdrain , (5.2)

which yields an increase in the film thickness h when Qdrip > Qdrain, and a decrease in h in the
opposite case. The drop inflow can be modelled as

Qdrip =
Vd

t0
, (5.3)

where the drop volume Vd = 4/3πR3
d ≃ 8 × 10−8 m3 for Rd = 2.7mm. A 40 µm-thick film

uniformly spread on a 2.5 cm-radius stalagmite has an equivalent volume. Because of the constant
drop volume in caves, we infer from the above relations the same conclusion as from our literature
and phenomenological reviews: the film drainage depends mostly on (i) the inflow, i.e., the drop
dripping period in our case, and (ii) the stalagmite size and shape, this latter conditioning the distri-
bution of the film over the stalagmite. The next section introduces the modelling of the flux Qdrain.

3We have considered a flat stalagmite in Eq. (5.2), but it appears quite clear that considering a more general stalagmite
shape in the same equation would involve parameters such asΨ and S. The only goal of Eq. (5.2) is to provide a simple
description of the balance between the drop inflow and the drainage outflow.
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4.2 Reynolds equation in curvilinear coordinates
Althoughwe consider axisymmetric stalagmites, the cross-sectional profile of the stalagmite can be
either flat, curved, possiblywith a change of curvature, and presentmacroscopic irregularities. The
stalagmite top surface can also become almost perpendicular to its outer wall. At the same time,
the film thickness lying on top of the stalagmite is of the order of 30 µm to 300 µm, which is much
smaller than the order of magnitude of all the stalagmite shape variations ranging from ∼ 1mm
to 10 cm. We thus choose to represent these variations using a curvilinear system (ξ, ζ) which
follows the profile of the stalagmite in every point and allows us to avoid dealing with gradients of
different orders of magnitude inside the film, as illustrated in Fig. 5.11. We nevertheless do not aim
at modelling the drainage of a film over a perfectly vertical surface, but simply on curved surfaces,
including concave stalagmites.

We consider awater film lyingon topof an axisymmetric stalagmite. As represented inFig. 5.11,
the system of coordinates (r, z) designates the radial and vertical directions and is positioned along
the stalagmite axis of symmetry. On the other hand, the curvilinear system (ξ, ζ) refers to the
parallel and perpendicular directions to the stalagmite surfaces, respectively. The stalagmite solid
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Figure 5.11: Cross-sectional sketch of an axisymmetric stalagmite
(in beige) with curved upper surface and inclined wall. In position
(r, z), we denote the local stalagmite elevation η, the local angle
made by the stalagmite, resp. the film/air interface, with the hori-
zontal φ, resp. φ′, (both counted as positive clockwise) and we in-
troduce the local curvilinear coordinate system (ξ, ζ). The stalag-
mite is covered by a thin film of water (in blue) of local thickness h.
The pressure inside the film is p and the atmospheric pressure p∞.
The velocity in the film is denoted u, while q represents the inte-
grated velocity flux over the entire film height.

surface has an elevation η(r) above a
horizontal plane, as in Fig. 5.11. We
only limit our domain of interest to the
part of the stalagmite located between
the axis of symmetry r = 0 and a
maximum radius that we denote R (see
Ch. II). The film thickness measured
normally to the solid/liquid interface
is h. The inclination is defined as
the angle with the horizontal plane,
counted as positive downward. If
the local inclinations of the stalag-
mite and the film, denoted φ and φ′,
respectively, satisfy the condition:
tan |φ− φ′| → 0, then we can
consider that the vertical height of
the film is ≈ h/ cosφ ∀r. In other
words, although the film may not
be exactly parallel to the solid sur-
face everywhere, the approximation
remains valid as long as the film
remains thin, i.e., h ≪ R, a con-
dition verified for most stalagmites.

We denote the typical timescale over which particle velocity in the film may undergo substantial
changes as T, whereas U, resp. W, represents the order of magnitude of the velocity parallel, resp.
normal, to the stalagmite surface. Becaus 1/R2 ≪ 1/h2, the second-order derivatives parallel to the
stalagmite surface can be neglected (∂ξξ ≈ 0). Additionally, the velocity component normal to the
solid surface is assumed negligible with respect to the component parallel to the surface: W≪ U.
We also find by comparing the orders of magnitude of ρU/T and µU/h2 that the inertial term of
the Navier-Stokes momentum equation can be neglected. Namely, if the timescale T at which a
particle changes its velocity satisfies T≫ ρh2/µ ∼ 10−2 s, the corresponding Reynolds number is
smaller than unity, there are no recirculation zones, and the velocity field can be assumed parallel
to the stalagmite surface.
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Under these approximations and in the absence of drops feeding the film, the Navier-Stokes
momentum vector equation in the film reduces to

∇p = µ∇2u+ ρg , (5.4)

where u = u eξ and g = g ez are the velocity and gravitational acceleration fields, respectively,
and p is the pressure inside the film. Projecting this onto the curvilinear vectors eξ and eζ , we find

∂ξp = µ∂ζζu + ρg sinφ , (5.5)
∂ζp = −ρg cosφ . (5.6)

At the solid/liquid interface between the stalagmite and the film, we consider that a no-slip condi-
tion applies: u(ζ = 0) = 0. The absence of normal stress at the liquid/air interface further yields
∂ζu = 0 and p = p∞ in ζ = h, with p∞ the atmospheric pressure in the vicinity of the stalagmite.
We also consider that the stalagmite surface should be smooth and, as aforementioned, that its ra-
dius of curvature should be large enough to neglect the variations of the stalagmite elevation with
the curvilinear abscissa, which translates here into h≪ 1/ |∂ξφ|. We therefore find that

p = p∞ + ρg (h− ζ) cosφ , (5.7)

u =
−g
2ν
ζ (2h− ζ)

[
(∂ξh) cosφ− sinφ

]
. (5.8)

We note from Eq. (5.7) that the pressure at height ζ in the film depends on the atmospheric pres-
sure and local film thickness, in correspondence with the hydrostatic pressure in a liquid volume
lying on a flat surface, but also on the inclination of the stalagmite surface underneath. This comes
with no surprise as gravity is expected to have a stronger influence on a stalagmite with very in-
clined walls, by contrast with a flat plane. The pressure acting at the bottom of the film over a
flat plane will consequently be larger than if the stalagmite and film are very inclined. We have
also not taken the Laplace pressure into account in our former calculations. If we approximate a
film about 100 µm thick spread on a 10 cm-radius stalagmite by a spherical cap, we find that the
corresponding sphere radius R is ∼ 50m, leading to γ/(2R) ≃ 3mPa, with γ ≃ 70mNm−1

the water surface tension. The maximum hydrostatic pressure ρgh in the same film is of the order
of 1 Pa. Hence, neglecting Laplace pressure is a valid assumption, as long as the surface is con-
sidered perfectly smooth. Should we find corrugations of the order of a few mm radii over the
stalagmite surface, both the hydrostatic and Laplace pressure would locally become of the order
of∼ 10 Pa. Usually these corrugations found on the stalagmites in our dataset are located on the
sides of the stalagmites and we can consider that their top surface is sufficiently smooth. We have
also neglected the disjoining pressure, an assumption discussed in Appendix B.5.

In Eq. (5.8), we recognise the half-parabolic profile of the velocity field in a Poiseuille flow,
though mitigated by the inclination of the stalagmite surface, exhibiting a maximum velocity at
the liquid/air interface. We can further define the flux parallel to the stalagmite surface in all
points, q = q eξ , with

q =

∫ h

0
u dζ =

−gh3

3ν

[
(∂ξh) cosφ− sinφ

]
. (5.9)

From the continuity equation integrated over the film thickness normal to the solid/liquid inter-
face, we finally obtain

∂th = − 1
r
∂ξ (qr) (5.10)
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in conservative form. It should be noted that q is here expressed in m2 s−1 and does not correspond
to the actual drainage flux all around the stalagmite but rather to the two-dimensional flux in the
cross-section shown in Fig. 5.11. We indeed have Qdrain = 2πr(ξ) q, the actual drainage flux. From
Eq. (5.9), we observe once again that the drainage is enhanced by either (i) a thicker film, (ii) a film
with larger thickness variations over a certain distance, or (iii) by a stronger inclination of the
stalagmite wall below the film. However, we note that these last two effects are not additive: on an
almost vertical wall (φ → π/2), the film thickness variations will have very little effect in regard
of the last term of Eq. (5.9). On the other hand, on an almost horizontal stalagmite surface, the
drainage will be mostly driven by gradients of film thickness.

4.2.1 Nature of the system of equations

Alternatively, Eqs. (5.9) and (5.10) can be written under a matrix form as[
1 0
0 0

]
︸ ︷︷ ︸

A(t)

∂tU +

[
0 1

(gh3) / (3ν) cosφ 0

]
︸ ︷︷ ︸

A(ξ)

∂ξU

=

[
0 − cosφ/r

(gh) / (3ν) sinφ −1

]
U , U =

[
h
q

]
.

(5.11)

By assuming a wave-like solution form, U = Û exp (i (nξξ + ntt)), and by introducing it into
the homogeneous part of the above system of equations, we find that non-trivial solutions such
that Û ̸= 0 are ensured if n2

ξĥ3 = 0 (we exclude the case cosφ = 0 which would refer to a vertical
wall) [112]. When h = 0, the system becomes locally hyperbolic. A hyperbolic set of equations is
in essence associated with the propagation of a wave at finite speed along a specific direction [112].
This corresponds to our liquid front advancing onto the stalagmite surface. On the other hand,
the nature of the equations changes when h ̸= 0 and the system becomes parabolic because the
matrix A = ntA(t) + nξA(ξ) is in this case not of full rank [112]. In particular, because the rank of
A is equal to 1, the system admits one characteristic. Huppert [116] derived a similarity solution to
Eqs. (5.9) and (5.10) in radial coordinates (see Sec. 4.4.2) in two particular cases: (i) a known liquid
volume spreading under the form of a puddle over an initially dried horizontal surface, and (ii) a
known flow rate continuously feeding this puddle. If the volume of the puddle is equal to, e.g., the
volume of a drop Vd in the first case, and if the flow rate feeding the puddle is Qdrip in the second
one (which could be approximated as Vd/t0), the puddle advances over the surface by covering a
disk of radius r0(t) given by

r0(t) ≃


0.9
(

gV 3
d

3ν

)1/8

t1/8 , (constant volume) ,

0.7

(
gQ 3

drip

3ν

)1/8

t1/2 , (constant flow rate) .
(5.12)

The parabolic nature of the equations also indicates that they should be solved using a numerical
time-marching method, while updating the film thickness spatially all at once at each time step.
Solving the system therefore requires an initial condition and two boundary conditions. However,
looking at Eqs. (5.9) and (5.10), we note that it is not possible to impose two conditions of null flux
at once, nor a condition that would imply cancelling the film thickness at, e.g., the outer boundary
of the domain. We will rather approximate the outer stalagmite wall by an inclined cone portion
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of constant opening angle described in Sec. 4.4.1 hereafter, which is a valid assumption in regard
of most stalagmite shapes (see Ch. II).

4.2.2 Drainage timescale

We present in Fig. 5.34 from Appendix B.4, with
the frame from Fig. 5.34 (f) duplicated in Fig. 5.12
on the right, an example of a drop impact on a
thin film at low velocity. From the observations
made, we reckon that the drainage equations that
we derived in Sec. 4.2, Eqs. (5.9) and (5.10), can
be made nondimensional by using a timescale td,
and two different length scales: one horizon-
tal, rd, and one vertical, hd. This is standard
practice when dealing with Reynolds lubrication
equation [152, 154]. These length scales are
chosen as the height and spreading radius of the
puddle formed by the drop impacting the film in
a non-splashing case, as illustrated in Fig. 5.34
from Appendix B.4 and in Figs. 5.12 (a) (pud-
dle height hd) and (b) (puddle radius rd). We use
rd = 1 cm and hd = 100 µm, which lead to slightly
smaller drop volumes than in our lab experiments

rd

hd

(b)

(a)

Figure 5.12: Puddle left by a drop of radius
Rd = 2.31mm impacting a 117 µm-thick film,
about 32ms after the beginning of the impact, from
a side (a, schematic) and a top view (b, duplicate of
Fig. 5.34 (f)). The height hd = 100 µm and radius
rd = 1 cm of the puddle are illustrated by arrows in
(a) and (b), respectively. The scale bar in (b) is 1 cm.

and in caves (Vd = 3.2 × 10−8 m3 in the present case, against Vd = 5.1 × 10−8 m3 in the lab and
Vd = 8.2 × 10−8 m3 in caves). The quantities appearing in Eqs. (5.9) and (5.10) thus write as

t = t′td , r = r′rd , ξ = ξ′rd , h = h′hd ,

where the prime variables x′ refer to the non-dimensional quantities. Inserting these notations
into Eqs. (5.9) and (5.10), we find that

∂t′h′ =
gh3

dtd
νr2d

1
r′

∂

∂ξ′

[
(h′)3

3

(
(∂ξ′h′) cosφ−

(
rd
hd

)
sinφ

)
r′
]
. (5.13)

The group of variables at the front of the right-hand side corresponds to what we call the drainage
timescale td, i.e.,

td =
νr2d
gh3

d

, (5.14)

which is about 12 s for our values of rd and hd. We note that td decreases sharply with increasing
thickness scale hd. If we take for instance hd = 200 µm by keeping the other parameters identical,
we obtain td ≃ 2 s. In the lab raw data curves from Sec. B.4, we indeed witnessed that it only took
a few seconds for a film thickness larger than 200 µm to fall below 50 µm. On the other hand, with
hd = 20 µm, the drainage time td becomes of the order of 35min. This is particularly corroborated
by our raw data curves taken in caves, in which case we could still measure film thicknesses of the
order of 20 µm after sometimes 15min.
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4.3 Relative orders of magnitude

After having derived the partial differential equations describing the drainage of a thin film over a
curved solid surface, we may now infer a few scalings by comparing the relative orders of magni-
tude of the variables involved in the dimensional form of Eqs. (5.9) and (5.10). We proceed to do
so hereafter, by first only considering a stationary case for which Qdrip = Qdrain in Sec. 4.3.1, then
the sole drainage in Sec. 4.3.2, to finally consider the limit between the horizontal and inclined
configurations in Sec. 4.3.3. Results are summarised in Sec. 4.3.4.

4.3.1 Stationary film thickness

Wefocus in this sectionon the stationary state of the film, such thatwe are in the situationdescribed
by Eq. (5.1). We designate by hs this stationary film thickness. Both hmax and hmin, or a combination
of them, could be used as approximations for hs. Thedifference between hmin and hmax nevertheless
emanates from the successive drops impacting the film, and it would make more physical sense to
use hmin as the stationary film thickness, i.e., the thickness after somedrainage has been established:

hs = hmin .

We thus avoid taking into account the transient thickness decreases related to the successive drops
introduced in the film. In caves, wewere not able to distinguishwhetherwemeasured hmin or hmax.
However, in regard of the rapid evolution of h following a drop addition in the lab experiments, we
probably captured measurements closer to hmin than to hmax. By comparing the terms of Eq. (5.9)
in terms of order of magnitude, we are able to estimate the evolution of hs as a function of the drop
inflow in two cases.

First, if we assume that the stalagmite surface is not very inclined, i.e., it is more or less hor-
izontal with φ → 0, we may assume that sinφ ≈ 0 and that cosφ ≈ 1. The drainage flux is
given by Qdrain = 2πξq. We assume that ∂ξhs ≃ −hs/ξ. In practice, we would most likely have
∂ξhs ≃ −khs/ξ, k < 1, but we do not have any physical clue allowing to asses k at this stage. Us-
ing the fact that the flow of incoming drops Qdrip given by Eq. (5.3) should be equal to the actual
drainage flux Qdrain, we find that

hs ∼
(

3νVd

2πgt0

)1/4

(5.15)

over almost horizontal surfaces. The stationary film thickness hs is thus observed to decrease with
decreasing inflow, i.e., with increasing dripping period t0 or decreasing drop volume Vd. More
viscous drops are also expected to spread less easily [7], yielding larger values of hs at constant
volume. We also note that ifwe had taken, e.g., k ∼ 1/3 in r→ rsm as deduced from lab experiments
(see Fig. 5.8 (a)), the above estimate of hs would only be multiplied by 1.3. Our approximation
of ∂ξhs further yields a stationary film thickness that does no longer vary with the position on the
stalagmite and corresponds more or less to the spatially averaged stationary film thickness over an
almost horizontal surface of radius ξ, but this behaviour was particularised to a specific case. We
should, in fact, obtain that hs varies with the thickness gradient. If we approximate our stationary
film profile in space by, e.g., h (1− ξ/rsm)1/2, the resulting law would follow hs ∼ (rsm/ξ)

1/4 at first
order, i.e., it would increase with increasing stalagmite radius. This is not surprising considering
that, if the stalagmite surface is almost flat, a larger stalagmite radius implies that a larger film
volume is needed to cover the entire stalagmite surface. At constant drainage outflow Qdrain, the
film thickness must indeed increase to compensate for the fact that r increases in the term ∂rhs.
This variation is not linear considering that q ∼ h4

s/r from Eq. (5.9) in the present approximation.
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By contrast, for large stalagmite wall inclinations, we can write (∂ξhs) cosφ≪ sinφ. When
referring to a large inclination, we always assume that the stalagmite wall is inclined downward,
i.e., that the stalagmite is convex. With Qdrain = 2πr(ξ)q, we have

hs ∼
(

3νVd

πgt0ξ sin (2φ)

)1/3

, ξ ≫ arctan (∂ξhs) . (5.16)

In a similar manner as in the above case, hs increases with increasing inflow, but does not follow
the same law regarding the dripping period. We indeed obtained hs ∼ t−1/4

0 over almost hori-
zontal surfaces, whereas we have hs ∼ t−1/3

0 if the stalagmite inclination becomes predominant.
Additionally, we note that hs varies non-monotonously with ξ sin (2φ). Without particularising
the stalagmite profile, we do not know the evolution of φ with ξ. If we had, for instance, a sta-
lagmite profile η varying as −kr, we would obtain that φ is constant and that ξ sin (2φ) evolves
as −kr/

√
(1 + k2) (see Eq. (5.48) further in the text), such that the stationary film thickness hs

would be∼ r−1/3. For stalagmite profiles involving higher powers of r, e.g., describing hs analyti-
cally becomes tedious. Hence, we cannot easily draw conclusions regarding the effect of ξ sin (2φ)
on hs in a general case. We also noted that, in the above case for which the film thickness gradient
predominates, the stationary film thickness should depend on the size of the stalagmite, rsm, be-
cause a larger horizontal stalagmite surface requires a larger liquid volume to be entirely covered
while maintaining a constant drainage outflow at the outer wall. On the other hand, in this case
the film thickness in Eq. (5.16) seems to only depend on the stalagmite shape. Finally, if ξ sin (2φ)
varies non linearly, it is possible for hs to be larger away from the centre of the stalagmite surface
than close to this latter, whereas in the horizontal case the film thickness should always be the
largest at the centre, i.e., at the dripping point.

4.3.2 Sole drainage

We estimate once again the relative order of magnitude of the terms involved in both Eqs. (5.9)
and (5.10), this time in a non-stationary regime, which thus corresponds to Eq. (5.2) withQdrip = 0.
We consider that ∂th ∼ h/t, which implies only considering larger drainage times (over a few
seconds) rather than the transient phase following directly a drop impact. First, regarding the
almost perfectly horizontal plane, if we have the same hypotheses as above, such that ∂ξh ∼ h/r
and ∂th ∼ q/r from Eq. (5.10), we find that

t ∼ 3ν r2

2gh3
, (5.17)

or, in other words, that h ∼ t−1/3 in this case. By combining this relation with Eq. (5.15) for h = hs

and t = t0, we are able to relate the radius of the liquid front advancing in response to a drop
addition in the film as

rsr ∼
(

2V 3
d g t0

3π3ν

)1/8

· (5.18)

By contrast, when the inclination becomes predominant in Eq. (5.10), we have ∂th ∼ q/ξ, which
leads to

t ∼ 3ν ξ
g sinφ h2

, (5.19)
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or h ∼ t−1/2 for convex stalagmites. By proceeding in the same manner as above and combining
this relation with Eq. (5.16) for t = t0, we find that the position of the liquid front is given by

ξsr =

(
g sinφV 2

d t0
12νπ2 cos2 φ

)1/5

· (5.20)

The radius rsr of Eq. (5.18) and the above curvilinear coordinate ξsr of Eq. (5.20) can both be seen as
the frontier between the region where the effect of the successive, individual drops are felt in the
film, and the region located sufficiently far away from the drop impact point for the effect of the
drops not to be felt anymore. Hence, this radius is denoted rsr, resp. ξsr, the steady/unsteady re-
gion limit radius, resp. curvilinear coordinate. Equation (5.18) also corresponds to both Huppert’s
solutions from Eq. (5.12) when replacing t by t0 and Qdrip by Vd/t0. Hence, the radius rsr defined
above lies at the crossover between the constant volume and constant flow rate solutions. This
comes from our approximation of Qdrip by a discrete collection of drops.

4.3.3 Competing stalagmite inclination and film thickness gradient-related effects

We have defined two stalagmite profiles of interest in the above calculations: the (almost) perfectly
horizontal case and the inclined (or convex) one, where each of the two terms of the right-hand side
of Eq. (5.9) predominates over the other. We can compute a criterion for ξφ to discriminate these
two cases, i.e., find beyond which value of ξφ the inclination of the stalagmite surface has a larger
effect on q than the gradient of film thickness. We recall that, in stationary state, if |∂ξh| ≪ tanφ,
we find that hs evolves as described by Eq. (5.16). We have previously considered that |∂ξφ| was
negligible in regard of 1/h, which may not be true in this case. If we take this into account in the
calculation of ∂ξhs, we find that, in a general manner, the comparison |∂ξhs| ≪ tanφ turns into

1
3
hs

ξ

(
1 + 2ξ cot (2φ) (∂ξφ)

)
≪ tanφ. (5.21)

For a stalagmite with a rather smooth convex profile η(r) = −kr2, the change in the inclination φ
with respect to ξ takes the non-trivial expression ∂ξφ = −2k cosφ/ (1 + 4k2ξ2 cos2 φ). Hence,
no easily derivable analytical solution can be obtained by inserting another profile than a constant
inclination into Eq. (5.21). To understand better the above relation, we can assume that, at first
order for relatively moderate inclinations, we have a profile close to the constant inclination case
with ∂ξφ ∼ φ/ξ and that we can also use the limit for which sinφ ≃ φ and cosφ ≃ 1. For
small values of φ close to the centre of the stalagmite surface, we may indeed consider the order
of magnitude of hs/ξ ≲ hd/rd = 10−2. Hence, the stalagmite elevation φ should verify φ ≫ 0.2°,
such that a stalagmite inclined by a few degrees at about 1 cm from its axis of symmetry can already
be considered as close to the casewhere the inclination of the stalagmite has a non-negligible effect
on q. Approximating sin (π/6) byπ/6, e.g., further only yields a 5 %-error, whereas this inclination
can be viewed as large close to the centre of the stalagmite top surface. We therefore find that the
condition forwhich the overall stalagmite inclination dominates, described byEq. (5.21), becomes4

ξφ≫
(

4νVd

9πgt0

)1/4
. (5.22)

If we insert the numerical values Vd = 8 × 10−8 m3 and t0 = 1 s in the above formula, we find that
ξφ should verify ξφ ≫ 2 × 10−4 m for the stalagmite surface inclination to have a greater effect

4Note that φ is expressed in radians.
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on drainage than the film thickness gradient. If the stalagmite overall inclination is about 0.5°,
the condition for the effect of the inclination to dominate over the film thickness gradient in the
expression of the flux q from Eq. (5.9) becomes ξ ≫ 2.3 cm, i.e., the inclination is only felt far
away from the spreading radius of the drops, rd. On the other hand, if we take φ = 10°, the
inclination becomes predominant as soon as ξ ≫ 1mm, so that it should already be the case
when ξ ≃ rd. Although it does not yield an exact angle φ separating the perfectly horizontal and
inclined cases, what we infer from Eq. (5.22) is that there exists a limiting curvilinear coordinate
value ξ beyond which the effect of the inclination on the film thickness becomes non negligible for
a given inclination φ. For a very small inclination φ of the order of the degree and with a large
inflow (t0 = 10 s here), the inclination would only be felt at several centimetres from the centre
of the stalagmite. If the inflow was decreased with, e.g., t0 = 100 s, for φ = 0.5°, we find that the
condition from Eq. (5.22) would become ξ ≫ 7mm.

4.3.4 Summary

A few key elements emerge from the above scaling analysis that we conducted. We can consider
two limit cases displaying distinct features: (i) the almost perfectly horizontal plane, correspond-
ing to the case for whichφ→ 0 in all points of the stalagmite domain, (ii) the very inclined/convex
stalagmite, which we can already consider if the overall wall inclination is of the order of 10° to 20°
close to the centre. In the perfectly horizontal case, we note that the film thickness gradient ∂ξh has
the greatest effect on drainage, while the inclination of the stalagmite surface under the film pre-
dominates when the condition from Eq. (5.21) is met, which reduces to Eq. (5.22) if the stalagmite
profile remains smooth and moderately inclined (≲ 30° close to the centre). We recall the scalings
obtained in both these cases in Tab. 5.1 below. In the perfectly horizontal case, the stationary film
thickness should depend at first order on the size of the stalagmite rsm, while such kind of depen-
dence disappears in the very inclined case. We also find two different evolutions of the stationary
film thickness with the drop inflow, materialised by the drop dripping period t0. Similarly, during
the drainage phase (although not shortly after the drop inflow interruption), we obtain two differ-
ent scalings with time t for the perfectly horizontal and very inclined cases. From there, we find
that there exists either a radius (horizontal) or a curvilinear coordinate (inclined) delimiting the
frontier between the unsteady and steady regions of the film in space. These latter may be viewed
as regions where the successive drop impacts are felt in the film, causing its thickness to oscillate,
or, respectively, where they have no substantial effect such that the film thickness remains constant
in time at a given position.

Perfectly horizontal Very inclined

Regime ∂ξh≫ tanφ ∂ξh≪ tanφ

Stationary film thickness hs ∼ r1/4sm t−1/4
0 hs ∼ t−1/3

0

Sole drainage h ∼ t−1/3 h ∼ t−1/2

Steady/unsteady frontier rsr ∼ t1/80 ξsr ∼ φ1/5 t1/50

Table 5.1: Summary of scalings derived from Eqs. (5.9) and (5.10). Condition indicating whether we consider the
very small or very large inclination approximation, as discussed in Eqs. (5.21) and (5.22). Stationary film thickness
scalings, coming from Eqs. (5.15) and (5.16). Sole drainage behaviour of the film thickness with time, from Eqs. (5.17)
and (5.19). Steady/unsteady frontier region radius and curvilinear coordinate described by Eqs. (5.18) and and (5.20),
respectively.
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4.4 Closed-form solutions
The partial differential equations derived in Sec. 4.2 are non-linear and require to be solved nu-
merically. We may nevertheless deduce from these equations a few elements regarding the spatial
evolution of the film thickness in a stationary state. In particular, we review the simple case of
a cone of constant opening angle in Sec. 4.4.1, which allows us to further develop an adequate
boundary condition to our problem. We also consider the film spatial evolution over a perfectly
horizontal plane in Sec. 4.4.2. This section is completed by a small perturbation analysis of the film
in stationary state over a perfectly horizontal plane in Sec. 4.4.3.

4.4.1 Evolution of the film thickness over a cone of constant opening

φ⋆

h
q

eξ

eζ

er

ez

g

Figure5.13: Stalagmite surface corresponding to a coneof con-
stant opening angle φ⋆, covered by a film of thickness h, with
axisymmetric coordinate system (r, z) and flux q.

We first consider the situation of
Fig. 5.13, where a film of supposedly
constant flux q flows over a cone with a
constant opening angle φ⋆. By contrast
with a plane in a Cartesian coordinate
system, a film of uniform thickness on
a conical substrate is not a solution
to the steady drainage equations, such
that, in stationary state, h(ξ) should
decrease with ξ. The differential equation
that provides this steady shape5 has no
existing closed-form solution. Neverthe-
less, as long as the film remains thin and

the surface sufficiently inclined, i.e., as long as |∂ξh| ≪ tanφ (see Sec. 4.3.3), the first term of the
right-hand side in Eq. (5.9) is negligible by comparison with the second term. If we particularise
Eq. (5.9) to the case of an inclined cone of constant opening angle, we therefore find that

q =
g
3ν

h3
s sinφ⋆ , (5.23)

is a valid approximation of the steady-state solution. We have already outlined the region where
the flux q can be viewed as in steady-state in Sec. 4.3.2, which we will also obtain in the upcom-
ing Sec. 4.4.3 through a linear stability analysis. We had also already determined how Eqs. (5.9)
and (5.10) changed if we considered the limiting case of an inclined stalagmite, which lead under
certain approximations to the scaling of Eq. (5.16). Consequently, an estimation of the stationary
film thickness spatial evolution over a cone of constant opening angle φ⋆ is given by

hs ≃
(

3νVd

πgt0 r sinφ⋆

)1/3
, (5.24)

where we have used the fact that, for a constant opening angle φ⋆, r = ξ cosφ⋆. If φ⋆ → π/2, the
radial flux q reaches its maximum while the film thickness is minimum at a given radial position r.
Because stalagmites considered as perfectly horizontal lead to an indeterminate definition, as we
will review in the following section, we will make use of the condition developed for the cone in
this section to approximate the drainage flux at the outer edge of perfectly horizontal stalagmites.

5A Chini equation [1].
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4.4.2 Constant pointwise inflow and stationary film thickness

If we consider that the stalagmite surface is a per-
fectly horizontal plane, as depicted in Fig. 5.14, the
curvilinear coordinates (ξ, ζ) simply coincide with
the axisymmetric coordinates (r, z), and the velocity
field reduces to u = uer. The flux q = qer still
corresponds to the integral of u along the entire film
thickness and is also parallel to the stalagmite surface.
In a stationary state for which ∂ths = 0, we could
consider that, instead of being progressively filled
by a succession of drop impacts, the film is rather

ghsr0

rsm

q0

qer ?

Figure 5.14: Case of an inflow of flux q0 and ra-
dius r0, continuously feeding a stationary film of
thickness hs over a stalagmite of radius rsm.

fed by an equivalent laminar jet of constant flux q0, spread on a radius r0. This situation is illustrated
in Fig. 5.14. At the same time, the film should still be depleted through drainage at the edge of the
stalagmite. When the two processes balance each other out, we find that

q =
q0r0
r
· (5.25)

and we obtain the corresponding stationary film thickness hs evolution with r:

hs(r) =
[
K− 12νq0r0

g
ln

(
r
r0

)]1/4

, r > r0 , (5.26)

where K ∈ R is a constant to determine. We could use as another boundary condition hs = 0 in
r = rsm, but itwould only be truewhen a film spreading on a dry stalagmitewould be about to reach
the edge of the stalagmite. The drainage occurring beyond the edge of the stalagmite would thus
not be taken into account. A more general condition is the one developed in the former section,
in which case we assume that the stalagmite edge is extended by a cone of constant opening φ⋆ for
r > rsm. Using Eq. (5.23) and assuming that q over the cone is uniform, with q(rsm) = q0r0/rsm, we
get the following evolution for the stationary film thickness over the stalagmite:

hs(r) =

[
12νq0r0

g
ln
(rsm

r

)
+

(
3νq0r0

grsm sinφ⋆

)4/3
]1/4

, r0 < r ≤ rsm , 0 < φ⋆ ≤
π

2
· (5.27)

Wenote here that the condition hs(rsm) = 0would yield as a solution the first term appearing in the
right-hand side main parenthesis, i.e., the case where the liquid front has spread until r = rsm but
has not drained over the edge yet. The case of a perfectly flat plane forφ⋆ = 0 is undefined because
it would correspond to the final state of the aforementioned situation described by Huppert [116],
where the front of the film keeps spreading over a boundless substrate, i.e., a time dependent so-
lution. If we compare the terms from Eqs. (5.9) and (5.27), we note that there should exist a link
between both equations. Going from one form to the other is not straightforward though as, in the
present case, we particularised our physical domain to a flat stalagmite. Nevertheless, it is inter-
esting to note that, in Eq. (5.9), the flux q was found to be a sum of terms proportional to h4 and h3,
while in Eq. (5.27) above, the film thickness is a combination of terms of order q1/4 and q1/3.

The incoming flux q0 is expressed as an area per unit of time. In terms of volume per unit of
time, the volumetric flux, q0r0, is equal to the drop inflow from Eq. (5.3), i.e.,

q0r0 =
Vd

2π t0
· (5.28)
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This approximation allows us to consider a constant inflow brought into the film. If we take, e.g.,
t0 = 10 s and Vd = 8 × 10−8 m3, and introduce these values in Eq. (5.27) from a radius r0 =
1 cm to rsm = 5 cm, we obtain the stationary film thickness evolution hs(r) shown in Fig. 5.15.
Three cases are shown: φ⋆ = 90°, φ⋆ = 10° and φ⋆ = 0.5°. Additionally, the case corresponding
to hs(rsm) = 0 is represented, i.e., the case where the liquid front has just spread until the edge
of the stalagmite, for rsm = 5 cm, but also for rsm = 8 cm. We first note that the film thickness
is larger at every point for a larger stalagmite radius, in accordance with our discussion on the
scaling from Eq. (5.68). We also notice that, although φ⋆ = 10° should lead to a cone opening close
to the horizontal, the correspondingfilm thickness curve is very close to the almost right-angle case
(φ⋆ = 90°). We indeed find that, in r = r0, the difference in film thickness between the φ⋆ = 10°
and φ⋆ = 0.5° cases with the curve at φ⋆ = 90° are of 0.1 µm and 6.2 µm, respectively. Hence, it
can be considered that the outer wall angle of the stalagmite has little effect on the film thickness
close to the centre of the stalagmite. The solution only departs from the right-angle corner for very
small φ⋆ values, as illustrated by the case of φ⋆ = 0.5°. The film thickness beyond rsm in this case
would be of the order of the film lying on the stalagmite itself, with hs(r ≥ rsm) = 192 µm while
for φ⋆ = 10°, resp. φ⋆ = 90°, we only have hs(r ≥ rsm) = 70 µm, resp. hs(r ≥ rsm) = 40 µm.
Finally, we note that the stationary film thickness described by Eq. (5.27) presents an inflection
point in r = rinfl, which is illustrated by the coloured dashed lines in Fig. 5.15. The inflection point
is located at

rinfl = rsm exp

[
g

12νq0r0

(
3νq0r0

grsm sinφ⋆

)4/3

− 3
4

]
, (5.29)

which is about 2.36 cm for both φ⋆ = 90° and φ⋆ = 10° (the difference between the values taken
by rinfl with a larger precision is 0.2 %). On the other hand, we observe once again that the case for
which φ⋆ = 0.5° differs strongly from the two other ones since it corresponds to rinfl = 2.64 cm.
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Figure 5.15: Examples of hs(r) profiles obtained by Eq. (5.27) for t0 = 10 s, rd = 2.7mm, r0 = 1 cm and rsm = 5 cm
in the main graph (i.e., surrounded by black axes). The secondary part of the graph (i.e., surrounded by light gray
axes), for r ≥ 5.5 cm, shows another example of profile with the same parameters, except for the stalagmite radius set
to rsm = 8 cm. In the main axes, the dark gray line shows the case hs(rsm) = 0 for rsm = 5 cm. In the secondary axes,
the green line shows the case hs(rsm) = 0 as well for rsm = 8 cm. In the main axes, the orange, purple and red lines
represent cases for which we impose a uniform flux q on a cone with constant opening angle extending the stalagmite
surface, with φ⋆ = 90°, φ⋆ = 10° and φ⋆ = 0.5°, respectively. The dashed lines of the same colours, in the continuity
of the solid lines, show the corresponding film thickness hs ∼ r−1/3 for r > rsm in each case (see Eq. (5.23)). The
transparent dashed vertical lines show the inflection point radius for both φ⋆ = 90° and φ⋆ = 10° (orange and purple
line, rinfl = 2.36 cm), and forφ⋆ = 0.5° (red line, rinfl = 2.64 cm). The blue dotted lines represent the virtual extensions
of the film thickness profiles for r < r0 for all the curves represented in the main and secondary set of axes.
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In order to understand the differences exhibited by the three curves, we can estimate the in-
fluence of the cone opening angle beyond rsm on the stationary film thickness over the stalagmite.
To achieve this, we approximate the thickness at a given radial position by a Taylor expansion
around this position, hs(r), knowing the value of hs(r⋆) in r = r⋆. If we are only interested in
the variations of hs with the cone opening angle at the outer edge, φ⋆, we have, at first order,
hs(r) ≈ hs(r⋆) +

(
∂φ⋆hs(r⋆)

)
∆φ⋆. The variations of the stationary film thickness with φ⋆ can be

considered negligible if
∣∣(∂φ⋆hs(r⋆)

)
∆φ⋆

∣∣ ≪ hs(r⋆). By assuming that ∆φ⋆ ∼ φ⋆ given that,
φ⋆ = 0 ∀r < rsm, we find that the condition4

φ⋆ ≫

 νVd

9gt0 r4sm

(
ln

(
rsm
r⋆

))3


1/4

(5.30)

must be ensured in order to neglect the variations of hs with φ⋆. Using the same parameters as
above (t0 = 10 s and Vd = 8 × 10−8 m3), for r → 0, the above condition reads φ⋆ ≫ 0.04° and the
first term of Eq. (5.27) will always be predominant, which we have already observed from Fig. 5.15.
If we now take, e.g., r⋆ = rsm/2 close to the inflection point radius rinfl for all three curves, we find
that hs(r⋆) does not get affected by the cone opening angleφ⋆ whenφ⋆ ≫ 0.2°. Looking at Fig. 5.15,
we note that, in r = rsm/2, the film thickness indeed departs from the right-angle corner solution
(φ⋆ = 90°) for φ⋆ = 0.5°, which is of the same order of magnitude as our conditions gives, but
not for φ⋆ = 10° ≫ 0.2°. A similar condition6 as Eq. (5.30) can be particularised to r = rinfl. By
taking r⋆ = 0.99rsm, i.e., a radius very close to the edge (the case r = rsm yields an undetermination
in Eq. (5.30)), we find that φ⋆ ≫ 3.7° should be satisfied in order for the film thickness variations
with φ⋆ to be negligible. In Fig. 5.15, we indeed witness that, for φ⋆ = 10°, which is not extremely
far from 3.7°, the film thickness is different from the right-angle corner case (φ⋆ = 90°) in r ≈ rsm.
Additionally, if we take the same drop volume but t0 = 0.1 s and rsm = 1.5 cm, i.e., a large inflow
and small stalagmite radius, we find that the outer boundary condition becomes significant when
φ⋆ < 2°, which is still very low.

Although it is fairly simple, the above model captures the observations made both in the lab
and in caves. We first note that the film is thicker at the center, close to the constant pointwise
inflow position, and thinner on the outer edge of the stalagmite. Additionally, increasing the flux
by reducing the dripping period t0 between two drops increases the film thickness given that hs

is proportional to q0r0 (or Vd/t0) in Eq. (5.27). If we only focus on the leading term of Eq. (5.27)
and take into account Eq. (5.28), we deduce that hs ∼ t−1/4

0 , as we had already found in Eq. (5.15).
By keeping the remaining parameters constant, the dripping periods t0 = 1 s, 10 s and 100 s, e.g.,
correspond to film thicknesses hs(r = r0) of 667 µm, 375 µm and 211 µm, respectively, which are
in accordance with the former power law. However, due to its stationary nature, the model does

6Comparing the terms of Eq. (5.27) in r = rinfl, where the departure from the right-angle corner curve seems to become
significant for small φ⋆, leads to the following criterion: if the condition

φ⋆ ≫ arcsin

[
1

rsm

(
8
9
νVd

gt0

)1/4
]

(5.31)

is met, then the outer boundary condition should have negligible effect on the appearance of the curve hs(r). This
condition is similar to the one obtained in Eq. (5.30) because it yields φ⋆ ≫ 0.2° in r = rinfl, exactly as in r = rsm/2
with the more general condition from Eq. (5.30). The halfway radius rsm/2 is indeed very close to the three inflection
point radii. Although the above relation is specific to rinfl, we did not need to make use of any approximation to
derive it.
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obviously not capture the effect of the successive drop impacts on the film thickness, which has
demonstrated to be quite important in Sec. 3. It also fails at grasping the potential importance of
the stalagmite shape underneath the film, which was shown to differ for various stalagmites from
caves. We may nevertheless point out that the criterion developed in Eq. (5.30) to delimit upon
which value of φ⋆ the outer cone boundary condition affects the film thickness at a given radial
position r⋆, yields similar results as our scaling analysis from the previous section (see Eq. (5.22)).
Close to the edge of the stalagmite, an angle φ⋆ ∼ 10° already gives a solution quite close to the
right-angle corner (φ⋆ = 90°). Assessing the effects on subsequent film thickness variations of (i)
the inclusion of the drops in the film and (ii) of the detailed stalagmite shape, i.e., not only of the
overall inclination of the stalagmite wall, will thus be ourmain focus in the forthcoming numerical
approach from Sec. 4.5.

4.4.3 Linear stability analysis of the film interface

Before using numerical tools to solve Eqs. (5.9) and (5.10), we complete our theoretical study by
performing a linear stability analysis of the film thickness spatial solution. We have indeed derived
scalings enabling to retrieve the frontier between steady and unsteady regions of the film during
the late part of drainage (i.e., above a few seconds, see Sec. (4.3.2)), but not in the transient case
following the direct introduction of a drop into the film. We thus aim in this section at finding
when the effect of the drop in the film is temporally damped, and compare the timescale obtained
to our range of dripping period, t0. If the drop takes less than 100ms to crush into the film in the
absence of splash (see Ch. IV and Appendix B.4), it might not be the case for the associated capillary
waves propagating around the impacted area. The following linear stability analysis should also
allow us to verify whether or not we can approximate the flux q as constant over a certain distance
from the stalagmite centre, and use as the approximation made over a cone of constant opening
angle as an outer boundary condition for perfectly horizontal stalagmites.

If a film lying on a flat substrate is at steady-state, the film thickness, hs(r), verifies ∂ths = 0.We
introduce small perturbations around this stationary film thickness as h = hs + ε(r, t). We assume
that all powers involving ε and its spatial derivatives ∂rε and ∂rrε are of second order and can
therefore be neglected, i.e., we donot consider the terms involving ε2, ε3, (∂rε)

2, ε (∂rε)nor ε (∂rrε).
We find that the perturbation ε follows

∂tε ≈ A(r)∂rrε+ B(r)∂rε+ C(r)ε , (5.32)

where the coefficients appearing in the equation correspond to the functions

A(r) =
gh3

s

3ν
, (5.33)

B(r) =
g
3ν

(
3h2

s (∂rhs) +
h3

s

r

)
, (5.34)

C(r) = −ghs

ν
(∂rhs)

2 . (5.35)

In the absence of drops feeding the film periodically, the only possibility for the film to be in sta-
tionary state is to remain uniformover the entire stalagmite surface, i.e., hs(r) = hs ∀r. The former
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functions thus reduce to

A =
gh3

s

3ν
, (5.36)

B(r) =
A
r

, (5.37)

C = 0 , (5.38)

and Eq. (5.32) becomes

∂tε = A∂rrε+
A
r
∂rε , (5.39)

which can be solved by separation of variables. Introducing ε(r, t) = R(r)T(t), we find, on the one
hand, that

T(t) = T0 e−t/τ , (5.40)

where we impose τ ∈ R to ensure that the perturbations are damped. As aforementioned, we are
only interested in comparing the perturbation damping time associatedwith, e.g., the introduction
of the drops in the film, to the dripping period of these drops. This leads to the following equation
for R(r):

A R′′ +
A
r
R′ +

1
τ

R = 0 . (5.41)

The former relation can also be written as

r2R′′ + rR′ +

(
r2

Aτ
+ n2

)
R = 0 , (5.42)

where we recognise the Bessel equation of order n = 0. The general solution to this equation is
given by [1]

R(r) = K1 J0

(
r
√

1
Aτ

)
+ K2 Y0

(
r
√

1
Aτ

)
, (5.43)

whereJ0 andY0 are the Bessel functions of first and second kinds, respectively. Because the func-
tions Yn are singular at the origin, we must impose K2 = 0. Gathering results from Eqs (5.40)
and (5.43), we end up with the following solution for the film thickness perturbation ε(r, t):

ε(r, t) =
∑

k

Ek J0

(
r
√

ν

gh3
Sτk

)
e−t/τk , (5.44)

where the Ek are the amplitudes corresponding to the different modes k of the perturbations. The
associated damping times of the perturbations are the τk.

We can replace r by specific values in Eq. (5.44) in order to find the corresponding damping
times of the first few modes of oscillations k, τk, leading to the first zeros of J0, and compare this
to our dripping period t0. Film thickness perturbations associated with r = Rd, the drop radius
(2.7mm), and relative to the first mode k = 1, are damped within 160ms and in less than 30ms
for the subsequent modes, which is less than the impact time itself. In Ch. IV, we had also found
that capillary ripples provoked in the film by the drop slowing down during impact are usually
damped after ≲ 200ms depending on the impact velocity. It is not surprising to obtain similar
orders of magnitude considering that results from Ch. IV come from a linear analysis of the lubri-
cation theory [38, 120], although this analysis did not include gravity as it is the case above (Jalaal
et al. [120] actually focus their study on the deposition of a drop on a thin film, similarly to our
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lab experiments). The damping time of the first mode of perturbation associated with r = rd, the
puddle spreading radius at impact (1 cm, see Fig. 5.12), is about 2 s, which can be compared to the
time around which the transition between the early and late parts of the drainage phase arises (see,
e.g., Fig. 5.6). Past the first few seconds during which the decrease in thickness corresponds to the
last drop impact in the film, the drainage was indeed observed to occur at a much slower pace in all
the curves from Sec. 3. This transition usually occurs a little later than 2 s and should correspond
to the aforementioned viscous time tν ≃ h2/ν (see Sec. 2.3 from Ch. IV and auxiliary sheet), equal
to about 5 s. The perturbations relative to r = rd that could be present at the film surface should
simply be damped before the drop spreading in the film stops due to viscous drag. Finally, per-
turbations associated with the typical stalagmite size should thus be damped after an even longer
time. We find for, e.g., r = 7.5 cm in the case of Lab01, that τk is of the order of 2min.
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Figure 5.16: Stationary radius rsr defined by Eq. (5.45) as a function of the dripping frequency 1/t0 (the right ordinate
axis shows the corresponding dripping period t0), for k = 1. Three examples are shown: for hs = 50 µm (purple
curve), hs = 100 µm (red curve) and hs = 200 µm (orange curve). The blue regions indicate the unsteady parts where
considering a domain size r < rsr is not a valid assumption as perturbations related to the corresponding t0 value can
still be felt in the film. The film thickness should remain unperturbed by the successive drop impacts outside of these
regions, for r > rsr.

We also reckon that the perturbations should be damped when the exponential in the expres-
sion of Eq. (5.44) becomes negligible, i.e., when its argument −t/τk → −∞. Perturbations asso-
ciated with the dripping period between drops are such that τk = t0. The drainage timescale of
the film having a stationary thickness hs, and considered at a certain measuring distance rsr from
the drop dripping point, is given by td = νr2sr/ (gh3

s) (see Eq. (5.14)). To ensure that perturbations
associated with the dripping period are damped at a distance rsr from the dripping point of the
drops, we therefore need td/t0 ≫ 1. In other words, we can define

rsr = k
(

gh3
st0
ν

)1/2

(5.45)

as the boundary beneath which the perturbations associated with the dripping period t0 and film
thickness hs should still be felt. The factor k is a coefficient that should depend on the stalagmite
shape, as the two scalings from Eqs. (5.18) and (5.20) indicated. Far beyond the above value of rsr,
i.e., r ≫ rsr, we can consider that we are sufficiently away from the dripping point for the film to
no longer be perturbed by the successive drop impacts. Hence, the stationary thickness boundary
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condition derived from the cone (Eq. (5.23)) applies for r≫ rsr. The relation fromEq. (5.45) should
be considered with care as we have defined it assuming that the film had a uniform thickness in
space. It has indeed been shown in Fig. 5.15 that this is not the case. Nevertheless, we see in
Eq. (5.45) that rsr decreases with decreasing film thickness hs. The film can further be expected to
become thinner around the outer edge of the stalagmite in most cases (see Fig. 5.15), thus applying
the condition from Eq. (5.45) should be safe enough in practice. We should still remain careful if
the thickness on the outer edge of the stalagmite becomes larger than at the centre (see Eq. (5.16)).
We report in Fig. 5.16 examples of the curve fromEq. (5.45) for k = 1 and hs = 50 µm, hs = 100 µm
and hs = 200 µm. We note that, for t0 = 10 s and hs = 100 µm, e.g., the stationary radius is rsr ≈
1 cm, which is the order of the drop spreading radius rd. In Fig. 5.8 (a), for t0 ≃ 1 s on Lab01
(which is convex but with a top surface quite flattened out, see Fig. 5.9), we had also noted that film
thickness variations were already quite damped at a distance ∆d = 5 cm and almost non existent
at ∆d = 7 cm. Our measurements taken at ∆d ≤ 1 cm, on the other hand, clearly fell within
the unsteady region. Hence, the stationary radius rsr associated with Lab01 should lie somewhere
between these values, and should be smaller than the average top radius rsm of Lab01. Because hs

is related to t0 (see Eqs. (5.15) and (5.16) and Fig. 5.24 (b) further in the text), there should exist a
unique value of rsr associated with a given stalagmite, which should be contained within the value
of the coefficient k appearing in Eq. (5.45). Finally, we note that the condition fromEq. (5.45) is also
the same as the one developed in Eq. (5.18) by using as a drop volume approximation Vd ≃ πr2srhs.
This yields rsr = (2h3

s gt0/3ν)
1/2, with

√
(2/3) = 0.82.

4.5 Numerical approach

In the former sections, we have reduced the system of partial differential equations describing the
drainage of the thin film lying over a stalagmite of general surface, i.e., Eqs. (5.9) and (5.10), to a
set of scalings in Sec. 4.3. We also considered the particular case of a perfectly horizontal plane
for which a closed-form solution exists in Sec. 4.4. However, as there is no known analytical solu-
tion to the system constituted of Eqs. (5.9) and (5.10) in an unsteady case, we solve it numerically
by implementing a scheme based on finite volume formalism. If we consider the stalagmite to be
axisymmetric, the problem is one-dimensional in space. Using the nondimensionalization pre-
sented in Sec. 4.2.2 (which also involved q = q′gh4

d/ (νrd)), we recall the nondimensional version
of Eqs. (5.9) and (5.10):

∂th′ = − 1
r′
∂ξ′ (q′r′) , (5.46)

q′ = −(h′)3

3

(
∂ξ′h′ cosφ−

(
rd
hd

)
sinφ

)
. (5.47)

According to our observations from Appendix B.4 and the scaling defined in Sec. 4.2.2, we also
nondimensionalise the stalagmite elevation coordinate as η = η′hd. For the sake of simplicity,
the variables presented in the remaining of this section will be written without the prime notation
(x and not x′) but correspond to nondimensional variables as per defined above. We compute the
flux q through Eq. (5.9) ∀ξ, which requires the knowledge not only of the current film thickness h,
but also of the curvilinear coordinate ξ and local curvature φ. We then update the film thickness h
at the next time step using Eq. (5.10), except at the times of drop impacts where we also consider
a source term, as detailed in the following subsection. We therefore need to discretise the values
of h, q, r, ξ, and φ, the two latter depending directly on η(r). From Fig. 5.11, the local inclination
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of the stalagmiteφ is indeed found to beφ = arctan (∂rη)while ξ is the arc lengthof the curveη(r),
i.e.,

ξ(r⋆) =
∫ r⋆

0

(
1 + (∂rη)

2)1/2 dr . (5.48)

As shown inFig. 5.17,we start bydefining the stalagmite profileη(r)with a large precision (104 sam-
ple points). The maximum height of the stalagmite is H and the coordinate r goes from 0 to R, the
horizontal truncation of our domain, as illustrated in Fig. 5.11. We consider the three shapes al-
ready described in Ch. II, i.e., flat, convex and concave stalagmites. These shapes were commonly
described by Eq. (2.1), which we recall hereafter:

η(r ; S,Ψ) = Sr2
(
Ψ− r2

)
, r ≤ R , (5.49)

withΨ the shape factor and S the scaling of the stalagmite profile. The values of S andΨmeasured
on the stalagmites from our dataset are presented in Tab. 2.2 from Ch. II. The physical truncation
of the domain chosen when measuring Ψ and S was 5 cm, which thus corresponds to R = 5 in
nondimensional form. We obtained closed-form solutions of the drainage equation in the case of a
perfectly horizontal stalagmite of given radius in Sec. 4.4.2. In the following numerical simulations
we will approximate flat stalagmites by the degenerate case η = 0, r ≤ R, with R becoming the
non-dimensional stalagmite radius. The numerical simulations conducted for perfectly horizontal
stalagmites will thus include an additional boundary condition that we described in Sec. 4.4.1 and
that we will discretise in Sec. 4.5.1. However, we will keep our measurements for Ψ and S for
the stalagmites from our dataset classified as flat because actual stalagmites are not as perfectly
horizontal as considered in Sec. 4.4.2.
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Figure 5.17: Illustration of the numerical discretisation: from a defined stalagmite shape η(r) with associated scale
and shape parameters S andΨ, we discretise the domain from r = 0 to r = R into (I+1) cells of size∆ξ. Cell-centered
values of, e.g., the local angle φi are computed in the middle of the cells while fluxes fi are computed at the cell faces,
i.e., between two adjacent cells. The boundary condition applied in r = 0 is a null flux in the upwind direction, while
we use the solution of the cone of constant opening angle φ⋆ at the outer boundary. Drops are added into the film at
the numerical dripping period corresponding to t0/td.

We then define a grid containing I cells of width ∆ξ along the curvilinear coordinate ξ, sur-
rounded by (I+ 1) faces, as depicted in Fig. 5.17. The grid point ξi corresponds to the centre of the
cell i. We sample the radial coordinate r into another grid of I points by interpolating the positions
of the corresponding values of ξi in the originally large vector ξ. For flat stalagmite profiles, the
discretisation of the radial coordinate r will result in a ri vector such that ri = i∆r. However, for
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curved profiles, the discrete vector ri will have variable step sizes∆ri = ri+1 − ri, i = 0, . . . , I− 1.
Nevertheless, given the order of magnitude difference between hd and rd, the ∆ri are in practice
very close to each other. The discretisation could be done using an opposite approach where the ri

would always be equally distant from each other while the ξi would be unequally spaced, but the
derivatives appearing in Eqs (5.9) and (5.10) depend on ξ and not on r. We therefore expect the dis-
crete derivatives with ξ to be numerically more stable if∆ξ is kept constant. In the same manner,
we interpolate the value of φi at the corresponding ξi positions.

We also denote the non-dimensional film thickness hn
i at the centre of cell i, i = 0, . . . , I, and

at a discrete time n ≥ 0. As illustrated in the stencil from Fig. 5.17, the discrete flux qn
i+1/2

at time
step n corresponds to the flux between two adjacent cells i and i + 1 and is therefore evaluated as

qn
i+1/2 =

1
3
(
hn

i+1/2

)3 [
(∂ξh)

∣∣∣
i+1/2

cosφi+1/2 −
(

rd
hd

)
sinφi+1/2

]
, (5.50)

where the i± 1/2 indices correspond to the faces surrounding cell i. We proceed by evaluating q at
the faces and not at the centre of the cell because of the h3 term which multiplies the entire right-
hand side of Eq. (5.50). If we tried to estimate both q and h at the centre of cell i, we would only
get odd or even indices in our numerical approximation of the equation. Hence, a null thickness
would automatically cancel the flux in cell i as well. The use of the i ± 1/2 indices is a solution
to the odd–even decoupling problem [112] and implies the definition of h and q at different grid
points. However, in Eq. (5.50) above, the value of hi+1/2 at the face is unknown. Nevertheless, in a
thin film approximation, h is not expected to vary strongly in between two adjacent cells. We may
thus approximate the film thickness at the face as the average between the two known thicknesses
at the centre of cells i and i + 1, which yields

hi+1/2 =
1
2
(hi + hi+1) , i = 0, . . . , I , (5.51)

where the same operation can be applied to the cell-centered local inclination of the stalagmiteφ to
obtainφi+1/2. The above face value corresponds to the value evaluated at ξi+∆ξ/2. We additionally
need the value of the radial coordinate r at this face, which is calculated as ri + ∆ri/2 given that
the ri are not equidistant7. Evaluating the flux q through Eq. (5.50) also requires to compute the
derivative of h with respect to the curvilinear coordinate ξ at the face between two adjacent cells,
which we achieve using a central scheme as

(∂ξh)
∣∣∣
i+1/2
≈ hi+1 − hi

∆ξ
· (5.52)

Updating h over time using Eq. (5.46) requires to compute the divergence of the product of the
flux and the radial coordinate. We thus also define f at the face between adjacent cells i and (i + 1),
at time step n, as the following quantity: f n

i+1/2
= qn

i+1/2
ri+1/2. The divergence of qr over cell i can

therefore be estimated as
∂ξ (qr)

∣∣∣
i
≈ fi+1/2 − fi−1/2

∆ξ
· (5.53)

From Eq. (5.10), we also define F in the centre of cell i as

F (hi) =
1
ri

(
fi+1/2 − fi−1/2

∆ξ

)
· (5.54)

7As a remark, ri is not exactly equal to r(ξi) because of the non-linearity of the equations, but it should yield a suffi-
ciently close approximation. The ri could also be sampled at the mid-points.
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Finally, the timederivative ofh is evaluated at time stepnusing a fourth-orderRunge-Kuttamethod,
which yields

hn+1 ≈ hn +
∆t
8

[
k1 + 3 k2 + 3 k3 + k4

]
, (5.55)

where∆t is the fixed numerical time step and

k1 = F
(
hn

i

)
, k2 = F

(
hn

i +∆t
k1

3

)
,

k3 = F
(

hn
i +∆t

(
−k1

3
+ k2

))
, k4 = F

(
hn

i +∆t
(
k1 − k2 + k3

))
.

(5.56)

4.5.1 Boundary conditions

Because Eq. (5.9) is parabolic (see Sec. 4.4), we need one initial condition and two boundary con-
ditions, one at each end of our spatial domain. In the following, the film will always be initialised
at zero everywhere until drops start to be added over the stalagmite surface, i.e., we start from a
dry stalagmite. In this case, the system formed by Eqs. (5.9) and (5.10) becomes locally hyperbolic
because it describes a front advancing over a solid surface, as we discussed in Sec. 4.2.1, hence there
is no need for a second boundary condition. Given the axisymmetric configuration of the system,
we will assume that at the centre of the stalagmite, corresponding to the first cell of the spatial do-
main, the drainage can only occur in the upwind direction, as illustrated in Fig. 5.17. This first cell,
in particular, is always considered as perfectly horizontal no matter the shape of the stalagmite.
We have hn

1/2
= (hn

0 + hn
1 ) /2 and f n

1/2
= qn

1/2
∆ξ/2, where the flux at the outer face of the first cell

writes as
qn
1/2 = −

1
3
(
hn

1/2

)3(hn
1 − hn

0

∆ξ

)
· (5.57)

Using finite difference to approximate the time derivative with F(hn
0) = 2/∆ξ

(
2 f n

1/2
/ (∆ξ/2)

)
,

the boundary condition in i = 0 reads as

hn+1
0 = hn

0 −
4∆t qn

1/2

∆ξ
· (5.58)

Regarding the outer edgeof the stalagmite, weuse the approximate conditionderived in Sec. 4.4
relative to a cone with constant opening φ⋆, which is also depicted in Fig. 5.17. The opening angle
can be considered as equal to φI−1/2 for convex and concave profiles, while we need to impose a
value for φ⋆ in the perfectly horizontal case. Only very small φ⋆ were shown to affect the drainage
at the centre of the stalagmite in Eq. (5.30) (φ⋆ ≲ 1° to 2°). The flux at the inner face of the last cell
is given by8

qn
I−1/2 =

(
hn

I−1/2

)3

3

(
rd
hd

)
sinφI−1/2 , (5.59)

with the film thickness at the inner face approximated by hn
I−1/2

=
(
hn

I − hn
I−1

)
/2. We further

obtain f n
I−1/2

= qn
I−1/2

(R− (1/2)∆ξ cosφI−1/2) and F(hn
I ) = (1/R)

(
2 f n

I−1/2
/ (∆ξ/2)

)
, which leads

8Or, alternatively, qn
I−1/2

=

(
hn

I−1/2

)3

3

(
rd
hd

)
sinφ⋆ in the perfectly horizontal case.
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to

hn+1
I = hn

I −
2∆t (2R−∆ξ cosφI−1/2) qn

I−1/2

R∆ξ
· (5.60)

4.5.2 Drop addition and convergence

In Sec. 4.2, we obtained the conservative form of the film thickness evolution with time. Since we
start our resolution from an initially dry stalagmite, an inflow of successive drop impacts must be
added over the stalagmite to create and maintain the liquid film over the stalagmite. We will there-
fore be able to proceed in the same manner as during the cave and lab experiments and compare
both the experimental and numerical filling and drainage dynamics of the film. To take the suc-
cession of drops into account, Eq. (5.10) can be reformulated by including punctual source terms
as follows (in nondimensional form, hence t has no dimension):

∂th +
1
r
∂ξ (qr) =

∑
k

Hd(ξ ) δ

(
t− k

(
t0
td

))
, k ∈ N , (5.61)

where δ is the Dirac distribution and Hd is the thickness added locally on a radius r = 1 (i.e.,
rd in dimensional form) and height h = 1 (i.e., hd) in the film. Numerically, the drop dripping
period t0 is materialised by n0, the number of time steps between two drop additions in the film,
such that the dripping period corresponds to n0∆t (see Fig. 5.17). For n0∆t = 1, the time between
two drop additions corresponds to t0 = td, the drainage timescale defined by Eq. (5.14). In an
axisymmetric or curvilinear coordinate system, we consider that there is no dispersal in the impact
point distribution of the drops. The effect of impact point dispersal will be covered in the following
chapter. Inserting a shift in the position of the drop impact point by keeping an axisymmetric
formulation would indeed correspond to the addition of a ring of liquid into the film rather than
an actual drop. We compare in Appendix C.1 different drop shapes that could possibly be used.

In the results presented hereafter, we will only use the drop shape defined by

Hd(ξ ) =

{
1− [ξ cos (φ(r))]2 , r ≤ 1 ,
0 , r > 1 .

(5.62)

We also discuss the convergence of our numerical scheme in Appendix C.2 for various combina-
tions of (∆t,∆ξ). At fixed∆t, the main issue with our numerical calculations arises from the film
thickness becoming infinite for a grid step size ∆ξ too small because we of the unstable explicit
Runge-Kutta time integration used. For limiting ∆ξ values, without actually diverging, the film
thickness around the centre of the domain (r = 0) can also present spurious oscillations. Besides
that, even for large time and grid step sizes ∆t and ∆ξ, the accuracy of the solution remains rea-
sonable. For instance, ∆t = 10−4 and ∆ξ = 0.1 only lead to errors ≲ 3% in the film thickness
compared to the solution obtained at very precise values of∆t = 10−6 and∆ξ = 10−2.

The former equations do not allow to fully model the very early stage of film thickness varia-
tions following the addition of a drop in the film, corresponding to the crushing and spreading of
this drop. We indeed did not take inertial and capillary effects into accountwhen deriving Eqs. (5.9)
and (5.10). Although we saw in Secs. 3 and 4.4 that the drop may perturb the film for a few seconds
following the impact, we only add the drop at one particular time iteration. By contrast with the
experiments, this addition could be viewed as instantaneous in regard of the subsequent drainage
of the film. Nevertheless, a few iterations are needed for the thickness variations to be damped into
the film, just as in the case of actual drop impacts. It is thus not possible to grasp the exact dynam-
ics of drop impact and reproduce numerically, e.g., the variations in

(
hmax − hmin

)
associatedwith

138



the dripping period variations, observed in the inset of Fig. 5.6 (at least not from a physical point of
view, although we could artificially vary the value of hd added at impact). However, the modelled
inclusion of the drop in the film should still lead to timescales similar to the ones observed during
the lab measurements.

5. Results

We are now able to simulate the evolution of the film thickness numerically for different values of
the previously identified parameters, i.e., the dripping period t0 and stalagmite shapeΨ and scale S.
The temperature and relative humidity were also observed to affect the film thickness evolution,
but to amuch lesser extent than the dripping period and stalagmite shape. We thus do not consider
them in this numerical study. To take them into account, the evaporation should be modelled as a
negative source term inEq. (5.61). Theviscosity is also dependent on the temperature, but it does no
longer appear in the nondimensional form of the equations and a variable viscosity should simply
correspond to a scaling of the drainage timescale. In Sec. 5.1, we start by presenting a simulation
example on a perfectly horizontal stalagmite and deduce from it filling and drainage empirical
laws. We then analyse the response of the film to a variable dripping period in Sec. 5.2, and to
a variable stalagmite shape (convex, flat or concave) in Sec. 5.3. Finally, we systematically vary
these parameters altogether and compare the results obtained to our cave and lab experimental
measurements in Sec. 5.4. Note that variables are expressed in their dimensional form from now
on (otherwise their nondimensional equivalent is specified by a prime notation x′).

5.1 Example of the film thickness evolution on a perfectly horizontal
stalagmite and empirical drainage law

We start by looking at the simple case of a perfectly horizontal stalagmite whose radius is three
times the drop spreading radius, R′ = 3 (or R = 3 rd). We have S = Ψ = 0 and we must impose
an outer edge angle, here set to φ⋆ = 45°. For these radius and angle values, the outer boundary
condition should not affect the filling and drainage at the centre of the stalagmite, as described in
Eqs. (5.18) and (5.20) (or Eq. (5.45)). The dripping period relative to the simulation is constant and
chosen equal to the drainage timescale, t0 = td9. We define a dimensionless timeNd corresponding
to the number of drops that would have dripped within a duration t, i.e., Nd = t/t0. The stalag-
mite is initially dry. We cover it by successive drop impacts for a time equal to 75 t0, or 75 drops,
before stopping this inflow. We then record the film thickness response to the absence of inflow
during a time equal to 100 t0, or the equivalent of 100 drops. Numerically, the number of drops
during the filling and in the absence of drops are denoted Nfill = 75 and N��fill = 100, respectively.
The results obtained are shown in Figs. 5.18 (a-d) below. In Figs. 5.18 (a) i–iii, we show the film
thickness h(r, t) as a function of the position along the coordinate r for selected times (or numbers
of drops), while in Fig. 5.18 (b) we trace the film thickness h(r, t) as a function of the number of
drops Nd at two specific locations indicated in (a) i. In Figs. 5.18 (c) and (d) , we represent two
close-up views from (b): one during the filling after the film has reached a stationary state (c), and
a log-log scaled view of the part with no droplet addition in the film, i.e., for Nd ≥ Nfill (d).

9Reminder from Eq. (5.14): td ≃ 12 s for horizontal and vertical length scales equal to hd = 100 µm and rd = 1 cm,
respectively.
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Figure 5.18: Numerical film thickness variations in space (a) and time (b-d) for a flat stalagmite, with parameters
t0 = td, R = 3rd, φ⋆ = 45°, Nfill = 75, N��fill = 100. (a) Film thickness profile h (blue) as a function of the radial
coordinate r over the stalagmite (orange): i. After Nd = 1, 5 and 10. ii. After Nd = 49+ (right at the drop addition
time step, dark blue) andNd = 50 (light blue). Thedark blue band in themiddle reveals theNd = 49+ profile under the
profile forNd = 50. iii. After Nd = 75, 100 and 150. (b) Film thickness h as a function of the number of drops added in
the film. The light green curve corresponds to the thickness at the centre, in r = 0. The dark green curve shows the film
thickness in r = 3rd (calculations were not made in the grid cell where we impose the boundary condition, though).
Both positions are illustrated by vertical dashed lines in (a) i. The gray vertical dashed line shows the number of drops
after which the film is in stationary state, Ns = 21. The blue vertical dotted lines and dots represent the moments
shown in graphs (a) i–iii. The red and purple areas represent the portions of the graph displayed in the close-up views
from (c) and (d). (c) Close-up view of the periodic filling of the film for 3 drops, between Nd = 50 and 53. The inset
shows a vertical zoom on h(r = R) between Nd = 51.5 and 52.5. (d) Close-up view of the film drainage for Nd ≥ Nfill,
in a log-log scale. The red dashed line corresponds to Eq. (5.65), with a = 1.82, b = 1.75 and m = 3.28. The legend
from (b) is the same for (c) and (d).

140



Figure 5.18 (a) i shows the film thickness profile after 1, 5 and 10 times the dripping period has
passed since the latest drop addition, at the exact time step before a new drop gets added into the
film in each case. In other words, Fig. 5.18 (a) i shows the state of the film after 1, 5 and 10 drops
have spread out, respectively. We observe that the film does not cover the entire stalagmite yet,
even after 10 drops. Similarly, in Fig. 5.18 (a) ii, we see the film thickness after an equivalent time
of 50 drop impacts has passed, right before the 51st drop is added into the film. The shape of the
film at the exact time when the 50th drop is added is also represented, i.e., it corresponds to the
end of the 49th drop topped with the drop shape. We observe that, except over the drop radius, the
film profile remains identical between the end of the 49th and the end of the 50th drops. The film
has therefore reached a stationary state and thereby oscillates between two limit profiles, having
a central thickness going from hmax (maximum value) to hmin (minimum value) over the course of
one dripping period. The film also covers the entire stalagmite at this point. In Fig. 5.18 (a) iii, we
show the film afterNfill drops have been added to the film, i.e., right at the beginning of the drainage
process, then after the equivalent of Nfill + 25 and 2Nfill drops (without any actual drop addition).
The film profile flattens out with time at first sharply, then at a slower pace. In Fig. 5.18 (b), the
film thickness h(r = 0) measured at the centre of the stalagmite is represented as a function of
the number of drops Nd, and so is the film thickness in r = R (we compute this thickness at the
penultimate grid point before the outer edge of the stalagmite, so that it does not directly repre-
sent the arbitrary boundary condition). The same behaviour is observed: the film thickness first
increases at the centre while it remains null for a certain amount of drops at the outer edge of the
stalagmite. Then, the film ends up covering the entire stalagmite and remains in stationary state as
long as drops are feeding it, with a significant difference between h(r = 0) and h(r = R). Finally,
we observe the sole drainage process for Nd ≥ Nfill. During the drainage phase, the difference
between h(r = 0) and h(r = R) progressively diminishes but does not seem to become null in the
time window shown in the graph. Hence, spatial gradients in the film thickness remain. Without
these, there would not be any drainage since the profile of the stalagmite underneath is completely
horizontal (see Eq. (5.9)).
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Figure 5.19: Amplitude of oscillations of the film thickness relative to the numerical simulation from Fig. 5.18, run
with parameters t0 = td, R = 3rd and φ⋆ = 45°. (a) Film thickness as a function of the number of drops during
the stationary phase at different radial positions, between Nd = 40 and Nd = 50 (in correspondence with the film
thickness variations from Fig. 5.18 (b)). (b) Amplitude difference, hmax − hmin, of the film thickness variations shown
in (a). The legend above the graphs refers to both graphs (information from the legend are already contained in (b)).
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Figure 5.18 (c) provides a more accurate view of the film periodic variations when drops are
added into it, once again for h(r = 0) and h(r = R), between Nd = 50 and Nd = 53. The strong
thickness variations at the centre of the stalagmite seem not to be present in the main view of
Fig. 5.18 (c) at the edge of the stalagmite, in h(r = R). However, we note in the vertical close-up of
Fig. 5.18 (c) that these oscillations are actually present, but with an amplitude of 7.5 × 10−4hd. In
fact, solving a parabolic equation as Eq. (5.10) numerically by periodically modifying the shape of
the film should always yield small oscillations of the film profile everywhere. Nonetheless, com-
pared to the time average film thickness h(r = R) of about 0.625hd during the stationary phase,
these oscillations can be considered as negligible. We further represent the film thickness varia-
tions at different positions along the stalagmite in Fig. 5.19 (a). In Fig. 5.19 (b), the amplitudes of
the oscillations from Fig. 5.19 (a), i.e., hmax − hmin from each curve, are shown as a function of
their radial position. We note that the oscillations are progressively damped as the distance from
the centre increases. Within a radius of about∼ rd, the amplitude of the oscillations remains non
negligible. This is not surprising considering that the drops are added over a radius rd. Past r = 2rd,
the oscillations seem to become negligible with respect to the oscillations at lower r. These obser-
vations are in accordance with the criteria defined in Eqs. (5.18) and (5.20) (or Eq. (5.45)) and the
lab experiments from Fig. 5.8. In the particular simulation presented in Fig. 5.18, the approxima-
tion of the outer boundary condition by a cone of constant opening with a constant flux q was thus
valid.

5.1.1 Filling and stationary phase

As aforementioned, the film thickness at the centre of the stalagmite (r = 0) first increases before
oscillating betweenminimumandmaximum stationary values, hmin and hmax. We callNs the num-
ber of drops after which the film thickness reaches a stationary state at the centre of the stalagmite.
In the case presented in Fig. 5.18, we find Ns = 21 according to the following empirical rule:

Ns = Nd ∈ Z :
∣∣hNd(r = 0)− hNd+1(r = 0)

∣∣ ≤ ϵ, ϵ = 10−2 , (5.63)

where hNd(r = 0) designates the film thickness right after the addition of the Nth
d drop (i.e., hmax).

We also pointed out in Fig. 5.18 (b) that the film does not immediately reach the outer edge of the
stalagmite (r = R) at the beginning of the filling phase, hence its thickness at this position remains
null for a certain time. We note from Fig. 5.18 (b) that the film reaches its stationary state at the
centre after it has spread out until the outer edge of the domain, while at this outer edge position
the film seems also instantaneously in stationary state.

The predefined criterion was set in accordance with the experiments, because these latter do
not present the same accuracy as the numerical simulations. We can also estimate the number of
drops needed for the film to reach a stationary state in the experimental curves from Sec. 3 based
on the same criterion. We assume that no matter whether it was taken in caves or in a lab setting,
the filling curve obeys the following exponential law:

h(Nd) ≈ hs

[
1− exp

(
−Nd log 100

N0.99
s

)]
, (5.64)

where N0.99
s is a parameter to adjust for each curve, which corresponds to the number of drops

after which the film thickness reaches 99% of the stationary film thickness hs. The value of hs

was inferred from our first measurement of the film thickness made on a given stalagmite and for
measurements taken after over 100 drop impacts, when it could be safely assumed that the filmwas
in stationary state. The curve fitted on experimental data points and the number of dropsN0.99

s = 7
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obtained in the case of Clam06 are also shown in Fig. 5.20 (a)10. Regarding the lab measurements,
we estimated the number N0.99

s in the same manner for several dripping periods and, therefore, for
several stationary film thicknesses hs which are reported in the inset of Fig. 5.25 (a) further in the
text. Our criterionwas defined purely arbitrarily, but it should be noted that the number Ns is only
there to provide an estimated number of drops needed to fill the film rather than a precise value.
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Figure 5.20: Fit on the experimental curves. (a) Example of filling curve with cave measurements made on Clam06
(green markers). The gray solid curve shows the fit from Eq. (5.64) fitted based on the experimental data for hs =
214 µm, with hs represented by the dashed grey line. The square root of the residuals between the fitted curve and
the measurements is 34 µm. The number of drops N0.99

s obtained using Eq. (5.64) is 7 (with Nth
s = 6 for Clam06). (b)

Example of drainage curve with cave measurements made on Clam07 (red markers). The gray solid curve shows the
fit from Eq. (5.65) fitted on the experimental data, with tdrain0 = 7.8 s (see Tab. 2.2), a = 735.39 µm s1/m, b = 9.07 s and
m = 2.22

5.1.2 Fit of the drainage curve

In Fig. 5.18 (b), we noted that the film thickness decreases monotonously, at first rapidly then at
a slower pace after the equivalent of ∼ 5 drops (i.e., 5 td) following the interruption of the drop
inflow. This translates into a cusp in the log-log scaled curves from Fig. 5.18 (d). Both curves seem
to follow a power law for large times, i.e., once the rapid transient part has passed. In this particular
case, we find that the corresponding power is close to−1/3 [106, 154] for the film thickness at the
centre of the stalagmite, h(r = 0). Given the cusp presented by the curve, we empirically pose that,
in a given spatial position, the film thickness should vary as follows:

h(r, t) =
a(r)

(t + b(r))1/m(r)
, (5.65)

with a > 0, b ≥ 0 and m > 0 to adjust. The parameters relative to h(r = 0) in Fig. 5.18 (d) are
a = 1.82, b = 1.75 and m = 3.28. We see in Fig. 5.18 (d) that these three parameters vary with r
as we indeed find that, in r = R, a = 0.86, b = 1.18 and m = 4.4. In the following, we will only
focus on finding these parameters in the case of h(r = 0) and we will not consider their potential
variations with the distance from the centre for a particular stalagmite.

If there was no time shift b in the former expression, the film thickness would become infinite
at a null time. The time shift b thus indicates at which level of the master curve at−1/m the drainage

10Using a looser criterion such as t0.9, resp. t0.95, would yield, in the case of Clam06, a stationary number of dropsNs =
3, resp. 5, which do not seem to capture the stationary state yet in regard of the curve from Fig. 5.20 (a). The value
of t0.999 would lead to Ns = 11, which seems a bit strict given that Ns = 7 already appears located where the
experimental measurements do no longer sustain significant variations with respect to hs.
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starts, in accordance with our lab observations that, for a given stalagmite profile, temperature
and relative humidity, the sole drainage process remains identical (see Sec. 3, Fig. 5.6). The time
shift b is thus expected to vary with the stationary film thickness and, therefrom, with the dripping
period and stalagmite shape and size. The literature [106, 116, 153, 154, 166] also indicates that the
exponentm should vary depending on the overall inclination and size of the stalagmite. Finally, we
note that all three parameters are not independent from each other. The factor a can be expressed
as a function of the stationary film thickness hs, i.e., the thickness reached by the film right before
the drainage process starts:

a = hsb1/m , t = 0 . (5.66)

The factor a can be considered as a dimensional parameter allowing to retrieve the film thickness
based on the time shift b and exponent m of the law obtained for h(t).

To estimate the values of these parameters, we first assume that b remains finite and that, for
large t values, we have b ≪ t. In practice, the raw data curves from Sec. 3 seem to indicate that
considering t ≳ 30 s as the large time values (i.e., beyond the cusp) is sufficient for the experimental
measurements. In the case of Fig. 5.18, large times can be considered when Nd ≳ 5. We can then
find the values of a and m by simple use of the normal equations, with

log h ≈ log a− 1
m
log t , t→∞ . (5.67)

In caves, the film thickness measurements could be taken up to +15min after stopping the drop
inflow. While we tried our best to record the exact times at which we interrupted this inflow and
took the measurements in caves, there is still an uncertainty associated with the first measure-
ment, especially considering that it usually corresponds to a mass-based measurement. Hence, we
leave this time of first measurement, denoted tdrain0 , as a parameter to adjust for each curve, that
we reported in Tab. 2.2. These measurements are of the order of about 30 s, in accordance with
the predefined large time threshold. For the lab measurements, the fit was performed on the mea-
surements comprised between t = +30 s, i.e., for large times as well, and t ≈ +240 s following the
interruption of the drop inflow. By restricting our range below t = +240 s, we avoid considering
the dewetting of the film, which was not observed in caves (see Sec. 3), although in an ideal case we
would have considered the exact same range as in the caves. Regarding the numerical simulations,
we fit the parameters on the film thickness values comprised between t = 5td (or Nd = 5) and
t ∼ 100td (or Nd = N��fill ∼ 100), respectively. We further verify that the residue of the drainage
fit from the numerical simulations falls below an empirical nondimensional threshold of 10−3 to
ensure that the numerical simulations can be comparedwith one another (see, e.g., the aspect of the
drainage curves after the same time in Fig. 5.21). This yields N��fill to be comprised between about
80 and 150. With the typical value of td = 12 s, these numerical times correspond to the bounds
considered in caves.

Once a and m have been estimated, Eq. (5.66) can be used to approximate b in the cave mea-
surements. As discussed in Sec. 4.4.2, the stationary film thickness hs is taken as hmin. In caves, we
cannot estimate exactly the value of hmin, though. The value of hs was thus simply obtained by av-
eraging measurements for Nd ≥ 100. It potentially corresponds to a combination of hmax and hmin

because of the precision of our measurements. For the lab data and numerical simulations, we
proceed to estimate b by minimising the sum of residuals during the first dripping periods after
the last drop addition into the film, i.e., over∼ 5t0/td (or up to t ≈ +30 s in the lab measurements
for long dripping periods). In this manner, we ensure that Eq. (5.65) fits at best the curves obtained.
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5.1.3 Equivalent drainage coefficients over the filled dimple of concave stalagmites

Weshouldfinally note that, in the case of numerical simulations performed for concave stalagmites,
i.e., for Ψ > 1, the film only subjected to drainage may never tend back to a null thickness at the
centre of the stalagmite without additional effects such as evaporation or splash. We thus expect
the value of m to become increasingly large for large protuberance heights H (see Sec. 3.2 from
Ch. II), i.e., for larger Ψ or S. We can either apply the fit from Eq. (5.65) on h(r = 0), or on h(r =
0) − H, with H the height of the protuberance surrounding the dimpled centre of the stalagmite,
to characterise the drainage process on concave stalagmite shapes. In the second case, we could
retrieve a null value for h(r = 0) − H after some time has passed, and compare these results to
theirΨ < −1 counterpart. We designate by ã, b̃ and m̃ the parameters obtained by fitting Eq. (5.65)
on h(r = 0) − H in the same manner as described above. These measurements will be visible in
Figs. 5.26 and 5.28 from Sec. 5.4.
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Figure 5.21: Numerical film thickness evolution with time, for variable dripping period. The simulations were con-
ducted for Nfill = N��fill = 100, with R = 3rd andφ⋆ = 45°. (a) Film thickness as a function of the number of drops Nd,
for t0/td going from 0.01 (light green curve) to 100 (dark green curve). All the graphs from (b) to (g) are shown as a
function of the dripping period t0/td, in a log-log scale. (b) Stationary number of drops Ns obtained with Eq. (5.63).
(c) Stationary film thickness hs, corresponding to hmin. (d-f) parameters a, b and m obtained by means of Eq. (5.65).
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5.2 Effect of the dripping period on a perfectly horizontal stalagmite
For a given stalagmite profile, increasing or decreasing the inflow of drops in the film was ex-
perimentally observed to modify the film thickness both locally and away from the impact point,
although it was clear that the influence of the dripping period is the greatest at the impact point
position. We vary in this section the numerical dripping period of the drops t0/td while keeping the
same stalagmite profile as in the previous section, a perfectly horizontal stalagmite of radiusR′ = 3
and outer edge angle φ⋆ = 45°. In Fig. 5.21 (a), we represent the film thickness during the filling
and drainage phases for t0/td ∈ [10−2 ; 102] at the centre (r = 0) of the stalagmite. If t0/td = 0.1,
10 drops are added to the film over one characteristic drainage timescale td. Since all the curves
from Fig. 5.21 (a) are represented as a function of Nd and show the same number of drop addi-
tions Nfill = 100, followed by sole drainage for an equivalent number of time steps N��fill = Nfill,
the darkest curve should last 104 times longer than the lightest curve in dimensional values. The
data from Figs. 5.21 (b-f) show the number of drops Ns defined in Eq. (5.63), after which the film
reaches its stationary state (b), the stationary film thickness defined as hs(r = 0) = hmin(r = 0)
during the filling phase (c), as well as the three parameters from the sole drainage fit defined in
Eq. (5.65): the factor a (d), the time shift b (e) and the exponent m (f), all inferred from the curves
in (a) and presented as a function of the dripping period t0/td. We observe in Fig. 5.21 (a) and
(b) that the film takes a larger number of drops to reach a stationary state when the drop inflow
is more important, i.e., when the dripping period t0/td is smaller (which corresponds to a larger
drop frequency). In Fig. 5.21 (c), in correspondence with this observation we note that the station-
ary film thickness is larger for a smaller dripping period t0 during the filling phase. We obtain a
scaling hmin(r = 0) = hs ∼ t−1/4

0 , in accordance with the law derived in Eq. (5.15). We retrieve
this law for Ns. The number of drops needed to fill the film until it reaches a stationary state over
a perfectly horizontal stalagmite is therefore proportional to hs.

The film thickness remains larger for smaller dripping period t0/td during the drainage phase
of Fig. 5.21 (a) as well. Following that, the sole drainage seems faster for smaller dripping period t0,
but not sufficiently to allow the curves to cross each other after some finite time. We observe in
Fig. 5.21 (d) that the factor a decreases with increasing dripping period t0/td, and, hence, with de-
creasing average film thickness. This is not surprising considering that a should be proportional
to hs, by virtue of Eq. (5.66). At the same time, both the time shift b and the exponent m from
Figs. 5.21 (e) and (f) increase with increasing dripping period t0/td. If all the curves had the same
exponent m, a larger time shift b would simply indicate that the drainage starts from a smaller
initial height, which is in accordance with the observations made for a and b and the interdepen-
dence of all the three fitting parameters of Eq. (5.65). In other words, the rapid decrease from a
theoretically infinite initial film thickness that would occur for very short times is cut short by a
larger time shift b, at a level corresponding to a. Added to that, a film initially thicker when the sole
drainage starts induces a smaller exponent m, which indeed corresponds to a faster drainage pro-
cess. If t > 1, for n < m, we have11 t−1/n < t−1/m. Hence, if n < m, it takes a shorter time to reach a
certain film thickness h1 starting from h0 > h1. In other words, after a certain time t⋆, the thickness
reached is smaller in the case of t−1/n

⋆ than for t−1/m
⋆ . The drainage thus occurs at a faster rate for

n than for m if n < m. As we saw in Eq. (5.9), the flux q is proportional to h3. The time evolution
of the film thickness is described by Eq. (5.10) and is due to the divergence of the flux. It is thus
not surprising that the drainage occurs faster for a thicker film and, hence, for a smaller dripping
period t0/td. This variation should also be nonlinear, as the graphs from Figs. 5.21 (d-f) seem to

11If t > 1, for n < m, we have tn < tm, t1/n > t1/m, t−n > t−m and t−1/n < t−1/m.
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Figure 5.22: Previous page. Numerical film thickness evolution with time and space, for various stalagmite shapes.
The simulations were conducted for Nfill = N��fill = 75, with R = 5rd. (a) The three stalagmite profiles to which the
curves presented in (b), (c) and (d) correspond: i. Perfectly horizontal stalagmite with Ψ = S = 0 and φ⋆ = 45°. ii.
Convex stalagmite withΨ = −215 and S = 2.5 × 10−4. iii. Concave stalagmite withΨ = 31.5 and S = 6 × 10−3. In all
three graphs, the orange filled area corresponds to the stalagmite shape and the blue filled areas to the film profile hn(r)
at the same 3 instants: for Nd = 5 (i.e., after the 5th drop has spread out, light blue), Nd = 25 (blue) and Nd = 75
(dark blue). (b-d) Film thickness evolution with time hi(t) at two positions: at the centre in r = 0 (lighter color) and
close to the outer edge in r = R (darker color). The case presented in green in (b), resp. in red in (c) and in blue in
(d), corresponds to the perfectly horizontal stalagmite from (a) i, resp. the convex stalagmite from ii and the concave
stalagmite from iii. The gray vertical dashed line shows the value of Ns in each graph ((a) Ns = 44, (b) Ns = 14 and (c)
Ns = 57).

indicate. Although m increases with t0/td, we note that these variations are nonetheless minor and
thatm remains close to 3, in accordancewith the scaling fromEq. (5.17) that we had obtainedwhen
the thickness gradient dominates in Eq. (5.9).

5.3 Effect of the sole stalagmite shape at constant inflow
The film thickness h should also depend on the geometrical aspects of the stalagmite beneath the
film. As aforementioned, we only focus on the global curvature, shape and size of the stalagmite
through the predefined parameters Ψ and S, without considering local aspects of the film evolu-
tion that could be induced by the surface state, porosity or roughness [154]. In Fig. 5.22, we present
the evolution of the film over three different stalagmites: a perfectly horizontal stalagmite of ra-
dius R′ = 5 with φ⋆ = 45°, a convex stalagmite for which Ψ = −215 and S = 2.5 × 10−4, and a
concave stalagmite with Ψ = 31.5 and S = 6 × 10−3. The shapes over a domain of size R′ = 5 are
shown in Figs. 5.22 (a) i–iii, where we note that the values of Ψ and S were chosen to produce a
protuberance of comparable height H = 1.5hd in the convex and concave cases. In each of these
subfigures, we additionally represent the film after 5, 25 and 75 drops have spread into it. The three
remaining graphs of Figs. 5.22 (b), (c) and (d) display the corresponding evolution with the number
of drops of the film thickness at the centre and outer edge of the stalagmite (in r = 0 and r = R),
similarly to Fig. 5.18, for the perfectly horizontal, convex and concave cases from (a), respectively.
We have commonly set Nfill = N��fill = 75. In each graph from Figs. 5.22 (b-d), we further represent
the number of drops after which the film has reached a stationary state, Ns, according to Eq. (5.63).

We observe that, after only 5 drops, none of the films presented is in stationary state. The films
on the flat and concave stalagmites reach a stationary state after 44 and 57 drops, respectively,
which are quite close values. In the same manner, this stationary state is reached shortly after
the film thickness at the outer edge, h(r = R), has started to increase. However, because of the
presence of the protuberance, the film thickness at the centre is larger in the concave case than in
the perfectly horizontal one, and so is the difference (h(r = 0)− h(r = R)). The thickness reached
during the stationary state at the centre of the concave stalagmite even overcomes the height of the
protuberance by about the height of one drop, hd, since hmin

0 ≳ 2.5 in Fig. 5.22 (c). Regarding the
convex stalagmite, we observe that the stationary state of the film is reached after only 22 drops, at a
moment when the film does not even cover the entire stalagmite yet. The thickness at the centre in
the convex andperfectly horizontal cases are comparable andoscillate between roughly hd and 2hd.

Once the sole drainage phase starts, we note that the thickness decrease is the fastest for the
convex stalagmite. The thickness at the centre, h(r = 0), even reaches the same value as h(r = R)
after the equivalent of a few drops. By contrast with the horizontal case for which the drainage
cannot appear without the existence of thickness gradients in between two positions of the film, in
this case the inclined shape of the stalagmite suffices to induce drainage (see Eq. (5.9)). Regarding
the concave stalagmite, the film thickness at the outer edge, h(r = R), shows a similar behaviour as
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in the flat and convex cases. On the other hand, the thickness at the centre of the dimple, h(r = 0),
remains close to 2 even after N��fill = 75 has passed. The drainage exponents obtained are m = 3.6
for the horizontal stalagmite, m = 2.2 for the convex stalagmite, and m = 5.6 and m̃ = 2.9 for the
concave stalagmite (see Sec. 5.1.3). For t > 1, we know that the drainage occurs at a slower rate
for n than for m if n > m. It is not surprising to obtain the smallest, resp. largest, value of m for the
convex case (c), resp. concave case (d), since the drainage seems the fastest on the convex stalagmite,
resp. the slowest on the concave stalagmite. Additionally, we note that the value found for m̃ in
the concave case is of the same order as the exponents m found in the horizontal and convex case.
Hence, the drainage process allows the film at the centre of the concave stalagmite to retrieve a
value close to the height of the protuberance at the same rate as it decreases the film thickness on
other stalagmite shapes. Although from a numerical point of view, the exponentm = 5.6 found for
the concave stalagmite should eventually yield a null thickness h(r = 0) (i.e., an extremely small
thickness), it should not be the case in reality. In caves, the film would simply remain in the dimple
or evaporate, or escape slowly through variations in the stalagmite outer wall (see, e.g., Fig. 2.1).

All these observations are in accordance with the shape variations presented. The convex sta-
lagmite has an overall downward slope, which tends to ease the flow of the film toward the edge
and sides of the stalagmite. We also note that the film thickness at the centre of the convex stalag-
mite does not depend on whether or not the film completely covers the stalagmite, i.e., it is only
governed by the inclination close to the impact point position. On the other hand, the protuber-
ance of the concave stalagmite prevents the film from flowing over it as long as the film thickness
around the centre does not become larger than the height of this protuberance. If the protuber-
ance of a concave stalagmite becomes very large, it appears clear that the drainage at the centrewill
become increasingly slower, thereby allowing m to increase up to infinite values. The value of m̃,
on the other hand, seems comparable to the horizontal and convex cases. Hence, the drainage at
the centre of a concave stalagmite depends on the outer wall.

5.4 Comparison between numerical and experimental cave and lab
measurements

The following analysis presents both numerical results and experimental measurements obtained
for the stationary film at the centre of the stalagmite, hs(r = 0), the filling of this film prior to
the stationary state (Ns), and drainage fitting parameters (see Figs. 5.21 (b-c) and (d-f), a, b and m),
for variable dripping period (t0) and variable stalagmite shapes and scales (Ψ and S, respectively).
The numerical stalagmite profile is defined until a dimensional radial coordinate R (see Fig. 5.17),
which should not affect the results according to Eq. (5.45). We have already discussed that per-
fectly horizontal stalagmites lead to an indeterminate definition. In this case, the truncation radial
coordinate R of the numerical domain becomes the stalagmite radius.

Whenever possible, we assumed that the outputs of the experiments and numerical simula-
tions depended on the entry parameters (t0, Ψ, S and R) as power laws. The fitting parameters
coming from these power laws are reported in Tab. 5.3 for the power laws relative to the numer-
ical simulations and Tab. 5.2 for the experimental measurements. To perform these fits, we use
the nondimensional dripping period t′0 = t0/td = t0 gh3

d/ (ν r2d), the nondimensional stalagmite
radius R′ = R/rd and the drop volume Vd = πr2dhd. The variables Ψ and S are kept as such since
they are not related to dimensional physical variables, like the drop height or the stalagmite radius.
We also note that, when we perform calculations related to the actual cave or lab measurements,
the radius used will be R = rsm, the average top radius measured in Ch. II and reported in Tab. 2.2.
Finally, to simplify the upcoming sections, we divide them when possible into discussions relative
to either the numerical simulations or experimental measurements.

149



5.4.1 Stationary phase

a) Numerical simulations

We first show in Fig. 5.23 (a) the evolution of the numerically computed stationary film thick-
ness hs, i.e., the minimum film thickness hmin, as a function ofΨ for a fixed value of S = 1, while in
Fig. 5.23 (b) we show hs for variable S, with limitedΨ values comprised between -5 and 5. The inset
of Fig. 5.23 (a) displays the number of drops Ns needed to reach the stationary phase as a function
of Ψ for S = 1, also obtained numerically. In Fig. 5.23 (c), we represent hs for perfectly horizontal
stalagmites of variable size R, and in Fig. 5.23 (d) we show the corresponding stationary number
of drops Ns. In Figs. 5.23 (a), (c) and (d), the dripping period t0/td is also varied, from 10−1 to 101

in Fig. 5.23 (a), and from 10−2 to 102 in Figs. 5.23 (c) and (d). In Fig. 5.23 (b), the dripping period is
set to t0/td = 1.

We observe in Fig. 5.23 that hs strongly varies with the shape factor Ψ for curved stalagmite
profiles (convex and concave), and, to a lesser extent, with the radius of the stalagmite R for per-
fectly horizontal stalagmite. In the perfectly horizontal case, we once again retrieve the prediction
of Sec. 4.4.2 from the results presented in Fig. 5.23 (c): the exponents of the power law for the drip-
ping period t′0 and radius R′, inferred from this data, are summarised in Tab. 5.3. The dashed lines
shown in Fig. 5.23 (c) correspond to the following law in dimensional form:

hs (r = 0) =
(
νVd

πgt0
R
rd

)1/4

· (5.68)

From this relation, we note that, all parameters otherwise kept constant, hs increases with increas-
ing inflow (Vd ↑, t0 ↓) or a more viscous fluid (ν ↑), as expected. The stationary film thickness
at the stalagmite centre further increases with increasing stalagmite radius over the drop radius
ratio R/rd. If both the volume of the added drops and their frequency are kept constant, a wider
stalagmite (R ↑) requires a larger total volume to be completely covered by the successive identical
drops of radius rd. The above law indeed describes a process related to the balance between the
drop inflow, Qdrip and drainage outflow, Qdrain ∼ h4

s/R for perfectly horizontal stalagmites (see
Eq. (5.9)). Consequently, as already conveyed by the discussion relative to Eq. (5.15), at constant
outflow, a larger stalagmite radius yields a larger film thickness. Because of the profile taken by the
film on perfectly horizontal stalagmites (see Sec. 4.4.2), the thickness at the centre should likewise
increase. We retrieve the same scaling as we had obtained in Eq. (5.15) by using Qdrain = 2πrdq
and ∂rhs ∼ hs/R in our calculations, and by acknowledging that (3/2)1/4 = 1.11 ≈ 1. This scaling
is also similar to Eq. (5.27) from the constant pointwise inflow calculations (Sec. 4.4.2), except for
the factor related to the stalagmite radius which was found to be (12 ln (R/rd))

1/4. In the constant
pointwise inflow calculations, however, we had computed the stationary film thickness over the
entire stalagmite starting from a given radius r0. In the present case and in Eq. (5.27), we only com-
puted the film thickness at r = 0. Finally, we comment on the approximation of hs as following
a power law in R. In Sec. 4.4.2, we had derived that hs evolves primarily as (ln (R/rd))

1/4. Hence,
the numerical evolution of hs could follow a similar law. We obtain a good agreement for R ≳ 2rd
using this parameter (which is not represented here), which could explain the small discrepancies
observed at larger R in Fig. 5.23. However, this fit fails at capturing the behaviour of hs for R ≲ 2,
which could be explained by the fact that R lies inside the region of instability in this case. Hence,
the power law based on R yields a better fit in this case, although it might actually correspond
to a first-order approximation of (ln (R/rd))

1/4 which somehow encompasses the behaviour of hs

at R ≲ 2rd because the drops are added over a radius rd.
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Figure 5.23: Stationary film thickness hs computed numerically, for variable shape parameter Ψ, scale parameter S,
perfectly horizontal stalagmite radius R′ and dripping period t′0. All results were obtained for R′ = 5 (a-b), or forφ⋆ =
45° in the perfectly horizontal case (c-d). The legends in (a) are the same for all subfigures, except for the symbol colour
from (b) which is precised by the colour bar in (b). The symbol represents the dripping period used: t′0 = 0.01 ( ),
t′0 = 0.1 ( ), t′0 = 1 ( ), t′0 = 10 ( ) and t′0 = 100 ( ). The colour corresponds to the stalagmite general shape: convex
( ), perfectly horizontal ( ) and concave ( ). (a) Thickness hs on a curved stalagmite as a function of the shape Ψ, at
fixed scale S = 1, for a domain size R′ = 5 and for variable dripping period t′0. The values computed for Ψ = 0
(perfectly horizontal case) correspond to a radius R′ = 1. The inset shows the number of drops needed for the film to
reach a stationary state, Ns, as a function ofΨ and presented in correspondence with the main graph. Note that the ∗
symbol indicates the numberNs corresponding to the perfectly horizontal case obtained atR′ = 1. (b)Thickness hs as a
function of the scale S, forΨ varying between -5 and 5, as indicated by the colour bar, at t0/td = 1. The upper left inset
shows a close-up view of hs for S = 0.01. (c) Thickness hs on a perfectly horizontal stalagmite as a function of R, for
variable dripping period t′0. (d)Number of drops needed for the film to reach a stationary state on a perfectly horizontal
stalagmite, Ns, as a function of R′ and for variable dripping period t′0. The dashed lines in (c) and (d) correspond to the
curves (R′)

1/4 and (R′)
7/4, respectively, with coefficients from Tab. 5.3.

The values obtained for the stationary film thickness at R′ = 1 in a perfectly horizontal case
(Ψ = S = 0) and t0/td = 10−1, 1 and 10 have been added in Fig. 5.23 (a) as a comparison, be-
cause this radius corresponds roughly to the flattened out portion close to the centre of the sta-
lagmite for variable Ψ (see graphs from Fig. 2.4). Small discrepancies may be observed between
the values at R′ = 1 and the closest values of Ψ shown in Fig. 5.23 (a). These discrepancies may be
due to the fact that, even with |Ψ| < 1, small film thickness gradients should still appear before
reaching r = rd (the radial coordinate, r′ = 1) in the stalagmite profiles from Ch. II. The value
of R′ = 1 also lies within the unsteady region of Fig. 5.16, thus the values shown in this case in
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Fig. 5.23 (a) should be taken with precaution. Nevertheless, there is a good agreement between the
values at R′ = 1 and the closest values of Ψ shown in Fig. 5.23 (a). The stationary film thickness hs

tends to decrease below this central value corresponding to R′ = 1, i.e., forΨ < 0. ForΨ > 0, the
film thickness hs increases with Ψ. These observations are consistent with our preliminary notes
relative to Sec. 5.3. However, the slope ∂hs/∂Ψ is much larger for Ψ > 1 than for Ψ < −1. In
Tab. 5.3, which summarises the coefficients relative to the scaling laws derived from the graphs in
Fig. 5.23, we note that the stationary film thickness hs on a convex stalagmite evolves as

hs (r = 0) = 0.58
(
−1
ΨS

νVd

π g t0 h2
d

)1/2

, Ψ < −1 , (5.69)

i.e., it decreases with increasingly negative values of Ψ, or stalagmites having an outer wall with a
larger downward inclination, as expected. Drainage should indeed be promoted by negative (ori-
ented downward) stalagmite profile gradients (see Eq. (5.9)). Surprisingly, in Eq. (5.69) we also note
that we do not retrieve the same law as the one developed for the inclined case in Eq. (5.16). Al-
though we find that hs increases with increasing inflow (Vd ↑, t0 ↓), we note here that the scalings
relative to both these variables are not the same as previously found sincewe had hs ∼ (Vd/t0)

1/3 in
Eq. (5.16), against hs ∼ (Vd/t0)

1/2 here. This difference might stem from the fact the, in Eq. (5.69),
the film thickness is evaluated at the centre of the stalagmite, which was not the case for Eq. (5.16).
We actually had to assume ξ ≫ arctan (∂ξhs), and found that Eq. (5.16) is only valid at a certain
distance from the stalagmite centre, where the inclination becomes sufficient to overcome the film
thickness gradients. Hence, the two equations do not exactly describe the same film thickness evo-
lution. The above scaling from Eq. (5.69) thus corresponds to a case where the inclination of the
stalagmite has a significant effect on the stationary film thickness, but in a region where the incli-
nation remains small. We indeed always impose the first cell of the numerical domain to remain
horizontal (see Sec. 4.5.1). To sum up, the main difference between the perfectly horizontal and
convex cases is that the stationary film thickness in r = 0 decreases as∼ t−1/2

0 in the convex case
rather than as∼ t−1/4

0 in the perfectly horizontal case above.

Additionally, we note in Fig. 5.23 (a) that the film thickness values related to concave stalag-
mites do not vary significantly anymore with t0 at largeΨ > 1, by contrast with the horizontal and
convex cases. In this case, we find that hs evolves as

hs (r = 0) = 0.57 hdΨ2S , Ψ > 1 . (5.70)

We have already noticed that hs should be of the order of the protuberance height for the film
to reach a stationary thickness with concave stalagmites in Sec. 5.3. Given our definition of the
stalagmite profile fromEq. (5.49), we know that themaximumheight of the protuberance is located
at r =

√
Ψ/2, with a height growing as ψ2S/4. It is therefore not surprising to obtain the same

scaling for hs above Ψ = 1. By increasing the shape factor Ψ in the above equation, we shift the
position of the protuberance toward the outerwall of the stalagmite and increase the protuberance
height, thereby increasing hs. The stationary film thickness also increases with taller added drops
(hd ↑). Since hs corresponds to the thickness above which the film drains over the protuberance
of the stalagmite, adding taller drops should allow the film to further exceed the protuberance
height. The filling for the concave case should be seen as twofold: first, we need to fill the central
dimple of the stalagmite, then the liquid further added simply corresponds to the volume added
on top of the full dimple as if it were seen as an actual solid. Following this, we note that the
film thickness above the protuberance should also depend on the dripping period t0, but we did
not have a sufficient amount of data to conclude regarding this effect. The simulations conducted
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for Ψ > 10 at S = 1 indeed become increasingly long (∼ days instead of ≲ 1min for convex and
flat cases), thus assessing this effect would require the use of other numerical tools.
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Figure 5.24: Experimental cave and lab stationary film thickness measurements. (a) Cave film thickness hs as a func-
tion of the dripping period t0. Symbol correspondence is indicated in Tab. 2.2. The dashed line shows the power law
fit made on the stalagmites classified as flat (green markers). (b) Lab film thickness hs as a function of the dripping
period t0. Only the measurements for which ∆d ≤ 1 cm, T ≤ 21° and RH ≥ 80% are taken into account. The
dashed line shows the fit made on the measurements. (c) Lab film thickness hs as a function of the distance from
the drop dripping point to the sensor, ∆d, compared to the stalagmite average radius rsm. Only the measurements
for which T ≤ 21° and RH ≥ 80% are taken into account. The symbol colour indicates the average dripping pe-
riod t0 taken on the measurements presented (3 peristaltic pump modes were used). The stationary film thickness
obtained through numerical simulations corresponding to the parameters Ψ and S from Tab. 2.2 is also illustrated,
with t0/td = 20 and 200 according to the measurements from Fig. 5.30 (a) (the values chosen for t0/td match the
corresponding values from the lab experiments with the dripping periods that we imposed). As measurements could
be obtained in two positions on Clam02, the corresponding stationary film thickness values are represented by the
green markers (see Fig. 5.20 (a)). (d) Lab film thickness hs as a function of the relative humidity RH. Only the measure-
ments for which ∆d ≤ 1 cm and T ≤ 21° are taken into account. The symbol colour indicates the average dripping
period t0 taken on the measurements shown in the graph (all peristaltic pump modes are represented). One data point
corresponds to∼ 5 measurements.

Regarding the effect of the scale S on hs, we observe in Fig. 5.23 (b) that, below S = 0.1, the
values of hs remain very close to each other no matter the value of Ψ. We indeed have a ratio
between the two Ψ extrema of hs(Ψ = 5)/hs(Ψ = −5) = 1.2 at S = 10−2, while at S = 1 we
have hs(Ψ = 5)/hs(Ψ = −5) ≃ 200. The profile gradients caused by values of |Ψ| > 1 are
therefore sufficiently scaled down below S = 0.1 to become negligible with respect to the added
drop. Dependingon the signofΨ, the stalagmite profilewill responddifferently to a given scalingS,
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thuswe could not find a common law for the evolution of hs with S. The scaling S is rather involved
in each of the above described laws in a different manner. This is clearly illustrated by Fig. 5.23 (b)
where we observe that, for the largestΨ = 5, e.g., the film thickness is multiplied by 10 for S going
from 1 to 10, while we need to go over two decades (S = 0.1 to S = 10) to divide the value of hs

relative to Ψ = −5 by 10. We thus infer from this that, in the concave case (Ψ > 1), the film
thickness should be proportional to S, as is the height of the protuberance of the stalagmite profile,
while in the convex case (Ψ < −1), the scaling factor becomes S−1/2. These factors have been taken
into account in Eqs. (5.69) and (5.70).

b) Experimental measurements

We now concentrate on the measurements coming from the experiments that we described early
in the text, in Secs. 2 and 3. In Fig. 5.24, we show the stationary film thickness hs obtained from
cave measurements in (a) and lab measurements in (b-d). As aforementioned, we could not discern
whether our cave measurements of hs corresponded to hmax or hmin, but the lab measurements
show the value of hmin, as in the numerical version. Figure 5.24 (a) gathers themeasurementsmade
for all the flat, convex and concave cave stalagmites as a function of their associated drop dripping
period t0. In Figs. 5.24 (b), (c) and (d), we report the lab measurements obtained on stalagmite
Lab01 as a function of the imposed dripping period t0, the distance between the dripping point
and the sensor ∆d, and the relative humidity RH in the enclosure during the measurements RH,
respectively. To avoid taking into account the variability of several parameters at once, we only
considered in Fig. 5.24 (b) the experiments conducted for ∆d ≤ 1 cm and RH ≥ 80% as both
these parameters were shown to modify the stationary film thickness behaviour. Albeit the little
influence of the enclosure temperature on the stationary film thickness, we also removed mea-
surements obtained for T ≥ 21 °C to be consistent with the graphs presented in the following sec-
tion. In Fig. 5.24 (c), we considered variable dripping point-sensor distances ∆d for RH ≥ 80%
and T ≤ 21 °C, that we present as a function of the ratio between∆d and the stalagmite radius rsm
(see Tab. 2.2). We separated the dripping period in three ranges for each ∆d as we conducted the
experiments by only focusing on three peristaltic pump rates when varying the distance ∆d. Ad-
ditionally, Fig. 5.24 (c) shows the stationary film thickness measured on Clam02 in two positions
(the value at ∆d/rsm = 0.6 was estimated from Fig. 5.5 (a)). In Fig. 5.24 (d), we present the results
obtained for variable humidity RH for∆d ≤ 1 cm andT ≤ 21 °C. In this case the average dripping
periods correspond to the averages obtained by dividing our data into three: t0 → 1 s (on average
for all the experiments within this range, t0 = 1.9 s), t0 → 1min (t0 = 66 s on average), with the
last range corresponding to the intermediate values (t0 = 13 s on average).

Using the experimental measurements presented in Figs. 5.24 (a) and (b), we also estimated the
evolution of the film thickness in cave and lab with the dimensional dripping period t0, which is
reported in Tab. 5.2. The fit on the cave data was only performed with the flat stalagmites (see
Tab. 2.2) as there is too much disparity between the Ψ and S values related to the few convex sta-
lagmites forwhichwe collectedmeasurements. We observe a good agreementwith our theoretical
and numerically obtained laws (for flat stalagmites, hs ∼ t−1/4

0 , for convex ones, hs ∼ t−1/2
0 at the

centre and hs ∼ t−1/3
0 away from the centre) as we get an exponent for t0 of −0.21. On the other

hand, the lab measurements, which have a much better precision, give an exponent of−0.30. This
value is in between the two laws obtained above from the numerical simulations for horizontal and
convex stalagmites, and it is close to the value obtained initially in Eq. (5.16). Although Lab01 was
classified as convex, its top is quite flattened out, as indicated by its scaling S = 0.1. The fact that we
retrieve a law close to the horizontal case rather than to Eq. (5.69) may be caused by this. Another
explanation could be the fact that, even though we tried to position the sensor as close as possible
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Meas. var. Indep. var. Exponent Factor
Cave

hs/max hs t0/min t0 -0.21 1.02

Lab
hs/max hs t0/min t0 -0.30 1.08
a/max a t0/min t0 -0.29 0.94
b/min a t0/min t0 1.05 1.43

m t0/min t0 0.12 2.48

Table 5.2: Cave and lab fit coefficients from raw data curves expressed as a function of the dripping period t0. The
measured dependent variables include the stationary film thickness hs in cave and in lab, and the parameters a, b and
m from the drainage fit of Eq. (5.65). Columns 3 and 4 show the exponent and multiplying factor relative to each
measured variable. The second line, e.g., should be read as hs /max hs ∼ 1.08 (t0 /min t0)

−0.3.

to the dripping point of the drops, there was still a non-negligible distance between them (of the
order of 0.5 cm to 1 cm). The fit obtained for Lab01 might thus correspond to the case prescribed
by Eq. (5.69), valid only at a certain distance from the impact point position.

The measurements made on Lab01 also provide information on additional parameters that we
could not systematically vary in the numerical simulations in order to keep a limited amount of
parameters in our study, namely the distance∆d between the drop dripping point and the sensor,
and the relative humidity RH (although varying the distance∆d numerically is easily done, as illus-
trated by Fig. 5.19, but would increase further the number of graphs presented in this chapter). We
have indeed witnessed in Figs. 5.18 and 5.22 that the film thickness stationary state and drainage
were affected by the distance with the dripping point. Regarding the influence of ∆d on hs, we
observe in Fig. 5.24 (c) that hs decreases with the distance from the impact point, as we had already
noted in Fig. 5.8. This decrease is nevertheless not very pronounced as, for ∆d → rsm, the film
thickness barely reaches 2/3 of the film thickness measured at the centre, in r = 0. On the other
hand, in Fig. 5.24 (c) we additionally represented the stationary film thickness in the two positions
from which we could measure it on Clam02 (see Fig. 5.4 (a)). We note a much larger difference
between the two film thickness values in this case. Clam02 was considered as flat and indeed has
a shape factor Ψ = 1.2. Our experimental measurements are thus once again consistent with our
former observations that on flat stalagmites, there exist large gradients in the film thickness allow-
ing to promote the drainagewhile on convex stalagmites, the filmhas amore uniform thickness be-
cause it cannot increase much at the centre and that drainage is promoted by the stalagmite shape.
In accordance with our above discussion on the fact that Lab01 is not the stalagmite with the most
inclined outer wall, we note that the variation of hs with∆d remains significant as we get p-values
of 2 × 10−3, 2 × 10−3 and 2 × 10−2 by conducting distinct anova tests for the three dripping periods
presented in Fig. 5.24 (c) (anova tests were conducted on the 23, 22 and 11 experiments relative to
the three dripping periods, which have then been sorted and averaged in Fig. 5.24 (c)). Addition-
ally, we have performed numerical simulations using the parameters Ψ and S relative to Lab01
(see Tab. 2.2 in Ch. II and in the auxiliary sheet), and computed the thickness of the film in station-
ary state at locations corresponding to the locations of the lab measurement (not in∆d/rsm ≃ 0.15
though, as this is too close to our numerical drop radius rd). We used t0/td = 20 and t0/td = 200 as
these values correspond to the longest and shortest experimental dripping period that we imposed
on Lab01, respectively (we will discuss this further in the text, see Sec. 6.2). There is a good agree-
ment between the values and overall trend observed in the numerical and experimental data from
Fig. 5.24 (c). In Fig. 5.24 (d), as we had already spotted in Fig. 5.10, we observe that hs increases
slightly with the relative humidity in the vicinity of the stalagmite. This effect is significant too as
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we get p-values of 1 × 10−3 and 7e−5 by performing anova tests for the two shortest dripping peri-
ods of Fig. 5.24 (d) (same as in Fig. 5.24 (c) but we had 26 and 18 experiments, respectively). Finally,
we note that the numerical results should correspond to an environment with a 100% relative hu-
midity, while the measurements from Fig. 5.24 (c) correspond to a lower relative humidity. From
Fig. 5.24 (d), we know that hs decreases with decreasing RH, such that the numerical simulations
might overestimate the film thickness in comparison with the lab experiements. Nevertheless, this
effect does not seem significant in Fig. 5.24 (c).

5.4.2 Filling

The stationary film thickness hs could be related to the independent parameters Ψ, S, R and t0
by assuming power laws that fitted the measurements obtained. We have previously noted (see
Sec. 5.2) that Ns was proportional to hs. We now review the effect ofΨ, S, R and t0 on Ns, the non-
dimensional number of drops until the stationary state is reached. Wehave observed in Sec. 5.2 and
Fig. 5.23 (a) that the stationary film thickness hs is smaller for convex stalagmite (Ψ < −1). Cor-
respondingly, in the inset of Fig. 5.23 (a), for very negative Ψ < −1 values, the stationary number
of drops Ns remains almost equal to 1. Additionally, we note without surprise from Fig. 5.23 (a)
and its inset, and from Figs. 5.23 (c) and (d), that Ns is correlated to the stationary film thickness hs,
such that it increases with Ψ from this minimum value of Ns = 1. For a fixed drop volume and
stalagmite surface, a larger film thickness will indeed be attained by means of a larger number of
drops. Small values of Ns are also more easily reached when the dripping period is longer than
the drainage timescale (e.g., for t0/td = 10) since it was shown that, in this regime, the stationary
film thickness is smaller. Because of the correlation between hs and Ns, the same conclusions as
drawn above regarding the effect of the scaling S apply, hence we did not represent the evolution
of Ns with S graphically. Proceeding in the same manner as with hs, we assume that power laws
potentially relate Ns toΨ, S, R and t0. We report the fitting parameters obtained from these power
laws in Tab. 5.3. The fits obtained for the numerically computed values of the stationary number
of drops, Ns, translate into the three following laws, first for perfectly horizontal stalagmites12:

Ns (r = 0) = 3.2
(

νVd

π g t0 h4
d

R7

r7d

)1/4
, (5.71)

for convex stalagmites:

Ns (r = 0) = 2.3
(
−1
ΨS

ν Vd

π g t0 h4
d

)1/4

, Ψ < −1 , (5.72)

and for concave stalagmites:
Ns (r = 0) = 1.5Ψ2S , Ψ > 1 . (5.73)

We notice that both Eqs. (5.71) and (5.72) have a common feature in accordance with the results
obtained for hs: the stationary number of drops Ns increases for a larger drop inflow (Vd ↑, t0 ↓).
In the perfectly horizontal case, Ns is also found to increase with the ratio R/rd as more drops
are necessary to cover the stalagmite surface and reach the stationary film thickness in this case,
although the scaling is not identical to hs (see Eq. (5.68)). The law described by Eq. (5.72) for the
convex case does not take into account this progressive filling of the stalagmite surface that could
be compared to a growing pile of sand. By contrast, the stationary number of drops Ns on a con-

12We verified these scalings with other values for ϵ in Eq. (5.63) which only affects the upfront factor in the equations,
hence the arbitrarity of the criterion is not important.
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cave stalagmite is unsurprisingly proportional to the protuberance height, just like hs. If we com-
pare Eqs. (5.71), (5.72) and (5.73) to Eqs. (5.68), (5.69) and (5.70), we actually find that Ns evolves
as ∼ hs/hd (R/rd)

3/2 in the perfectly horizontal case, as ∼ (hs/hd)
1/2 in the convex case, and

as∼ hs/hd in the concave case, respectively.

Because Ns is not supposed to provide a precise number of drops needed for the film to reach
its stationary state but rather an order of magnitude, we may rationalise our findings for Ns with a
common law for all three stalagmite types. We assume that a succession of drops of volume Vd =
4/3πR3

d is needed to cover an initially dry stalagmite of radius rsm, which we can alternatively
write as Vd = πr2dhd. We consider that, once the stalagmite surface gets fully covered, the film
has reached a stationary state and is uniform, i.e., equal to hs everywhere. This is an approximation
since we have shownmultiple times that this is not the case, as, e.g., through Eq. (5.27) and Fig. 5.15
when the film is fed by an equivalent microjet. The volume of such a film over a flat stalagmite
surface is πr2smhs. We can estimate the theoretical number Nth

s of drops needed to fill the film as the
ratio of the stationary film volume over the drop volume, i.e.,

Nth
s =

3 r2smhs

4R3
d

=

(
rsm
rd

)2( hs

hd

)
. (5.74)

In the case of actual stalagmites, we do not know exactly the corresponding values of hd and rd,
but we know the drop radius Rd = 2.7mm, which we will use for the cave measurements (and
Rd = 2.3mm for the lab measurements). We report the values obtained for both Nth

s and N0.99
s ,

measured as explained in Sec. 5.1.1, in the parity plot of Fig. 5.25 (a), for each stalagmite for which
we were able to take filling measurements (see Tab. 2.2). Additionally, values of Nth

s and N0.99
s

obtained for Lab01 for various dripping periods t0 are also shown in the graph, with the dripping
periods visible in the inset of Fig. 5.20 (a). Regarding the radius rsm used in the particular case of
Eq. (5.74), we considered the average top radius of stalagmites as described in Sec. 3.2 and used
in Ch. III. This radius could indeed be related to the region over which most drops fall. Although
in the case of a flat or concave stalagmite, considering the stalagmite surface covered by the film
as πr2sm is not a strong assumption, it is not necessarily true for convex stalagmites. For example,
we may compare the areas corresponding to either a paraboloid cap of a certain height and cross
radius rsm, Aparab. cap or to a disk of radius rsm, Adisk, in the case of, e.g., Clam07 and Org10. We
illustrate our measurements in Fig. 5.25 (b). Clam07 is convex-looking but more flattened out
than Org10. The average top radius of Clam07 is taken at about 1 cm from its apex centre. On
the other hand, the average top radius rsm measured for Org10 corresponds to the cross radius of
the stalagmite profile at about 3 cm below its apex centre. We find that Adisk/Aparab. cap is equal
to 97% for Clam07, and 82% for Org10. A larger error is thus committed in the case of Org10 but
it should not significantly affect the number of drops found using Eq. (5.74).

Due to our approximations, the estimated liquid volume from Eq. (5.74) should be larger than
in reality, and the theoretical number of drops Nth

s could thereby be slightly smaller than the num-
ber N0.99

s inferred from the raw data curves, at constant film thickness. By contrast during the time
of measurement, the drainage might also have started, i.e., some of the liquid from the impacted
drops should have already drained, leading to a slightly larger number of drops than the measure-
ment obtained for N0.99

s . Some evaporation might also have appeared, although it should not be
significant in caves. These effects might partially compensate. Most markers in Fig. 5.25 (a) are in-
deed found below the axes bisector. Nevertheless, we observe in Fig. 5.25 (a) a good agreement be-
tween the two estimated numbers of dropsNth

s andN0.99
s , with a coefficient of determinationR2 =

0.96. We can compare the actual volume of the constant drop inflow case Vcst. infl. over a perfectly

157



1

10

100
N

th s

0 2 4
50

100

t0 [s]

hL01
s [µm]

rsm

1.2 cm

rsm

3.1 cm

(a) (b)

(c)

Clam07

Org10

1 10 100
1

10

100

N0.99
s

Lab01

N
s,

N
s,

N
s

Figure 5.25: Parity plot of the number of drops
needed to fill the film until it reaches a thickness hs.
(a) Comparison between the number of drops Nth

s

computed by Eq. (5.74), which is based on the film
volume covering a radius rsm, and the number of
drops N0.99

s obtained by Eq. (5.63), which is based
on a fit of the experimental film thickness measure-
ments, as illustrated in Fig. 5.20 (a). (b) Examples
(collage of photographs) of the average top radii mea-
sured on two convex stalagmites, given in Tab. 2.2:
Clam07 (top left) and Org10 (bottom right). The
height at which the radius is measured according to
Sec. 3.1 is slightly larger in the case of Org10, hence
the apex area subtended by the cross radius rsm is dif-
ferent from a simple disk πr2sm, while for Clam07 the
disk approximation is much closer to the apex wet-
ted area. The purple lines drawn on each stalagmite
correspond to where the outer walls seem to keep
a constant inclination (see Sec. 3 from Ch. II). The

scale bar is 10 cm and refers to both stalagmites. (c) Comparison between the stationary number of drops Ns obtained
from the scalings relative to the three stalagmite shapes, Eqs. (5.71) (perfectly horizontal/flat), (5.72) (convex) and (5.73)
(concave), and the measured stationary number N0.99

s (see Fig. 5.20 (a)). In (a) and (c), the green, red and blue markers
correspond to flat ( ), convex ( ) and concave ( ) cave stalagmites, respectively. The inset in (a) shows the stationary
film thickness hs reached by the film at the centre of the stalagmite as a function of the dripping period t0 set for
the measurements made on Lab01 (orange markers). The legend from (c) and inset from (a) refers to both (a) and (c).
Vertical error bars come from the errors made on rsm, Rd, t0 and hs measurements.

horizontal stalagmite, corresponding to the volume for r ≥ 1 cm in Fig. 5.14, to the equivalent
approximated film volume Vapprox = πr2smhs, with hs the average of the film thickness in the con-
stant pointwise inflow for r ≥ 1 cm. We obtain Vapprox/Vcst. infl. ≈ 1.14 for rsm = 5 cm. With our
selected criterion (see Eq. (5.63)), we also have an average relative error of 18 % for the stalagmites
approximated as flat (green symbols) (average in the individual errors), against an average rela-
tive error of 10 % for all the measurements shown in Fig. 5.25 (a). For Lab01, in accordance with
our previous results, we also note in Fig. 5.25 (a) that both estimated numbers of drops increase
with decreasing dripping period t0, and hence with increasing film thickness hs. An anova test per-
formed on N0.99

s with respect to the stalagmite radius rsm yields a p−value of 4 × 10−3, i.e., rsm has a
significant influence on N0.99

s . Although N0.99
s was not computed by using the stalagmite radius (see

Eq. (5.64)), it is not surprising to find that this latter has a clear influence on the number of drops
needed for the film to reach a stationary state since it was shown that hs depends on r1/4sm . Finally, we
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note in Fig. 5.25 (a) that the shape of the stalagmite (flat, convex or concave) has no strong visible
effect on the number of drops needed to fill the film either. This is not surprising in the flat and
concave cases, but it is for convex stalagmites. However, as we justified above, the area actually
wetted by the drops is not significantly different from the approximate disk of radius rsm, espe-
cially because S ≪ 1 for our convex stalagmites (see Tab. 2.2). Although we have only used πr2sm
as a proxy of the stalagmite actual surface area wetted by drops to compute Nth

s and we could use
parameters describing better the stalagmite shape variations, such as Ψ and S, it is clear that the
precision in the experimental measurements does not justify going to such lengths here (we could
not repeat the measurements several times for all Nd going from 1 to 100, thus the value of N0.99

s

is also approximate).
The relation from Eq. (5.74) was in theory derived for a perfectly horizontal case, and indeed

almost corresponds to our above numerical law from Eq. (5.71) obtained from the numerical sim-
ulations for the perfectly horizontal case. Specifically, if we use the scaling obtained by various
means for hs over a perfectly horizontal stalagmite (see, e.g., Eq. (5.68)) and insert it into Eq. (5.74)
with R = rsm, we obtain

Ns =

(
νVd

π g t0 h4
d

r9sm
r9d

)1/4

, (5.75)

such that there is a missing factor (rsm/rd)
1/2 which appears when we compare the above relation

to Eq. (5.71). This difference might come once again from the fact that the effect of the successive
drops are considered in the numerical simulations, while in Eq. (5.74) we simply divided the ap-
proximate volume of the film by the volume of the drops, without acknowledging the in-between
impact spreading of each drop. We nevertheless retrieve in both cases the correct scaling of the
stationary number of drops with the drop inflow, Ns ∼ (Vd/t0)−1/4, as well as the fact that Ns

decreases with increasing added thickness at impact (hd ↑).
We have computed, as a comparison, the stationary number of drops Ns derived from the scal-

ings of Eqs. (5.71) to (5.73), using the stalagmite measured radius rsm for flat stalagmites (approx-
imated as perfectly horizontal), and the shape factor Ψ and scale S for convex and concave sta-
lagmites, all gathered from Tab. 2.2. To avoid confusion we will refer to the values of Ns derived
from the scalings as Nnum

s in this section. The graph showing the three types of numbers Nnum
s as

a function of N0.99
s is presented in Fig. 5.25 (c). There is a relatively good agreement between Nnum

s

and N0.99
s when Nnum

s is obtained from Eqs. (5.71) or (5.72), i.e., for flat and convex stalagmites.
However, the number Nnum

s relative to concave stalagmites obtained from Eq. (5.73) overestimates
the stationary number of drops needed to fill the film, N0.99

s . In total, we obtain a coefficient of
determinationR2 = 0.53 from Fig. 5.25 (c). The fact that Nnum

s is larger for concave stalagmites
comes from our definition of the stationary number of drops, i.e., the number of drops needed to
fill the dimple in the case of concave stalagmites. With, e.g., Org07 (blue diamond), the stationary
film thickness was estimated at 87.4 µm while the protuberance height is close to 1 cm. Hence,
the dimple is never entirely filled with liquid, which cannot escape through drainage. The value
that we obtain for Ns does thus not correspond to a balance between the dripping drop inflow and
the drainage outflow, but the film still maintains a stationary state which cannot be attributed to
the effect of evaporation (see Tab. 2.2 and Appendix B.3). The splash at impact, which leads to an
ejected ratio φe ≈ 1 at the film thickness and falling height relative to Org07, seems to be at the
origin of this stationary state: all the liquid entering the film following a new impact replaces the
liquid leaving the former film because of the splash. Hence, it is also possible for the film to remain
in stationary state in the case where Qdrain ≈ Q spl (see Eq. 5.3), without any intervention of the
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Measured parameter

hs Ns a b m

Perfectly horizontal

Exponent R′ 1/4 7/4 1/2 – -1/8

Exponent t0′ -1/4 -1/4 -1/30 1 1/30

Factor 1 3.2 0.87 1 4.3

Convex

Exponent S -1/2 -1/2 -1/2 – –

Exponent−Ψ(Ψ < −111) -1/2 -1/4 -1/2 1/2 –

Exponent t0′ -1/2 -1/4 – 1 –

Factor 0.58 2.3 0.62 0.74 2

Concave

Exponent S 1 1 1 – 1

ExponentΨ(Ψ > 111) 2 2 2 – –

Exponent t0′ – – – 1 –

Factor 0.57 1.5 0.47 2.7 –

Table 5.3: Fitting parameters and exponents from the scalings appearing in Figs. 5.23, 5.26 and 5.28, obtained by assuming that hs, Ns, a, b and m evolve as power laws with Ψ, S, R
and t0. The first row shows the variable output parameter for which the fit is obtained. This parameter evolves with either R′ in the case of perfectly horizontal stalagmites orΨ and S
for convex and concave stalagmites, as well as with the dripping period t′0. For each case (perfectly horizontal, convex, concave), we show the exponents from the power laws, then
the multiplying factor relative to each measured variable. The second column of the table in the convex case, e.g., can be read as follows: hs = 0.58(−Ψ)−1/2(t′0)−1/2S−1/2.
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drainage. The relation obtained in Eq. (5.74) therefore describes the stationary state of the film in a
more general sense, while the scalings derived in Eqs. (5.71) to (5.73) correspond to the stationary
state as defined in Eq. (5.1), i.e., a perfect balance between the drop inflow and the drainage outflow.

5.4.3 Sole drainage

a) Numerical simulations

In the former section, we focused on the filling and stationary state of the film fed by a drop inflow.
In the following graphs, we present the parameters a, b and m from the drainage fit of Eq. (5.65),
that we recall here:

h(0, t) =
a(0)

(t + b(0))1/m(0)
,

along with the values of ã, b̃ and m̃ in the concave cases (see Sec. 5.1.3). We note that all these
parameters are once again only evaluated in r = 0. In Figs. 5.26 (a), (c) and (e), we represent the
evolution of a as a function of Ψ, S, R′ and t′0 respectively. We do the same in Figs. 5.26 (b), (d)
and (f) for b. We also add in Figs. 5.26 (a) and (b) the values of a and b obtained for a perfectly
horizontal stalagmite for which R′ = 1. In Figs. 5.28 (a), (b) and (c), we show how m varies in
response to Ψ, S, R′ and t′0 as well. Once again we assume that a, b and m evolve as power laws of
the entry parameters. The coefficients and exponents corresponding to these power laws, when
they exist, are reported in Tab. 5.3. In the inset of Figs. 5.28 (a) and (c), we further show how m̃
evolves withΨ, S and t′0. The corresponding ã and b̃ are represented in Figs. 5.28 (d) and (e) and in
their respective insets.

We observe in Figs. 5.26 (a) and (c) that a increases with Ψ or R in a similar manner as the
stationary film thickness hs. This is not surprising considering that a can be interpreted as being
proportional to hs, as we showed in Eq. (5.66). However, the dependence of a on the dripping pe-
riod t′0 seems rather weak. By comparison, the time shift b depends almost solely on the dripping
period and not on the stalagmite shape, as show Figs. 5.26 (b) and (d). There is nonetheless a fac-
tor 10 between Ψ = −100 and Ψ = 0.1. We also note that the perfectly horizontal case values
of a and b shown for R′ = 1 in Figs. 5.26 (a) and (b) are in good agreement with the values found
for |Ψ| ≲ 1. Hence, the parameter a seems to continuously increase with increasing Ψ. However,
we find different scalings for the various stalagmite shapes considered, just as it was the case for hs.
For perfectly horizontal stalagmite profiles, we have reported in Tab. 5.3 that a evolves as

a (r = 0) ≃ 0.87 hd
(

R
rd

)1/2
, (5.76)

inwhich casewe did not take into account the very small variability of a in response to the dripping
period, which was found to be ∼ t−1/30

0 . The time shift b for perfectly horizontal stalagmites, on
the other hand, was assumed not to vary with R and is given by

b (r = 0) = t0 . (5.77)

For concave stalagmites, as we have reported in the power law summary from Tab. 5.3, we obtain
once again an almost identical law for a as the one we had found for hs, i.e.,

a (r = 0) = 0.47hdΨ2S , Ψ > 1 . (5.78)
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Figure 5.26: Fitting parameters of the drainage curve, a and b, obtained numerically for variable shape parameterΨ,
scale S, perfectly horizontal stalagmite radius R′ and dripping period t′0. All results were obtained for R′ = 5 (a-b, e-f),
or for φ⋆ = 45° in the perfectly horizontal case (c-d). The legends in (a) are the same for all subfigures, except for the
symbol colour from (e) and (f) which is precised by the colour bar in (f). The symbol represents the dripping period
used: t′0 = 0.01 ( ), t′0 = 0.1 ( ), t′0 = 1 ( ), t′0 = 10 ( ) and t′0 = 100 ( ). The colour corresponds to the stalagmite
general shape: convex ( ), flat ( ) or concave ( ). (a-b) Factor a and time shift b as a function of the shape Ψ, at fixed
scale S = 1, for variable dripping period t′0. The values computed forΨ = 0 (perfectly horizontal case) correspond to a
radius R′ = 1. (c-d) Factor a and time shift b as a function of the perfectly horizontal stalagmite radius R′, for variable
dripping period t′0. The dashed lines in (c) show the curves (R′)

1/2, with coefficients from Tab. 5.3. (e-f) Factor a and
time shift b as a function of the scale S, forΨ varying between -5 and 5, as indicated by the colour bar.
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The time shift b also solely depends on the dripping period as

b (r = 0) = 2.7t0 , Ψ > 1 . (5.79)

Because concave and flat stalagmites have a particular filling dynamics which cannot be matched
by the drainage before the stalagmite becomes completely covered by the film (or before the dimple
gets filled), it is perfectly normal to find that the parameter a behaves very similarly to hs in terms of
the response to the shape and size of the stalagmite (see Eqs. (5.68) and (5.70)). The only difference is
in the effect of R on a for perfectly horizontal stalagmite, as it can be seen in Eq. (5.76). In Eq. (5.68),
we had found that hs ∼ (R/rd)

1/4, but we had noted that this approximation might not be the
optimal one.

In Fig. 5.28 (b), for the perfectly horizontal case, we observe that the drainage curve exponentm
decreases slightly with R′ for perfectly horizontal stalagmites. A smaller value of m is associated
with a faster drainage process. We know from Eq. (5.9) that the drainage flux q is proportional
to h3. Since the film thickness increases with the stalagmite radius R′ (see, e.g., Eq. (5.68)), it is not
surprising to find that larger stalagmite radii lead to faster drainage (smaller m) at a fixed dripping
period. However, these variations are not substantial, and from our analysis we can only conclude
that

m (r = 0) ≃ 4 . (5.80)

The dripping period t′0 also has a negligible effect on m. The above value found for m implies that h
decreases as ∼ t−1/4. We further observe in Fig. 5.28 (a) that m remains more or less constant
for |Ψ| ≲ 1, but is close to m = 3 in this case. There is thus a small discrepancy in the exponent m
relative to the perfectly horizontal case found for R′ = 1 and the actual values for |Ψ| ≲ 1 in
Fig. 5.28 (a). The scaling found in Eq. (5.17) indicated that h ∼ t−1/3 during sole drainage when
the term in (∂ξh) cosφ dominates in the expression of the flux q (see Eq. (5.9)), which actually
corresponds to the value of m = 3 found for flat stalagmites for which |Ψ| ≲ 1, and not to the
perfectly horizontal case. Although the perfectly horizontal case matches quite well the scalings
obtained during the stationary phase of the film, it fails at capturing the exact drainage over slightly
inclined stalagmites, that would correspond to |Ψ| ≲ 1. The value found for m ≃ 4 in the perfectly
horizontal case actually corresponds to Eq. (5.15), which describes a balance between both the
filling and the drainage of the film in a stationary state.

If we now take a look at the concave case presented in Fig. 5.28 (a), we observe that the increase
in m becomes quite sharp onceΨ > 1, such that we have

lim
Ψ→+∞

m (r = 0) = +∞ . (5.81)

A larger m corresponds to a slower drainage process. Aswe alreadymentioned in the previous sec-
tion, increasing Ψ for a concave stalagmite implies that the height of the protuberance increases
as well. The film thickness height inside the dimple is therefore much larger, and can less easily be
drained out over the sides of the protuberance, leading to a larger m. For an infinitely tall protu-
berance, the value of m should thus indeed become infinite as the dimple would stay filled forever
without the intervention of another process allowing to empty the dimple. A taller protuberance is
also accompanied by a much more inclined outer wall at a given scaling S. Hence, the drainage will
occur much faster beyond that wall, and in the centre of the stalagmite we therefore find values
of m̃ (the exponent computed by considering the case where h reaches the height of the protuber-
ance H rather than a null value, see Sec. 5.1.3) decreasing sharply with increasingΨ > 1 in the inset
of Fig. 5.28 (a). We also note in Fig. 5.28 (d) that ã increases very slightly with increasing Ψ > 1.
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Figure 5.27: (Right). Illustration of the parameter a
and b variations during the sole drainage in the con-
vex case, for which m = 2.

b b
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hs t−1/2

t

h

In this case, ã corresponds more or less to the supplemental thickness above the height of the pro-
tuberance, (h− H). Since increasingΨ increases H but also shifts the position of the protuberance
further away from the centre, we note that, to ensure that the film can flow beyond the outer wall
of the stalagmite, the thickness at the centre should reach a slightly larger value. If we consider
that the film keeps the same profile above the protuberance in stationary state, just as in the case
of the stationary constant pointwise inflow over a flat stalagmite that we described analytically
in Sec. 4.4.2, the height at the centre of the dimple should indeed increase with the radius of the
dimple, i.e., withΨ. The inset of Fig. 5.28 (d) reveals without surprise that b̃ is only conditioned by
the dripping period.

For convex stalagmites, or more generally for stalagmites inclined downward, we know that
the drainage is promoted by the inclination of the stalagmite profile beyond a certain curvilinear
coordinate, as described by Eq. (5.16). We find the following law for a for convex stalagmites:

a (r = 0) = 0.62hd
(
−1
ΨS

)1/2

, Ψ < −1 , (5.82)

which is exactly the same as the law obtained for hs in Eq. (5.69). On the other hand, the evolution
of b is described by

b (r = 0) = 0.74 (−Ψ)1/2 t0 , Ψ < −1 . (5.83)

As aforementioned, decreasing the parameter Ψ < −1 yields a more inclined stalagmite outer
wall, accompanied with an increased surface area to be covered by the film. The drainage process
thus starts from a smaller height, which is confirmed by the fact that a decreases with decreasing
Ψ < −1. For a given curveh ∼ t−1/m, starting the drainage froma smaller thickness corresponds to
a positive shift in the beginning of the drainage process, in accordancewith the fact that b increases
with decreasing Ψ < −1. To understand better this, we can take a look at Fig. 5.28 (a), where we
observe that m reaches a minimum constant limit value of about 2 below Ψ < −1. This was also
reported in Tab. 5.3:

m (r = 0) = 2 , Ψ < −1 . (5.84)

The drainage process in general starts as if we had removed the first part of the curve t−1/m after the
time shift set by b, at the height corresponding to ab−1/m. If drainage starts froma smaller stationary
film thickness hs, the time atwhich the cut in the curve t−1/m occurs should therefore increase, aswe
illustrate in Fig. 5.27. A constant exponent m thus induces a response to the stalagmite shapeΨ of
both a and b. The value m ≃ 2 that we obtain for convex stalagmites confirms our scaling obtained
in Eq. (5.19), in which we had already found that h decreases as t−1/2 during the sole drainage phase
on convex stalagmites.

Regarding the scaling S, in all the graphs fromFigs. 5.26 (e-f) andFigs. 5.28 (c) and (e)we see that
for S < 1, there is no effect of S on any of ourmeasured parameters, as expected. We also observe in
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Fig. 5.26 (e) and Tab. 5.3 that a behaves once again as hs. The value of a increases with increasing S
for concave stalagmites (Ψ > 1) and decreases as S−1/2 for convex stalagmites (Ψ < −1). On the
other hand, we note in Fig. 5.26 (e) that b remains almost constant with S. There is also an effect of
the scaling on m in the concave case (Ψ > 1), as illustrated by Fig. 5.28 (c). However, as discussed
above, m remains constant for convex stalagmites (Ψ < −1), hence we find without surprise that
this is the case in Fig. 5.28 (c) as well. The effect of the scaling S on m in the concave case (Ψ > 1)
can be explained by the same reason as already discussed with Ψ: the protuberance height and
centre film thickness are proportional to S, yielding a slower drainage since the film cannot escape
the interior of the dimple. A protuberance scaled by S is likewise accompanied by a more inclined
outerwall, leading to a faster drainage beyond thewall. In the centre of the stalagmitewe therefore
find values of m̃ decreasing with S, as represented in the inset of Fig. 5.28 (c). The effects of the
shapeΨ and scaling S on m and m̃ are thus very similar. We also once again note in Fig. 5.28 (e) and
its inset that ã is proportional to S, just as a, and that b̃ remains almost constant, even for large S.

b) Experimental measurements

We present in Figs. 5.29 (a), (c) and (e) the values of a, b and m obtained for the lab measurements as
a function of the imposed dripping period t0. We only show the measurements corresponding to
∆d ≤ 1 cm, T ≤ 21 °C and RH ≥ 80% to focus only on the effect of the dripping period and avoid
taking into account any dewetting that may occur at T > 21 °C (see Sec. 3). In Figs. 5.29 (b), (d) and
(f), the values of a, b andm obtained numerically are represented as a function of their experimental
counterpart, inferred from the cave dataset. For the numerical a and b, we used the scalings derived
from Fig. 5.26 and described further in the text. For the flat stalagmites from our dataset, we note
that we used the scalings derived from the numerically computed perfectly horizontal case, as it
is the only approximation for which we have found a scaling. This scaling is based on rsm, that we
reported in Tab. 2.2. We indeed do not have any law relating a and b to Ψ and S for |Ψ| < 1. The
exponents m from Figs. 5.29 come from simulations performed by using the Ψ and S values from
Tab. 2.2 (in this case, we had the opportunity to useΨ and S even for the flat stalagmites from our
dataset), as well as the ratio t0/td visible in Fig. 5.29 (a) that we will discuss in the next section. We
only represent in Figs. 5.29 (b), (d) and (f) the stalagmites for which we could conduct drainage
measurements (see Tab. 2.2).

Figure 5.28: Next page. Drainage curve exponent m computed numerically, for variable shape parameter Ψ, scale
parameter S, flat stalagmite radius R′ and dripping period t′0. All results were obtained for R′ = 5 (a, c-e), or withφ⋆ =
45° in the perfectly horizontal case (b). The legends in (a) are the same for all subfigures, except for the symbol colour
from (c), resp. (e), which is precised by the colour bar in (c), resp. (e). The symbol represents the dripping period used:
t′0 = 0.01 ( ), t′0 = 0.1td ( ), t′0 = 1 ( ), t′0 = 10 ( ) and t′0 = 100 ( ). The colour corresponds to the stalagmite general
shape: convex ( ), flat ( ) or concave ( ). (a) Drainage exponent m as a function of the shape Ψ, at fixed scale S = 1
and for variable dripping period t′0. The values computed for Ψ = 0 (perfectly horizontal case) correspond to a
radius R′ = 1. The two thin grey horizontal lines simply emphasise the values of m = 2 and m = 3 for readability.
The inset shows the analogous exponent m̃ as a function ofΨ, obtained in the concave case when only considering the
drainage process allowing the film thickness to reach the height of the dimple rather than a null value. (b) Drainage
exponent m as a function of the perfectly horizontal stalagmite radius R′, for variable dripping period t′0. (c) Drainage
exponent m as a function of the scale S, forΨ varying between -5 and 5, as indicated by the colour bar. The inset shows
the corresponding values of m̃ as a function of S. (d) Factor ã obtained for concave shapes, when only considering that
the film thickness reaches the height of the dimple rather than a null value, as a function of Ψ and for variable t′0. The
inset shows the corresponding time shift b̃. (e) Same but with ã as a function of the scale S, with the inset showing the
corresponding time shift b̃. The colour bar is the same as in (c), with a reduced version in (e).
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In Figs. 5.29 (a) and (c), we note that the measurements obtained in the lab for a and b both vary
with the imposed dripping period t0. In Fig. 5.29 (a), we retrieve without surprise for a the scaling
that we had already found for hs, with an exponent of -0.29 for t0, as shown in Tab. 5.2. The evolu-
tion of b also agrees with our former findings, since we obtain from Fig. 5.29 (b) (see also Tab. 5.2)
that b evolves with t0 to the power 1.05 from the lab measurements. The evolution of m with t0 in
the lab remains quite moderate, but an anova test leads to a p-value of 2 × 10−3. The dripping pe-
riod should therefore have a significant effect on m. The effect of t0 could potentially be attributed
to our early observation from the lab raw data (see Fig. 5.6) that the difference between the max-
imum and minimum film thickness,

(
hmax − hmin

)
, decreased with increasing dripping period at

the location at which we took our measurements. We could not reproduce such an effect numeri-
cally, but this could lead to slight variations in the transient phase preceding the drainage process
in the lab curves. Although we have just discussed the effect of t0 on m, we note in Fig. 5.29 (e) that
m = 3.08 ± 0.64 (average ± s.d. in all the measurements), which is in accordance with the scal-
ing found for hs and a in the lab and from the numerical simulations. Nevertheless, the dynamic of
drop impact into a thin film is a complicated phenomenon andwe cannot concludewithout further
investigation regarding the cause of this variation of m with t0 in the lab. The temperature could
also still play a role, although we ensured that all problematic experiments were not considered in
the data presented in Fig. 5.29.

At last, after having found scaling laws for the parameters a and b in Eqs. (5.76-5.84), we may
now compare them to the experimental raw data from the caves. In Figs. 5.29 (b) and (d), we com-
pare with the a and b values from the cave measurements the values that we found from these
scaling laws, in which we used the measurements for Ψ, S and t0 from Tab. 2.2. In Fig. 5.29 (b),
we observe a good agreement between the values obtained for a by the two approaches, with a
coefficient of determination R2 = 0.88. On the other hand, some disparities are visible for b in
Fig. 5.29 (d), and we only find a coefficient of determination R2 = 0.52. If we compute this co-
efficient of determination without considering the concave stalagmites which exhibit a different
behaviour, we obtainR2 = 0.64 for b. This appears slightly better but we may not have enough
data to draw a definite conclusion. Although in the case of the stationary film thickness, and hence
of a, we could obtain satisfactory measurements that were also repeatable, the poor coefficient of
determination found for b could also be attributed to the precision of our late drainage measure-
ments. The time needed to position the dial gauge could indeed be sometimes of several minutes,
preventing us from correctly capturing the beginning of the drainage curve associated with some
stalagmites. We also assumed that b was independent of, e.g., R, although this might not be entirely
accurate. On the other hand, since in caves the film is not subjected to evaporation or dewetting
as in the lab, we had enough data to clearly identify the exponent m associated with each drainage
curve. Figure 5.29 (f) illustrates this by displaying the values of mnum obtained from the numerical
simulations using the parameters fromTab. 2.2 and Fig. 5.30 (a), as a function of our cavemeasure-
ments. As aforementioned, the value used formnum comes fromnumerical simulations, rather than
scaling laws as for a and b, performed by using the values of Ψ and S even for flat stalagmites, i.e.,
instead of rsm. The reasons for this are: (i) we found that the perfectly horizontal case approximates
quite well the film stationary state and thereby the values of a and b, such that we had scalings for
all stalagmite types (flat approximated by the perfectly horizontal case, convex and concave) re-
garding these two variables, but (ii) the perfectly horizontal case does not approximate correctly
the exponent m obtained for flat stalagmites for which |Ψ| ≲ 1, and (iii) we could not retrieve
a common scaling for m in the concave case. The coefficient of determination from Fig. 5.29 (f)
is R2 = 0.86. We also note in Fig. 5.29 (f) that the numerical exponent mnum relative to Lab01
reproduces well the value obtained at a dripping period of 1 s.
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Figure 5.29: Drainage parameters a, b and m found in lab and caves. Left panels. Measurements of a (a), b (c) and m (e)
as a function of the dripping period t0 in the lab, for∆d ≤ 1 cm, T ≤ 21 °C and RH ≥ 80%. The dashed line in (a) and
(c) represents the scaling relative to either a or b from Tab. 5.2. The dashed line and grey area in (e) correspond to the
average± s.d. ofm. Right panels. Comparisons between the computed values of a (b) and b (d) usingEqs. (5.76-5.84) and
the parameters from Tab. 2.2, and the experimental values obtained from the fit of the drainage curve according to the
procedure from Sec. 5.4.3. (c) Comparison between the exponents obtained from numerical simulations conducted by
using the parameters from Tab. 2.2 and the drainage timescales derived in Fig. 5.25 (b), and the exponents measured
directly from the cave raw data (f). The larger values of m, corresponding to the concave stalagmites, are shown in
the inset to alleviate the ranges from the main graph and allow for a better visibility. The value found for Lab01 at a
dripping period of 1 s is also displayed in the graph from (f). The green, red and bluemarkers correspond to convex ( ),
flat ( ) or concave ( ) cave stalagmites, respectively. The orange markers correspond to Lab01 ( ). The legend from (a)
is the same for all the graphs.
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Finally, we note that we could also proceed in an oppositemanner as what we did here: instead
of attempting to measure the values of Ψ and S from photographs of the stalagmites, we could
rather take our raw data measurements and find the correspondence from the laws of Eqs. (5.76-
5.84). By keeping the same scaling S = 10−4 for Clam07, e.g., we find that the corresponding Ψ
that would match our measurement of a is -277, instead of the value of −375 that we had origi-
nally found. In the same manner, for Org08 we had Ψ = 26 for a scaling S = 0.6. By using the
correspondence with Eq. (5.70), we find thatΨ should rather be 37.5.

6. Discussion and conclusions
In this chapter, we were interested in assessing the evolution over time and space of a thin film
over a stalagmite, in order to better comprehend the gravity-induced drainage and its potential
implications for stalagmite growth modelling, to which we will come back in Ch. VI. In Sec. 3,
we started by reviewing measurements of film thickness on stalagmites that we conducted both
in caves and in a lab setting. The measurements from caves provide us with a great variability of
stalagmite shapes as we included flat, convex and concave stalagmites into our dataset (see Ch. II),
but do not allow to asses the separate effects of all the parameters that may affect the evolution of
the film thickness over time and space. On the other hand, in the lab, we could conduct measure-
ments on a given stalagmite shape by systematically varying, for instance, the dripping period of
the drops, t0, or the distance between the dripping point of the drops and the sensor positionwhere
the film thickness was measured, ∆d, and by measuring the temperature, T, and relative humid-
ity, RH, in the vicinity of the stalagmite. The experimental measurements can be divided in three
phases: (i) starting from an initially dry stalagmite, the film is progressively fed by a succession of
drop impacts, (ii) after a certain number of drop impacts, the film has reached a stationary state
during which it evolves between a maximum and minimum values, (iii) once the inflow of drops is
interrupted, the sole drainage decreases the thickness of the film, at first rapidly, then at a slower
pace after a few seconds. We observed from these experiments that the parameters affecting the
most the film thickness are (i) the inflow of drops, i.e., the dripping period t0, (ii) the shape of the
stalagmite underneath the film, described by the shape factorΨ and scale S (see Ch. II).

We completed the experimental measurements by modelling the drainage of the film using
Reynolds equation expressed in a curvilinear coordinate system in Sec. 4. From the equations that
we obtained, i.e., Eqs. (5.9) and (5.10), we inferred different theoretical scalings in Sec. 4.3. We con-
cluded that there are two main regimes of drainage depending on the stalagmite shape underneath
the film: (i) for flat stalagmites, the drainage is induced by the thickness gradients within the film,
and (ii) for convex stalagmites, the drainage is caused by the inclination of the stalagmitewall. Both
flat and convex stalagmites can be found in caves, and were also part of our dataset. The drainage
equations are non-linear and require to be solved numerically. Nevertheless, we obtained an ana-
lytical solution for the stationary film thickness evolution over a perfectly horizontal stalagmite in
Sec. 4.4.2. An approximate solution of the film thickness evolution over a cone of constant open-
ing angle could also be derived in Sec. 4.4.1. This latter was used as a boundary condition for the
numerical resolution of the equations over perfectly horizontal stalagmites, that we described in
Sec. 4.5. The boundary condition obtained in this manner actually corresponds to a quasi-steady
film thickness. Hence, we also derived in Sec. 4.4.3 a radius of steady/unsteady region limit in order
to verify whether the boundary condition can be applied in the numerical simulations or not.

By solving the drainage equations in Sec. 5 numerically, we simulated the evolution of the film
thickness in time and space for variable stalagmite shapes and dripping periods in a more sys-
tematic manner than what we could obtain from the experimental measurements. We began by
looking at a simple numerical simulation conducted on a perfectly horizontal stalagmite, from

169



which we could observe that the numerical film thickness behaves similarly as in the cave and lab
experiments, i.e., it increases for a certain number of drops before reaching a stationary state. At
steady-state, the numerical film thickness also oscillates between a maximum and minimum value.
During the sole drainage phase following the interruptionof the drop inflow into the film,wenoted
in the numerical simulation, as well as in the cave and lab experiments, that the film thickness fol-
lows a law defined by Eq. (5.65), i.e., h = a (t + b)−1/m. The three parameters a, b and m were found
to vary with t0, Ψ and S for curved stalagmite profiles, and R for flat stalagmites. We first focused
in Sec. 5.2 on the effect of the drop inflow on the film at steady-state and during drainage on a
perfectly horizontal stalagmite. At constant stalagmite radius, a larger inflow yields a thicker film
which drains at a faster rate, in correspondencewith the scalings found in the previous section, i.e.,
Eqs. (5.15) and (5.17). We then took a look at the effect of the stalagmite shape (convex, concave or
flat) on the film thickness evolution over time and space, at constant inflow. We observed that the
film was the thinnest on the convex stalagmite, while the drainage on the convex stalagmite also
seemed the fastest. We then systematically varied both the dripping period t0 and the stalagmite
shape Ψ and scale S for curved stalagmites, and R for flat ones, in Sec. 5.4. We inferred measure-
ments for the stationary film thickness hs, the number of drops needed to reach this stationary film
thickness, Ns, as well as the parameters relative to the drainage curve fit, i.e., a, b and m, all evalu-
ated at the stalagmite centre (r = 0). We could further relate all these parameters to the dripping
period t0 and stalagmite profile (either Ψ and S for convex or concave stalagmites, and R for flat
stalagmites) through a set of power laws fitted on the measurements and summarised in Tab. 5.3.
Similarly, power laws were also estimated for the experimental measurements, and were reported
in Tab. 5.2.

In the light of the above results derived from the cave and lab experiments and numerical sim-
ulations, we now have a better understanding of the influence of the dripping period, t0, and sta-
lagmite shape (Ψ, S for curved stalagmites and R for flat stalagmites) on subsequent film thickness
variability. For flat and convex stalagmites, the stationary film thickness h increases with increas-
ing drop inflow, by virtue of the scalings derived in Sec. 4.3. For flat stalagmites, we know from
these scalings, but also from the stationary constant pointwise inflow solution derived analytically
in Sec. 4.4.2, that the stationary film thickness at the stalagmite apex (r = 0) evolves as hs ∼ t−1/4

0 ,
which we could verify in the cave experiments and numerical simulations. The stationary film
thickness at the apexof convex stalagmites, though, is numerically found to be hs ∼ t−1/2

0 . Our orig-
inal scaling for the stationary film thickness over an inclined stalagmite predicted that hs ∼ t−1/3

0 ,
which was however not evaluated at the same position as in the numerical simulations. The scal-
ing hs ∼ t−1/2

0 is only valid at the centre of the stalagmite, while the scaling hs ∼ t−1/3
0 fromEq. (5.16)

implies that the stalagmite inclination dominates the film thickness gradients, which does not oc-
cur exactly at the centre but a little away from it. This differencemight explainwhywe found a t−0.3

scaling for the stalagmite Lab01 in the lab, whichwehad initially classified as convex. Themeasure-
ments could indeed not be taken directly at the inflow source into the film but at a distance ≲ rd
from it.

The stationary film thickness is also influenced by the stalagmite shape. For perfectly horizon-
tal stalagmites, we obtained that hs ∼ R−1/4. This fit may only be approximate as we had found
that hs ∼ (lnR)−1/4 in the pointwise inflow solution from Sec. 4.4.2. The film thickness neverthe-
less increases with the stalagmite radius for perfectly horizontal stalagmites, a result that we had
already obtained from the scalings presented in Sec. 4.3. The film being at steady-state implies that,
in the absence of splash or evaporation as we hypothesised, the inflow of drops, Qdrip, should be
equal to the outflow of the film through drainage, Qdrain. In the case of a perfectly horizontal sta-
lagmite, we also inferred from the drainage flux equation, i.e., Eq. (5.9), that the thickness gradients
in the film dominate over the inclination of the stalagmite surface, with ∂ξhs ≫ tanφ. Hence, the
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flux q evolves as ∼ h4
s/R in this case. A larger stalagmite radius R thus implies that, at constant

inflow, the film thickness should likewise increase. This effect is visible in Fig. 5.15. Conversely,
the film thickness decreases with more negative values of Ψ in the case of convex stalagmites. At
fixed truncation radius R and inflow Qdrip, the constant volume of liquid spread onto a stalagmite
of larger area should indeed yield a thinner film at the apex of the stalagmite (see Ch. II). This can
also be interpreted as the fact that hs increases with less negative values ofΨ, i.e., with a stalagmite
profile becoming flatter. For concave stalagmites, we found that the film thickness increases with
the protuberance height, since the film cannot reach a stationary state without filling the dimple
of the stalagmite first, at least if we leave out the splash of the drops.

Additionally, the number of drops necessary for the film to reach steady-state during the fill-
ing, Ns, increases linearly with the film thickness. We have also estimated in Sec. 5.4.1 the number
of drops needed for the film to reach a stationary state using the scalings obtained from either the
numerical study or a theoretical argument stating that this number of drops is simply proportional
to the total volume of the film lying on the stalagmite (see Eq. (5.74)). This second argument took
into account the actual stationary state of the film that we observed in caves. In the numerical
simulations, for flat and concave stalagmites, stationary state is only reached after the surface is
entirely covered, resp. the dimple is entirely filled. We thus found a better approximation for the
stationary number of drops using the simplemodel fromSec. 5.4.1 since the film can reach another
steady state than the one corresponding to the balance between the drop inflow and the drainage
outflow. A balance between the drop inflow and the evaporation could exist, or between the drop
inflow and the splash of the drop at impact. This latter case could be observed for, e.g., Org07, a
concave stalagmite with a partially filled dimple. In this case, the successive drop impacts should
thus be taken into account for modelling the evolution of the film over the stalagmite.

The fitted parameters relative to the drainage curve, a, b and m, are also affected by the drip-
ping period and stalagmite shape parameters. We found that, for flat and concave stalagmites, the
factor a evolves exactly as the stationary film thickness, while b is almost exclusively correlated to
the dripping period t0. Additionally, for convex stalagmites, while the factor a solely depends on
the shape and size of the stalagmite, the time shift b is conditioned by both the stalagmite shapeΨ
and associated dripping period t0. For the flat and concave cases, b only depends on the dripping
period t0. This may come from the fact that, in the convex case, the drainage occurs much faster
because of the large stalagmite inclination, with the aforementioned constant exponent m = 2 (see
Eq. (5.19)) for all stalagmites with Ψ < −1. The perfectly horizontal stalagmite also usually yields
a good approximation of most scalings, except for the exponent m in the case of pure drainage
over flat stalagmites. By contrast, we could retrieve our initial scaling (see Eq. (5.17)) and value
of m ≃ 3 in the numerical simulations conducted for flat stalagmites with |Ψ| ≲ 1 (i.e., which
were not perfectly horizontal). The exponent m also varies, although rather slightly, with R or Ψ.
A larger stalagmite or a stalagmite with a larger Ψ, i.e., with a taller protuberance, was shown to
lead to a larger stationary film thickness hs. A larger film thickness should yield, in turn, a faster
drainage (i.e., a larger decrease in ∂th) because, as shown in Eq. (5.9), the drainage flux is propor-
tional to h3. In the concave case, in particular, the drainage process allowing the film to return
to a thickness equal to the height of the protuberance (associated with m̃) is therefore very fast.
However, the drainage process allowing the film thickness at the centre of the stalagmite dimple to
return to a null value on concave stalagmites becomes increasingly slow as we increase the value
ofΨ≫ 1. Once the film thickness at the centre of the dimple has become close to the height of the
protuberance, it becomes difficult for the film to flow beyond the protuberance. In the absence of
other processes such as the evaporation, the film thus remains at the centre of the dimple. Finally,
using our former results derived from the numerical resolution of our model, and the shapeΨ and
size S measured for each stalagmite, we were also able to compare the values found in caves and in
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lab for the drainage parameters a, b and m. We found a good agreement between our experimental
data and the laws derived from the simulations. Although our results gave quite a goodmatch with
our experimental measurements, we note that in the lab experiments, other effects arise, such as,
e.g., the relative humidity RH. Nevertheless, this did not prevent us from finding the same laws as
from the numerical simulations, at least in the case of hs, a and b.

6.1 Conclusions
In this chapter, pursuing our goal of understanding the influence of the stalagmite shape and size
on the film drainage, we performed experimental measurements of the film thickness on stalag-
mites fromactual caves. We completed these experiments bymeasurements on an actual stalagmite
in a lab setting, where we could control the variations of several parameters such as the dripping
period, the relative humidity in the enclosure surrounding the stalagmite or the distance from the
impact point to the sensor. The measurements included three phases: the filling, stationary state
and sole drainage of the film. We modeled the drainage process by using Reynolds lubrication
equation, that we expressed in a curvilinear coordinate system to account for the stalagmite shape
variations. In the particular case of a flat stalagmite of given radius, we were able to derive an ana-
lytical solution to our problem. There is however no simple analytical steady solution for the film
thickness as a function of our parameterisation of the stalagmites, described by a shape factor Ψ
and a scale S. Nonetheless, the governing equations provided several scalings for limiting cases,
including the flat stalagmites for which the drainage is mostly due to the film thickness gradients
existing in the film, while for convex stalagmites the inclination of the stalagmite predominates
over the film thickness gradients. In the absence of analytical solutions, we solved the equations
describing the drainage numerically, which allowed us to systematically vary the parameters influ-
encing the drainage, including the drop dripping period, t0, the shape factor,Ψ and the scale, S, for
convex stalagmites, and the radius R for flat stalagmites. We obtained different scalings for several
measured variables, such as the stationary film thickness of the film at the centre of the stalagmite,
with respect to the shape and scale considered, i.e., Ψ, R and S. These scalings allowed us to repli-
cate the experimental conditions numerically. We have obtained a good agreement between our
data taken from the lab and cave and our modelling of the drainage.

We also noted that, as described in the literature [154], the shape underneath the film has a
strong effect on the drainage process. We also retrieved a range of exponents m quite close to
simple scalings that we could directly derive from Reynolds equation already, and also to existing
studies [106, 153, 166]. However, instead of focusing on a particular geometry as it is often the case
in the literature, we described the drainage as a function of variable shapes. Finally, to complete
our currentmodel, numerous other effects affecting the film thickness could be taken into account:
the dispersal in the impact point distribution of the drops, the drop impact dynamic and potential
splash, the temperature and relative humidity, the evaporation, the dewetting, the porosity of the
stalagmite surface, or event the rugosity of the surface. We also focused our study on the film
thickness at the centre of the stalagmite for the sake of simplicity. Nevertheless, we observed that
this thickness varieswith the distance to the dropdripping point. To go further into the description
of the drainage of the film on stalagmites, we could also take a deeper look into the space variations
of our drainage parameters a, b and m.

6.2 Outlook: stalagmite classification
In view of the very different shapes exhibited by the stalagmites from our dataset, the question
arises as to whether these shapes can be, for instance, related to a specific drainage timescale or
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characteristic length. Similarly to Eq. (5.14), a characteristic drainage timescale associated with
each stalagmite from Tab. 2.2 may be defined as

td, sm =
νr2sm
gh3

s
· (5.85)

We first point out that we used the timescale computed by Eq. (5.85) to obtain the value of t0/td that
we should use in numerical simulations in order to reproduce our stalagmite dataset, along with
the measurements already obtained for Ψ and S in Ch. II. The time defined above is represented
against the measured drop dripping period associated with each stalagmite, t0, in Fig. 5.30 (a). The
uncertainty in the drainage time td, sm was obtained from the uncertainty in the radius and station-
ary film thickness measurements. We observe that stalagmites classified as either flat or concave
(green and blue markers) all fall within the region for which td, sm ≲ t0, except for Org02 (green
square). It should nonetheless be noted that Org02 is the only flat stalagmite located below a high
cave ceiling (z = 19.4m), such that its radius may have been extended by other effects such as drop
impact point dispersal [172]. We indeed have a standard deviation in the impact point position dis-
tribution of∆ = 4.6 cm for Org02 (see Fig. 3.7 from Ch. III). Even with several arbitrary dripping
periods, we also find all the points corresponding to Lab01 (orange markers) are far from the axis
bisector, hence it can be safely assumed that with the actual dripping period associated with this
stalagmite, this would also be the case. From Eq. (5.85), we note that a larger radius rsm would lead
to a larger characteristic drainage time td, and so would a smaller film thickness hs, in accordance
with our former discussion.

In the same manner, we defined in Eq. (5.45) the radius outlining the steady/unsteady region.
This radius rsr defines the limit beyond which film thickness variations from the drop impacting
the centre of the stalagmite is not felt any longer, and can also be adapted to our stalagmite raw
dataset as

rs, sm = k
(

gh3
st0
ν

)1/2
, (5.86)

where k should depend on the stalagmite shape. In Fig. 5.30 (b), we report the radius rs, sm obtained
for the stalagmites described in Tab. 2.2 as a function of their average top radius rsm (see Sec. 3.1).
We observe in Fig. 5.30 (b) that the markers relative to most flat and concave stalagmites (green
and blue markers) are located on the axes bisector or above it, meaning that rsm < rs, sm. A few
measurements are located under the bisector, especially the radius of Org02, for which we can
once again argue that rO02

sm can be increased by the large dispersal in the impact point position of
the drops falling on this stalagmite. By contrast, for all the convex cases, we have rs, sm < rsm. The
definition of Eq. (5.86) would correspond to Eq. (5.85) if we had t0 = td and rsm = rsr, which we do
not in regard of Figs. 5.30 (a) and (b).

The film lying on a stalagmite in caves should a priori be at steady-state, i.e., such that Qdrip =
Qdrain, with Qdrip ∼ Vd/t0 and Qdrain ∼ Vdrain/td, with Vdrain the volume leaving the stalagmite
throughdrainage. Hence, without taking the potential splash of drops at impact into account, aswe
did until now, the ratio between these volumes should be proportional to k = Vd/Vdrain = t0/td,
where k varies with the stalagmite shape. The factor k could be retrieved empirically from the
data shown in Fig. 5.30, but we do not have any theoretical argument allowing us to rationalise
this parameter. A possibility would be to express the film thickness at the edge of the stalag-
mite, i.e., in rsm, with the eventuality that this radius lies within the unsteady region. Comparing
hs(r = 0)/hs(r = R) should yield an approximation for k, and, hence the potential to classify the
stalagmites based on their sole shape. For instance, we note from the two graphs below that, for
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convex stalagmites, resp. concave stalagmites, k should be of the order of 1/100 to 1/10, resp. of the
order of 10 to 100.
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Figure 5.30: Stalagmite classification. (a) Comparison between the drop dripping period t0 relative to the stalag-
mites from Tab. 2.2 and the drainage timescale td associated with each stalagmite, computed according to Eq. (5.85).
(b) Comparison between the stalagmite average top radius rsm fromTab. 2.2 (see Sec. 3.1) and the steady radius rs, sm as-
sociated with each stalagmite, computed according to Eq. (5.86). The legend of (a) and inset of (b) relate to both graphs.
The green, red and blue markers correspond to flat ( ), convex ( ) and concave ( ) cave stalagmites, respectively. The
inset of (b) shows the stationary film thickness hs reached by the film at the centre of the stalagmite as a function of
the dripping period t0 set for the measurements made on Lab01 (orange markers). The symbol corresponding to each
stalagmite is indicated in Tab. 2.2. Vertical error bars in both (a) and (b) come from the errors made on rsm, Rd and hs
measurements.

174



175



Appendix
Complementary information to some sections of the main text is provided hereafter. We start by
going over the error made with the mass-based film thickness measurement technique. We then
reviewa fewelements that supplement our lab observations, and conclude bypresentingnumerical
convergence tests relative to the drainage model.

A. Error made with the mass-based measurements
We first discuss and try to estimate the errors possibly impacting the film thickness measurements
using each of the two techniques from caves and presented in Sec. 2.1. Regarding the errormade by
using thedial gauge technique, as it is a similar technique as the oneused inCh. IV formeasuring the
film thickness, we consider that the error is of the same order. The major differences between the
two technique are (i) the size of the meniscus formed when touching the film with the needle and
(ii) the threshold leading to the recording of the film/air interface position. We provide hereafter
an estimation of the error made in the case of the mass-based measurements.
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Figure 5.31: Estimation of the relative error made by measuring the spatially averaged film thickness with the paper
towel andmass-based technique used in caves. Measurements were conducted in a lab setting. The thickness h0 corre-
sponds to the reference film thicknessmeasured by direct weighing of the film on the balance, while the thickness hp is
the film thickness measurement inferred from the weighing of the paper towel, according to the technique described
in Sec. 2.1.2. The colour mapping of the markers represents the ratio between the paper towel piece area Ap and the
area of the hydrophilic tape over which the film has been spread out, A0 (going from 1 in mauve , to→ 0 in orange ).
The gray line corresponds to the ideal case where there would be no error. The dashed orange line was obtained by a
linear fit on the data corresponding to Ap/A0 ≤ 0.05.

In Fig. 5.31, we report measurements of the error made by the the mass-based technique used
in caves (see Sec. 2.1.2). This technique consisted in weighing the mass difference of a 3 × 3 cm2

piece of paper towel before and after depositing it on the stalagmite. From there, we inferred the
spatially averaged film thickness over the area covered by the piece of paper towel. We reproduced
the experiment in a lab setting. We started by spreading out a film of known thickness on a piece of
hydrophilic tape of area A0 (Adhesive Research, ARflow 93210), attached to a rigid plate by double-
sided tape. The spatially averaged film thickness used as a reference and denoted h0 was evaluated
by simpleweighing of the film. We then used a piece of paper towel of areaAp to collect water from
this film and measured the difference between the wet and dry paper towel masses to estimate the
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average film thickness hp over Ap. It should be noted that Ap may differ from A0, which allows us
to replicate at best the cave conditions where we encountered stalagmites of very different sizes.

In Fig. 5.31, it can be seen that the ratio between the areas of the paper and hydrophilic tape,
called α = Ap/A0, significantly affects the relative error made by measuring the mass of the film
with the paper towel, that we define as

ϵ =
hp − h0

h0
· (5.87)

We note that for α = 1, i.e., when the substrate and paper towel piece have the same area, the error
committed is about−5.1± 3.3 % (average± s.d. in 22 measurements for which α = 1). Hence, in
this situation the thickness is a little undervalued, which can be attributed to the imperfect absorp-
tion of the paper towel, as well as the possible evaporation occurring between the measurements
of h0 and hp andwhen the paper towel has absorbed thewater from the film. Onceα < 1, i.e., when
the paper towel area becomes smaller than the hydrophilic tape area, there is a non negligible mea-
surement error because of the water absorption from the sides of the paper towel. Given the radii
of the stalagmites for which measurements were taken (see Tab. 2.2), cave mass-based measure-
ments fall within the range α ∈ [0.1 ; 0.5]. We thus had to rescale our mass-based measurements
according to the law derived from Fig. 5.31 at the α corresponding to the particular stalagmite.
There also exists a thickness above which the piece of paper towel becomes saturated, such that
liquid flows both into the pores of the paper towel but also above it. With the paper towel used,
we empirically find that this thickness is between 500 µm and 600 µm, this latter value also cor-
responding to the interset of the dashed line drawn in Fig. 5.31 with the abscissa axis. By chance,
we did not encounter thicknesses larger than 350 µm in caves, hence it can be safely assumed that
we could always absorb and locally dry the film without considering this issue where we took the
measurements.

B. Additional lab observations

We provide hereafter a few elements allowing a better understanding of the phenomenology de-
scribed in Sec. 3. We first assess the repeatability of the lab measurements. We also present an
example of a lab curve obtained at a different distance ∆d between the sensor and the dripping
point position than the distances shown in Fig. 5.8. The rate of evaporation during the lab mea-
surements is then estimated. We finally review in details the impact of a drop on a thin film from
a very low height, as already briefly illustrated in Fig. 5.12, before estimating the film disjoining
pressure that has been neglected in Sec. 4.2.

B.1 Repeatability of the lab experiments

In Fig. 5.32, we represent two rawdata curves (blue and red) taken in the lab in identical conditions,
without having to move the sensor positioned at∆d = 0.5 cm in between the measurements. The
two curves were recorded the same day over the span of about an hour, hence we could maintain
the following parameters with minimal error: t0 = 3.1 s, T = 18.4 °C, RH = 91% and r = r0. We
show in Fig. 5.32 (a) the last minute during which the film is fed by successive drops, followed by
the first minute of sole drainage. Figure 5.32 (b) shows a close-up view of 3 drop impacts during
the stationary phase of the film, while in Fig. 5.32 (c) a log-log scaled view of the drainage process
can be seen, as indicated by the grey arrows. We note a very good correspondence between both
curves, which are actually difficult to distinguish.
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1Figure 5.32: Comparison between two film thickness recordings (red and blue curves) taken in the lab in the following
identical conditions: T = 18.4 °C, RH = 91%, r = r0, ∆d ≤ 0.5 cm and t0 = 3.1 s. (a) Thickness of the two films for
the last minute during which they were fed by successive drops in stationary state, then after the interruption of the
drop inflow for 1min. Both curve positions were fitted so that the last local maximum film thickness hmax occurs at
t = 1min (indicated by the dashed line). (b) Close-up view of the stationary state of both films for 41 s ≤ t ≤ 50 s,
which corresponds to 3 drop impacts. The grey area and grey arrow in (a) indicate the part of the curves shown in
(b). (c) Log-log scaled graph of the sole drainage of the two films, i.e., the part of (a) corresponding to t ≥ 1min. The
dashed line and dark grey arrow in (a) correspond to the beginning of (c).

B.2 Examples of a lab curve at 2 cm from the impact point

We present in Fig. 5.33 another example of the film thickness measured at a distance ∆d = 2 cm
from the dripping point position. This example relates to Fig. 5.8 (a) and allows to see more clearly
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Figure 5.33: Additional example of a lab raw data curve obtained at a sensor/dripping point distance ∆d = 2 cm,
with the dripping point positioned in r = r1. The temperature is T = 20.5 °C and the relative humidity RH = 88%.
The drop inflow is maintained at t0 = 1.8 s until it is stopped after 1min, before the sole drainage appears. For main
figure, see Fig. 5.8 (a) (note that the dripping period presented here is slightly longer than in Fig. 5.8 (a)).

178



how the film thickness variations recorded by the sensor are affected by ∆d during the stationary
phase of the film. The parameters correspond more or less to the parameters of Fig. 5.8 (a), except
for the dripping period which is slightly longer here (t0 = 1.8 s instead of 1.2 s), which therefore
yields a similar stationary film thickness to Fig. 5.8 (a) for∆d = 5 cm.

B.3 Evaporation rate

We consider a thin film lying on top on Lab01, as in the case of the raw data curves shown in Sec. 3
(see p. 114). For the sake of simplicity, we assume that the stalagmite has a perfectly horizontal top
surface with a radius rsm ≃ 10 cm, which is entirely covered by a thin film of spatially averaged
thickness h = 100 µm. We try to estimate in this section the time needed for the film to be de-
pleted by the evaporation process only, with a thickness decrease of about 10 µm that supposedly
occurs uniformly. We thus also consider that no other process such as drainage, e.g., depletes the
film parallel to evaporation, as we only care about comparing the typical timescales of the various
processes involved. In the data presented in Sec. 3, we illustrated the influence of the relative hu-
midity and temperature on the film thickness variability using experiments performed at either a
constant temperature with variable relative humidity, or vice-versa. In this section, we will use
values close to our experiments and first compare the evaporation process at the constant temper-
ature T = 20 °C with RH0 = 70% and RH1 = 90%. In the second case, for RH = 90%, we will
use T0 = 15 °C and T1 = 25 °C.

The rate of evaporation can be approximated by [114, 214]

ṁ = M0 pH2O, sat(T) (1− RH) , (5.88)

where ṁ is the decrease in the total mass of the film over time per unit area, and the quantity
M0 = 4.3 × 10−8 kg Pa−1 m−2 s−1 a constant. At a temperature of 20 °C, the saturation vapor pres-
sure of water is pH2O, sat = 2340 Pa. By keeping the other parameters constant, the former law
indicates that going from RH0 to RH1 simply divides the mass rate of evaporation by 3, and there-
fore multiplies the time of evaporation by 3. We find that ṁ(RH0) = 3.0 × 10−5 kgm−2 s−1 and
ṁ(RH1) = 1.0 × 10−5 kgm−2 s−1. The corresponding film thickness reductions, ḣ = ṁ/ρ, occur
at ḣ0 = 3.0 × 10−8 ms−1 and ḣ1 = 1.0 × 10−8 ms−1, respectively. While it only takes about 5min
to deplete the entire film by 10 µm when the relative humidity is RH0, for RH1 this film thickness
decrease should take more than 16min. Considering that neither the film thickness nor the evap-
oration rate should be uniform over the stalagmite surface, it is thus not surprising that, in the
vicinity of the measurements, the change in relative humidity has the strong effect illustrated by
Fig. 5.10 (a). Additionally, we can compute the evaporation rate by keeping the relative humidity
at RH = 90% for a variable temperature. At 15 °C (resp. 25 °C), the saturation vapor pressure
of water is pH2O, sat = 1705 Pa (resp. 3171 Pa). The corresponding evaporation mass rates per
unit area are ṁ(T0) = 7.3 × 10−6 kgm−2 s−1 and ṁ(T1) = 1.4 × 10−5 kgm−2 s−1. The time needed
in each case to deplete the film by 10 µm over its entire surface is approximately equal to 12min
and 22min, respectively. Hence, in contrast to Fig. 5.10 (a), evaporation has little effect in the
curves shown in Fig. 5.10 (b).

B.4 Releasing a drop on a thin film from a very low height

We show in Fig. 5.34 an example of a drop impacting a thin film at low velocity. The drop has a
radiusRd = 2.31mmand the film a spatially averaged thickness h = 117 µm (or h⋆ ≈ 1, seeCh. IV).
The drop is released from the same tube as the one used in the drainage experiments (see Sec. 2.2),
at a height of 4 cm above the film interface. The drop thus reaches a velocity close to ∼ 1m s−1
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at impact and has a corresponding Weber number of 50 (see Chs. III and IV). As it can be seen
in Figs. 5.34 (a) and (b), the drop crushes in the film by forming a circular puddle, whose radius
increases with time. After about 12ms, the rim surrounding the puddle has started to destabilise
(Fig. 5.34 (c)). The spot left by the drop in the film appears darker as the water drop contains dye
whereas the film does not. We observe that the radius of the spot left by the drop in the film keeps
increasing with time in Figs. 5.34 (d) and (f), but at a slower pace. The spot reaches an average
radius of the order of 1 cm after about 20ms.

From the moment the puddle starts to merge with the film, we also observe some capillary
waves emitted around the puddle (Figs. 5.34 (c-g)). Additionally, it can be observed that the remain-
der of the drop left in the film is slowed down due to the capillary force and viscous drag counter-
acting the drop initial inertia, as in the case of high-speed impacts from Ch. IV. The spot visible in
Figs. 5.34 (f-h) is indeed shrinking, and reaches a minimum after about 64ms (Fig. 5.34 (g)). Then,
this spot remains of more or less the same size for about 1 s before it grows again (Figs. 5.34 (i-j)).
Nevertheless, this effect is minor as after 7 s (Fig. 5.34 (j)), the spot radius has only increased up
to∼ 1.2 cm, which is barely larger than the size of the spot shown in Fig. 5.34 (e). From these ob-
servations, we infer that the typical radius of the puddle formed by the drop entering in a thin
film at low velocity is ∼ 1 cm. We can approximate the volume of a puddle of radius rd and
height hd as πr2dhd, which is equal to the incoming drop volume Vd ≃ 5.2 × 10−8 m3. If we choose
rd = 1.2 cm and assume that the puddle has a uniform thickness, we find that the corresponding
value of hd is 114 µm.
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Figure 5.34: Example of an impact of a 2.31mm radius dyed water drop on a transparent water film of spatial average
thickness equal to 117 µm. The falling height of the drop is 4 cm, hence the visible tube outlet in the top part of the
picture is out of focus. The successive pictures show the drop spreading from 4ms (a) to 7 s (j) after it has started
to impact the film. The spot left by the drop in the film reaches an average radius of ∼ 1 cm between (d) and (e).
The pattern in the background is due to the adhesive coating holding the hydrophilic tape in place (Adhesive Research,
ARflow93210). The videowas recorded using a Photron FastcamMiniUXmonochrome camera. The scale bar is 1 cm.

B.5 Disjoining pressure

When deriving the governing equations of the flow (see Eqs. (5.5) and (5.6)), we assumed that the
disjoining pressure in the water film lying on the stalagmite was negligible in comparison to the
hydrostatic pressure. We discuss this hypothesis here. The disjoining pressure stems frombringing
different material interfaces together. It can be viewed as the added free energy (per unit volume)
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of the entire system made of the two materials, with respect to the sum of the distinct free energies
of the two systems standing at an infinite distance from one another. In another context, it can
also be interpreted as the pressure needed to separate two plates joined by an intervening liquid
film from each other. The disjoining pressure can either be positive or negative, and originate from
repulsive or attractive forces between the two interfaces, respectively. In total, the pressure p in
the film should be written as

p = ρgh +
σ

2R
+ΠD(h) , (5.89)

where ΠD(h) is the disjoining pressure, which depends on the film thickness h. We have already
shown that the Laplace pressure term σ/(2R) is negligible with respect to the hydrostatic pressure.

The disjoining pressure between water and the main constituent of the stalagmite surface, i.e.,
calcite, mostly comes from two contributions which both act at a short range: (i) the Van der Waals
forces caused by the variability in the polarization of nearbymolecules at the interface between the
materials, (ii) the electronic double layer formed at the interface, due the difference in ionic charges
between the materials. The first of these contributions to the disjoining pressure is modeled as
follows [31]:

ΠVdW
D (h) = − AH

12πh3
, (5.90)

whereAH ≃ 2 × 10−20 J is theHamaker constant of the calcite-water system [31]. Because it leads to
a negative pressure, the above relation describes an attraction between calcite and water. Because
calcite and water molecules should be neutral, the contribution from the electronic double layer
is minor compared to the Van der Waals forces. At the typical scale of the film, for h = 100 µm,
we obtain ΠVdW

D = −6 × 10−10 Pa, which is completely negligible with respect to the hydrostatic
pressure of about 1 Pa. The disjoining pressure only becomes of the same order of magnitude
as the hydrostatic pressure for h ≃ 500 nm. As seen in our lab experimental curves from Sec. 3,
dewetting occurs before the film thickness can reach such a low value. As it results from molecular
interaction and only becomes predominant at very small scales (ΠVdW

D (h = 10 nm) = −500 Pa),
we conclude as expected that the disjoining pressure could indeed be neglected in our calculations.

Another type of interaction that may contribute to the disjoining pressure is the hydration
force appearing when two polar solid surfaces are separated by a thin liquid film of water (<
3 nm) [192]. This force is attributed to water adsorption and decays with the spacing between the
surfaces. As a side note, studies have showed that hydration forces at the scale of newly formed
calcite grains can become repulsive and lead to porosity in the upper layers of the stalagmite. These
forces arise between two calcite surfaces in highly concentrated aqueous solution. Due to this re-
pulsion, extended periods of water exposure may weaken calcite formations and sometimes lead
to the apparition of cracks or fractures. On the other hand, calcite surfaces separated by an air
layer experience attractive forces at the molecular level [192].

C. Model approximations
This last section focuses on assessing the impact of several simplifications made in the numerical
model developed in Sec. 4.5 (drop addition in the film, boundary conditions). We also look into the
convergence and accuracy of the solution depending on the values chosen for∆t and∆ξ.

C.1 Drop shape

Since we do not take into account the strong liquid interface disturbances occurring when a drop
impacts a thin film in our resolution, the successive drop impacts are modeled as simple thickness
protuberances added locally to the film. We start by varying the shape of these protuberances, i.e.,
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the function Hd(r ; hd, rd) defined in Sec. 4.5.2, and try to choose the one approximating at best
the physics at play. We review three options here: (i) a cylinder, (ii) a portion of cone, and (iii) a
truncated paraboloid, which are respectively described by

Hd =

{
hd , r ≤

√
2rd/2 ,

0 , r >
√

2rd/2 ,
(5.91)

Hd =

 hd
(

1−
(√

2
2

r
rd

))
, r ≤

√
2rd ,

0 , r >
√

2rd ,
(5.92)

Hd =

 hd

(
1−
(

r
rd

)2
)

, r ≤ rd ,

0 , r > rd .
(5.93)

The coefficients appearing in the cylinder and conic drop formulations allow us to ensure that
all three kinds of drops have the same volume and that our comparison is physically sound. We
compare simulations performed with each of these drop types in Fig. 5.35 for a flat stalagmite of
radius R = 2 with an outer boundary angle of φ⋆ = 45°. The time step, numerical dripping period
and space grid size are∆t = 10−4, n0 = 104 and∆ξ = 0.04, respectively. In Fig. 5.35, a succession
of 25drops canbe seen, followedby sole drainage for an equivalent time, i.e., tfill = t��fill = 25∆tn0 td.
We present the numerical curves in dimensional values to compare them to a curve obtained in a
lab setting (T = 18.9 °C, RH = 89%, r = r0,∆d ≤ 0.5 cm, t0 = 1 s). We multiplied our numerical
film thickness by hd = 93 µm to match at best the height reached by the lab data at each drop
addition, and used td = t0 so that the dripping period between the numerical drops corresponds
to the dripping period from the lab. To ease the reading, the complete lab curve was not drawn
in the main graph. We indeed observe that all three numerical curves collapse well on each other.
We also represent in the inset of Fig. 5.35 a close-up view of the drop addition after t = 20 s in
the numerical simulations, such that the film has reached a stationary state. The average made
for 10 drop additions from the lab curve is shown in the inset of the graph as well (it does not
correspond to t = 20 s, but the drop additions all occurred during the stationary phase).
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Figure 5.35: Comparison between different drop shapes added to the film. The purple, green and red curves corre-
spond to numerical simulations solved for the three shapes defined by Eqs. (5.91)-(5.93), with parameters ∆t = 10−4,
n0 = 104, ∆ξ = 0.04, R = 2, φ⋆ = 45°. The curves showing the film thickness as a function of time are presented
in their dimensional form using hd = 93 µm and td = 1 s. The inset shows a close-up view of the three curves for
20.01 s ≤ t ≤ 21 s, as indicated by the gray area in the main graph. The additional orange curve from the inset cor-
responds to the average in 10 drop additions from a lab curve with following parameters: T = 18.9 °C, RH = 89%,
r = r0,∆d ≤ 0.5 cm and t0 = 1 s.
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Although we observe in the inset of Fig. 5.35 that the curve corresponding to the cylindri-
cal drop is larger at the very beginning of the numerical drop insertion into the film, all three
curves approximate well the actual behaviour of the drop spreading into the film in the lab ex-
periment. The root mean square errors (RMSE) between the lab measurements and the three
numerical drop additions relative to the data of the inset are 13.3 µm (cylinder), 9.8 µm (cone)
and 11.8 µm (paraboloid), respectively. The RMSE computed for t ≥ 25 s, i.e., during the sole
drainage, are 4.3 µm (cylinder), 4.1 µm (cone) and 4.4 µm (paraboloid), respectively. Additionally,
on average for 30 realisations of the simulationwith the aforementioned parameters and each drop
type, the times taken by the simulations are 45.8 s (cylinder), 40.3 s (cone) and 42.1 s (paraboloid).
While keeping ∆t = 10−4 as well as all the other numerical parameters constant, we further ob-
tain divergence (see following section) as soon as ∆ξ ≤ 0.0244 (cylinder), ∆ξ ≤ 0.0235 (cone),
and ∆ξ ≤ 0.0238 (paraboloid). From our observations, we note that the differences between the
three studied shapes are not significant, although conic and paraboloid drops yield a smaller error
with respect to the lab measurement, as well as a slightly better convergence. Since we consider
the first cell of the domain to be perfectly horizontal, adding conic drops would make less physical
sense that paraboloid drops, which actually present a null derivative in r = 0. Hence, we model
the drop addition into the film according to Eq. (5.93).

C.2 Mesh and time step convergence

Because the scheme we used in Sec. 4.5 is explicit, numerical simulations can be subjected to di-
vergence after a few iterations, or possibly to spurious oscillations which appear during the filling
phase if the time step is too large. We ensured that these problems did not occur in the results pre-
sented. Since we encountered different geometrical configurations, i.e., convex, flat and concave
stalagmites, there is no unique criterion allowing to define a region of stability based on (∆t,∆ξ)
values. Nevertheless, we can estimate the characteristic velocity of theflow in theflat andmild con-
vex/concave cases (i.e., |Ψ| ≲ 1, |S| ≲ 1) to get an approximate CFL condition [57]. This velocity is
the largest when the first few drops spread on the initially dry stalagmite since the film thickness
added by the drops is ≥ hd on a distance ≤ rd, hence the gradient ∂ξh is around its maximum.
For concave cases involving large protuberance with, e.g., H ≳ 10, the velocity gradients would
become larger due to the large upward inclinations involved. Hence, we usually needed to use a
smaller∆t in these concave cases. For the largestΨ presented in Sec. 5.4, we had to use∆t = 10−7

or even ∆t = 10−8. It might be more beneficial to consider a better time integration, such as an
implicit one, for these limit cases. In dimensional form, the time step ∆t corresponds ∆t td, with
the drainage timescale td ≃ 12 s, and the grid step size corresponds ∆ξ rd, with the characteristic
drop radius rd = 1 cm. From Huppert’s solution [116] of the gravity current spreading radius at
constant volume shown in Eq. (5.12), we can derive the velocity taken by a drop to spread out over
one time step∆t td as

u(∆t td) = 0.11
(

gVd

3ν

)1/8

(∆t td)
−7/8 . (5.94)

For a non-dimensional time step ∆t = 10−3 and Vd = πr2dhd, we get u ≈ 3.8m s−1. In these
conditions, if we aim at respecting the CFL condition given by

C =
u(∆t td)∆t td

∆ξ rd
≤ 1 , (5.95)

then we should restrict the non-dimensional grid step size to be∆ξ ≳ 5000∆t.
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To complete our former study, we also take a look at the potential error made in the nu-
merical calculations when using large time steps ∆t or large grid step sizes ∆ξ. We use a test
case for which Ψ = 0.5 and S = 1 and present the error made for hmax, hmin, a, b and m in
Fig. 5.36. In Fig. 5.36 (a), we impose ∆ξ = 0.05 and vary the non-dimensional time step ∆t ∈
{10−5, 10−4, 10−3}. The results obtained at a time step ∆t = 10−6 are considered as a reference.
In the same manner, in Fig. 5.36 (b), we impose ∆t = 10−4 and vary the non-dimensional grid
step size ∆ξ ∈ {0.02, 0.05, 0.1, 0.2} while considering that ∆ξ = 0.01 as a reference. In both
Figs. 5.36 (a) and (b), we note that the error decreases with either decreasing time step ∆t or grid
step size ∆ξ. Moreover, the relative error for ∆t = 10−3 and ∆ξ = 0.1 is already ≲ 3% for all
measurements, respectively. These parameter values were used in the results presented above and
may thus be considered as yielding acceptable errors.
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1Figure 5.36: Error in the measurements of hmax, hmin, a, b and m as a function of the chosen time step∆t (a) and grid
step size∆ξ (b). The error in (a) is computed with respect to the case∆t = 10−6 taken as a reference, with∆ξ = 0.05.
The error in (b) is computed with respect to the case ∆ξ = 0.01 taken as a reference, with ∆t = 10−5. The legend is
the same in both graphs. In all cases, we used Nfill = 25, N��fill = 100, n0 = 1/∆t and R = 5.
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The film thickness was measured in caves and in a lab setting on various stalagmites.
The experimental techniques used are described in Sec. 2. In Sec. 3, examples of film
thickness evolution curves are presented. The measurements include three phases:
the filling of the film as a response to the drop inflow, the stationary state of the film
and the sole drainage following the interruption of the drop inflow. We observe that
the main parameters influencing the film thickness evolution are the drop inflow
rate and stalagmite shape.

Wemodel the drainage of a thin filmover a surface of general shape in Sec. 4, starting
from Reynolds lubrication equation expressed in a curvilinear coordinate system.
The equations indicate that the drainage is either dominated by the film thickness
gradients appearing in the film over a flat stalagmite, or depends on the stalagmite
inclination underneath the film. A characteristic drainage timescale is defined in
Eq. (5.14).

The equations of drainage are solved numerically as described in Sec. 4.5. The nu-
merical simulations consist in the addition of drops over an initially dry stalagmite
followed by the interruption of this drop inflow after a steady state has been reached,
allowing us to produce similar results to the lab and cave measurements. The outer
boundary condition used relies on the assumption that a quasi-steady-state has been
reached at the outer limit of the domain. This conditions is derived in the case of the
drainage of a film over a cone of constant opening in Sec. 4.4.1.

From the observations made from the numerical resolution of a simple example in
Sec. 5.1, we infer that the sole drainage curve may be approximated by a power law
of time including three fitting parameters: a factor proportional to the stationary
film thickness, a time shift and an exponent for the power law.

We numerically vary the response of the film to the drop inflow and stalagmite shape
in a set of simulations presented in Secs. 5.2, 5.3 and 5.4. We deduce that the station-
ary film thickness increaseswith the drop inflow as in the experiments, and, for a flat
stalagmite, with the stalagmite radius. Over a convex stalagmite, the film thickness
decreases if the shape presents more inclined walls. These results are in agreement
with scalings that we derived from the drainage equations in Sec. 4.3, except for the
convex case. At the apex of a convex stalagmite, the scaling is not the same as away
from the stalagmite centre. The scalings obtained can further be retrieved from the
cave and labmeasurements. Themodel also allows verifying themeasurements from
the caves at the end of Sec. 5.4.3.

Additionally, in Sec. 5.4.2, we present a simple model based on the balance between
the volume reached by the film at steady-state in caves and the inflow of drops to
estimate the number of drops needed to fill the film until it reaches a stationary state.
We conclude that the splashing at impact must be taken into account in some cases,
particularly for concave stalagmites.

.

• Summary (Ch. V) •
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In Ch. VI (see next page) and specifically in Sec. 1, we implement a complete
model of stalagmite growth by adding to the drainage model from Ch. V an
equation describing the ion evolution in the film, based on an advection-
reaction equation, and an equation describing how the stalagmite profile is
updated between drop impacts.

The dimensionless equations indicate that the stalagmite growth is mostly
conditioned by the added concentration at impact, by the ratio of the drip-
ping period and drainage timescale, t0/td, and by the ratio of the drainage
and precipitation timescales, td/tp.

In Sec. 2, we obtain different stalagmite profiles by varying these parame-
ters. The simulations conducted allow inferring the shape and scale factors
relative to the stalagmite profile, Ψ and S, defined in Ch. II, as well as the
growth rate of the stalagmite. This growth rate can be compared with the
growth rate from Dreybrodt’s model, defined in Eq. (1.7) from Ch. I.

In Sec. 2.3, we present a set of preliminary simulations in which additional
effects may be included, such as an initial convex stalagmite profile, or the
inclusion of the dispersal exhibited by the drop impact point position into
the model.

• Highlights (Ch. VI) •
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GROWTH MODEL

Now that we separately studied the dispersal in the impact point position of the drops, the mixing between
the ions from the drop and those already present in the film lying on the stalagmite, as well as the sole
drainage of this film, we can combine all these processes and take into account the ion precipitation in
the film. In this chapter, we first describe the spatio-temporal ion distribution evolution within the film.
We then couple the equation obtained to the film drainage and to the local stalagmite growth. Finally, we
solve our system of equations to reproduce a few typical stalagmite shapes, with a focus on the particular
regimes already described in Ch. I. It is recommended to read Chs. I, IV and V before the present chapter.

Credits: header photograph by P. Crochet [58].

1. Coupling between drainage and precipitation
The drainage of the residual film lying on the stalagmite could be modelled on its own in the pre-
vious chapter. However, the ion concentration distribution and gradients inside the film are in
essence dependent on the film thickness in every point. Hence, we need to know the film thick-
ness and velocity in every point of the film in order to compute the evolution in time and space
of the ion concentration, and thereby of the subsequent stalagmite growth. The ions in solution
are indeed at the origin of the local stalagmite growth. As we recalled in Sec. 1.2 from Ch. I, the
chemical reaction allowing for stalagmites to grow is the precipitation of calcium ions Ca2+ into
calcite CaCO3, which is conditioned by the partial pressure of dissolved CO2 in the film. We de-
tail the modelling of the flux of calcium ions in the film through an advection-reaction equation
in Secs. 1.1 and 1.2, and the modelling of the stalagmite growth using a linear approximation of
Fick’s law of diffusion in Sec. 1.3. The equations obtained are non-linear and require to be solved
using a numerical approach detailed in Sec. 1.4. A few examples of the time evolution of stalagmite
profiles in limiting cases are then shown in Sec. 2, along with parameters related to the stalagmite
growth.

1.1 Ion distribution equation
To asses the quantity of calcite precipitating at one location, and therefore evaluate the change of
stalagmite shape over time, we need to compute the precipitation rate which depends on the cal-
cium ion concentration at this location. The calcium ions present in the film over the stalagmite
have a concentration

[
Ca2+

]
(in [mol cm−3]), which will now be denoted c. The other species in-

volved in the reaction do not need to be modelled as bicarbonate and calcium ions precipitate in
a 1 : 1 ratio, and the other species in solution do not have any effect on the amount of calcite that

187



precipitates [173], except for the carbon dioxide. We assume for the sake of simplicity that there
is always enough carbon dioxide to maintain a constant rate of precipitation in the film. We also
assume that this carbon dioxide gets distributed uniformly throughout the film and that, outside of
the film, the partial pressure pCO2 in the vicinity of the stalagmite remains constant as well. Hence,
the precipitation is only affected by the concentration in calcium ions. To conjugate the effects
of both the gravity-driven drainage of the film and the change in the ion distribution inside the
film, we not only need to solve (i) the equation of the film thickness evolution with the stalagmite
shape and successive drop impacts from the previous chapter, but also (ii) the equation describing
the evolution of the calcium ions over time and space. Simultaneously, the precipitation of the
ions at a specific location changes the shape of the stalagmite underneath, which in turns affects
the drainage and ion distribution. We therefore also need (iii) an equation describing the response
of the stalagmite shape to the freshly precipitated calcite, and we need to update the shape gradi-
ents appearing in the two other equations accordingly. The drainage was modelled in the former
chapter and does not require any other substantial modification than the update of the stalagmite
profile over time in the numerical resolution.

To model the evolution of the calcium ion dis-
tribution with time and space, we keep the former
curvilinear formalism for axisymmetric stalagmites,
as illustrated in Fig. 6.1, and express once again the
variables as a function of the coordinates (ξ, ζ). Be-
cause we integrated the Navier-Stokes equation over
the entire film thickness and did no longer consider
the velocity gradients appearing inside the film in the
former chapter, we keep proceeding in the same man-
ner here as the thin film hypothesis remains valid. We
therefore neglect the diffusion of ions perpendicularly
to the stalagmite surface and consider it as instan-
taneous. This hypothesis may not always be valid

Vring∂tC

ξ2

ξ1

Ċin

Ċout

Ċpre

φ

er

ez

eξ
eζ

Figure 6.1: Mass balance from Eq. (6.2) on a ring
of film liquid Vring located between the curvilinear
coordinates ξ1 and ξ2.

as the diffusion timescale of species having a diffusion coefficient of D ∼ 10−9 m2 s−1 (see Tab. 1.0
from Ch. I and Tab. 1.1 from auxiliary sheet) is about t↓ ∼ h2

d/D = 10 s. We should therefore take
with precaution any result possibly related to dripping periods much shorter than this timescale.
Wenote that inCh. V, though, we had observed that the film thickness quickly decreased during the
first instants following the impact of the drop in the film. If we considered as a characteristic length
scale hd/k, k ∈ R, the diffusion timescale would be divided by k2. Hence, diffusion and drainage
should only compare during the very first instants following the impact of the drop in the film,
during a timewhere the effects related to the drop impact also play a role. We also hypothesise that,
even though the ions cannot precipitate unless the solution is supersaturated, i.e., c > csat, with csat
the saturation concentration, there is no effect of the flow of ions on the film drainage [70].

We first define the total quantity of calcium ions C in a liquid ring of volume Vring as

C =

∫
Vring

c dV , (6.1)

where the liquid ring has a width ∆ξ = (ξ2 − ξ1) and is centered at ξ1 + ∆ξ/2, as illustrated in
Fig. 6.1. The stalagmite surface is inclined by an angle φ at this position. The volume of the ring is
given by Vring = 2πr∆ξh (we have already considered that ∂ξφ is negligible with respect to 1/h in
Ch. V). We can write a mass balance for C in the liquid ring, i.e., between position ξ1 and ξ2, as

∂tC = −Ċdif + Ċin − Ċout − Ċpre , ξ1 ≤ ξ < ξ2 , (6.2)
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where Ċdif is the diffusive flux (corresponding to the sum of the diffusive fluxes through the faces
of the liquid ring),Ċin−Ċout is the net flux of ions flowing into and out of the ring of liquid located
between ξ1 and ξ2, and Ċpre is the flux of ions precipitating over this liquid ring. To compare the
order of magnitude of the diffusion and advection terms, we may define the Péclet number relative
to the flow as Pe = UL/D, with U a characteristic velocity, L a characteristic length and D the
molecular diffusion coefficient. The characteristic velocity can be computed as the ratio of the
characteristic length L over the drainage timescale defined by Eq. (5.14) from Ch. V, i.e., U ∼ L/td.
The drainage described in the former chapter is indeed responsible for the advection fluxes of ions
in the film. If we consider the diffusion parallel to the stalagmite surface, the length L can be chosen
as rd = 1 cm, the drop radius. We thus find that the Péclet number relative to the direction parallel
to the stalagmite surface is given by

Pe→ =
gh3

d

νD
≃ 8600 . (6.3)

The molecular diffusion parallel to the surface has therefore a negligible effect on the ion redis-
tribution in the film, with respect to advection. We will therefore leave it out of our calculations.
In the case where the inclination dominated the drainage regime in Ch. V, we had observed that
the corresponding inclination term in the equations relative to the drainage was multiplied by a
factor rd/hd. Including this into the above Péclet number would yield Pe↘ ≃ 9 × 105. Hence, the
drainage over an inclined plane seems more efficient in comparison with the diffusion of ions in
the film. By choosing as a characteristic length L = hd = 100 µm, we can also compute the Péclet
number relative to the diffusion in the direction perpendicular to the stalagmite surface. We ob-
tain Pe↓ = (gh5

d) / (νDr2d) ≃ 0.9, in accordance with the diffusion timescale t↓ ≃ 10 s computed
above.

As depicted in Fig. 6.1, the flux of ions Ċin − Ċout corresponds to the sum of the upstream
and downstream fluxes (flowing through the left and right faces of Vring in Fig. 6.1). By virtue of
the thin film hypothesis, we consider that the variables are averaged along ζ , such that there is no
flux aligned with ζ (flowing through the upper and lower faces of Vring in Fig. 6.1) in Ċin − Ċout.
There should indeed be no flux through the upper face because the ions do not cross the liquid-air
interface. The flux through the lower face, on the other hand, corresponds to the precipitation
of ions and is not taken into account in the advection flux. The above mass balance can thus be
written in integral form as

∂t

∫
Vring

c dV = −
∫
∑

i Ai

c u · nextdA−
∫

Vring

P
h
dV , (6.4)

where u = ueξ is the average velocity parallel to the stalagmite surface, Ai are the areas of the
vertical faces surrounding Vring and the vector next designates the outer normal unit vector to a
face. Because the faces reduce to the left and right ones from Fig. 6.1, the outer normal vector
relative to the left face, resp. right face, is1 ∥ (−u), resp. ∥ u. In the above equation, we have also
defined P as the precipitation rate per unit of surface area (in [molm−2 s−1]). The ions can indeed be
considered as precipitating only overAring, the annulus of stalagmite surface covered byVring, equal
to 2πr∆ξ. As aforementioned, we neglect the ion diffusion perpendicular to the stalagmite surface
toward and from the surfaceAring, and assume that it can be averaged along the ζ-coordinate. Using

1∥ sign means parallel.
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the divergence theorem, we rewrite Eq. (6.4) as

∂t

∫
Vring

c dV = −
∫

Vring

∇ · (cu) dV−
∫

Vring

P
h
dV , (6.5)

We also consider that c is uniform over the liquid ring volume Vring. This volume can be considered
as infinitesimal, which corresponds the limiting case for which ξ2 → ξ1. The divergence operator
in the curvilinear coordinate system from Fig. 6.1 writes as∇ ·q = (−1/r) ∂ξ(qr) (see Sec. 4 from
ch. V), with q = qeξ . The above equation can thus be written as

(∂tc) h + c (∂th) = −
1
r
∂ξ (cuhr)− P . (6.6)

The divergence of the ion concentration may also be expressed as

− 1
r
∂ξ (cuhr) = −uh (∂ξc)−

1
r
c ∂ξ (uhr) . (6.7)

Acknowledging the fact that ∂th = (−1/r) ∂ξ(uhr) since q = uh, we find that the second term of
the left-hand side of Eq. (6.6) and the second term of the right-hand side of Eq. (6.7) cancel out.
From Eq. (6.6), we can state that the net flux of ions primarily comes from the difference between
the number of ions downstream and upstream, entrained by the film drainage as

∂tc = −u (∂ξc)−
P
h

, (6.8)

where u is obtained using Eq. (5.9) from Ch. V:

u =
1
h

∫ h

0
u dζ = −gh2

3ν

[
(∂ξh) cosφ− sinφ

]
. (6.9)

The decrease in C caused by the precipitation of ions can be modelled by Fick’s law at the bottom
of the film. As a first approximation, we consider that this corresponds to having a uniform pre-
cipitation rate per unit area in the film, P, such that the last term of the right-hand side of Eq. (6.5)
becomesĊpre = PVring/h. Buhmann and Dreybrodt [41] already studied the dissolution rate of cal-
cium ions in a thin film in both open and closed conditions, i.e., the filmcan either be surrounded by
air or confined in between calcite structures, as in small cave wall fractures, for instance. Starting
from the kinetics of reaction of the dissolved ion species in the film, they concluded that the flux of
calcite dissolution could be approximated as varying linearly with the concentration. We proceed
in the same manner here and consider, as a first order approximation, that the precipitation rate
increases linearly with the supersaturated concentration in calcium ions as

Ċpre =
α

h
(c− csat)Vring , (6.10)

where α and csat are the kinetic reaction constant and the saturation concentration of calcium
ions in the film, respectively, at given temperature, pH and partial pressure in carbon dioxide [70].
The value of α and csat computed by Buhmann and Dreybrodt [41] for both closed and open sys-
tems are reported in Tabs. 6.1 and 6.2 from Appendix A, respectively. The above approximation
is valid for films of thickness comprised between about 50 µm and 500 µm [70]. Below this range,
the amount of precipitated calcium ions is equal to the amount of CO2 converted in H2CO3. The
CO2 conversion dictates the precipitation rate α, which therefore varies significantly with h [70].
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For h > 500 µm, the diffusion of species in solution becomes limiting [70]. If we compute the
vertical diffusion timescale for h = 500 µm, we indeed find that t↓ = 250 s, which might be longer
than the drainage timescale (see Sec. 4 in Ch. V). In the simulations conducted for various shapes
and dripping periods in Ch. V, we could note that, for convex or more or less flat stalagmites, the
stationary film thickness remained comprised between roughly 0.5hd and 5hd (which corresponds
to the range [50 ; 500] µm for hd = 100 µm), although these valuesweremostly attained at the lim-
its of the range of dripping periods covered in the experiments and simulations (see Figs. 5.4, 5.6
and 5.23 from Ch. V).

In the subsequent modelling, we will consider α and csat as arbitrarily-tuned parameters com-
prising the environmental variables, i.e., the temperature and the differential in carbon dioxide
partial pressure between the film and the surrounding atmosphere, which dictates the precipita-
tion rate and, thereby, the stalagmite growth rate. The value of Ċpre is positive, resp. negative,
when c > csat, resp. c < csat, i.e., when precipitation occurs, resp. dissolution. We further note
that Eq. (6.10) above is an approximation of Fick’s first law of diffusion [88], if we consider that
the gradient ∂ζc ≃ (c− csat) /h, which is in accordance with the linear approximation made by
Buhmann and Dreybrodt [41]. Correspondingly, we would also have a form of diffusion coeffi-
cient αVring/Aring. This diffusion coefficient can also be written more simply as αh. Although we
left the diffusion out of the discussion, we note that the parameter α from Dreybrodt’s model con-
veys an approximation of how fast the ions reach the stalagmite surface, i.e., diffuse throughout
the film.

Gathering the above relations, we note that the evolution of the ion concentration distribution
in the film can be described by a classical advection-diffusion-reaction equation [175], although in
a limiting case since molecular diffusion is neglected. We thus have

∂tc =
gh2

3ν

[
(∂ξh) cosφ− sinφ

]
(∂ξc) +

α

h
(csat − c) . (6.11)

This equation can be nondimensionalised by using the same horizontal and vertical length scales
as in the former chapter, i.e., ξ = ξ′ rd and h = h′hd, respectively. We also use the same timescale
t = t′ td in order to solve both the advection-reaction and drainage equations simultaneously. For
the ion concentration, we use c = c′csat, hence we have c′sat = 1. Regarding the kinetic reaction
constant α, it has the same dimension as a velocity. Because precipitation supposedly occurs in
the normal direction to the stalagmite surface, we approximate α = hd/tp, by introducing tp, the
precipitation timescale, as2

tp =
hd
α
· (6.12)

This timescale corresponds to the timeneeded for a pile of precipitated ions to stackover a heighthd,
if the precipitation occurs at a constant rate α the entire time, i.e., within an infinite ion reservoir.
This timescale is also in agreement with Eq. (6.10) above. We have indeed found that αh acts as a
form of diffusion coefficient, such that the corresponding time related to the precipitation reaction
is tp = h2

d/ (αhd) = hd/α, if we use the drop height as the characteristic thickness. Inserting these
relations into Eq. (6.11), we find that

∂t′c′ =
(h′)2

3

[
(∂ξ′h′) cosφ−

(
rd
hd

)
sinφ

]
(∂ξ′c′) +

1
h′

(
td
tp

)
(1− c′) , (6.13)

2The timescale tp corresponds to the decay time Td defined byDreybrodt by using h instead of hd, see Eq. (10.12) in [70].
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where we note the appearance of the ratio of drainage and precipitation timescales in the reaction
term of the right-hand side, td/tp. Following the definitions of the important timescales at play
fromSec. 2 in Ch. I, we thus expect to obtain different regimes of stalagmite growthwhenever tp ≶
td.

In the following, wewill discuss the inclusion of the ions coming from the drops into the film in
Sec. 1.2, complete themodel by deriving the equation used to update the stalagmite surface because
of the precipitation at play in Sec. 1.3, then present the numerical approach to solve the system of
equations obtained in Sec. 1.4.

1.2 Drop addition, mixing and ejected proportion
Besides diffusion and advection, the calcium ions could be redistributed by the splash and mixing
occurring during the impact of a drop on a thin film. Because the drop impact is very short (≲
100ms), we have already assumed that we could neglect the drop impact dynamic and possible
splash, and only considered the successive drops entering the film as simple artificial increases
in the film thickness over a radius rd and height hd. Hence, no changes are made compared to
the previous chapter regarding the numerical drop addition in the film (see Sec. 4.5.2) in terms of
thickness. Nevertheless, not taking into account the complex dynamics of the splashing drop at
impact does not prevent us from includingour results on themixing fromCh. IV into themodelling
of the ion addition. We indeed obtained in Fig. 4.13 from Ch. IV the evolution of the proportion of
liquid coming from the drop and entering the film at impact. We can thus consider several possible
profiles of ion quantity added to the film at each impact depending on the local film thickness.
To include the ions brought by the successive drops into the film, Eq. (6.2) should be modified
accordingly, which yields

∂tC = Ċin − Ċout − Ċpre +
∑

n

Cd(ξ ; cd) δ (t− nt0) , (6.14)

where δ is the Dirac distribution, and where the added ion quantity at impact, Cd, is given by

Cd =

 cdφd)f ′ Vd

(
1−
(

r
Req

)2
)

, r ≤ Req ,

0 , r > Req .
(6.15)

In the former relation, the drop concentration cd is computed as cd = Cd/Vd by assuming that the
ions are uniformly distributed inside the impacting drop. Instead of also using the drop radius rd
from the previous chapter to describe the ion distribution brought by the drop into the film, we
can use the equivalent spot radius Req derived from the mixing experiments in Ch. IV (see Fig. 4.9).
In practice, ions would be distributed all over rd, just as the liquid from the drop, but given the
experiments conducted in Ch. IV, we noted that the ions could sometimes be mostly localized
only over a radius Req < rd with a higher concentration (see Figs. 4.5 and 4.6). The value of cd is
the calcium ion concentration in the falling drop, which must be imposed and is also assumed to
be uniform throughout the drop. The resulting quantity of ion is cdVd, with Vd the drop volume.
The amount of ions actually entering the film is mitigated by φd)f ′ , the ratio of the drop volume
actually left into the filmover the falling drop volume (see Fig. 4.13 (a) inCh. IV). BothReq andφd)f ′

can be estimated as a function of the local film thickness when the drop is added into the film.
For typical values of the film thickness, e.g., h ∈ {50 µm, 100 µm, 200 µm, ≳ 300 µm}, we have
Req/rd ∈ {0.25, 0.5, 0.7, 1} and φd)f ′ ∈ {0.1, 0.2, 0.4, 0.5}, respectively. In Ch. IV, we had also
estimated that part of the original content of the film ends up in the ejected droplets at impact,
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which was represented by φf )e. However, we noted in Fig. 4.13 (b) from Ch. IV that φf )e was
of the order of 0.1. The concentration inside the film is further expected be more dilute than in
the successive drops at the impact times, so that it can be safely assume that the loss of ions caused
byφf )e is negligiblewith respect to the added ions at impact. We discuss in Appendix B the possible
effect that the distribution chosen for cd may have on subsequent stalagmite growth. We will only
make use of Eq. (6.15) in the following.

1.3 Complete model in curvilinear coordinates

In order to model the stalagmite growth from the precipitated calcite, we need an additional equa-
tion describing the stalagmite shape variations over time. We have called η(r) the elevation profile
of the stalagmitewith respect to the radial coordinate inCh. II.The addition of stalagmite elevation
due to precipitation at position r over a time period ∆t can be approximated, at first order, by

η(r, t +∆t) ≈ η(r, t) + ∂tη(r, t)∆t . (6.16)

We assume that this growth is perfectly axisymmetric, so that we can keepmaking use of the curvi-
linear coordinate system describing all the previous equations. The effect of a non-axisymmetric
growth will be reviewed in Sec. 2.3.4. The local stalagmite growth, perpendicular to the former
interface η(r, t) ∀r, is given by

∂tη = Ċpre
mm,CaCO3

ρCaCO3 Aring
, (6.17)

where mm,CaCO3 = 100.1 gmol−1 is the molar mass of calcite, ρCaCO3 = 2.71 g cm−3 its density and
Aring the ring of stalagmite surface of width ∆ξ positioned at ξ + ∆ξ/2, as defined in Sec. 1.1.
We note that, while fresh calcite is usually a slightly porous material [192] of seasonally variable
grain density [72, 211], we cannot take this aspect into account in the modelling presented here.
We therefore assume that the calcite formed upon precipitation is a homogeneous and continuous
solid. Using the definition of Ċpre from Eq. (6.10) and the fact that the film volume of the ring
positioned at ξ +∆ξ/2 is Vring ≈ hAring, we have

∂tη =
α

h
Vring

Aring

mm,CaCO3

ρCaCO3

(c− csat) ≃ α
mm,CaCO3

ρCaCO3

(c− csat) , (6.18)

The growth is positive for precipitation (c > csat) and negative for dissolution (c < csat). Look-
ing at the order of magnitude of the kinetic constant α in Tabs. 6.1 and 6.2 in Appendix A, we
note that α ∈ [10−9 ; 10−5] ms−1, and that csat ∈ [4 ; 40] ×10−7 mol cm−3. If we use the fol-
lowing parameters: α = 10−7 ms−1 (for h = 100 µm in Tab. 6.1) and csat = 10−6 mol cm−3 with
the concentration difference (c− csat) ∼ csat (i.e., we have locally added csat in the film), we find
that ∂tη ≃ 3.7 × 10−12 ms−1. If we assume that all the ions precipitate within 10 s at a constant rate
of precipitation in all points of the film, the growth per drop would be of about 37 pm over the en-
tire stalagmite. If we further consider that drop dripping period is a little over every 10 s, such that
it would be equivalent to 7500 drop impacts per day, we have a net stalagmite growth over the year
of approximately 100 µm, in correspondence with the observations from the literature presented
in Sec. 1.5. We note that by multiplying α by a given factor k, if the ion concentration is uniform
over the entire stalagmite and if the film is at steady-state, the growth rate is simply multiplied by
the same factor k. Hence, we would only need 1/k impacts to obtain the same stalagmite growth.
In nondimensional form, using once again η = η′hd, t = t′ td, c = c′csat and α = hd/tp, the former

193



equation becomes

∂t′η
′ =

csatmm,CaCO3

ρCaCO3

(
td
tp

)
(c′ − 1) . (6.19)

With this equation, as well as Eqs. (6.13), (6.14), (6.15),and (5.46) and (5.47) from Ch. V, we have
a complete system of coupled equations describing the drainage of the film, occurring simulta-
neously with the ion precipitation and stalagmite growth. Since we cannot solve this system of
non-linear equations analytically, we proceed numerically by using the approach described in the
next section. The drop addition is explained at the end of the section.

1.4 Numerical scheme

In this section only, all the variables x are used in their non-dimensional form, but for the sake of
simplicity we write them as x rather than x′. We proceed to solve the system of equations derived
in the former section numerically, as in Ch. V, and apply the same formalism, that we represent
for the ion concentration in Fig. 6.2. By keeping the same stencil as described in Sec. 4.5 from
Ch. V (see Fig. 5.17), we define the discrete values of the ion concentration ci at the centres of the
cells i = 1, . . . , I of fixed size ∆ξ, positioned at ξi. We also use the same cell-centered values as
in Ch. V for the film thickness, hi, and the local stalagmite inclination, φi. We can thus rewrite
Eq. (6.13) as

(∂tc)
∣∣∣
i
≈ h2

i

[
(∂ξh)

∣∣∣
i
cosφi −

(
rd
hd

)
sinφi

]
(∂ξc)

∣∣∣
i
+

1
hi

(
td
tp

)
(1− ci) , hi > 0 , (6.20)

If the film thickness locally cancels, i.e., hi = 0, the concentration ci is by default set to 0 as well
since the solution of ions cannot exist without the presence of the film. This situation only arises
when the stalagmite, initially dry, gets progressively covered by drop impacts at the beginning of
a simulation. For this reason, we note from the former relation that there is no need for odd-even
decoupling [112] as it was the case with the numerical resolution of the film drainage (see Sec. 4).
We use the same central finite difference formula to evaluate the first-order spatial derivatives,
except that this time the derivatives are evaluated at the cell centres. This yields the following
approximation for the thickness gradient:

(∂ξh)
∣∣∣
i
≈ hi+1/2 − hi−1/2

∆ξ
, (6.21)

and for the ion concentration gradient:

(∂ξc)
∣∣∣
i
≈ ci+1/2 − ci−1/2

∆ξ
· (6.22)

The film thickness hi±1/2, and ion concentration ci±1/2, correspond to the film thickness and ion
concentration evaluated at the faces of the cells, respectively. We can approximate these values as
we did in Ch. V by their average between cells i and i ± 1, as shown in Fig. 6.1. For, e.g., the ion
concentration ci+1/2, this leads to

ci+1/2 ≈
1
2
(ci + ci+1) , i = 0, . . . , I . (6.23)

The above equations hold for all the steps n ≥ 0 of the simulations, which are separated by the
same constant time step ∆t as in Ch. V. To estimate the time derivative of the ion concentration c
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at position i and time step n, we use the explicit first-order Euler scheme, i.e.,

(∂tc)
∣∣∣n
i
≈ cn+1

i − cn
i

∆t
· (6.24)

Numerically, we also update the stalagmite profile growing perpendicularly to the coordinate ξ in
every point using Eq. (6.19), which now becomes

ηn+1
i ≈ ηn

i +
∆t csatmm,CaCO3

ρCaCO3

(
td
tp

)
(cn

i − 1) , (6.25)

where the stalagmite elevation ηn
i is also evaluated at the centre of the cells, just as cn

i . We note
that, because the precipitation only occurs if the solution is supersaturated, the condition cn

i > 1
must be ensured in order to produce precipitation and a positive local stalagmite elevation, i.e., a
stalagmite growing upward. The case of dissolution corresponds to cn

i < 1 in the former relation,
and will be covered briefly in Sec. 2.3.3. If cn

i = 1, nothing happens and the stalagmite profile
remains identical.

The drainage equation resolution providing the film thickness hn
i is the same as in Ch. V, except

for the stalagmite profile which is updated at each time step. This translates into the computation
of new values of ξ and φ at the centres of the cells at time step n, i.e., we can define ξn

i and φn
i . To

update ξ, we simply use its definition from Eq. (5.48) in Ch. V by including the change in η at time
step n, which corresponds to the elevation that will be used in the calculations at time step (n + 1),
i.e.,

ξn+1
i (ri) =

∫ ri

0

(
1 +
(

(∂rη)
∣∣∣n+1

ri

)2
)1/2

dr ≈
∑
∆ri

(
∆r2i +

(
∆ηn+1

i

)2)1/2
, (6.26)

where∆ηn+1
i = ηn+1

i −ηn
i . The local inclination at every radial coordinate (at the centre of the cell)

is updated accordingly, by using

φn+1
i = arctan

(
(∂rη)

∣∣∣n+1

ri

)
= arctan

(
∆ηn+1

i

∆ri

)
. (6.27)

The grid step,∆ξ, which is maintained constant along the stalagmite profile, can therefore slightly
vary from one step to another. If it were to become too large with respect to the value set initially
for∆ξ, an extra cell would be added to the grid, and the film thickness, h, the ion concentration, c,
and stalagmite elevation, η, would be interpolated over the new grid. As illustrated in Fig. 6.1, be-
cause the variations of η are very small compared to the film thickness (the aforementioned growth
of 37 pmper drop corresponds to 37 × 10−8hd, and this value is a priori computed over several time
steps), in practice there is no need to update the number of grid cells, and the changes in ξ and φ
are relatively small. We can also safely assume that the film thickness obtained over the stalagmite
elevation ηn(r) at time step n simply remains the same over the updated elevation ηn+1(r). In other
words, the film is locally shifted upwardwherever needed, but the elevation changes are only taken
into account in the calculations of the film thickness and ion concentration at step n + 1.

To account for the ions coming from the drop at impact, we cannot proceed in the same man-
ner as in Ch. V, in which case we simply added liquid over the existing film where the drop arrived
in the film. If the concentration of ions in the film over a liquid ring of volume Vring can be con-
sidered as uniformwithin this ring, it varies with the radial position r, i.e., from one cell to another.
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Figure 6.2: Illustration of the complete numerical model. The Drop addition panel shows graphically the steps from
Eqs. (6.28)-(6.30), i.e., the calculation of the ion quantity in the drop and the film from the known ion concentrations
(before impact), the addition of the ions from the drop and the ions from the film (at impact), and the calculation of
the ion concentration from the quantity of ions in the film (after impact). The part of the drop containing ions and
entering the film is φd )f ′ cdVd. The drop radius is rd (see Ch. V) but the ion distribution only spreads on a radius Req

(see Ch. IV). The Calculations panel represents the stencil used to compute the ion concentration, approximated by
Eqs. (6.20)-(6.24). The evolution of the film thickness because of drainage is computed using the scheme from Sec. 4.5
in Ch. V. The Shape Update panel shows how the stalagmite profile is increased by ∆η in between impacts, when new
matter is added (∆η > 0, or removed if ∆η < 0) in every cell.

Because of this, the new concentration following the impact of a drop, cn+1, cannot be written as
a linear combination of the concentration in the film before impact, cn, and the concentration in
the drop, cn

d. This would only be true for a constant film thickness. However, the quantity of ions
contained in the liquid ring of volume Vring, Cn, remains extensive. We therefore proceed to add
the ions coming from a drop in the film by first computing the quantity of ions in each cell at time
step n as

Cn
i = cn

i V
n
ring, i ≈ π r2(∆ξn) hn

i cn
i . (6.28)

Next, the new quantity of ions can be calculated by summing the ions initially in the film and the
new ones from the drop, i.e.,

Cn+1
i = Cn

i + Cn
d, i , (6.29)
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where Cn
d, i is given by Eq. (6.15). The value of Cn

d, i is null for all the cells located at r > Req. We then
update the concentration in the film by reverting the operation from Eq. (6.28), yielding

cn+1
i =

Cn+1
i

Vn+1
ring, i
≈ Cn+1

i

π r2(∆ξn+1) hn+1
i
· (6.30)

In the above relation, we use for the new film thickness hn+1
i the value obtained by adding the drop

at impact, as described in Sec. (4.5.2) from Ch. V. Since this time step only consists in adding the
drop in the film, the values of∆ξn+1 and φn+1

i remain unchanged between n and (n+ 1). This pro-
cedure is illustrated in Fig. 6.2. After the drop addition, the calculations are continued as described
above.

Finally, we note that the number of impacts necessary to reach an average stalagmite growth
of 1 µm y−1 to 1000 µmy−1 as in caves [17] is of the order of 105 to 106 drop impacts (using once
again the estimation of ∂tη ∼ 10−12 ms−1). Getting significant stalagmite profile variations over
decades of growth would require even more drop impacts, yielding a very large number of oper-
ations and resources with the numerical scheme used here. Over such long periods, the environ-
mental parameters of the stalagmite are also expected to vary, at least seasonally [20]. Since we do
not have access to experimental records of stalagmite growth to compare the simulations that we
could obtain, it seems pointless to go at such lengths without even having a basic understanding
of the influence of the environmental parameters defined in Sec. 1.5 hereafter. The goal of this
chapter is thus not to run simulations allowing to model a century-worth growth of stalagmite,
but rather to grasp the effect that the environmental parameters may each have on subsequent
stalagmite growth, by keeping all the other variables constant. The growths obtained will there-
fore be relatively small, such that it will not significantly affect the drainage of the film and induce
time-variable processes, as already discussed. If we start from an initially perfectly horizontal sta-
lagmite surface, the entire simulation can therefore be seen as conducted over a flat plane. The
same holds if we impose a convex or concave stalagmite profile of height varying over the order
of ∼ hd to ∼ 1000hd. Hence, the drainage regime (either dominated by the film thickness gra-
dients or the inclination of the stalagmite surface, see Sec. 6), remains the same during the entire
simulation. We shortly review the effect of these two drainage regimes in Sec. 2.3.2.

1.5 Three input parameters
Following the above discussion, we note that the independent variables of the complete model are:
• t0/td, the ratio of the dripping period and drainage timescale, that was already varied in

Ch. V. We recall that a lower dripping period t0/td, i.e., a larger inflow Qdrip, yields a longer
filling phase of the film and larger stationary film thickness hs. At steady-state for a fixed
stalagmite surface, the drainage outflow Qdrain should indeed match the inflow Qdrip, which
is only achieved if either h or∂ξh increases, i.e., for increasing h at the centre of the stalagmite
(see Eq. (5.3) and Sec. 5.2 from Ch. V).

• td/tp, the ratio of the drainage and precipitation timescales, which indicates how these two
processes compete. For td/tp ≫ 1, i.e., tp ≪ td, we expect the ions to have precipitated
long before the film has spread them through drainage. By contrast, for td/tp ≪ 1, the ions
should have been redistributed more uniformly throughout the film because drainage will
transport them before they can precipitate.

• csat, the ion saturation concentration, assumed constant everywhere in the film and over
time for a given simulation. Although both csat and tp (representing α) are related to the ion
precipitation, the precipitation timescale indicates how the ions get distributed in the film
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spatially, while csat dictates the average vertical growth rate to which the stalagmite is sub-
jected at steady-state. While the ratio td/tp can change in response to a change in td though,
the value of csat is directly dependent on the environmental conditions, i.e., the partial pres-
sure in carbon dioxide, pH or temperature in the vicinity of the stalagmite (see Tabs. 6.1
and 6.2).

Additionally, we fix the ion concentration in the impacting drops appearing in Eq. (6.15), cd, at the
saturation value of the ion concentration, csat, so that c′d = 1 in all the drops. Although the drop ion
concentration could differ from csat for actual stalagmites, tuning cd by multiplying it by a factor k,
e.g., will result in also multiplying the stalagmite growth by this factor k. However, this has the
exact same effect as multiplying the ion saturation concentration csat by k. Hence, there is no need
to take into account both parameters from a numerical point of view. The parameters related to
the mixing between the drop and the film, and thereby to the local film thickness at impact, are
the aforementioned equivalent spot radius, Req, and proportion of the drop left in the film post
impact,φd)f ′ . They will yield different results for variable conditions (t0/td, td/tp, csat) while always
maintaining a constant drop ion concentration. Finally, we know from the literature reviewed in
Ch. I that the kinetics of precipitation and dissolution of calcite are very similar to one another.
Because of the fine balance existing between these two processes in typical cave conditions [70],
we consider that dissolution only corresponds to a change of sign in Eq. (6.15) while the absolute
values of α and csat remain the same. We will not cover this process thoroughly but still give an
example of simulation involving dissolution in Sec. 2.3.

2. Resulting stalagmite shape temporal evolution
By solving the systemof equations thatweobtained in the previous section, we are nowable to sim-
ulate various stalagmite profiles in response to the three aforementioned tune parameters, t0/td,
td/tp and csat. We start by comparing simple test cases and review the effect of each parameter
on local stalagmite growth. If the stalagmite grows under constant environmental conditions, we
can measure the average growth between profiles separated by a certain number of impacts, and
estimate the corresponding shape Ψ and scale S of these stalagmite profiles. We then pursue our
discussion by comparing the two timescale ratios at once in Sec. 2.2. Several regimes might indeed
arise from the comparison of the drop dripping period t0, the drainage timescale td and the ion pre-
cipitation timescale tp. We also compare the growth rate obtained to Dreybrodt’s model. Finally,
we perform a few simulations by varying, e.g., the initial shape of the stalagmite or by changing the
parameters over the course of a simulation in Sec. 2.3.

2.1 Examples of stalagmite profile evolution
In this section, we show examples of the stalagmite profile evolution with time for various sets
of parameters. We start by reviewing the sole effect of either csat, t0/td or td/tp on the resulting
stalagmite profile evolution. We will then vary t0/td and td/tp simultaneously in Sec. 2.2. Only the
sole precipitation is covered in the following examples. An example containing dissolution will be
presented in Sec. 2.3. To keep this chapter short, the parameters inferred from the simulations are
introduced in the first example for which one parameter is varied at a time from the next section,
i.e., there is no dedicated section as it was the case in Chs. IV and V. Hence, it is advised to read the
following sections in the assigned order.
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2.1.1 Effect of the dripping period

We compare in Figs. 6.3 and 6.4 the results from two numerical simulations performed in iden-
tical conditions, except for the ratio t0/td. The parameters used are csat = 5 × 10−7 mol cm−3 and
td/tp = 1, and the simulations are run for 104 drop impacts, i.e., for Nd = 104 (see Sec. 5.1 from
Ch. V). The dripping period to drainage timescale ratio used in both cases is equal to t0/td = 0.5
and t0/td = 2 in Figs. 6.3 and 6.4, respectively. We can alsowrite these comparisons as t0 < td = tp
and td = tp < t0, respectively. In each figure, panels (a) and (b) represent the film thickness, h, and
ion concentration, c, respectively, at the stalagmite centre, as a function of the number of drops Nd

during the first 50 drop impacts. The insets of these two panels each show the last 10 drop impacts
of the simulations. It should be noted that panels (b) in each figure represent c/csat − 1. The ions
in solution only precipitate because the solution is supersaturated, i.e., once the precipitation has
occurred, the ion concentration remains at csat, such that c never vanishes in the simulations. The
panel (c) in each figure illustrates the stalagmite profile calculated every 1000 drop impacts from a
perfectly horizontal plane atNd = 0, for up toNd = 104. At each time step during the simulations,
we are able to infer the shape and scale parameters, resp.Ψ and S, from the current stalagmite pro-
file. To do so, we proceed in the same manner as described in Sec. 3.2 from Ch. II, except that,
instead of gathering experimental data points from stalagmite profile photographs, we can infer
the parameters directly from the η(r) curves computed numerically. The shape parameter,Ψ, and
scale, S, are represented in panels (d) and (e) of Figs. 6.3 and 6.4, respectively. Finally, in panel (f)
of Figs. 6.3 and 6.4, we show the difference in growth rate between two consecutive impacts at
the centre of the stalagmite, i.e., in r = 0, as a function of the number of impacts, Nd. Because all
the drops impact the stalagmite at the centre, the growth rate is always maximum at r = 0. The
maximum growth difference between consecutive impacts is defined as

∆ηmax(Nd) = η(r = 0,Nd)− η(r = 0,Nd − 1) . (6.31)

With the drop typical height set to hd = 10−4 m, we note that, in Figs. 6.3 (c) and (f), and 6.4 (c)
and (f), the actual height reached by the stalagmite is of the order of 1 µm to 10 µm, and that the
maximum growth difference per impact is comprised between 0.1 nm and 1 nm.

In Figs. 6.3 (a) and (b), as well as in Figs. 6.4 (a) and (b), we observe that both h and c reach a
stationary state after a few tens of impacts, then remain in this state due to the small variations
of η over the number of impacts covered in regard of the film thickness. The film thickness and
ion concentration in the insets of Figs. 6.3 (a) and (b), and Figs. 6.4 (a) and (b), i.e., at the end of the
simulations, indeed exhibit the exact same behaviour as for Nd ∈ [40 ; 50] in the corresponding
main graphs. If the film thickness is at steady-state, without splashing at impact, the inflowbrought
by the successive drops in the film is compensated by the drainage outflow over the side of the
stalagmite at each impact, or Qdrip = Qdrain (see Eq. 5.3 from Ch. V). If the ion concentration is
at steady-state, the renewal of the ions brought by the successive drops perfectly balances out the
amount of ions lost throughprecipitation, or∂tC = 0 inEq. (6.2). Wenote that, even ifwewere able
to define a similar criterion for the number of drops after which c reaches a steady state as we did
for h in the former chapter, h and cmight still not be at steady-state after the same amount of drops.
This can be witnessed in Figs. 6.4 (a) and (b) where c is clearly at steady-state after only 2 or 3 drops
while h is still in a transient phase. Because the simulations are usually run up to at least Nd =
1000, we will therefore not define the number of drops after which either the film thickness or
concentration reaches a stationary phase, but simply assume that the parameters Ψ and ∆ηmax

should be at steady-state forNd ≳ 100. This aligns closelywith the limit value found forNs inCh. V
(see, e.g., Sec. 5.2 from Ch. V). Similarly, the equivalent spot radius, Req, and drop proportion left in
the film post impact, φd)f ′ , both depending on h, should remain constant past the initial transient
phase of h. We represented their values measured for Nd ≥ 100 in Figs. 6.3 (c) and 6.4. (c). As we
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already emphasised in Sec. 1.3, we do not model stalagmite growth for a sufficiently long time to
observe variations in h and c as a result of stalagmite shape variations, although these variations
should eventually appear after a sufficient amount of drops. Hence, although we consider that the
film thickness and ion concentration are at steady-state, this is only a steady-state due to the very
short stalagmite growth that we model.

We start by comparing the film thickness and ion concentration from Figs. 6.3 (a-b) and 6.4 (a-
b). As we could expect from the former results obtained for the sole drainage, the stationary film
thickness increases with increasing inflow, i.e., it is larger in Fig. 6.3 (a) than in Fig. 6.4. (a). A value
of t0/td = 0.5 indeed corresponds to the equivalent of two drop impacts for a given drainage
timescale td, while the inflow relative to t0/td = 2 would correspond to the equivalent of half a
drop impact over td. The resulting inflow is 4 times smaller for t0/td = 2 than for t0/td = 0.5
(using Qdrip = Vd/t0, see Sec. 4.3). We also note in both Figs. 6.3 (c) and 6.4. (c) that, in accordance
with the results from Figs. 4.9 and 4.13 regarding the mixing at impact in Ch. IV, the equivalent
spot radius, Req, and proportion of the drop left in the film post impact, φd)f ′ , are larger for a
larger film thickness, i.e., for t0/td = 0.5 (Fig. 6.3). Hence, the amount of ions entering the film at
impact should likewise increase, although slightly as the difference between φd)f ′ in both cases is
not substantial (about 15%). With a larger film thickness at the centre of the stalagmite in Fig. 6.3 (a)
and by a simple mass balance, we would therefore expect c in Fig. 6.3 (b) to be smaller than in
Fig. 6.4 (b) (if C remains identical, a larger film thickness h should yield a smaller concentration c
over the same area). However, this is not the case. We recall that, because td/tp remains constant
in between both cases, the case for which t0/td = 0.5, resp. t0/td = 2, actually corresponds to
t0 = 0.5tp, resp. t0 = 2tp. Hence, the shorter dripping period and larger inflow t0/td = 0.5
correspond to the case where the time between two drop impacts is not sufficient for the ions in
solution to precipitate, nor to be drained away from their impact point position by gravity. By
contrast, when t0/td = 2, the ions in solution have enough time not only to precipitate but also
to be drained away in between two impacts. It is therefore not surprising to find that c is larger in
Fig. 6.3 (b) than in Fig. 6.4 (b). Because td = tp, the characteristic length scale over which the ions
precipitate should correspond to the characteristic drainage length scale that has been set to rd
by virtue of the definition of the drainage timescale (see Eq. (5.14) in Ch. V). We thus observe in
Fig. 6.3 (c), when ions precipitate at the same time as they are drained away, that the stalagmite
extends over r = 2rd, i.e., one additional rd from their original impact point position. On the
other hand, the spatial extension of the stalagmite in Fig. 6.4 (c) is bounded below r = rd.

As aforementioned, the proportion of ions entering the film at impact, φd)f ′ , is slightly larger
for t0/td = 0.5 (Fig. 6.3) than for t0/td = 2 (Fig. 6.4) and so is the actual quantity of ions en-
tering the film. We have also already noted that c remains larger at the centre of the stalagmite
for t0/td = 0.5. The maximum in-between impacts growth,∆ηmax, is therefore larger in Fig. 6.3 (f)
than in Fig. 6.4 (f). Consequently, the stalagmite from Fig. 6.3 (c) also appears taller than the one
from Fig. 6.4 (c). By mass conservation, because the stalagmite from Fig. 6.3 (c) is also wider than
the one from Fig. 6.4 (c), the height difference between both stalagmites turns out to be relatively
small. We note that this comparison is based on the total number of drops, which is identical, but
not on the total actual time of the simulations, which is different since the ratio t0/td differs from
Fig. 6.3 to Fig. 6.4. Obtaining the same stalagmite growth for the same time period rather than the
same number of drops, but different t0/td ratios, would thus imply that the actual values of both t0
and td vary. Because the added mass at each impact is spatially distributed differently, we could
also consider the added volume at impact rather than the added height. However, in stalagmite
growth reconstruction [19], the thickness of the annually laminated layers appearing in the stalag-
mite cut is usually considered rather than the added volume per year. This added volume could be
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Figure 6.3: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 5 × 10−7 mol cm−3, cd = csat, t0/td = 0.5 and td/tp =
1. (a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the centre
of the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat), with the
number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows the last 10
impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts. Intermediate
lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with the number of
drop impacts,Nd, of the stalagmite shape factor,Ψ, (d), the stalagmite scale, S, (e), and the in-between impact stalagmite
growth, ∆η, (f). All three curves (d-f) are only represented beyond the transient phase, for Nd ≥ 100. The equivalent
radius of the spot left by the drop in the film, Req = 0.97rd, is represented by the shaded gray area and vertical dashed
line in (c). The proportion of the drop left in the film post-impact,φd )f ′ = 0.49, corresponds to the partially filled disk
below the colour bar in (c)3.

3In the disk relative to φd )f ′ in the subsequent figures, it can be noted that both the coloured portion as well as the
gray hue correspond qualitatively to the value of φd )f ′ .
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Figure 6.4: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 5 × 10−7 mol cm−3, cd = csat, t0/td = 2 and td/tp = 1.
(a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the centre of
the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat), with the
number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows the last 10
impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts. Intermediate
lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with the number of
drop impacts,Nd, of the stalagmite shape factor,Ψ, (d), the stalagmite scale, S, (e), and the in-between impact stalagmite
growth, ∆η, (f). All three curves (d-f) are only represented beyond the transient phase, for Nd ≥ 100. The equivalent
radius of the spot left by the drop in the film, Req = 0.79rd, is represented by the shaded gray area and vertical dashed
line in (c). The proportion of the drop left in the film post-impact,φd )f ′ = 0.42, corresponds to the partially filled disk
below the colour bar in (c).
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difficult to measure in actual stalagmite cuts, especially because the laminae are not always eas-
ily distinguishable everywhere in the cut (see, e.g., the hiatus in Fig. 1.11 (b)). Additionally, we
observe in Figs. 6.3 (f) and 6.4 (f) that ∆ηmax remains constant over the 104 drop impacts from
the simulations, such that the various profiles represented for η in Figs. 6.3 (c) and 6.4 (c) are all
equidistant at r = 0. Surprisingly though, the stalagmite does not grow 4 times faster when
the flux of calcite in the incoming drops is multiplied by 4, i.e., when t0 is divided by 4. We in-
deed have a constant growth rate of ∂t∆η

max = ∆ηmax/t0, with t0 equal to either 0.5td or to 2 td.
Using the actual values found for ∆ηmax in both cases, we obtain ∂t∆η

max = 13 × 10−10 ms−1

and ∂t∆η
max = 2.5 × 10−10 ms−1, respectively, i.e., a ratio of 5.2. Both the width and height of

the stalagmite have an effect on the resulting shape and scale parameters, Ψ and S. We indeed
observe in Figs. 6.3 (d-e) and Figs. 6.4 (d-e) that there are significant differences between the re-
spective values of Ψ and S. Although it is not perfectly the case in Fig. 6.3 (d), we nevertheless
note that Ψ remains constant in Figs. 6.3 (d) and 6.4 (d). As expected, the values of Ψ are negative
since they correspond to convex stalagmite profiles. The stalagmite in a stationary state of growth
therefore keeps a constant shape Ψ while only S varies. With a ratio of 1/4 at constant td between
the two dripping periods t0 relative to Figs. 6.3 and 6.4, respectively, we note that Ψ is almost di-
vided by 2 between Figs. 6.3 (d) and 6.4 (d), whereas S is almostmultiplied by 3 between Figs. 6.3 (e)
and 6.4 (e). These effects will be further investigated in Sec. 2.2.

2.1.2 Effect of the precipitation timescale
We now take interest in the effect of the ratio td/tp on the stalagmite profile, for otherwise iden-
tical conditions. We conducted two simulations for which csat = 5 × 10−7 mol cm−3, t0/td = 1,
and td/tp = 0.2 and td/tp = 5, represented in Figs. 6.5 and 6.6, respectively, for 104 drop impacts.
These timescale comparisons can also be written as t0 = td < tp and tp < t0 = td, respectively. All
panels (a-f) of both figures represent the same variables as in Figs. 6.3 and 6.4 from the previous
section. We once again observe that both h and c are at steady-state after less than the 50 impacts
shown in Figs. 6.5 (a-b) and 6.6 (a-b), respectively. In Figs. 6.5 (d) and (f), and Figs. 6.6 (d) and (f),
we also note thatΨ and∆ηmax, respectively, both remain constant.

We first note in Figs. 6.5 and 6.6 that the parameters mostly related to the balance between
the drop inflow and drainage outflow of the film, h, and consequently Req and φd)f ′ , take similar
values. This is not surprising considering that we imposed t0/td = 1. Hence, the film thickness
evolutions with Nd presented in Figs. 6.5 (a) and 6.6 (a) look very much alike. One of the major
differences betweenFigs. 6.5 and 6.6, though, is the behaviour exhibited by the ion concentration in
the film. For a dripping period equal to the drainage timescale, the ratio td/tp = 0.2, or td = 0.2tp,
indicates that the ions are redistributed in the film by drainage following the impact before they
can all precipitate and before a new drop arrives to renew the ions in solution. On the other hand,
for t0/td = 1 and td/tp = 5, or td = 5tp, the ions brought at each impact precipitate long before
they can be drained away or renewed by a drop impact. Consequently, the ion concentration in
Fig. 6.5 (b) always remains larger than in Fig. 6.6 (b).

Because in the case for which td/tp = 5, there is almost no spatial redistribution of the ions
in the film between impacts, we note that the stalagmite width remains of the order of Req in
Fig. 6.6 (c). By contrast, the drainage dominating the precipitation when td/tp = 0.2 yields a much
wider stalagmite in Fig. 6.5 (c). Sinceφd)f ′ is almost the same in the two cases considered, the values
displayed by the maximum in-between drop impacts growth, ∆ηmax, also remain close. It is diffi-
cult to read in the graphs of Figs. 6.5 (f) and 6.6 (f), but ∆ηmax is about 10% smaller for td/tp =
0.2 than for td/tp = 5. Because drainage is faster in the case of Fig. 6.5, ions get distributed
over a larger region, which might explain the wider stalagmite obtained. The comparison of the
timescale ratios, t0/td and td/tp, may also lead to different actual values of the three timescaless
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Figure 6.5: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 5 × 10−7 mol cm−3, cd = csat, t0/td = 1 and td/tp =
0.2. (a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the
centre of the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat),
with the number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows
the last 10 impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts.
Intermediate lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with
the number of drop impacts, Nd, of the stalagmite shape factor, Ψ, (d), the stalagmite scale, S, (e), and the in-between
impact stalagmite growth,∆η, (f). All three curves (d-f) are only represented beyond the transient phase, forNd ≥ 100.
The equivalent radius of the spot left by the drop in the film, Req = 0.88rd, is represented by the shaded gray area and
vertical dashed line in (c). The proportion of the drop left in the film post-impact, φd )f ′ = 0.46, corresponds to the
partially filled disk below the colour bar in (c).
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Figure 6.6: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 5 × 10−7 mol cm−3, cd = csat, t0/td = 1 and td/tp = 5.
(a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the centre of
the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat), with the
number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows the last 10
impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts. Intermediate
lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with the number of
drop impacts,Nd, of the stalagmite shape factor,Ψ, (d), the stalagmite scale, S, (e), and the in-between impact stalagmite
growth, ∆η, (f). All three curves (d-f) are only represented beyond the transient phase, for Nd ≥ 100. The equivalent
radius of the spot left by the drop in the film, Req = 0.87rd, is represented by the shaded gray area and vertical dashed
line in (c). The proportion of the drop left in the film post-impact,φd )f ′ = 0.45, corresponds to the partially filled disk
below the colour bar in (c).
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hence the difference in the seemingly precipitated volume due to a certain number of drop impacts.
We also observe that, as in the previous section, the differences exhibited by the stalagmites in
Figs. 6.5 (c) and 6.6 (c) translate into different shape factors, Ψ, and scales, S, in Figs. 6.5 (d-e) and
Figs. 6.6 (d-e), respectively. We further note that the case fromFig. 6.5, resp. Fig. 6.6, is very similar
to the case presented in Fig. 6.3, resp. Fig. 6.4. Hence, there seems to exist different combinations
of the ratios t0/td and td/tp yielding similar stalagmite shapes, scales and growth rates. However,
this might come from the nondimensionalisation of the equations performed in Sec. 1.3: changing
either t0/td at fixed td/tp or changing td/tp at fixed t0/td may indeed correspond to the same sole
change in td.

2.1.3 Effect of the saturation concentration and scaling

This section emphasizes the effect of csat on subsequent stalagmite growth through the examples
presented in Figs. 6.7 and 6.8. The simulations used to obtain both figures were run for 104 drop
impacts, with t0/td = 1 and td/tp = 1. For Fig. 6.7, we used csat = 10−7 mol cm−3, whereas for
Fig. 6.8, we used csat = 10−6 mol cm−3, i.e., an ion saturation concentration ten times larger. In
Tabs. 6.1 and 6.2, we see that csat increases due to either a larger partial pressure in carbon dioxide
in the vicinity of the stalagmite, pCO2 , or a smaller temperature. If pCO2 increases, the amount of ions
that can be in solution in the film before the solution becomes saturated increases since the CO2

conversion sets the kinetics of the precipitation reaction [70]. By using cd = csat, we therefore add
more ions in the drops impacting the film and increase the total number of ions in the solution.
Hence, if csat is multiplied by a factor k, we expect the average ion concentration at steady state,
and thereby the growth rate, to be multiplied by k as well. Equation (6.19) indeed indicates that the
growth rate varies proportionally to csat since we used c′d = cd/csat, that we set to 1 (or cd = csat). In
Eq. (6.18), using cd = csat in the impacting drops yields ((1 + φd)f ′)csat − csat). Because both t0/td
and td/tp are the same in the two cases and because the stalagmite profile variations are not signifi-
cant in comparisonwith the film thickness, we note without surprise that the film thickness, h, and
ion concentration, c, look identical in Figs. 6.7 (a-b) and Figs. 6.8 (a-b), respectively. Therefore, the
proportion of the drop going into the film φd)f ′ , is almost the same in both cases (0.46 in Fig. 6.7
and 0.45 in Fig. 6.8), and the growth rate is proportional to φd)f ′csat. Similarly, the shape factor Ψ
of the two stalagmites is equal to -7.7, as indicated by Figs. 6.7 (d) and 6.8 (d). We also note in both
Figs. 6.7 (c) and. 6.8 (c) that the stalagmites extend over a radius of about 2rd.

The main visible difference between the two cases is the growth rate of the stalagmites, since it
is directly proportional to csat (see Eq. (6.18)). We therefore observe that the maximum in-between
impacts growth ∆ηmax is multiplied by 10 from Fig. 6.7 (f) (csat = 10−7 mol cm−3) to Fig. 6.8 (f)
(csat = 10−6 mol cm−3). The stalagmite from Fig. 6.7 (f) is likewise 10 times shorter than the sta-
lagmite from Fig. 6.8 (f). This translates into a scale S slope also multiplied by 10 from Fig. 6.7 (f)
(csat = 10−7 mol cm−3) to Fig. 6.8 (f) (csat = 10−6 mol cm−3). Hence, the ion saturation concen-
tration csat has no other effect on the stalagmite growth than to rescale a given stalagmite profile
obtained at fixed t0/td and td/tp values. There is thus no need to systematically vary csat to observe
its effect on subsequent stalagmite growth, at least in the limiting case that is considered here,
where the stalagmite grows at a steady-state such that the stationary film thickness remains con-
stant. The dynamics exhibited by Figs. 6.7 and 6.8 would likely be different if the stalagmite growth
became sufficient (i.e., of the order of hd rather than hd/10 as in the cases presented here) to affect
the behaviour of the film thickness over time, which would in turn change the concentration and,
thereby, subsequent growth. As mentioned in the beginning of the chapter, we will not conduct
such long simulations that could yield stalagmite profiles varying over time. However, we will
vary t0/td and td/tp over the course of a simulation in the next section so as to get a preliminary
observation of the features exhibited by time-variable stalagmite profiles.

206



0

1

2

3

h(
r
=

0)
/h

d

9.99 × 103 104
0

3

Nd

h/
h d

0 10 20 30 40 50
0

1

2

Nd

(c
(r

=
0)

−
c sa

t)
/c

sa
t

9.99 × 103 104
0

2

Nd

c/
c sa

t−
1

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

r/rd

10
2 ×

η
/h

d

0

2.5

5

7.5

1010−3×Nd

102 103 104
-11

-9

-7

-5

Nd

Ψ

103 5 × 103 104
0

1.5

Nd

10
2 ×

S

102 103 104
1

5

10

Nd

10
6 ×

∆
η
m
ax
/h

d

(a)

(b)

(c)

(d) (e) (f)

R e
q

φd )f ′

Figure 6.7: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 1 × 10−7 mol cm−3, cd = csat, t0/td = 1 and td/tp = 1.
(a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the centre of
the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat), with the
number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows the last 10
impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts. Intermediate
lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with the number of
drop impacts,Nd, of the stalagmite shape factor,Ψ, (d), the stalagmite scale, S, (e), and the in-between impact stalagmite
growth, ∆η, (f). All three curves (d-f) are only represented beyond the transient phase, for Nd ≥ 100. The equivalent
radius of the spot left by the drop in the film, Req = 0.88rd, is represented by the shaded gray area and vertical dashed
line in (c). The proportion of the drop left in the film post-impact,φd )f ′ = 0.46, corresponds to the partially filled disk
below the colour bar in (c).

207



0

1

2

3

h(
r
=

0)
/h

d

9.99 × 103 104
0

3

Nd

h/
h d

0 10 20 30 40 50
0

1

2

Nd

(c
(r

=
0)

−
c sa

t)
/c

sa
t

9.99 × 103 104
0

2

Nd

c/
c sa

t−
1

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

r/rd

10
2 ×

η
/h

d

0

2.5

5

7.5

1010−3×Nd

102 103 104
-11

-9

-7

-5

Nd

Ψ

103 5 × 103 104
0

1.5

Nd

10
2 ×

S

102 103 104
1

5

10

Nd

10
6 ×

∆
η
m
ax
/h

d

(a)

(b)

(c)

(d) (e) (f)

R e
q

φd )f ′

Figure 6.8: Example of stalagmite profile evolutionwith the number of drop impacts (time), from an initially perfectly
horizontal surface. The following parameters were used: csat = 1 × 10−6 mol cm−3, cd = csat, t0/td = 1 and td/tp = 1.
(a) Evolution of the film thickness, h, with the number of drop impacts, Nd, during the first 50 impacts, at the centre of
the stalagmite. The inset shows the last 10 impacts. (b) Evolution of the concentration difference, (c− csat), with the
number of drop impacts, Nd, during the first 50 impacts, at the centre of the stalagmite. The inset shows the last 10
impacts. (c) Stalagmite elevation, η, as a function of the radial coordinate, r, for up to 104 drop impacts. Intermediate
lines show the elevation every 1000 drop impacts, as indicated by the colour bar. (d-f) Evolution with the number of
drop impacts,Nd, of the stalagmite shape factor,Ψ, (d), the stalagmite scale, S, (e), and the in-between impact stalagmite
growth, ∆η, (f). All three curves (d-f) are only represented beyond the transient phase, for Nd ≥ 100. The equivalent
radius of the spot left by the drop in the film, Req = 0.87rd, is represented by the shaded gray area and vertical dashed
line in (c). The proportion of the drop left in the film post-impact,φd )f ′ = 0.45, corresponds to the partially filled disk
below the colour bar in (c).
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2.2 Comparison between the drop dripping period, the drainage timescale
and the precipitation timescale

Following the observations made in the few introductory examples of the previous section, we
know that the effect of csat on a stalagmite in a steady-state of growth is rather straightforward.
As we could deduce from Eq. (6.18), using kcsat instead of csat results in a stalagmite height mul-
tiplied by the factor k. Hence, we only focus on varying t0/td and td/tp simultaneously in this
section. We compare the stalagmite profile evolution over time, computed numerically, in the lim-
iting regimes that were already mentioned in Sec. 2 from Ch. I. We analyse the effect of the two
timescale ratios t0/td and td/tp that both vary in the set {0.1 ; 1 ; 10}, for otherwise identical con-
ditions. In Figs. 6.9 (a-i), we represent the corresponding profiles obtained for 1000 drop impacts
(note that the figure spans two pages). The stalagmite elevation η is shown as a function of the
radial coordinate r, with intermediate lines every 100 drop impacts, starting from an initially per-
fectly horizontal surface. We fixed the ion saturation concentration at csat = 5 × 10−7 mol cm−3.
As it was the case in the examples from the previous section, we may consider that the stalagmite
elevation rate, ∂tη, is sufficiently slow for the stationary film thickness and average concentration
at the centre of the stalagmite to remain in the same steady-state during the time span shown in
Figs. 6.9 (a-i) (see Sec. 2.1.3), i.e., to vary between the same maximum and minimum values. Hence,
all the impacts can be considered as occurring in identical conditions, at least past the short tran-
sient phase at the beginning of the simulations. In each case presented in Figs. 6.9 (a-i), we also
represented the corresponding equivalent radius of the spot left by the drop in the film, Req, as
well as the proportion of ions coming from the impacting drop actually entering the film, φd)f ′

(see Sec. 1.2, Ch. IV or auxiliary sheet for values).
We observe in Fig. 6.9 that, at fixed td/tp (i.e., for a given row in Fig. 6.9), a smaller t0/td, resp.

larger, yields a wider stalagmite, resp. narrower, in accordance with the examples from Sec. 2.1.
A smaller t0/td indeed induces a larger drop inflow because a larger amount of drops fall on the
stalagmite within a limited time period, thereby increasing the total quantity of ions actually en-
tering the film over this time period. At fixed t0/td (i.e., for a given column in Fig. 6.9), the ra-
tio td/tp also has an effect on the shape of the stalagmite. A smaller td/tp, resp. larger, leads to
a wider and shorter stalagmite, resp. narrower and taller. If tp < td (td/tp > 1), for instance,
the ions in solution start to precipitate before the film can spread them out through drainage
and redistribute them spatially, thereby decreasing their concentration in each point of the film.
Hence, for tp < td, the ions mostly precipitate close to the stalagmite centre while for tp > td,
the ions precipitate both close and away from the centre at lower concentration values, in accor-
dance with the conclusions already drawn from Sec. 2.1.2. We can therefore conclude that the
effects of decreasing t0/td and td/tp are additive. A combination of a shorter dripping-to-drainage
ratio, t0/td, and a shorter drainage-to-precipitation ratio, td/tp, yields, e.g., the very wide stalag-
mite from Fig. 6.9 (a). By contrast, when both t0/td and td/tp increase, we may obtain a very nar-
row profile, as the one from Fig. 6.9 (i). We further note that both stalagmite profiles displayed
in Figs. 6.9 (a) and (i) have similar heights, while the stalagmite from (a) is over ten times wider
than the one shown in (i). This comes from the fact that, at constant number of drop impacts, the
total quantity of ions brought into the film is larger for smaller t0/td, as aforementioned, but also
from the inclusion of the mixing between the drop and the film into the numerical calculations.
The proportion of the drop entering the film post impact, φd)f ′ , is indeed smaller for thinner films
caused by a larger t0/td. Should we had left the mixing out of the modelling, the total quantity of
ions precipitating and allowing for the stalagmite to grow in Fig. 6.9 (i), would have been larger.
By mass conservation, the stalagmite would have been much taller. Two simple runs at arbitrarily
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constant Req and φd)f ′ , performed for the same timescale ratios of Figs. 6.9 (a) and (i), indeed give
a height ratio of about 1.6 by comparing the maximum height at the centre of the stalagmite of (i)
to the one of (a), at Nd = 1000.

Additionally, we note that some combinations of ratios yield almost identical stalagmite pro-
files, i.e., of similar width and shape, with the exception of the scale of the stalagmite, S. However,
this difference in scale might come from our inclusion of the factor φd)f ′ at impact as well, which
thus differs for variable t0/td, no matter the value of td/tp. We actually obtain almost identical
values for all the proportions of drop entering the film post impact, φd)f ′ , for fixed t0/td values in
Fig. 6.9. The combinations for which the stalagmite profiles can be paired are the conjugates of the
matrix corresponding to all the subfigures from Fig. 6.9, i.e., (b) and (d) form a pair, and so do (c)
and (g), as well as (f) and (h). The combinations corresponds to the following sequences of timescale
ratios: t0 = td < tp and t0 < td = tp ((b) and (d), resp.), tp = t0 < td, and td < tp = t0 ((c), and
(g), resp.), and td = tp < t0 and tp < t0 = td ((f) and (h), resp.). These timescale orderings suggest
that, when two timescales are equal to each other and differ from the third one, reproducing the
stalagmite profile is achievable by rearranging the timescales while adhering to the rule: two equal
timescales and one different third timescale. We further note that the profile from Fig. 6.9 (e) looks
very similar to the profiles from Figs. 6.9 (c) and (g). This comes as no surprise given that the afore-
mentioned orderings of timescales relative to Figs. 6.9 (c) and (g) are tp = t0 < td and td < tp = t0,
respectively, while the timescale ordering relative to Fig. 6.9 (e) is tp = t0 = td, i.e., it is a combina-
tion of both orderings at once. The pairs appearing in Fig. 6.9 thus seem to correspond to the t0/tp
timescale ratio (dripping period over precipitation timescale) as they are all located on the inverted
diagonal of Fig. 6.9.

We inferred the stalagmite shape, scale, and other parameters from all the stalagmite profile
evolutions presented in Fig. 6.9, as well as from additional simulations conducted at td/tp = 0.01
and td/tp = 100, while keeping t0/td ∈ {0.1 ; 1 ; 10}. In Fig. 6.10, we report these parame-
ters, which include the shape factor, Ψ (a), the scale, S (b), and the maximum in-between impacts
growth, ∆ηmax (c), as well as the corresponding values of the spot radius left by the drop in the
film, Req (d), and the proportion of the drop going into the film post impact, φd)f ′ (e). The simu-
lations allowing to measure all these parameters were conducted for Nd ≥ 1000. Because only S
varies continuously with the number of impacts, we have taken its value precisely at Nd = 1000,
while the other parameters remain constant even for Nd ≥ 1000.

In accordance with our former observations (see also Tab. 2.2 from Ch. II and the auxiliary
sheet), we note in Figs. 6.10 (a) and (b) that Ψ and S both decrease with decreasing dripping-to-
drainage and drainage-to-precipitation ratios, t0/td and td/tp, respectively. At fixed S, a more neg-
ative Ψ implies a more convex, i.e., inclined downward, stalagmite shape. At fixed Ψ, a smaller
scale S, on the other hand, implies a vertically shrunk stalagmite profile, which therefore decreases
the inclination close to the centre of the stalagmite. The scale S has a predominant effect on the
stalagmite inclination close to the centre, i.e., for r → 0, as indicated by Eq. (5.49) in Ch. II. We
therefore infer fromFigs. 6.10 (a) and (b) that decreasing either t0/td or td/tp tends towiden the sta-
lagmite, which becomes less inclined close to its axis of symmetry, in correspondencewith our ob-
servations from Figs. 6.10 (a), (b) and (d). By contrast, increasing t0/td or td/tp yields a smaller |Ψ|
and larger S, i.e., a narrower stalagmitewith a larger inclination close to the centre. However, given
the radius Req over which the ions are brought into the film, we have already noted in Sec. 2.1, and
we can also identify it in Figs. 6.10 (f), (h) and (i), that the stalagmite width remains approximately
dictated by Req. Since Req remains bounded, the values obtained forΨ converge for td/tp = 100 in
Fig. 6.10 (a). These measurements are in accordance with the relative effects of t0/td and td/tp that
we discussed at the beginning of the section. For small values of t0/td and td/tp, e.g., in the case t0 <
td < tp, the effect of the successive drops can be averaged over time. Following an impact, neither
the drainage nor the precipitation may affect the ion concentration in the film before a new drop
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Figure 6.10: Stalagmite evolution parameters inferred from simulations conducted for csat = 5 × 10−7 mol cm−3,
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arrives. This situation corresponds to the model derived by Dreybrodt [70] and indeed yields con-
vex stalagmites. By contrast, large values of t0/td and td/tp could lead to, e.g., the case tp < td <
t0, in which all the ions would precipitate before they can be redistributed spatially through the
drainage at play, or renewed by a drop impact.

The maximum growth between successive impacts, ∆ηmax, is also dependent on both t0/td
and td/tp. As already discussed, a larger inflow, i.e., a smaller dripping-to-drainage ratio t0/td, leads
to a larger ion quantity brought into the films by themore numerous drops over a given time. Con-
sequently, the growth rate increases with decreasing t0/td, as it can be witnessed in Fig. 6.10 (c).
Additionally, if the drainage-to-precipitation ratio td/tp increases, as aforementioned the precip-
itation occurs before the drainage spreads out the ions in solution spatially, decreasing their local
concentration. The local stalagmite elevation at the stalagmite centre thus increases with td/tp, as
seen in Fig. 6.10 (c). However, this increase does not stem from an actual increase in the ion quan-
tity brought into the film by each drop impact, as it is the case with the effect of t0/td on ∆ηmax,
it is simply due to the distribution of ions in the film. There is actually a smaller ion quantity
brought by the drop impacts into the film when td/tp increases, as illustrated by Figs. 6.10 (d) and
(e) where we observe that both Req andφd)f ′ decrease slightly with td/tp. To understand the graphs
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Figure 6.11: Comparisonbetween the results obtained for the average growth rate using themodel developed in Sec. 1,
and the model developed by Dreybrodt et al. [41, 42, 70, 133]. (a-b) Growth rate ∆η as a function of the drainage-to-
precipitation timescale, td/tp, for various values of the dripping-to-drainage ratio, t0/td, indicated by the legend above
(b). The legend above (b) is the same for all four graphs (a-d). The values obtained using either our model, ∆ηmax, or
Dreybrodt’s model, i.e., ∆ηD from Eq. (6.33), are indicated by the color from the legend inside (b) (lower left corner).
In (a), the value used for S is approximated by Eq. (6.34), and in (b) by Eq. (6.35). (c-d) Precipitation rate α obtained by
equating∆ηmax = ∆ηD in (a) and (b), respectively.
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of Figs. 6.10 (d) and (e), we must take into account our knowledge of the stationary film thickness,
mixing at impact and stalagmite shape for each combination of t0/td and td/tp. If t0/td increases,
the inflow brought by the successive drops decreases, and so does the central film thickness. The
equivalent spot left by the drop at impact, Req as well as the proportion of the drop entering the
film post impact, φd)f ′ , were both found to decrease with the local film thickness in Ch. IV. If td/tp
increases, we have already observed on multiple occasions that the stalagmite becomes narrower.
As discussed above regarding the graphs of Ψ and S (Figs. 6.10 (a) and (b)), a narrower stalagmite
for larger td/tp values becomes more inclined toward the centre, thereby promoting drainage and
reducing the film thickness at the centre of the stalagmite (see, e.g., Secs. 4.4 and 5.4 in Ch. V).
Hence, it is not surprising to see both Req andφd)f ′ decrease with increasing td/tp. Finally, we note
in Figs. 6.10 (d) and (e) that, for t0/td = 0.1, the inflow, and therefore the film thickness, are always
sufficient to maintain Req and φd)f ′ close to their maximum values.

Using the model developed by Dreybrodt et al. [41, 42, 70, 133], it is possible to derive an equa-
tion relating the average growth rate over a time period t0, i.e., between two drop impacts, to the
entry parameters of the model, corresponding to t0, tp, csat andα, as well as to the film thickness hs,
the concentration of ions in the drop, cd, and the proportion of ions initially in the drop going
into the film post impact, φd)f ′ (this parameter is, to the best of our understanding, equivalent to
the mixing parameter defined in Eq. (10.10) in [70], p. 265). Because the authors consider the film
thickness to be uniform in space and do not include the drainage of the film in their modelling, we
make use of the stationary film thickness hs as an approximation of their film thickness. We directly
transcribe Eq. (10.14) from Dreybrodt et al. [70] (p. 266), but using our own nomenclature, as

∂t⟨c⟩ =
hs φd)f ′ cd

[
1− exp

(
− t0

tp

)]
t0
[
1− (1− φd)f ′) exp

(
− t0

tp

)] , (6.32)

By using Eq. (5.15) from Ch. V to express the stationary film thickness as a function of the dripping
period t0 and the fact that we set cd to csat, it is possible to express the above equation as

∂t⟨c⟩ = S
(

shape, t0
td

)
αφd)f ′ csat(

td
tp

)
 1− exp

(
− t0

td

)(
td
tp

)
1− (1− φd)f ′) exp

(
− t0

td

)(
td
tp

)
 , (6.33)

where the ratios t0/td and td/tp appear, as well as the precipitation reaction rate α, and where the
function S (shape, t0/td) depends on the scaling considered for hs. We had indeed found from
the numerical simulations conducted in Ch. V two scalings for perfectly horizontal and convex
stalagmites, yielding

S
(

perf. horiz., t0
td

)
=

(
rsm
rd

)1/4( t0
td

)−5/4
, (6.34)

and

S
(

convex, t0
td

)
= 0.58

(
−1
ΨS

)1/2( t0
td

)−1/2
, (6.35)

respectively (see Tab. 5.3 in Ch. V). The stalagmite profiles obtained using the model developed
by Dreybrodt et al. [41, 42, 70, 133] have not been rationalized, thus we propose to use both scal-
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ings because the stalagmite profiles that they obtain seem convex but rather flattened out on the
top. We infer the values of φd)f ′ and either rsm/rd or ΨS in Eq. (6.33) from the data presented at
variable t0/td and td/tp and fixed csat = 5 × 10−7 mol cm−3 in Figs. 6.9 and 6.10 (e). We estimated
the stalagmite radius rsm/rd from the simulations such as the ones shown in Fig. 6.9 as the mid-
height radius of the stalagmite, i.e., r(η = max η/2), although it should be noted that this radius
corresponds to the radius of a convex stalagmite. To compare the average growth rate defined by
Dreybrodt at al. [41, 42, 70, 133] in terms of ion concentration as ∂t⟨c⟩ to our maximum growth
rate in between impacts at the centre of the stalagmite,∆ηmax, we use the following relation:

∆ηD ≈ ∂t⟨c⟩
mm,CaCO3 t0
ρCaCO3

· (6.36)

We use for t0 the value corresponding to the ratio t0/td, multiplied by the ∼ 12 s found as being
the characteristic drainage timescale corresponding to hd = 100 µm and rd = 1 cm in Ch. V
(see Eq. (5.14)). The values obtained by our model from Fig. 6.10 (c) and the corresponding values
obtained by Eqs. (6.33)-(6.36) are reported in Fig. 6.11. We refer to this latter value, i.e., obtained
using the model developed by Dreybrodt et al. [41, 42, 70, 133], as∆ηD.

In Figs. 6.11 (a) and (b), we compare the values obtained for∆ηmax in Fig. 6.10 (c) to the values
of ∆ηD using Eq. (6.33) with S either approximated by Eq. (6.34) (Fig. 6.11 (a)), or by Eq. (6.35)
(Fig. 6.11 (b)). In these two graphs, we have used α = 10−7 ms−1 as it is a mid-value from Tabs. 6.1
and 6.2, and because it also corresponds to the value of hs = hd in laminar flow conditions. How-
ever, we have no other clue regarding the value of α which would best approximate ∆ηD to com-
pare it to the value we found for∆ηmax in Fig. 6.10 (c). We thus evaluate this precipitation growth
rate by leaving it as a factor found by equating both∆ηD and∆ηmax, i.e., α = ∆ηD/∆η

max, which
gives the results shown in Figs. 6.11 (c) and (d), for either the flat or convex approximation. The val-
ues from Dreybrodt’s model approximate quite well the cases where td/tp ≤ 1 and ∀t0/td, for the
flat case, as illustrated by Fig. 6.11 (a). The model also gives a good agreement for the convex case
for some combinations of t0/td and td/tp, as it can be seen in Fig. 6.11 (b). However, we observe
that using the perfectly horizontal stalagmite approximation in Dreybrodt’s model is not accurate
as∆ηD and∆ηmax do not overlap forα = 10−7 ms−1 in Fig. 6.11 (a). The order ofmagnitude found
forα as a fit parameter to equate both∆ηD and∆ηmax is also sometimes out of the range presented
in Tabs. 6.1 and 6.2. We indeed observe in Fig. 6.11 (c) that we should impose α ≥ 10−4 ms−1 to
produce the stalagmites corresponding to td/tp > 1 and t0/td > 1. In Fig. 6.11 (b), we observe a bet-
ter agreement between most∆ηD and∆ηmax for td/tp ≤ 1. However, once again for td/tp > 1 and
∀t0/td, the value that should be imposed for α is out of range, as it can be seen in Fig. 6.11 (d). The
difference between the values found for ∆ηD using Eq. (6.32) and ∆ηmax using our model might
stem from the approximations made in Dreybrodt’s model regarding the drainage of the film. In
this model, the film is indeed assumed to be uniform in space, such that including the shape of the
stalagmite, which dictates the film thickness at the centre, may yield different values of film thick-
ness than the one that should be used by approximating the film as perfectly uniform and having,
thereby, the same thickness everywhere. Our modelling also includes the effect of the drainage on
the stalagmite growth, which was not done by Dreybrodt et al. [41, 42, 70, 133]. As it could be con-
cluded from the previous chapter, this effect should be taken into account because it influences
directly the film thickness and, hence, the mixing between the drop and the film, which in turn
dictates the quantity of ions that precipitate into the film. We note that the worst disagreement
between the data from Fig. 6.11 arises for td/tp > 1, i.e., when the precipitation occurs faster than
drainage, and that the ions precipitate before they can get spread out away from the impact point
position. By averaging the effect of the successive drops on the film thickness, Dreybrodt’s model
is not able to capture this particular regime. This comes in particular from the assumption that
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the ion concentration evolution with time is always identical, whether the ions precipitate during
a time t0 shorter, equal to or longer than tp, such that it is impossible for all the ions in the film to
have precipitated before a new drop arrives (we refer to the discussion relative to Fig. 10.8 in [70]).
Additionally, we can also note that in Dreybrodt’s model, the growth rate is calculated as an aver-
age value, while in Fig. 6.10 (c), the maximum growth at the centre is considered, such that it might
yield larger values. Finally, we can point out that, under some of the restricting approximations of
Dreybrodt’s model that we discussed above, the values found for α in Tabs. 6.1 and 6.2 could also
not be exhaustive, such that the values obtained for α in Fig. 6.11 (c) and (d) would not be out of
range.

2.3 Other peculiarities
We present in this section a few examples of other simulations that we are able to conduct using
the model described in Sec. 1.3, leading to stalagmite shapes changing in time and concave shapes.

2.3.1 Time-variable environmental conditions

In Figs. 6.12 and 6.13, we present two examples of stalagmite growth simulations, started from
an initially horizontal plane, for which either t0/td or td/tp is varied at fixed td/tp, resp. t0/td,
for csat = 5 × 10−7 mol cm−3. Both simulations were conducted until Nd = 5000, each graph
from Figs. 6.12 (c) and 6.13 (c) showing intermediate profiles every 500 impacts, except in the re-
gion 2500 ≤ Nd ≤ 3000 for which intermediate profiles are shown every 100 impacts as the
transition in either t0/td or td/tp is made at Nd = 2500. In Fig. 6.12, we varied the dripping pe-
riod from t0/td = 0.05 for Nd < 2500, to t0/td = 1 for Nd ≥ 2500, while keeping td/tp = 1. In
Fig. 6.13, the precipitation timescale was changed from td/tp = 10 for Nd < 2500, to td/tp = 0.01
for Nd ≥ 2500, with t0/td = 1. In both Figs. 6.12 and 6.13, the graphs from (a) and (b) repre-
sent the minimum and maximum values of the film thickness and concentration, hmin and hmax,
and cmin and cmax, respectively, over the 5000 drop impacts. The variations between impacts were
not represented as they would not be visible. The shape Ψ, scale S and maximum in-between im-
pacts growth ∆ηmax are represented as a function of Nd in the graphs from (d), (e) and (f) for each
stalagmite of Figs. 6.12 and 6.13, respectively.

We observe in Fig. 6.12 (c) that, in accordance with all the cases already discussed in the pre-
vious sections, the stalagmite profile is first very wide, with a radius > 5rd .The dripping-to-
drainage ratio t0/td = 0.05 indeed corresponds to a large drop inflow, and, with td/tp = 1, the
ions in solution cannot precipitate before a new drop arrives in the film. Once this inflow is re-
duced to t0/td = 1, the stalagmite profile changes and narrows down to a radius close to 2rd
within less than 500 impacts. The top part of the stalagmite (for Nd ≥ 2500) was obtained by
using the same parameters as in Fig. 6.9 (e). It can be seen that both the top part of Fig. 6.12 (c)
and Fig. 6.9 (e) resemble one another, except for the fact that the stalagmite of the top part of
Fig. 6.12 (c) develops over an already (slightly) inclined plane. Correspondingly, the stalagmite
fromFig. 6.13 (c) shows twodistinct types of profiles corresponding to td/tp = 10 and td/tp = 0.01.
Weonce again observe a quick adaptationof the stalagmite profile in response to the change in td/tp
around 2500 ≤ Nd ≤ 3000. However, by contrast with Fig. 6.12, the top part of the stalagmite
fromFig. 6.13 cannot be compared to the profiles fromFig. 6.9. ForNd ≥ 2500, the ions in solution
precipitate over the already existing stalagmite which displays a radius of ∼ rd until Nd = 2500.
Hence, a protuberance corresponding to the bottom part can be seen in the top part of the stalag-
mite. This comes from the fact that, for td/tp = 0.01, or tp = 100td, the film flows over the already
existing stalagmite faster than the ions precipitate within this film. The ions get thus carried away
from the centre before they precipitate, thereby extending the total radius of the stalagmite.
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These observations can also be witnessed in the graphs from Figs. 6.12 (a-b) and Fig. 6.13 (b),
where we note changes in both the film thickness and ion concentration shortly after Nd = 2500.
This change does not appear clearly in Fig. 6.13 (a) for the film thickness, though. In Figs. 6.12 (a)
and (b), below Nd = 2500, the large inflow brought into the film yields without surprise a large
film thickness. Consequently, since the ions do not precipitate entirely before a new drop arrives
in the film, the concentration also remains large. Once the inflow is decreased for Nd ≥ 2500,
both the film thickness and ion concentration decrease accordingly. In Fig. 6.13 (b), the inflow is
never varied since we keep t0/td = 1 for the entire simulation, which is why no change can be
observed in Fig. 6.13 (a). However, because we varied td/tp from 10 to 0.01, which can also be
written as tp = 0.1td and tp = 100td, respectively, the ion concentration varies for Nd ≥ 2500 in
Fig. 6.13 (b), although we note that its value is not multiplied by 1000 as it is the case for tp. During
the part of the simulation for which td/tp = 10, the ion concentration remains close to 0 the entire
time as ions precipitate in the film almost instantaneously between successive drop impacts, while
for td/tp = 0.01, i.e., Nd ≥ 2500, the ion concentration remains very large as ions do barely
precipitate over a drop impact period. The curves of cmin and cmax in Fig. 6.13 (b) are even not
really distinguishable.

Finally, variations are also observed in Figs. 6.12 (d-f) and Figs. 6.13 (d-f) for Nd ≥ 2500. The
shape factor Ψ, in particular, shows a significant change in Fig. 6.12 (d), in accordance with the
stalagmite profile shown in Fig. 6.12 (c). The shape factor in Fig. 6.13 (d) only exhibits a slight
variation as it actually measures the shape of the protuberance at the centre of the stalagmite from
Fig. 6.13 (c), whichdoes not changemuchonceNd ≥ 2500. Although the scale Sof both stalagmites
varies in Figs. 6.12 (e) and 6.13 (e), we note that it keeps increasing for the entire simulation, but at
different rates. This is corroborated by the maximum in-between impacts growth, ∆ηmax, in both
Figs. 6.12 (f) and 6.13 (f), respectively. In Fig. 6.12 (f), for Nd ≥ 2500, the maximum growth at the
centre of the stalagmite decreases because the inflow and, therefore, total quantity of ions added
to the film, decreases. The variation in Fig. 6.13 (f) looks different. For Nd = 2500, ∆ηmax drops
sharply, then increases again around Nd ≃ 3000, after the stalagmite has adapted its new profile
in Fig. 6.13 (c). For 2500 ≤ Nd ≤ 3000, the ion concentration indeed increases because the ions
suddenly no longer precipitate as easily as they did before (tp = 100td). All the changes caused by an
inflow variation witnessed in Fig. 6.12 thus seem almost instantaneous, while in Fig. 6.13 we note
that it takes a larger number of drop impacts for the ion concentration and related parameters, i.e.,
the maximum growth at the centre and the stalagmite profile, to reach a new steady-state. We also
note that the inflow variation from Fig. 6.12 caused variations in the film thickness and, thereby,
the ion concentration, while changing only the drainage-to-precipitation ratio td/tp in Fig. 6.13
only affects the concentration but not the film thickness. If these changes were responsible for
significant stalagmite profile variations, i.e., of the order of∼ hd or more, the film thickness would
also respond to a variable td/tp.

Despite small differences, both examples of Figs. 6.13 and 6.13 exhibit a rather quick response
of less than 500 drop impacts (compared to∼ 5000 to 10 000, the total number of impacts) to new
environmental conditions. In Sec. 1.5 from Ch. I, we could indeed note from the examples pre-
sented in Figs. 1.11 and 1.12 that the stalagmite laminae present distinct features from one year to
another. The difference in grain density can also vary within a few months since this difference is
one of themarkers allowing to identify the laminae in cross-sectional cuts of actual stalagmites [20].
Additionally, the environmental conditions of the stalagmite can also vary quickly. For instance,
daily modifications were witnessed in experimental records of t0 [98]. Although the examples of
Fig. 6.13 would not correspond to an entire year in the lifetime of an actual stalagmite, even by
adjusting the actual times of t0, td and tp, they show that the stalagmite profile can adjust quickly
to a new environment. However, from Fig. 6.13 (b), we observe that it would be difficult to retrieve
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Figure 6.12: Examples of stalagmite profile evolution from an initially perfectly horizontal surface, up to 5000 drop
impacts, in response to time-variable parameters with constant csat = 5 × 10−7 mol cm−3. For Nd < 2500, t0/td =
0.05 and, for Nd ≥ 2500, t0/td = 1, with td/tp = 1. (a) Maximum and minimum values of the film thickness evolving
as a function of Nd. (b) Maximum and minimum values of the ion concentration evolving as a function of Nd. (c)
Stalagmite elevation profile, η, as a function of the radial coordinate, r. Intermediate lines show the elevation profile
every 500 drop impacts, as indicated by the colour bar. The thinner lines show the elevation profile every 100 drop
impacts between Nd = 2500 and Nd = 3000. (d-f) Shape factor Ψ (d), scale S (e) and maximum in-between impacts
growth∆ηmax (f), all drawn as a function of Nd.
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Figure 6.13: Examples of stalagmite profile evolution from an initially perfectly horizontal surface, up to 5000 drop
impacts, in response to time-variable parameters with constant csat = 5 × 10−7 mol cm−3. For Nd < 2500, td/tp = 10
and, for Nd ≥ 2500, td/tp = 0.01, with t0/td = 1. (a) Maximum and minimum values of the film thickness evolving
as a function of Nd. (b) Maximum and minimum values of the ion concentration evolving as a function of Nd. (c)
Stalagmite elevation profile, η, as a function of the radial coordinate, r. Intermediate lines show the elevation profile
every 500 drop impacts, as indicated by the colour bar. The thinner lines show the elevation profile every 100 drop
impacts between Nd = 2500 and Nd = 3000. (d-f) Shape factor Ψ (d), scale S (e) and maximum in-between impacts
growth∆ηmax (f), all drawn as a function of Nd.
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the exact set of parameters that have led to the particular shape presented once Nd ≥ 2500. By
contrast, the parameters used in Fig. 6.13 (a) could easily be retrieved bymeasuring the shapeΨ and
scale S of the top and bottomparts of the stalagmite. It should be noted, though, that the adaptation
of the stalagmite to new environmental conditions was here analysed when the initial stalagmite
profile is flat. Given the order of magnitude of actual growth, even for variable conditions, the
profile of the stalagmite always remains flat from the point of view of the film. We explore in the
following section the effect that an initially inclined stalagmite profile has on the evolution with
time of this stalagmite profile.

2.3.2 Convex profiles and effect of the surface inclination on local growth

Thus far, the considered stalagmites grew from an initially perfectly horizontal plane. Given the
relatively small number of drop impacts, the growth remained small in regard of the film thickness.
Stalagmites thus most likely remained in a regime where drainage is dominated by film thickness
gradients, as detailed in Sec. 5.4 from Ch. V. The results from Sec. 2.2, which explored the effect
of the ratios t0/td and td/tp on Ψ, S, ∆ηmax, Req and φd)f ′ , might yield qualitatively different rela-
tions when the initial stalagmite profile is not horizontal. Similarly, conclusions drawn from the
former section on time-variable conditions could no longer be applicable if the local inclination
dominates the drainage of the film, rather than the film thickness gradients, as it was the case in the
above examples. Assessing the potential effects that setting initial values to Ψ and S may have on
subsequent stalagmite growth is out of the scope of this work. The present chapter indeed focuses
on introductory examples of stalagmites at steady-state. Nevertheless, we propose to take a look
at a few cases of interest to examine the fundamental aspects of the effect of a convex initial stalag-
mite profile on subsequent stalagmite growth. In Figs. 6.14 (a-c), we show examples of stalagmite
profiles growing over time, starting from an initial convex profile set to Ψ = −15 and S = 1.
The profile is illustrated in Fig. 6.14 (d). The graphs from Figs. 6.14 (a), (b) and (c) correspond to
t0/td = 0.1 and td/tp = 1, t0/td = 10 and td/tp = 1, and t0/td = 1 and td/tp = 10, respectively. The
graphs from Figs. 6.14 (e), (f) and (g) show the same simulations but started from an initially per-
fectly horizontal surface, as illustrated by Fig. 6.14 (h). It should be noted that the profiles from (a-c)
are shown as a function of the radial coordinate r and not the curvilinear coordinate ξ following
the stalagmite surface, for comparison with the profiles from (e-g).

We observe in all the pairs of graphs shown in Figs. 6.14 (a) and (e), (b) and (f), and (c) and (g),
that, although the environmental conditions are the same, the final shape obtained slightly differs
according to the initial profile (convex or perfectly horizontal). This is particularly true for the pro-
files of Figs. 6.14 (b) and (f), and (c) and (g), inwhich case the dripping period, drainage timescale and
precipitation timescales are equal, t0 = td = tp ((b) and (f)), or such that the precipitation timescale
is shorter than the two other ones, tp < t0 = td ((c) and (g)). Hence, the ions in solution in the film
should precipitate before or at the same time as the film spreads out over the stalagmite because of

Figure 6.14: Next page. Examples of stalagmite profile evolution with time over an initial convex profile (a-c), com-
pared to an equivalent flat case (e-g). Each case (a-c), (e-g) represents a stalagmite profile obtained after 5000 drop
impacts. The intermediate profiles are shown as a function of the radial coordinate r every 1000 drop impacts, as in-
dicated by the colour bar below graph (h). Hence, the convex surface actually corresponds to η(r, t)− η(r, t = 0). The
simulations were obtained by fixing csat = 5 × 10−7 mol cm−3. The parameters used are: for (a) and (d), t0/td = 0.1 and
td/tp = 1, for (b) and (f), t0/td = 1 and td/tp = 1, and for (c) and (g), t0/td = 1 and td/tp = 10. The initial stalagmite
profile relative to (a-c), resp. (e-g), is illustrated in (d), resp. (h). The profile from (d) corresponds toΨ = −15 and S = 1.
The profile from (h) represents the initial perfectly horizontal case. The equivalent spot radius left by the drop, Req,
and ion proportion initially in the drop ending up in the film, φd )f ′ , are represented in each case (a-c) and (e-g), as
captioned in (a). The equivalent radius Req corresponds to the grayed area and the dashed line, while the drop symbol
at the bottom right of each graph illustrates φd )f ′ .
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the drainage process. Additionally, we note in Figs. 6.14 (a-c) that the growth rate at the centre
of the convex stalagmite is smaller than in Figs. 6.14 (e-g), respectively, because the total height
reached by the stalagmite is smaller as well. This is once again due to the drainage over an in-
clined stalagmite surface, which leads to smaller film thicknesses than over a perfectly horizontal
stalagmite. A thinner film also induces a smaller equivalent radius left by the drop in the film post
impact, Req, and a smaller proportion of the drop content ending up in the film, φd)f ′ . The total
quantity of ions entering the film thus decreases. In terms of spatial extent, we also note that sta-
lagmites from Figs. 6.14 (a-c) seem narrower than their counterpart from Figs. 6.14 (e-g), but we
cannot state whether this is caused by the lower amount of ions in the film or another effect. Nev-
ertheless, we note that r ≈ ξ cosφ close to the centre, such that the spatial extent of the stalagmite
along ξ in the convex case from Figs. 6.14 (a-c) might actually be comparable to the spatial extent
of the stalagmite along r in the flat case fromFigs. 6.14 (e-g). From these simple examples, although
we cannot assess the exact effect of the initial convex profile of the stalagmite, we can still conclude
that the dynamics of drainage caused by an inclined surface seems to have a non-negligible effect
on subsequent growth.

2.3.3 Dissolution-precipitation balance and concave profiles

We come back in this section to our former discussion on the balance that may exist between ei-
ther Qdrip and Qdrain, or between Qdrip and Q spl (see Sec. 5.4.1 from Ch. V). In Fig. 6.15, we start
by presenting an example of the evolution of the stalagmite profile with added ion precipitation
at each impact, starting from an initially concave stalagmite profile. However, to reproduce the
equivalent of drops splashing at impact, whichwe had left out of the simulations until now,we arti-
ficially add ions at the same frequency as if dropswere added in the film, but stop adding fluid at the
impacts. We only add one drop at the beginning of the simulation to produce a film, then pursue by
only adding ions and letting them precipitate. Hence, the film does not cover the entire stalagmite
but only fills part of the dimple in the centre. We consider that we are in the range of values cor-
responding to φe ≈ 1, which is a valid approximation for a film thickness of 1.2hd if hd = 100 µm
(see Fig. 4.12 in Ch. IV). The parameters of the simulation are csat = 5 × 10−6 mol cm−3, t0/td = 1,
td/tp = 5, Ψ = 20 and S = 0.05. With this stalagmite initial profile, the film thickness remains
at about 1.2hd. In Fig. 6.15 (a), the entire stalagmite profile is represented up to r = 2rd, while
Fig. 6.15 (b) shows a close-up view up to r = rd. We observe that, because of the ion precipitation
and renewal, the stalagmite elevation η grows upward at the centre, where the film is located, but
not on the sidewalls. After a long time, the stalagmite profile should thus eventually flatten out.
This is not surprising since the ions are only added at centre of the stalagmite and the film never
drains away on the stalagmite sides as long as it cannot overcome the protuberance.

We now reintroduce the added thickness at impact, i.e., both the film and ions are renewed
by the successive drop impacts. In Fig. 6.16, we present two parts of a simulation conducted
for t0/td = 1, td/tp = 1 nd csat = 1 × 10−5 mol cm−3. The beginning of the simulation, for
0 ≤ Nd < 2500, is shown in Fig. 6.16 (a), while Fig. 6.16 (b) shows the remaining of the simulation,
for 2500 ≤ Nd ≤ 5000. The simulation was started from a concave shape withΨ = 3 and S = 0.1
to conform to the profiles set using Eq. (5.49), but starting from any initial profile would also lead
to subsequent similar profiles. In Fig. 6.16 (a), using the same ion saturation concentration csat
and the same drop ion concentration cd, we arbitrarily changed the sign of the term (c− 1) in
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Figure 6.15: Dissolution imposed instead of precipitation: example of simulation conducted for t0/td = 1, td/tp = 5
and csat = 5 × 10−6 mol cm−3, for 5000 drop impacts, starting from a stalagmite profile with shape Ψ = 20 and
scale S = 0.05. In this case, only one drop is added at the beginning of the simulation to produce a film, then liquid
is no longer added to this film. The ions that would be contained within a drop are still added at each successive
impact but the film thickness no longer varies. The simulation is conducted as if the drops were producing splash
at each impact, such that as much liquid volume is ejected away as brought into the film by the drops (case where
φe = 1, see Ch. IV). The graphs show the stalagmite elevation, η, as a function of the radial coordinate, r. The inset
represents a close-up view of the part of the stalagmite surrounded by the gray frame, showing only the first 1000
impacts. Intermediate lines are shown every 1000 impacts in the main graph, and every 100 impacts in the inset.

Eq. (6.19) to produce dissolution instead of precipitation. We refer to this as∆η < 0 in Fig. 6.16 (a),
by opposition to ∆η > 0 in Fig. 6.16 (b). Because drops are added during the entire simulation,
the film always fills the entire dimple of the stalagmite.

We observe in Fig. 6.16 (a) that, in the dissolution case, the stalagmite gets progressively more
and more scooped out in the centre, just as it could build up in the case of precipitation. We note
that, because the film covers the entire stalagmite and drains above the protuberance, ions get
distributed everywhere in the film and the stalagmite elevation also decreases on the protuber-
ance, but at a slower rate. Without changing anything but the sign of (c− 1) in Eq. (6.19), the
added ∆η becomes positive and leads to precipitation again in Fig. 6.16 (b). We observe that the
stalagmite grows back upward and progressively flattens out, as in the case of Fig. 6.15 above. Both
Figs. 6.16 (a) and (b) actually look almost identical, except for the direction of growth. We indeed
used the same parameters in both cases, except for the difference in sign in Eq. (6.19). However,
we note that, if the concave stalagmite profile can be maintained when dissolution occurs, or for a
certain amount of drops when precipitation occurs again, the balance between the inflow caused
by the dripping drops and the drainage of the film does not change the dynamics of growth, ex-
cept for the direction (downward or upward). At least in the range of parameters that we varied,
by considering the splash at impact or that the dimple of the stalagmite could be entirely filled,
we could not find a combination of t0/td and td/tp that would allow to maintain the concave pro-
file indefinitely, nor a combination of t0/td and td/tp that would allow to create a concave profile
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without including the dissolution instead of the precipitation. Hence, this concave profile seems
to be the result of either dissolution occurring during a certain time sufficiently long to create a
noticeable dimple in the centre of the stalagmite, or an unstable shape that cannot sustain in time.
This is in accordance with the example of, e.g., Fig. 1.11 (b) in Ch. I [20], where the concave profile
observed for a few years was then successively covered by flat then convex profiles. We also rarely
observed concave stalagmites in the caves that we visited, and cannot find many of them in the
cross-sectional cuts presented in the literature (see Fig. 1.11 in Ch. I).
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Figure 6.16: Dissolution imposed instead of precipitation: example of simulation conducted for t0/td = 1, td/tp = 1
and csat = 1 × 10−5 mol cm−3, for 5000 drop impacts, starting from a stalagmite profilewith shapeΨ = 3 and scale S =
0.1. For 0 ≤ Nd < 2500, dissolution was imposed instead of precipitation (a), then precipitation is reestablished
for 2500 ≤ Nd ≤ 5000 (b), asmaterialised by the sign of∆η. The graphs show the stalagmite elevation, η, as a function
of the radial coordinate, r. Intermediate lines are shown in both (a) and (b) every 500 impacts, in correspondence with
the scale bar from (b), which is applicable to both graphs.

2.3.4 Impact point dispersal

In the former simulations, we included effects related to drop impacts in caves, i.e., related to the
mixing at impact from Ch. IV, as well as the drainage of the film from Ch. V, but we did not include
the dispersal observed in the impact point position of the drops yet. However, we noted in Ch. III
that this dispersal has a non-negligible effect on stalagmite average width for large falling heights.
As aforementioned, we cannot include the dispersal directly when solving the equations in an ax-
isymmetric coordinate system because adding drops away from the stalagmite centre in this case
would correspond to the addition of liquid rings of volumes instead of actual drops. Hence, we
need to derive the equations in a two-dimensional Cartesian coordinate system. This procedure is
reviewed in Appendix C. The Cartesian grid is nondimensionalised by rd, as we did in the former
simulations. We also vary the position of the drop impact in a random manner, by imposing that
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the distribution is a Gaussian centred in (0, 0) with a standard deviation ∆ (see Ch. III). We show
in Fig. 6.17 an example of simulation obtained for t0/td = 0.1, td/tp = 1, csat = 5 × 10−6 mol cm−3,
starting from an initially flat stalagmite. We thus have t0 < td = tp, such that drops should impact
the film before the ions in solution have enough time to spread out by drainage or precipitate. We
also impose dispersal in the drop impact point position, set to ∆ = 5rd, which is relatively large
if we take rd = 1 cm. The simulation is shown during 5000 drop impacts, which should be suffi-
cient for the stalagmite to reach a stationary state. We could observe that the stalagmite obtained
with the same timescale ratios but no dispersal at impact, i.e., the stalagmite from Fig. 6.9 (d), had
a radius of about ≲ 3rd. In the case of Fig. 6.17, we note that the stalagmite radius is on average
larger. We also observe in Fig. 6.17 that the stalagmite surface is not smooth, as it was the case in
the previous simulations, but present corrugations. The dripping period t0 being shorter than the
two other timescales indicates that the effect of the drops could be averaged over long periods of
time. Nevertheless, this does not seem to be the case here because of the dispersal in the impact
point position.

In Figs. 6.18 (a)-(c), we present additional examples of stalagmite growth over 5000 drop im-
pacts coming from simulations conducted for csat = 5 × 10−6 mol cm−3 and for: (a) t0/td = 0.1,
td/tp = 1, without dispersal in the drop impact point position, (b) t0/td = 0.1, td/tp = 1 with ∆ =
5rd, and (c) t0/td = 0.1, td/tp = 0.1, with ∆ = 5rd. In Fig. 6.18 (a), in the absence of dispersal
we obtain a very similar stalagmite profile as in Fig. 6.9 (d), which is not surprising given that both
simulations were conducted for the same timescale ratios. However, in Fig. 6.18 (b), by including
the dispersal we note once again that the stalagmite radius increases and that its surface becomes
corrugated. In Fig. 6.18 (c), the timescales are changed but the dispersal is maintained. While the
height reached by the stalagmite decreases in response to the change in td/tp, we note that the sta-
lagmite radius remains of the same order as in Fig. 6.18 (b) because of the dispersal in the drop
impact point position. Hence, we conclude as in Ch. III that the dispersal in the drop impact point
position is not negligible and set constraints on the radius reached by the stalagmite. A distribution
associated with ∆ = 5 cm, as we used in the present case, would correspond to a falling height of
about 20m (see Sec. 3.2 from Ch. III).
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Figure 6.17: 2D-Cartesian case including impact point dispersal: example of simulation conducted for t0/td = 1,
td/tp = 1 and csat = 5 × 10−6, for 5000 drop impacts, with ∆ = 5rd. The simulation was obtained by using the
2D-Cartesian scheme described in Appendix C. The colour bar indicates the height of the stalagmite.
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(a) t0/td = 0.1, td/tp = 1,∆ = 0 (b) t0/td = 0.1, td/tp = 1,∆ = 5 (c) t0/td = 0.1, td/tp = 0.1,∆ = 5

Figure 6.18: 2D-Cartesian case possibly including dispersal in the impact point position: examples of simulation conducted for variable parameters. The simulations were realised
for 5000 drop impacts, with the 2D-Cartesian scheme described in Appendix C. (a) t0/td = 0.1, td/tp = 1 and csat = 5 × 10−6 mol cm−3, without dispersal in the drop impact point
position. (b) t0/td = 0.1, td/tp = 1 and csat = 5 × 10−6 mol cm−3, with ∆ = 5rd. (c) t0/td = 0.1, td/tp = 0.1 and csat = 5 × 10−6 mol cm−3, with ∆ = 5rd. The colour bars are
positioned directly next to the graphs to which they refer. They indicate the height of their corresponding stalagmite.
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3. Conclusion

In this chapter, we combined and studied briefly the possible effects caused by the drop dripping
period, the drainage of the thin residual film lying on top of the stalagmite and the precipitation of
the ions in solution in this film on subsequent stalagmite growth. Using the equations developed
in the previous chapter for the drainage of the film and an advection-reaction equation describing
the evolution of the ion concentrations in the film in time and space, we completed the model by a
equation describing the ion precipitation, and, thereby, the evolution of the stalagmite profile. We
also included the mixing between the drop and the film at impact when modelling the inclusion of
the drop into the film numerically, at least in terms of added concentration at impact. We indeed
neglected the intricate dynamics related to the splash of drops at impact as there are already several
effects at play in the complete model. Hence, the drop volume is always assumed to be entirely
added to the film while this may not be accurate for certain film thicknesses. From the complete
model, we inferred that three parameters play a major role in shaping the stalagmite over time
and space: (i) the ratio of the dripping period between the drainage timescale, t0/td, (ii) the ratio
between the drainage and precipitation timescales, and (iii) the saturation concentration of the ions
in solution, csat.

We first varied either t0/td, td/tp or csat to assess their sole effect in numerical simulations con-
ducted for a few thousands of drop impacts, starting from an initially perfectly horizontal stalag-
mite. The values reached by the stalagmite profiles obtained are thus very small with respect to the
growth observed in reality over a fewdecades, or even only one year. Nevertheless, doing so allows
for both the film thickness and ion concentration in the film to remain in the same steady-state,
and allows eliminating any time-related effects due to, e.g., film thickness variations on subsequent
stalagmite growth. Weobserved that increasing the inflowof drops, or decreasing t0/td, widens the
stalagmite, while reducing the inflow, or increasing t0/td, narrows it down. Regarding the effect
of td/tp, the stalagmite also becomes wider, resp. narrower, when td/tp > 1, resp. td/tp < 1. This
is due to the ordering of the three timescales. If tp is smaller than both t0 and td, the ions should
precipitate before they are spread out over the stalagmite by the film drainage, or before new ions
are added to the film. Conversely, if t0 < td, tp, new ions are added to the film before they can
either spread out by drainage or precipitate, such that the ion concentration always remains≫ 1
in this regime. The resulting stalagmite profile therefore depends on the balance between all three
timescales, i.e., between the drop inflow, the film drainage and the ion precipitation. Changing csat,
on the other hand, has no effect on the shape of the stalagmite, per se, only on the growth rate
between two drop impacts, and, therefore, on the final height reached by the stalagmite.

Past the transient phases of h and c at the beginning of the simulations, all the parameters rel-
ative to the stalagmite growth, i.e.,Ψ,∆ηmax, Req and φd)f ′ , could be observed to remain constant.
The only remaining variable parameter is S, the scale of the stalagmite. Given our definitions ofΨ
and S for convex stalagmites in Eq. (2.1) from Ch. II, we know that a constant Ψ for variable S
implies that the stalagmite profile remains anchored at a zero value at a certain distance from the
centre, while the stalagmite total height increases for increasing S. Hence, the growth of the sta-
lagmite itself can be considered at steady-state, at least in the case that we considered where the
total height reached remains negligible with respect to hd. We could therefore infer values ofΨ, S
∆ηmax, Req andφd)f ′ from simulations conducted by systematically varying t0/td and td/tp. We ob-
served that the shape factorΨ and scale S increasedwith either increasing t0/td or increasing td/tp,
both effects being additive. A larger Ψ or S means that the stalagmite appears wider and taller, in
accordance with the aforementioned ordering of the three timescales at play once again. Without
surprise, the equivalent radius of the spot left by the drop in the film post impact, Req, and the
proportion of the drop volume entering the film at impact, φd)f ′ , both increase with increasing
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inflow, and therefore with increasing initial film thickness (see Chs. IV and V). The growth rate
at the centre of the stalagmite, ∆ηmax, mostly increases with increasing inflow as well, because of
the combined effects of increasing Req and φd)f ′ which cause a larger amount of ions to enter the
film at each drop impact. We compared the values found for ∆ηmax using our model to the values
obtained from Dreybrodt’s model [41, 42, 70, 133]. We obtained agreement between both cases
mostly for td/tp < 1, but we could not recover the same growth rates when td/tp > 1, i.e., when
the ion precipitation occurs before the drainage spreads out the ions radially.

Finally, we varied a few extra parameters in the simulations to illustrate their potential effect
on stalagmite growth, without systematically studying their impact. Hence, the conclusions drawn
from these additional simulations may be specific to the cases shown. We first changed either the
dripping-to-drainage ratio, t0/td, or the drainage-to-precipitation ratio, td/tp, after half the sim-
ulation had passed. We obtained resulting stalagmite profiles varying accordingly, and possibly
resembling the former profiles identified for corresponding values of t0/td and td/tp in the steady-
state simulations. However, in the case where the stalagmite width increases because of the change
in, e.g., td/tp during the simulation, the protuberance formed initially (during the first half of the
simulation) remains visible during the second half of the simulation. We also tried to conduct a
few simulations on an initially convex-looking stalagmite. The conclusions drawn regarding the
effect of t0/td and td/tp on stalagmite growth seem to remain true in this case, but the effect of the
drainage of the film caused by an inclined plane is non-negligible and most likely changes param-
eters such as Ψ or S. For instance, we could observe that, because the drainage is more efficient
over an inclined stalagmite surface, the film thickness decreases, causing the total amount of ions
entering the film, and thereby the growth rate, to diminish as well. We further noted from sim-
ple examples that dissolution, occurring instead of precipitation because of specific environmental
conditions, may explain why some stalagmites appear to be concave rather than flat or convex. We
could not produce a non-transient concave stalagmite shape numerically, although the question
remains open. We attempted to include an approximate splash at impact, but the growth occur-
ring only at the centre of the stalagmite dimple should eventually flatten out, just as in the case
where the film fills out the dimple during the entire simulation. Finally, we rewrote the equations
describing the film drainage, ion concentration evolution and stalagmite elevation evolution in a
two-dimensional Cartesian coordinate system in order to include the effect of the impact point
dispersal in the simulations. As already concluded from Ch. III, this effect increases considerably
the stalagmite width. We also conducted a simulation for t0/td = td/tp = 1, which included a
slight dispersal in the impact point position of the drops, for a very large number of drop impacts.
From all the conclusions that we could draw in the simulations conducted either at steady-state or
not, over an initially flat, convex or concave stalagmite, we expect the response of the stalagmite
growth to differ as soon as the three timescales at play are no longer equal to each other.
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Appendix

A. Reaction kinetic constant and saturation concentration values
This appendix contains the tables fromDreybrodt [70] used to approximate the precipitation rateα
in open and closed conditions, for various partial pressures in carbon dioxide pCO2 , temperatures
and film thicknesses h. The open conditions correspond to a film with a liquid/air interface. The
closed conditions correspond to liquid confined between solid surfaces, for instance the liquid that
may be inside fractures found within karst systems. Both tables also contain the saturation con-
centration values corresponding to the carbon dioxide partial pressures, pCO2 , and temperatures4.

h [µm]
pCO2 = 3 × 10−4 atm pCO2 = 10−3 atm pCO2 = 5 × 10−3 atm

5 °C 10 °C 20 °C 5 °C 10 °C 20 °C 5 °C 10 °C 20 °C

La
m

in
ar

10 0.041 0.0714 0.232 0.0619 0.11 0.358 0.153 0.25 0.679
20 0.076 0.135 0.407 0.134 0.233 0.75 0.294 0.467 1.36
50 0.197 0.341 1.04 0.33 0.583 1.69 0.647 1.11 2.74
100 0.37 0.635 1.84 0.619 1.08 2.76 1.0 1.54 3.13
300 0.803 1.29 2.91 0.979 1.61 3.29 0.969 1.47 2.87
500 0.915 1.29 2.57 0.907 1.40 2.64 0.926 1.35 2.63
1000 0.636 0.919 1.60 0.68 1.0 1.63 0.85 1.21 2.0

Tu
rb

ul
en

t

1000 3.3 5.7 13.5 5.2 8.0 14.7 7.25 8.3 11.0
2000 5.9 9.5 20.0 8.4 11.5 17.5 7.9 8.8 12.0
5000 11.5 16.5 26.0 12.0 14.5 18.5 8.0 9.0 12.0
10 000 16.0 20.6 28.5 13.5 15.0 19.0 8.0 9.0 12.0
20 000 20.0 24.0 30.0 13.5 15.0 19.0 8.0 9.0 12.0

Eq
. csat [10−4 mol L−1] 6.75 6.3 5.6 10.0 9.3 8.3 17.0 16.2 14.3

Table 6.1: Open system conditions for the precipitation reaction growth rate α (in m s−1) estimated by Dreybrodt et
al. [42, 70] for various partial pressures in carbon dioxide, pCO2 , temperatures (environmental parameters) and film
thicknesses, h. As indicated in the left column, calculations were obtained for either laminar or turbulent flow condi-
tions. The last row also shows the saturation concentration values, csat, corresponding to the environmental parame-
ters. Adapted from Dreybrodt [70], Table 7.1 p. 155.

41mol cm−3 = 103 mol L−1.
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h [µm]
pCO2 = 0.01 atm pCO2 = 0.03 atm pCO2 = 0.05 atm pCO2 = 0.10 atm

5 °C 10 °C 20 °C 5 °C 10 °C 20 °C 5 °C 10 °C 20 °C 5 °C 10 °C 20 °C

La
m

in
ar

10 0.714 1.6 7.14 0.606 1.1 3.33 0.666 1.19 3.33 0.833 1.39 3.23
20 1.3 2.8 13.3 1.18 2.1 6.25 1.25 2.25 5.26 1.05 1.73 3.33
50 3.13 6.4 21.7 2.13 3.5 8.93 1.49 2.5 5.0 1.06 1.73 3.33
100 5.26 9.6 21.7 2.04 3.5 8.7 1.49 2.47 4.76 1.06 1.73 3.23
200 5.13 9.5 18.2 2.0 3.46 6.9 1.46 2.44 4.76 1.05 1.70 3.17
500 4.76 8.4 16.1 2.0 3.3 6.5 1.43 2.43 4.67 1.04 1.68 3.07
1000 4.08 7.7 12.7 1.89 3.25 5.9 1.4 2.29 4.46 1.01 1.61 2.95

Tu
rb

ul
en

t

10 1.08 3.3 9.75 0.63 1.08 4.1 0.655 1.17 3.37 0.82 1.37 3.5
30 2.9 7.3 22.0 1.8 3.3 9.5 1.97 3.32 8.14 2.28 3.5 6.0
50 5.08 10.2 27.5 2.9 5.1 13.0 3.13 5.09 10.4 3.3 4.7 7.8
100 8.6 15.1 34.0 5.4 8.75 17.0 5.2 7.3 13.0 4.54 6.05 9.0
200 13.2 20.5 45.0 8.2 11.3 19.0 6.9 8.9 13.9 5.5 7.0 10.2

Eq
. csat [10−7 mol cm−3] 6.4 5.5 4.1 16.6 14.4 11.0 24.3 21.4 16.9 38.38 35.1 28.0

Table 6.2: Closed system conditions for the precipitation reaction growth rate α (in m s−1) estimated by Dreybrodt
et al. [42, 70] for various partial pressures in carbon dioxide, pCO2 , temperatures (environmental parameters) and film
thicknesses, h. As indicated in the left column, calculations were obtained for either laminar or turbulent flow condi-
tions. The last row also shows the saturation concentration values, csat, corresponding to the environmental parame-
ters. Adapted from Dreybrodt [70], Table 7.2 p. 165.

B. Effect of the concentration distribution profile on the numerical
resolution

We shortly review in this appendix the effect of the distribution set for the ion quantity added
at impact, Cd, on subsequent stalagmite growth. We observed in the experiments presented in
Ch. IV (see Figs. 4.5 and 4.6) that the spot left by the drop in the film always seemed to present
a larger dye concentration (equivalent to the presently discussed ion quantity) close to the drop
impact point position, then to become more diffuse away from this position. The spot left by the
drop in the film was also usually surrounded by tails or twirls of diffuse dye. Close to the impact
point position, the edge of the more concentrated portion of the spot left by the drop appeared
sharp and clear. Because we cannot describe exactly the distributions obtained in Ch. IV, which
vary with the film thickness, we approximate them by a distribution decreasing monotonously
from a maximum value toward 0 at the edge defined by Req, the equivalent radius of the red spot
left by the drop in the film (see Eq. (4.11) in Ch. IV and Sec. 1.2). To compute the concentration
of the ions added at impact numerically, we need to divide the added quantity by the local film
thickness h. Numerically, this thickness already decreases in the few cells surrounding the cen-
tre of the stalagmite, i.e., as r → 0. Imposing a uniform ion quantity is therefore not physical
as it would lead to a local increase in the concentration on the edge of the local drop addition in
the film, which is not observed experimentally since the results were obtained on a flat plane (see
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Ch. IV). Hence, we postulate that the quantity of ions added at impact is not perfectly uniform and
decreases toward 0 as r → Req to avoid dealing with a non-monotonous concentration distribu-
tion following a drop addition in the film in simulations. Nevertheless, close to the centre, i.e.,
for r → 0, the distribution should still be approximately uniform. We propose to consider two
profiles matching this description: a portion of a paraboloid, as we used for the drop thickness ad-
dition, and a bell-like distribution extending over the same radius. Other distributions, such as a
hemisphere, could be considered aswell. We illustrate two simulations obtained by using these two
ion quantity distributions in Fig. 6.19. Because we are interested in assessing the effect of the ion
distribution, t0/td was kept constant and we only varied the drainage-to-precipitation timescale
ratio from td/tp = 20 in Figs. 6.19 (a) i (paraboloid distribution) and (a) ii (bell-like distribution),
to td/tp = 0.05 in Figs. 6.19 (b) i (paraboloid distribution) and (b) ii (bell-like distribution). The
parameters imposed in and inferred from each simulation are presented in Tab. 6.3. We note that,
for td/tp = 0.05, when the drainage dominates the precipitation of the ions in redistributing the
ions in the film, both the paraboloid and bell-like drop ion distribution yield the exact same re-
sults, as it can be seen in Figs. 6.19 (b) i and (b) ii. However, for td/tp = 20, differences can be
witnessed between Figs. 6.19 (a) i and (a) ii. These differences mostly stem from the fact that, in
the paraboloid distribution the concentration abruptly vanishes at the radius Req, while with the
bell-like distribution this occurs more gradually. Hence, artificial accumulation appears at the ba-
sis of the stalagmite, as illustrated by the green dashed circle in Fig. 6.19 (a) ii. This accumulation
also leads to a wider stalagmite at its base. To avoid effects related to this numerical artifact, we
only considered the paraboloid distribution in the main text.

Fig. 6.19 (a) Fig. 6.19 (b)

i ii i ii

t0/td 1 1 1 1

td/tp 20 20 0.05 0.05

csat [mol cm−3] 5 × 10−7 5 × 10−7 5 × 10−7 5 × 10−7

Ion distribution paraboloid bell-like paraboloid bell-like

Req/rd 0.80 0.80 0.96 0.95

φd)f ′ 0.43 0.43 0.49 0.48

Ψ −8.3 −0.88 −51 −51

S 10−3 0.02 4.4 × 10−6 5 × 10−6

∆ηmax/hd 6.7 × 10−6 7.4 × 10−6 6.2 × 10−6 6.2 × 10−6

Table 6.3: Influence of the drop ion distribution profile: inputs and outputs obtained from the simulations conducted
in Fig. 6.19. The label of the figure is shown in the upper row. From top to bottom. (Input parameters) Dripping period
over drainage timescale ratio, t0/td; drainage timescale over precipitation timescale ratio, td/tp; ion saturation con-
centration, csat; distribution used to describe the ion quantity added at impact, corresponding to either the paraboloid
distribution or the bell-like distribution. (Output variables) Equivalent radius of the spot left by the drop in the film
post impact, Req (see Eq. (4.10) in Ch. IV); proportion of the impacting drop going into the film, φd )f ′ (see Eq. (4.14)
in Ch. IV); shape parameterΨ of the stalagmite profile (see Eq. (5.49) from Ch. II); scale S of the stalagmite profile (see
Eq. (5.49) from Ch. II); maximum growth rate at the stalagmite centre,∆ηmax (see Eq. (6.31)).
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Figure 6.19: Influence of the drop ion distribution profile: examples of simulations all conducted for t0/td = 1,
variable td/tp and csat = 5 × 10−7 mol cm−3, for 1000 drop impacts, starting from an initially perfectly horizontal
stalagmite profile. In both (a) i and ii, computations were made for td/tp = 20, while in (b) i and ii, they correspond
to td/tp = 0.05. In simulations from (a) i and (b) i, a paraboloid-like distribution was used to described the ion
quantity in the drop at each impact, as depicted by the upper right symbol. In simulations from (a) ii and (b) ii, a bell-
like distribution was used. The four graphs show the stalagmite elevation, η, as a function of the radial coordinate r.
Intermediate lines corresponding to 100 drop impacts are shown, in accordance with the colour bar from (a) ii, which
is applicable to the four graphs. The green dashed circle in (b) ii shows the local accumulation caused by the Gaussian
profile as discussed in the main text.
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C. Two-dimensional Cartesian resolution of the equations
This last appendix shortly presents the equations of the complete stalagmite growth model ex-
pressed in a two-dimensional Cartesian coordinate system, as well as the numerical scheme used
to obtain the graphs from Sec. 2.3.4. The equations governing the drainage, Eqs. (5.10) and (5.9)
from Ch. V, were expressed in the curvilinear coordinate system of Fig. 5.17, that we recall in
Fig. 6.20 (a) (it is the same figure). The flux q thus reduced to its component aligned with eξ . By
virtue of the thin film hypothesis, the film thickness h could be averaged along the perpendicular
coordinate to the stalagmite surface, ζ , and only depended on the gradients aligned in parallel with
the stalagmite surface, i.e., ∥ eξ . All the spatial variations of the stalagmite elevation, η, were con-
tainedwithin the local inclinationwith the horizontal,φ. To use Cartesian coordinates, we assume
that the stalagmite grows on top of a perfectly horizontal plane, containing both horizontal vec-
tors ex and ey. The stalagmite elevation η is the elevation from the initial perfectly horizontal plane.
The normal to this horizontal plane, oriented upward, i.e., in the direction of growth, is ez. We still
consider that all the quantities can be averaged along the perpendicular coordinate to the stalag-
mite initial horizontal surface, z. If the stalagmite elevation increases locally, this approximation
remains true as long as the variations of η are sufficiently smooth.

In Fig. 6.20, we designate by δ the film thickness as obtained by drawing a vertical to the sta-
lagmite surface in every point, while h still corresponds to the film thickness perpendicular to the
stalagmite, as it was done in Ch. V. Once again assuming that the variations of η are sufficiently
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Figure 6.20: Schematic from Fig. 5.17, updated for the two-dimensional Cartesian resolution. From a defined stalag-
mite shape η(r), we discretize the domain from x = −R/2 to x = R/2, and from into y = −R/2 to y = R/2, into
(I + 1) × (J + 1) cells of size ∆x × ∆y, with ∆x = ∆y. The cell-centered values of the local film thickness hi are
computed in the middle of the cells while the fluxes are computed at the cell faces, i.e., between two adjacent cells. The
outer boundary condition uses the solution of the cone of constant opening angleφ⋆. Drops are added into the film at
the numerical dripping period t0/td.
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smooth, we could consider that δ = h cosφ in all points of the film. In the following, the film
thickness h will represent the vertical film thickness (originally δ), i.e., the film thickness parallel
to ez. This corresponds exactly to the version of h defined in Ch. V, but only when the stalagmite
surface remains almost horizontal (i.e., φ ≃ 0). In a Cartesian coordinate system rather than a
curvilinear one, we also obtain a vectorial flux q whose components are aligned with both hori-
zontal directions, ex and ey. As long as the stalagmite elevation variations remain small, i.e., not
larger than hd, which is the order of magnitude of the thickness of a film covering a stalagmite,
this remains true. Otherwise the flux would be aligned with cosφex and cosφey. Starting from
Navier-Stokes equations and using the same hypotheses as in Sec. 4.2 from Ch. V, we find that, in
a two-dimensional Cartesian coordinate system, the flux q becomes

q =
−gh3

3ν
∇x (h + η) , (6.37)

where we designate by∇x = ∂xex + ∂yey the horizontal gradient operator. The variations of the
film thickness in time and space, obtained from the continuity equation, can now be expressed as

∂th = −∇x · q , (6.38)

Additionally, the equation derived for the ion concentration in the film becomes

∂t c =
gh2

3ν
(∇x (h + η)) · (∇x c) +

α

h
(csat − c) , (6.39)

and the one relating the ion precipitation to the stalagmite growth becomes

∂tη = −αmm,CaCO3

ρCaCO3

(csat − c) . (6.40)

In order to approximate the solution to the above equations numerically, we define the Carte-
sian grid from Fig. 6.20. The cells have a size set to ∆x = ∆y, and are labeled by indices i and j
along ex and ey, respectively. At time step n, the film thickness, hi,j, ion concentration, ci,j, and
stalagmite profile, ηi,j, are evaluated at the centre of the cell (i, j). The numerical time derivatives
can be approximated in the same manner as described in Ch. V and in Sec. 1.4 (see, e.g., Eq. (6.24)).
The spatial derivatives, however, must be adapted to the Cartesian grid. For the sake of simplicity,
we will consider in the following equations that η = 0 ∀(x, y), but including η in the calculations
is straightforward. To solve Eqs. (6.37) and (6.38), we keep the same upwind formalism as in Ch. V.
Specifically, we use the following approximation (where η has been set to 0):

∇x ·
(
h3∇xh

)
≈ 1

∆x

(
h3

i+1/2, j
(∇xh)

∣∣∣
i+1/2, j

− h3
i−1/2, j

(∇xh)
∣∣∣
i−1/2, j

)
+

1
∆y

(
h3

i, j+1/2
(∇xh)

∣∣∣
i, j+1/2

− h3
i,j−1/2

(∇xh)
∣∣∣
i,j−1/2

.

)
(6.41)

The spatial gradients are evaluated as

(∇xh)
∣∣∣
i+1/2,j

≈ 1
∆x
(
hi+1, j − hi, j

)
(6.42)

and, similarly,

(∇xh)
∣∣∣
i,j+1/2

≈ 1
∆x
(
hi, j+1 − hi, j

)
. (6.43)
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The conjugates of these two gradients evaluated in (i− 1/2, j) and (i, j− 1/2), respectively, have a
similar expression. The values of hi±1/2, j and hi, j±1/2 correspond to the film thickness evaluated at
the faces of the cell (i, j). We can use the same approximation as in Ch. V and Sec. 1.4 to compute
them, which we recall hereafter. For hi+1/2, j, we have

hi+1/2, j ≈
1
2
(
hi+1, j + hi, j

)
, (6.44)

and, for hi, j+1/2,

hi, j+1/2 ≈
1
2
(
hi, j+1 + hi, j

)
. (6.45)

To estimate the first term of the right-hand side of Eq. (6.39) (still for η = 0), we use the following
scheme [112], i.e.,

h2 (∇xh) · (∇x c) ≈ h2
i+1/2, j

(∇xh)
∣∣∣
i+1/2, j

(∇x c)
∣∣∣
i+1/2, j

+h2
i, j+1/2

(∇xh)
∣∣∣
i, j+1/2

(∇x c)
∣∣∣
i, j+1/2

. (6.46)
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In Sec. 1, we derive a complete model of stalagmite growth consisting of
(i) the drainage equations from Ch. V, (ii) an equation describing the evolu-
tion of the ions in solution in the film, and (iii) an equation describing the
evolution of the stalagmite profile.

A dimensionless version of the equations in Sec. 1.5 indicates that the stalag-
mite growth depends primarily on the added concentration at impact, the
ratio of the dripping period and drainage timescale, t0/td, and the ratio of
the drainage and precipitation timescales, td/tp.

In Sec. 2.1, we asses the separate effects of the ratios t0/td, td/tp and the ion
saturation concentration csat on the stalagmite growth. We infer from the
simulations that the stalagmite growth reaches a steady-state after only a
few tens of impact in the conditions that we impose. From there, we deduce
that csat only affects the height of the stalagmite while t0/td and td/tp change
the size and shape of the stalagmite.

In Sec. 2.2, we vary both t0/td and td/tp altogether. The simulations con-
ducted allow inferring the shape factor Ψ and scale S describing the stalag-
mite profile, defined in Ch. II, as well as the growth rate of the stalagmite.
This growth rate can be compared with the growth rate from Dreybrodt’s
model, which was defined in Eq. (1.7) from Ch. I, for flat and convex stalag-
mites. We find that the growth rate from Dreybrodt’s model and our results
are in agreement for td/tp ≲ 1, but not beyond this value.

In Sec. 2.3, we vary additional parameters in the simulations, such as the
initial profile of the stalagmite or the dripping period sequence over time.
From therewe note that the stalagmite response to a change in environmen-
tal conditions is only of the order of a few hundreds of drops, at least in the
conditions of growth that we imposed.

Finally, in Sec. 2.3.4, we add the dispersal in the impact point position of
the drops to the simulations. We thus have to express the equations and the
numerical scheme in a 2D Cartesian coordinate system, described in Ap-
pendix C. Without surprise given the results from Ch. III, it is observed that
the dispersal in the drop impact point position widens the stalagmite.

.

• Summary (Ch. VI) •
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CONCLUSION

Little drops of water,
Little grains of sand,
Make the mighty ocean
And the pleasant land.

Thus the little minutes,
Humble though they be,

Make the mighty ages
Of eternity.

Julia A. F. Carney

1. A complex history
Palaeoclimatology plays a preponderant role in shaping our contemporary understanding of the
environment and climate. Palaeoclimatology studies mostly rely on the analysis of recordings and
measurements obtained from environmental proxies such as the successive laminae presented by
stalagmites in karstic caves. Combined with dating methods based on, e.g., radiation decay, the
various physical features exhibited by the laminae can be related to past events such as monsoon
seasons [228], wildfire occurrences [164], or even the much longer glaciation cycles [231]. Stalag-
mites are found on the floor of karstic caves and present a large variability of shapes and sizes. They
grow through the progressive precipitation and accumulation of calcium ions into calcite [70]. The
ions are found in solution within a thin residual liquid film lying on top of the stalagmite, fed by
successive drops falling from the cave ceilings. These drops are loaded in ions coming from the
soil above the cave, which are at the origin of calcite precipitation. The soil is infiltrated by water
as a result of the combination of rainfall, evapotranspiration and runoff over the cave surface [83].
The seasonality or vegetation above the cave, for instance, should thus influence the ion content of
the drops, and, therefore, affect the subsequent precipitation of ions on stalagmites [76].

A clear link should therefore exist between the climate and environment histories above he
cave, and the final shape exhibited by the stalagmites. However, the existing models of stalagmite
growth do not take into account some important physical processes taking place when drops im-
pact stalagmites. For instance, the gravity-driven drainage of the film, caused by the curved shape
usually presented by stalagmites, is not taken into account, while it is clear that this drainage could
possibly affect the distribution of ions into the film and, thereby, the subsequent stalagmite growth.
Another parameter currently not included in models of stalagmite growth is the mixing occurring
between the drop and the filmupon impact. Most drop impacts in caves further lead to splashing at
impact [227] due to the high cave ceiling, and thus to the ejection of secondary droplets away from
the stalagmite. Finally, in previousmodels describing stalagmite growth, it was often admitted that
drops all fall at the sameposition located at the apex of the stalagmite [70], although this assumption
is not based on any physical evidence. Additionally, the oxygen and carbon isotope fractionation
within the film covering the stalagmite is responsible for the oxygen and carbon imprints finally
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appearing in the stalagmite records. The isotope variations in δ18O and δ13C are the most com-
monly used signals allowing to reconstruct palaeoclimate variations. Isotope fractionation may
nevertheless be sensitive to physical processes such as the evaporation of the film. Deciphering the
variations in isotope resulting only from the temperature (for 18O) and the soil content (for 13C)
remains a major challenge in most stalagmite cross-sectional cut analyses [231]. Accurately iden-
tifying the physical processes that may affect the ion distribution and film thickness variations is
therefore key to help better distinguish the processes at the origin of isotope fractionation varia-
tions.

2. Chapter overview
In this work, we studied fundamental aspects of major stages of the drop trajectory, starting from
the drop formation at the tip of the stalactite hanging from the cave ceiling. Except for Ch. VI,
experimentation, and more particularly high-speed imaging, plays a crucial role in the investiga-
tions that we conducted. We recall that the sites visited for the cave measurement campaigns used
in Chs. III and V were described in Ch. II, along with all the studied stalagmites. We started by
focusing only on the drop free fall, from the moment it drips from the stalactite tip until it reaches
the stalagmite top in Ch. III. We then explored the mixing occurring between the drop and the film
at impact in Ch. IV. The drainage of the thin film lying on the stalagmite was the subject of Ch. V.
Finally, in Ch. VI we assembled elements from the previous chapters, to which we added the de-
scription of the ion concentration variations within the film in order to obtain an original model
of stalagmite growth. We review the contributions from each of these chapters in the following
section. Perspectives are then discussed in Ch. VIII.

2.1 More than just a lab phenomenon
Drops freely falling into air following their formation at the tip of a tiny vessel are more com-
monly found in lab experiments conducted on all types of drop impacts than in nature [128, 235].
Yet, caves provide an ideal framework to study the dispersal appearing in the drop impact point
position at impact. In Ch. III, from high-speed recordings of drop impacts on stalagmites obtained
from several caves, we indeed observed that the scatter of the drop impact point increased with
the drop falling height, and could reach several centimetres. Because it is also observed in a lab
setting where no external factor is able to influence the drop trajectory, we concluded that this
dispersal must be self-induced. We hypothesised that it came from the vortices shed in the wake
of the drop. The vortices are randomly emitted past a certain distance of fall [33, 237], and should
interact with the drop by inducing a series of short horizontal shifts to its entire trajectory. Start-
ing from Newton’s second law to which we added a randomly-oriented aerodynamic force as a
result of the vortex shedding, we obtained two Langevin-like equations describing the position
and velocity of the drop at each vortex emission. Integrating these equations over the entire drop
trajectory provided a relation between the dispersal in the drop impact point position and the drop
falling height. The results from themodelling showed a good agreementwith the experimental data
taken in caves as well as in a lab setting. Finally, we could relate the dispersal observed to the top
radius of a set of stalagmites described in Ch. II. Stalagmites found under short cave ceiling heights
presented smaller radii that can be associated with the radius reached by the impacting drop as it
crushes into the film. By contrast, stalagmites located in parts of caves with ceiling heights of the
order of several metres presented a larger radius increasing with the dispersal in the drop impact
point position, and, hence, with the falling height of the drops.
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2.2 Experimental explorationof themixingbetweenadropanda thinfilm
The successive drops falling on stalagmites are responsible for renewing both the liquid and ion
content from the film lying on the stalagmite. Hence, these drops are solely responsible for sta-
lagmite emergence and growth. Drop impact on a film having a thickness of the same order
of∼ 100 µmas the films found in caves, leads to splashing for falling heights as short as 30 cm [227].
When the film is spread on a surface area having a radius of the same order as the stalagmite ra-
dius, i.e., typically less than 10 cm, part of the ejections produced during the impact may not land
back onto the stalagmite [145]. Hence, the ions in these ejections do not contribute to subsequent
stalagmite growth. Simultaneously, mixing occurs between the drop and the film both at the drop
impact location and within the ejections, yielding a loss of initial film content into the ejections.
Assessing which part of the original drop content actually ends up in the film, an essential param-
eter to modelling stalagmite growth which had not been previously estimated [70, 133], was thus
the focus of Ch. IV.

We conducted a series of experiments of drops impacting thin liquid films in a lab setting,
using two dyes to colour the drop and the film. Through high-speed recordings of both top and
side views of the experiments, our analysis revealed four scenarios of drop impacts. The side view
of the impacts shed light on the dependence on the film thickness of the geometry of the crown
formed at impact, while the top viewof the impacts allowedus to estimate themixing level between
the drop and the film and the amount of liquid ejected away. A colorimetry algorithm based on
Beer-Lambert lawwas developed to estimate the volume fraction of each of the dyes used to colour
the drop and the film from the top view of the impacts. For very thin films such that h⋆ < 1 (with h⋆

the nondimensional film thickness, see Sec. 2.3 from Ch. IV), fragmentation of the crown formed
upon impact appeared before the crown started retracting toward the impact point position. The
resulting spot left by the drop in the film thus corresponded to a small circular spot of uniform
colouration. For h⋆ ≳ 1, the crown retraction was no longer hindered by early fragmentation
and the subsequent seemingly random collapse of the crown induced more mixing between the
drop and the film. The spot left by the drop in the film presented variable colouration and was
surrounded by dye tails reminiscent of the crown retraction. For thicker films (h⋆ ≳ 2), additional
processes, such as the uprisingWorthington jet following the crown retraction, induced evenmore
mixing in the film. The resulting radius of the spot left by the drop in the film thus increased with
the film thickness.

Including additional results from the literature [236], we also obtained an estimation of the
proportion of the drop ejected away at impact. For very thin films (h⋆ ≪ 1), this proportion ranged
from 0.2 to 1, such that the ejected volume of liquid was smaller than the drop volume, and the
film following the impact became locally thicker than the initial film. For h⋆ → 1, the proportion
became approximately equal to 1, thus therewas asmuch liquid ejected away as brought by the drop
into the film. For h⋆ ≳ 1.5, the proportion decreased again to remain close to 0.6 when h⋆ > 2. We
further estimated the proportion of drop content actually entering the film at impact, as well as the
amount of liquid coming from the initial film which ends up in the ejections. While there always
seemed to be little loss from the initial film into the ejections, the proportion of liquid originally
from the drop going into the ejections increased with the film thickness h⋆, from about 0.1 to 0.5
in the range covered by the experiments.

2.3 A century-old equation adapted for axisymmetric, curved surfaces
Originally intended to describe the pressure distribution in liquid film bearings and evaluate the
dynamic viscosity of oil [180], Reynolds equation for lubrication theory has since long been used
in countless applications involving thin liquid films [154]. In Ch. V, we particularised it to the
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drainage-induced flow of a thin film over a stalagmite. Many stalagmites can be considered as ax-
isymmetric, which reduces the dimension of the problem. In Ch. II, we had already defined the
stalagmite profile along a particular radial angle as a function of curvilinear coordinates follow-
ing the stalagmite surface in every point. In Ch. V, we came back to this definition to express the
Reynolds equation in this set of coordinates. The evolution of the film thickness over time and
space could be further obtained by taking into account the continuity equation and by integrating
the velocity profile inside the film over the entire film thickness. From the equations obtained, we
found that the flux is related to the film thickness, the gradient of film thickness along the stalag-
mite surface and the local inclination of the stalagmite surface with the horizontal (see Eqs. (5.9)
and (5.10) from Ch. V). Two regimes of drainage could be established from there: the drainage can
either be dominated by the film thickness gradient, or by the stalagmite inclination. The first of
these two regimes is therefore responsible for the film drainage over a flat or perfectly horizontal
stalagmite surrounded by an inclined wall away from the centre (i.e., at several centimetres away),
while convex stalagmite profiles are associated with the inclination-based regime of drainage.

In addition to the drainage, we also took interest in the filling of the film, which is established
following a succession of drop impacts onto an initially dry stalagmite surface. After a certain
number of drop impacts, the film reaches a stationary state during which its thickness oscillates
between maximum and minimum values following the periodic discrete inflow associated with
each drop. However, past a given radius, denoted the stationary radius (see Eqs. (5.18) or (5.45)
from Ch. V), the periodic variations of the film thickness is not observed any longer and the film
thickness remains steady as in the case of a constant continuous inflow. At steady-state, a larger
inflow of drops yields a larger drainage outflow along the outer walls of the stalagmite. Because
the drainage flux increases with the film thickness, a larger inflow thus also yields a larger film
thickness. The filling, stationary state and sole drainage phases of the film resulting from either
an inflow of drops, or the interruption of this inflow in the case of the sole drainage, were studied
both experimentally and numerically. The equations describing the evolution of the film thickness
over time and space were indeed non-linear and could only be solved analytically in the particular
case of a film at steady-state lying on a perfectly horizontal stalagmite.

Experimental film thicknessmeasurements during the three aforementioned phaseswere con-
ducted on stalagmites in both cave and lab settings. Amass-based techniquewas used to obtain the
filling measurements in caves, while the sole drainage was evaluated using a home-built apparatus
based on a dial gauge to obtain the film thickness from differential distance measurements at the
stalagmite apex. Both these techniques only allowed for instantaneousmeasurements, while an op-
tical sensor available for the lab measurements allowed to record the film thickness evolution over
timewith a sampling frequency of 1000Hz, i.e., labmeasurements could be considered as continu-
ous in regard of the drainage. The lab measurements further permitted to introduce drop impacts
in the film during the recordings in order to obtain oscillating film thickness measurements dur-
ing the stationary phase, which was not possible in caves. The caves provided a great variability of
stalagmite shapes, and even included concave stalagmites, whereas the lab measurements allowed
to systematically vary parameters such as the dripping period of the drops, t0. The measurements
could be compared to the results provided by the numerical resolution of the evolution in time
and space of the film thickness, using the equations that we developed (see Eqs. (5.9) and (5.10)
from Ch. V). Results provided by the simulations using a set of entry parameters from the analysed
stalagmites showed a good agreement with the experimental measurements. Similarly, we could
also retrieve the theoretical time scalings inferred from the equations describing the drainage in
both the experimental measurements and numerical simulations. At steady-state, the film thick-
ness over a perfectly horizontal stalagmite depends on the drop dripping period as hs ∼ t−1/4

0 ,
while for convex stalagmites this law becomes hs ∼ t−1/2

0 (with hs the stationary film thickness,
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see Sec. 4.3 from Ch. V). During the sole drainage, the transient film thickness at the centre of the
stalagmite decreases as h ∼ t−1/3 on top of horizontal stalagmite surfaces and h ∼ t−1/2 on convex
ones. The modelling thus both confirmed the experimental results and allowed to comprehend the
differences exhibited by drainage on various types of stalagmites. Finally, we also showed that the
effects of the successive drop impacts into the film could be averaged for convex stalagmites, while
in the case of flat or concave stalagmites, it is not an assumption that should be made.

2.4 An updated model of stalagmite growth
In Ch. VI, we studied numerically the combined effects of the succession of drops impacting the
film, the drainage of the film and the ion precipitation on subsequent stalagmite growth. In ad-
dition to the drainage of the film, we described the evolution of the ion concentration over time
and space using an advection-reaction equation in the same curvilinear coordinate system as the
drainage equation, in the limiting case where horizontal diffusion is neglected and vertical diffu-
sion assumed at steady-state. We included the results from the mixing between the drop and the
film from Ch. IV to estimate the amount of ions that should enter the film at each impact based
on the local film thickness reached by the film. A linearised version of Fick’s law describing the
change in the stalagmite profile as a result of the ion precipitation, i.e., the growth rate in all points
of the stalagmite surface, completed the model. We could therefore simulate the response of the
stalagmite shape to the amount of ions brought by the drop and ratios between three timescales:
the dripping period, the drainage timescale and the precipitation timescale. In the absence of ex-
perimental records of entry parameters conditioning the stalagmite growth at our disposal, such
as, e.g., temperature or partial pressure in carbon dioxide records, we did not conduct simula-
tions over several years of growth. We rather performed simulations of stalagmites only starting
to grow during a few thousands of identical drop impacts. In this case, the film thickness and ion
concentration profiles established after a few tens of impacts remain in steady-state during the
entire simulation.

We showed that, under constant conditions, the stalagmite shape reached a stationary state
and does no longer change except for its scale (see Ch. II). The vertical growth rate of the sta-
lagmite depended on the amount of ions brought by the drops into the film, as already demon-
strated by Dreybrodt’s model [70]. However, the amount of ions in the drop had no effect on the
shape reached by the stalagmite. The final shape of the stalagmite depended on how the timescale
ratios t0/td and td/tp compared with one another, i.e., on the ordering of t0, td and tp. We ob-
served that, at constant td/tp, e.g., reducing t0/td, or increasing the drop inflow with respect to the
drainage, tended to widen the stalagmite. Regarding the effect of td/tp at constant t0/td, the sta-
lagmite also became wider with decreasing td/tp. These two effects were additive and could yield
very large or narrow stalagmite profiles. We also conducted simulations during which we varied
one of the ratios t0/td or td/tp while keeping constant the other one. The stalagmite shape response
to reach another steady-state was of the order of a few hundreds of drop impacts. We also briefly
investigated other effects, such as the initial profile (convex or concave) from which the stalagmite
grew. The convex profile modified the drainage dynamics according to the regimes discussed in
Ch. V, which in turn affected the shape taken by the stalagmite, even when the shape should have
been mostly conditioned by the precipitation of the ions occurring faster than drainage and drip-
ping (i.e., tp < t0, td). Regarding the concave initial profile, we could not find a combination of
timescales that allowed to maintain this profile, which ended up returning to a flat or convex pro-
file after a certain number of drop impacts. Hence, the concave shape did not seem to be stable
but it might also have stemmed from effects that we did not include in the modelling. Finally, we
could also include the dispersal presented by the impact point position distribution of the drops
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from Ch. III in simulations conducted in a two-dimensional Cartesian coordinate system. This
dispersal also had a significant effect on the final size of the stalagmite, as it was already concluded
in Ch. III.

3. Contributions and outlook
Throughout the chapters discussed above, we obtained results of interest both for drop physics and
stalagmite modelling in the context of palaeoclimate reconstruction. In particular, some short-
comings of former stalagmite growth models could be addressed (see Sec. 1.4 from Ch. I). The
dispersal in the drop impact point position of the drops, for instance, was shown to set constraints
on stalagmites associated with a large drop falling height, while previous models of stalagmite
growthhypothesised that all drops fell at the apex of the stalagmite regardless of their falling height.
The model obtained in Ch. III was in good agreement with the experimental data collected from
both cave and lab environments, but could still be improved as numerous simplifying hypotheses
were made. First, the lift coefficient acting on a deformable object such as a drop in a cross-flow
should be better estimated. The deformability of the drop could also lead to recirculation inside
the drop [238]. Other effects may induce shifts in the final impact point position of the drop, such
as irregularities at the stalactite surface, the background air currents in the cave [34], the internal
oscillations of the drop, the interaction between the vortices shed in the wake of two successive
drops [238], or the Magnus effect set by some initial rotational speed of the drop [39]. Slight sea-
sonal drop volume variations can also appear in caves and affect the impact point distribution of
the drops over time [98].

The analysis conducted in Ch. IV provided a key missing element identified in existing models
of stalagmite growth, which had not been previously estimated: the level of mixing between the
drop and the film. The mixing occurring between a drop and a thin film is a process that has in-
deed not been extensively studied in the literature [80]. Without knowing how the drop and the
film mix at impact, it is neither possible to determine the ion content actually ending up in the
film, nor where the ions are distributed following one impact. To be more accurate, a thorough
analysis of the ion loading through the soil above the caves should complete the study of Ch. IV.
The stalagmite growth modelling presented in Ch. VI should also take into account the possible
splash of drops at impact, as well as the ratio φf )e modulating the part of the initial film that is lost
into the ejections. However, it should be noted that the quantities presented in Ch. IV were only
measured on horizontal films of uniform thickness, by only focusing on one impact at a time. In
the following chapter (Ch. VIII), we present a few experiments showing how the post-impact spot
left by the drop in the film changes in response to, e.g., the presence of non-negligible thickness
gradients in the initial film.

We also established that the drainage of the film, which had previously not been included in
stalagmite growth modelling, significantly affects the thickness of the film and, therefore, the drop
impact outcome. Depending on how the timescale ratios t0/td and td/tp compare with each other,
although it might be true in some regimes, the effect of the successive drops cannot always be av-
eraged over time and drainage should be taken into account in stalagmite growth modelling. The
study conducted inCh. V also contributed to clarifying the respective roles played by the film thick-
ness gradient and inclination of the surface with the horizontal on the film drainage. The filling
phase of the film, which we added to our study, is usually not included in the literature investi-
gating the drainage of a thin film in various contexts [154]. The modelling of the drainage could
be further improved by considering non-axisymmetric stalagmites, or by acknowledging other ef-
fects that were assumed not to affect the drainage in Ch. V. For instance, the Laplace pressure or
stalagmite rugosity and porosity could also affect the drainage [153].
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Finally, although the stalagmite growthmodelling discussed inCh.VI included the effects of the
drop impacts and filmdrainage, which had previously not been considered, simplifying hypotheses
that had to bemademight not be accurate. The vertical diffusion of the ions into the film, e.g., could
have a non-negligible effect on ion distribution and precipitation in the film as itmay have the same
order ofmagnitude as the drainage andprecipitation timescales. Theprecipitation of the ions at the
bottom of the film, in particular, resulted from a linear approximation of Fick’s law, which might
no longer be valid when taking the ion diffusion into account. The evaporation of the film was not
considered either, while it hadbeen shown tohave a potentially non-negligible effect ondrainage in
the lab experiments presented in Ch. V. To be accurate, the simulations conducted in Ch. VI should
also span a larger number of drops and take into account time-variable effects such as seasonal
variations in the entry parameters. Comparing such simulations with actual paleoclimate records
and stalagmite cuts could nevertheless reveal difficult because of poorly characterised effects such
as, e.g., the oxygen and carbon isotope fractionation [56]. Another possibility would be to grow
calcite crystals from scratch in a lab setting, in conditions allowing for fast growth compared to
caves.

Hence, some physical processes operating during stalagmite growth have not been taken into
account yet in the model derived in Ch. VI, and simplifying assumptions might still be the subject
of discussion. Nevertheless, we hope that our results will offer a fresh perspective on stalagmite
growth modelling for palaeoclimate reconstruction, and contribute to improving its robustness
and predictive capability.
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MIXING AND MORE

Trying to explore the intricate physics related to the entire trajectory of a drop in a cave, we sometimes
had to make restricting hypotheses that do not capture perfectly the reality. These simplifications were
already discussed at the end of the previous chapter. The shortcomings of the drainage modelling in
Ch. V, e.g., included the absence of the Laplace term in the pressure gradient, which originated from
the fact that we considered perfectly smooth stalagmite surfaces and may not always be accurate. A few
elements could also improve the complete stalagmite growth model presented in Ch. VI. For instance, as
simplifying approximations, the splash of drops and the proportion of the initial film ending into the
ejections with respect to the drop volume were not considered. Besides these modelling approximations,
we concluded from Chs. V and VI that individual drop impacts may directly influence the local and short-
term stalagmite growth in some regimes, while we only focused inCh. IV on studying these impacts in very
particular cases, namely on horizontal, quiescent thin films of uniform thickness. A better inclusion of
the mixing between the drop and the film in more general cases would therefore be an improvement to our
stalagmite growth model. This final chapter thus focuses on conducting a few preliminary experiments to
improve our knowledge of drop impacts on thin films in a broader context than presented in Chapter IV.

1. Additional mixing experiments
Although we thoroughly described the mixing occurring during the impact of a drop on a film
having a thickness of the same order as found in caves, we focused our study on horizontal, qui-
escent films. In Ch. III (see Fig. 3.3), e.g., we showed examples of impacts on a concave stalagmite
containing a pisolite and on the inclined wall of a convex stalagmite, which have little in common
with the impacts from Ch. IV. A better description of stalagmite growth should thus include such
types of impacts. Knowing the proportion of liquid coming from the drop and going into the film
or being ejected away during these types of impacts is indeed challenging. We also noted in Ch. V
that the dripping period of the drops is one of the parameters affecting the most the subsequent
drainage of the film. In our experiments, we did not consider the possible interaction that succes-
sive impacts may have with one another either. However, it has recently been shown that a train of
drops fallingwith a time period shorter than the total impact time on a thin film leads to non-trivial
interactions between the successive drops. For instance, the air trapped in between the successive
developing crowns following the impacts tends to deform the wall of the external crowns [148]. A
higher splashing threshold is also observed for the successive dropswith respect to the first ones of
the train [148]. The angle of ejections made by the secondary droplets formed in a drop train yields
measurements comparing well [162] with the former study of the crown angle performed by Fe-
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dorchenko andWang [86], whichwas also similar to our crown inclinationmeasurements inCh. IV
as we had obtained a good agreement between both datasets (see Fig. 4.7 (a)). Different empirical
laws for the splashing threshold have further been derived depending on the substrate hydropho-
bicity [53] and rugosity [184], which could locally vary over the stalagmite surface. Nevertheless,
the literature is not abundant regarding the effect of such parameters on the mixing between the
drop and the film. In the following sections, we present a few preliminary experiments based on
three major processes that could improve stalagmite growth modelling if explored systematically:
(i) the effect of a film thickness gradient on the mixing occurring at impact, (ii) the interaction that
may appear between two successive drops, and (iii) the mixing within the ejections, specifically,
the partition of the ejections between the liquid coming from the impacting drop and the liquid
originally found in the film.

1.1 Impact on a wetted step
Stalagmites can present irregularities smaller, larger or close to the size of the drop at their surface,
and have more or less inclined walls, all these effects leading to the appearance of film thickness
spatial gradients. As seen in Ch. V, drainage does not suffice to provide the film with a velocity
comparable to the velocity of the growing crown [48], but that does not mean that impacts can-
not be affected by these local thickness variations. Because we cannot infer the mixing occurring
between the drop and the film from direct cave measurements, or replicate all the possible stalag-
mite surface variations in a lab setting, we propose to approximate stalagmite surface variations at
first order by a rectangular wetted step of constant height. The height of the step should be com-
prised between the typical film thickness (∼ 100 µm) and the drop radius (∼ 2mm)1. Below the
film thickness order of magnitude, we could expect the step to have a similar effect on the impact
outcome as the surface state or rugosity [184]. On the other hand, a step of height larger than the
millimetre would lead to impacts on films that we can no longer classify as thin; for h = 1mm, we
would indeed already obtain h⋆ = 7.4, which falls far within the impacts on deep reservoir region
in Ch. IV (see, e.g., Fig. 4.5).

We conducted a few experiments in a similar manner to those presented in Ch. IV, the only
difference being the presence of the step below the hydrophilic tape, as illustrated in Figs. 8.1 (a)
and (c). The step was made of cured polydimethylsiloxane (PDMS). After mixing and degassing the
pre-polymer components of the PDMS at a 10 : 1 weight ratio (Sylgard 184, Dow Corning Inc.),
the PDMS was poured over feeler gauge strips of known thickness prior to curing, then carefully
cut to match half the area of the experimental samples from Ch. IV (about 4 cm× 4 cm). A piece of
double-sided tape of about 4 cm× 4 cm was first placed onto a rigid plastic plate, then half of this
tape was covered by the PDMS step. Two rectangular pieces of hydrophilic tape of the same size
(Adhesive Research, ARflow 93210) were then positioned over the step and the free remaining part
of the double-sided tape. The bonding between PDMS and the hydrophilic tape was sufficient to
avoid using any other adhesive between these two layers. Finally, the assembly made of the plate
covered by the double-sided tape, the PDMS step and the hydrophilic tape was weighed before
and after covering it by a thin film of water in order to know the spatially averaged film thickness
above and next to the step. If both the step and remaining double-sided tape part have the same
area A, knowing the total mass of fluid mf indeed leads to h1 = mf/ (ρA) + e/2 and h0 = h1 − e,
wherewe denote h0 the average film thickness over the step, h1 the average film thickness outside of
the step and e the already known step thickness (measured with a simple dial gauge), as illustrated
in Fig. 8.1 (c). Impacts were produced in the same manner as described in Sec. 2 of Ch. IV, with

0Part of the impacts discussed in this section were recorded by Camille Bosch and Tim Gabriel during their internship
at the Microfluidics Lab, whom we gratefully thank.
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a fixed drop falling height of 50 cm. Hence, any drop produced in these conditions has the same
radius Rd = 2.3mm and velocity Vd = 3m s−1, and same correspondingWeber numberWe = 525
(seeEq. (4.5) fromCh. IV).The samedyes asmentioned in Sec. 2were also used in thedrop and in the
film. Due to an issue with one of the sensors of the camera, colours in the photographs presented
hereafter were altered numerically to match as best as possible the experiments of Ch. IV, taken in
the same conditions (nomeasurement has been inferred from the colours of the pictures presented
here)2. In Fig. 8.1 (b), an example of a drop impact on a wetted step (this step in particular was
formed using an adhesive tape piece of known thickness equal to 200 µm) is shown from the side.
We describe this process in more detail hereafter.

In Fig. 8.2, we present an example of a drop impact on a 530 µm-high wetted step. The film has
a thickness h0 = 75 µm on the step (lower half of the pictures) and h1 = 605 µm outside of the step
(upper half). As depicted in Fig. 8.2 (a), the drop falls into the filmat a distance d = 0.9mm = 0.4Rd

i. Rain tower

ii. Top camera

iii. Falling drop

iv. Lamps

vii. Step + film

viii. Balance

≲ 10°

e
h0

h1

(a) (b)

(c)

Figure 8.1: Experimental methodology for the drop impact on a wetted step. (a) Experimental setup used to release
droplets from a given height onto a thin underlying film, and to record the impacts from a top view. This setup is very
similar to the one described in Sec. 2 from Ch. IV. i. Plastic tube in which the drops fall. ii. High-speed color camera
used to record impacts from a top view. iii. Falling drop of radius Rd and impact velocity ud. iv. Four lamps placed
in the corners of the balance to light up the impact. v. The impact substrate, consisting of a wetted step. (b) Example
of impact from a side view about 30ms after the beginning of the impact, showing two crown sections of different
widths, heights, thicknesses and whose left part is already retracting. (c) Close-up schematic view of the wetted step,
consisting of a double-sided tape piece covered partially by hydrophilic tape, and partially by a PDMS step of height e,
covered itself by another piece of hydrophilic tape. The ensemble is covered by a thin film of minimum thickness h0
over the step, and maximum thickness h1 otherwise.

2We also point out that the impact of the drop should not deform the PDMS step as PDMS has a Young’s modulus of
over 1MPa. A drop impact creates a force varying in amplitude with time, but which does not overcome 0.1N for
less than 1ms in our parameter range [202]. Such a force acting on the area covered by the drop at the beginning
of the impact, πR2

d, would yield a local pressure of 6 × 104 Pa. Hence, the maximum compression deformation that
could be induced if the drop was impacting the sole PDMS layer would be of the order of 1 %. Since the PDMS layer
is attached to a much more rigid plate and is protected by the hydrophilic tape and film thickness, the actual possible
deformation can be considered negligible and should not affect the outcome of the impact.
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from the step, on the thinner part of the film (lower half of the pictures), corresponding to h⋆0 = 0.65
and h⋆1 = 5.3. In Fig. 8.2 (b), we observe, as in Ch. IV, that the drop crushes into the film to form
a growing crown. However, as it appears clearly in Figs. 8.2 (c-d), the crown has a smaller radius3

in the thicker part of the film (upper half of the pictures), and a larger one in the thinner part of
the film (lower half of the pictures). Because of that, the crown also seems to grow slower in the
thicker part of the film. Figure 8.2 (c) emphasizes the thinning of the crown wall appearing at the
junction between the upper and lower parts. This thinning of the crown wall results from the
aforementioned different radii and growing velocities of the two parts of the crown, which may
induce shear stresses in the crown wall around the junction. In Fig. 8.2 (e), following the thinning
of the crown at the junction between the two parts, fragmentation starts on the thinner part of
the film (lower half of the pictures). In Figs. 8.2 (f) i and ii, we note that, right after fragmentation
has started, the rim in the thinner part of the film is forming jets which destabilise into secondary
droplets. Fragmentation of the lower part of the crown continues in Figs. 8.2 (g-i), accompanied by
further ejection of secondary droplets while the upper part of the crown starts retracting toward
the impact point position. In Fig. 8.2 (j), we note that, at the end of the retraction phase of the upper
part of the crown, the remaining of the crown falls upon itself to form a tail. This tail takes the same
appearance as the jets that could be observed at the end of the impacts occurring at We ≲ 1500
and h⋆ ≳ 1 in Ch. IV, and also destabilises into droplets before falling into the film in Figs. 8.2 (k-l).
Because of the particular retractionmotion of the upper part of the crown,which only corresponds
to half of the usual crowns that we studied in Ch. IV, the tail falls into the film far from the position
of the step.

In Fig. 8.2 (m), it can be seen that both parts of the crown and all the ejected secondary droplets
have either fallen into the film or outside of it. While the pattern obtained in the lower part of
Fig. 8.2 (m) corresponds towhatwe could observe in Ch. IV (see Figs. 4.5 and 4.6), the upper part of
Fig. 8.2 (m) does not look like anything that we have already encountered. By contrast, the lifetime
of the lower part of the crown is estimated between 6ms and 10mswhile the upper crown has sur-
vived for over∼ 30ms, in accordance with the crown lifetimes that we could observe in Ch. IV for
films of thicknesses similar to h0 and h1, respectively. Hence, the same physical competing effects as

Figure 8.2: Next page. Example of a drop impact on a wetted step. The drop of radius Rd = 2.34mm and veloc-
ity ud = 3m s−1 impacts a 530 µm-high PDMS step. The film has a thickness of 75 µm on the step (lower part of the
pictures) and 605 µm outside the step (upper part), corresponding to h⋆0 = 0.65 and h⋆1 = 5.3. (a) The drop right before
the impact. The centre of the drop is located at a distance d = 0.9mm = 0.4Rd from the edge of the step. (b) Crown
formation in both parts of the film. (c) Close-up view on the thinning of the crown occurring at the left junction be-
tween the upper and lower parts of the crown. (d) Growing of both parts of the crown, with a clearly larger lower
radius. (e) Beginning of the fragmentation in the lower part of the crown. (f) Close-up view of the rim detachment and
crown fragmentation on each side: i - left and ii - right. On each side, the rim has thinned upon detachment from the
crown by forming a jet, further destabilising into secondary droplets. (g) Remaining jets following the crown fragmen-
tation in the lower part and further upper crown growth. (h) Secondary droplets resulting from the jets destabilising
in the lower part and retraction of the upper crown (occurring mostly in a direction parallel to the step). (i) End of
the retraction phase in the upper part. Retraction is also visible in the spot left by the drop in the lower part, with a
visible darker front growing toward the spot center. (j) Jet formation in the upper part, in a direction normal to the
step. (k) Destabilisation of the jet in the upper part. (l) The remaining of the jet falls into the film. (m) Mixing pattern
about 120ms after the impact, with visible tails ended by twirls right beneath the step in the lower part, and a longer
tail reminiscent of the crown asymmetric retraction and break-up in the upper part. The frame rate of the original
movie is 1300 fr s−1. The scale bar is 1 cm but does not apply to pictures (c) and (f) i and ii. The colours in the pictures
were numerically altered to match at best the experiments from Ch. IV due to a camera sensor issue.

3In this particular chapter, we can refer indifferently to the radius of the portion of the crown developing into the
film, rc, or to the radius of the crown rim at the top of the crown, rt, as we do not have sufficient data to particularize
their respective evolution yet.
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already described in Ch. IV seem responsible for the crown formation, growth, fragmentation
and/or retraction, i.e., the large inertia of the drop in the beginning of the impact, quickly caught by
capillary and viscous effects that tend to constrict the crown back toward the impact point position
or slow it down (which leads to retraction), but may not always be sufficient (when fragmentation
appears). In each part of the film, the only visible effect played by the step in the very beginning of
the crown development (≲ 5ms) is the change in initial film thickness, to which all crown geomet-
rical aspects are related (radius, growth velocity, see Fig. 4.7 from Ch. IV). But the appearance of
the final spot left by the crown into the film is directly related to the end of the retraction phase of
the crown, which differs from the experiments of Ch. IV. In the thicker part of the film, the pres-
ence of the step thus leads to the tail falling in the film in the opposite direction of the step, that we
observed in place of the usual central, uprising jet.

The outcome of the impact can also be affected by the film thickness on either side of the step,
h0 and h1, or the distance between the drop impact point position and the position of the step, d.
We show in Fig. 8.3 a few examples of the various impact outcomes that we could observe in the
small set of experiments that we conducted. In Fig. 8.3 (a), the film thicknesses on the two sides of
the step are h⋆0 = 1.74 and h⋆1 = 5.2, respectively. These values can be considered as thick in regard
of the experiments from Ch. IV. The distance between the drop impact point position and the step
is d = 3.2Rd on the thicker part of the film. The drop thus impacts the film quite far from the step
given that in this film thickness range, both the maximum radius reached by the crown rc and spot
equivalent radius Req are of the order of 4Rd (see Figs. 4.7 and 4.9 from Ch. IV). In Fig. 8.3 (a) i, the
crown thus looks almost identical as the crowns shown in Figs. 4.5 and 4.6 from Ch. IV, as if it did
not sense the effect of the step although a small portion of the crown can be witnessed growing
over the step. However, even over the step, the film is so thick that it does not seem to hinder the
crown growth. As a consequence, we also observe in Fig. 8.3 (a) ii a very similar pattern of mixing
as those from Ch. IV.

In Fig. 8.3 (b), the film thicknesses on both sides of the step are of similar order as in (a) (h⋆0 = 2.3
and h⋆1 = 6.9), but the drop impacts the filmon the thinner part of the film, at d = −0.7Rd. Pictures
from Figs. 8.3 (b) i-ii were shown side by side with Figs. 8.3 (a) i-ii for comparison, so we start our
discussion by Fig. 8.3 (b) iii, displaying the crown after only 7ms following the beginning of the
impact. The crown can be seen as it has already expanded over the thinner part of the film, i.e.,
over the step (lower half of the pictures), and has even reached the thicker part of the film (upper
half of the pictures). We note that capillary waves are visible in the thicker part of the film around
the basis of the crown. The motion of the upper portion of the crown seems to be impeded on
the thicker film side, as the crown appears distorted. This is confirmed by Fig. 8.3 (b) i, where the
crown has retracted toward the step in the thicker part of the film, while in the thinner part of
the film, retraction is only starting, in accordance with the crown lifetimes observed in Ch. IV
for film thicknesses of h⋆ ≈ 2. The opposite could be seen in Fig. 8.2, where fragmentation was
observed to first start in the thinner part of the film, while retraction in the thicker part only started
later, in agreement with the results from Ch. IV. The resulting spot left by the drop in the film in
Fig. 8.3 (b) ii is mostly located in the thinner part of the film. We note that the retraction in the
thinner part of the film though, following the early retraction in the thicker part, has also induced
a tail in this very thicker part, as it was the case in Fig. 8.2.

In Fig. 8.3 (c), the film thicknesses on both sides of the step are h⋆0 = h⋆1 = 0.65, correspond-
ing to h = 75 µm. This value is actually shorter than the step height in this case of e ≈ 200 µm,
such that the surface of the film should present a discontinuity at the step. Hence, although the
exact process is certainly more complex and out of the scope of this study, we can conceive that
the drop gets more or less cut in half as it impacts the film close to the step (d = 0.4Rd). The
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Figure 8.3: Examples of drop impacts on wetted steps with variable thicknesses, h0 and h1, and variable distance
between the impact point position and step, d. The step is always located in the bottom section of the pictures. The
distance d is indicated by a red (or white) arrow, starting from the junction between the two parts of the film, and is
considered as positive upward. Parameters are (a) h0 = 200 µm and h1 = 600 µm (h⋆0 = 1.74 and h⋆1 = 5.2), and
d = 7.3mm = 3.2Rd, (b) h0 = 265 µm and h1 = 795 µm (h⋆0 = 2.3 and h⋆1 = 6.9), and d = −1.7mm = −0.7Rd, (c)
h0 = h1 = 75 µm (h⋆0 = h⋆1 = 0.65), and d = 0.8mm = 0.4Rd, and (d) h0 = 215 µm and h1 = 415 µm (h⋆0 = 1.87
and h⋆1 = 3.6), and d = 2.9mm = 1.3Rd. The instants at which the pictures were taken, following the moment where
the drop starts crushing into the film, are indicated in the pictures. Picture (b) iii emphasises the capillary waves
appearing in the upper section of the film when the crown spreads into this section. The scale bars are 1 cm and each
refer to the (i-ii) (or i-iii) subfigures of a given panel. The colours in the pictures were numerically altered to match at
best the experiments from Ch. IV due to a camera sensor issue.
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two resulting crowns formed at impact almost seem to evolve independently from one another,
and correspond to the crowns observed in Ch. IV in the same film thickness range. We indeed
observe fragmentation of both crowns after only 7ms following the beginning of the impact (see
Sec. 3 from Ch. IV). The resulting spot left by the drop in Fig. 8.3 (c) ii also seems only slightly
affected by the step as it looks similar to the spot observed for h⋆ = 0.65 in Fig. 1.13 (in the same
Weber number range).

Finally, in Fig. 8.3 (d), the film thicknesses on both sides of the step are also relatively thick
since h⋆0 = 1.87 and h⋆1 = 3.6, and the distance from the drop impact point position to the step
is of the order of the drop radius, i.e., d = 1.3Rd. We observe in Fig. 8.3 (d) i that the part of the
crown formed in the thinner part of the film has already started to retract toward the step. This
asymmetrical retraction of both parts of the crown induces a similar motion as in Fig. 8.2. We
indeed observe in Fig. 8.3 (d) ii an elongated pattern in the upward direction, i.e., from the thinner
to the thicker part of the film. However, the case of Fig. 8.3 (d) is not as exacerbated as Fig. 8.2
because the film can be considered as thick, even in the thinner part.

From these preliminary examples, we note that a complex dynamics emerges between the drop
and the film because of the step beneath the film. A large number of parameters that may affect the
outcome of the impact can be identified, which include but are not limited to the falling height
of the drops (or Weber number), the height of the step, the thickness of the film on both sides
of the step, and the distance from the impact point position to the edge of the step. Given the
few experiments conducted, it is not possible to clearly determine the influence of any of these
parameters on the subsequent mixing between the drop and the film. Regardless, we can still note
that if the drop impact occurs too far from the step, the crown formed at impact may not feel the
presence of the step, at least if the film on both sides of the step is sufficiently thick (see Fig. 8.3 (a)).
We also observed different dynamics of retraction at impact when the distance between the drop
impact point position and the step was varied. For instance, the retraction of the crown does not
start from the same side (thicker or thinner part of the film) depending onwhether the drop impacts
the film on the step (thinner part of the film) or outside of it (thicker part of the film), as illustrated
by Figs. 8.2 and 8.3 (b). If the film is sufficiently thin on either side of the step, fragmentation of
the crown may occur instead of retraction, which yield various patterns of mixing between the
drop and the film following the impact (see Figs. 8.2 and 8.3 (d)). We also noted that the crowns
in each side of the film may evolve independently in the case where the step is taller than the film
thickness outside of the step, as exemplified by Fig. 8.2 and 8.3 (c). Taking into account the effect
of film thickness variations on the impact outcome thus reveals intricate and complex dynamics,
even in a simple case where the film thickness is only twofold and does not present a continuous
gradient throughout the entire film.

1.2 Two successive, close drop impacts
Two sessile drops spread on a dry wall can coalesce as soon as they touch each other [75]. This is
also true when a drop impacts a dry wall, at a position very close to another sessile drop of the
same liquid [47, 210]. In this case, even if the impacting drop and the sessile drop are separated by
up to 3Rd, because the impacting drop spreads out [103, 139], it ends up coalescing with the first
sessile drop [47]. On an oblique wall (inclined with the horizontal), a drop impact close to a sessile
drop further yields a displacement of the two merged drops [5]. Analogously, two drops impacting
a dry wall simultaneously with different velocities can also coalesce if their respective spreading
radii become sufficient for them to touch each other [176].

By contrast, limited research has been conducted on two drop impacts on a thin liquid film,
except in the context of a train of identical drops falling at the exact same position [148, 162, 236].
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Ersoy and Eslamian [81] performed impact experiments using two drops of identical radius, but
coloured differently, impacting dry walls and thin films (quasi-)simultaneously. An example in
Fig. 8.4 below depicts the quasi-simultaneous impacts of a yellow and a blue drop (time lag of
∼ 1ms, which we inferred from Fig. 7 in Ersoy and Eslamian [81]) on a film of thickness h⋆ = 3.6
(see Ch. IV), at a distance of 4.5Rd. In Fig. 8.4 (a), the two growing crowns formed by the impacting
drops can be seen 8ms after the beginning of the impacts. Because the radius rc (≈ rt, see Fig. 4.7
in Ch. IV) reached by the two similar crowns is about 3Rd, they end up touching each other and
merging. An upward sheet thus starts growing along the intersect line of the two crown walls
which are no longer able to continue their outward motion. This sheet further destabilizes into
secondary droplets falling back into the film afterward, thereby creating the pattern observed in
Fig. 8.4 (b), 500ms after the beginning of the impact. We observe in Fig. 8.4 (b) that, despite the fact
that both crowns interacted with each other during the impact, the spots left by the two drops in
the film are easily distinguishable from one another. The only visible evidence of mixing between
the two drops is the intersect line which appears green. However, we know from Sec. 2.3 in Ch. IV
that molecular diffusion has not set in yet after only 500ms. Impacts performed at higher Weber
number We, i.e., for drops with larger impacting velocities, could also lead to additional mixing
processes that do not appear in the present case.

We have conducted a similar experiment in which two drops of identical radius impact the
same thin film, but successively rather than simultaneously. We only recorded the impacts from
the top by using the same experimental setup as described in Fig. 4.1 from Ch. IV (except for the
side view recording), which is also illustrated in Fig. 8.1. We added a second tube terminated by
the same 2mm-diameter plastic connector as in Ch. IV to be able to produce two impacts with
different dyes. In Figs. 8.5 (a-e), we show a red and green dyed drop (as in Ch. IV) impacting a
green film of initial thickness h⋆ = 0.78 with a Weber number We = 1440 (see Eq. (4.5) from
Ch. IV). In Figs. 8.5 (f-j), we show the exact same time instants of the second drop, dyed in blue,
impacting the film. Coincidentally (see Fig. 8.4), both drops are separated by a distance of 5Rd. The
second drop impacts the film about 2min after the first one. The spots left by the two drops 5min
after the beginning of the first impact can be seen in Fig. 8.5 (k).

We observe in Figs. 8.5 (a-e) and (f-j) that the two drop impacts are almost identical, and, unsur-
prisingly, both look very similar to the impacts presented in Figs. 4.5 (a) ii and 4.6 (a) in scenario A
(see Ch. IV). Given the time period of 2min in between both impacts, the film should indeed have
had the opportunity to recover a more or less horizontal, uniform thickness. Moreover, the sec-
ond drop impact occurs at a position sufficiently far away from the first drop impact for the film
surface to remain almost unperturbed at the second impact position during the first impact (see
Fig. 4.2 in Ch. IV). In this regime, corresponding to scenario A, we have also obtained that the vol-
ume ejected away at impact is equivalent to the proportion of drop volume entering the film, with

(a) (b)
Figure 8.4: Example of two quasi-
simultaneous drop impacts on the same
thin film, with Rd = 2.1mm, h ≈ 400 µm
(h⋆ = 3.6), and We = 230. The drops
are separated horizontally by a distance
of 4.5Rd. (a) Side view at +8ms following
the impact. (b) Top view at +500ms.
The scale bar is 1 cm and is the same for
both pictures. Adapted from Ersoy and
Eslamian [81] (Figs. 7 and 19).
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Figure 8.5: Example of two successive
drop impacts on the same90 µm-thick film
(space average thickness), both drops hav-
ing a velocity of 4.8m s−1. The first drop
contained both red and green dyes as in
the experiments presented in Ch. IV, the
second drop contained blue dye. Impact
parameters correspond to h⋆ = 0.78 and
We = 1440 (see Ch. IV). Panels (a-e) and (f-
j) show the same time instants of the two
impacts, separated by about 2min. The im-
pact point position of the first drop is in-
dicated in (f) by the white dot, the dashed
red circle corresponding to the first drop
outline. The distance between both impact
point positions is 5Rd. Between the two
impacts, as it can be noted in the right bot-
tom corner of (f-k), some evaporation has
started to set in, thereby depleting the film
and reducing its local thickness (the film
appears whiter). (a)/(f) The drop right be-
fore it impacts the film. (b)/(g) The drop
has started crushing into the film, lead-
ing to the formation of a growing crown
with secondary droplet ejections. (c)/(h)
The crown has started to destabilise into
thin sheet fragments. (d)/(i) The last sec-
ondary droplets are ejected away while the
remaining of the drop that penetrated into
the film starts to retract toward the im-
pact point. (e)/(j) After complete retrac-
tion, the spot left by the drop looks exactly
like the one shown in Fig. 4.6 (a) iv and
Fig. 4.5 (a) ii. (k) The spots left by the two
drops about 5min after the beginning of
the first impact, and 3min after the second
one. Both spots have enlarged and some
mixing between the red and blue dyes may
be observed. The scale bar in (a) refers to
(a-j), the one in (k) only refers to (k). Both
scale bars are 1 cm.

+5min

(k)
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the ejected ratio φe ≃ 1 (see Fig. 4.12 in Ch. IV). Hence, both the first and second drop impacts
should occur in identical conditions. We therefore note in Figs. 8.5 (e) and (j) that the spots left
about 1 s after the beginning of each impact present the same features as discussed inCh. IV for sce-
narioA.Thedye is concentrated almost entirely over the equivalent radiusReq, defined inEq. (4.11),
this radius being roughly equal to 2Rd here. Correspondingly, notmuch dye is left around this area,
except for a few tails reminiscent of the crown fragmentation that can be witnessed in Figs. 8.5 (c-
d) and (h-i) for the red and blue drops, respectively (see Sec. 3.1 in Ch. IV). We also observe in
Figs. 8.5 (g-j) that the second drop impact does not seem to affect the spot left by the first impact.
We had indeed measured that, for the range of parameters relative to this impact, the radius of
the cavity spreading into the film, rc, is of the order of ≲ 5Rd, which is the distance between the
two impact point positions. The second impact itself thus does not induce any significant mixing
between the second impacting drop and the spot left by the first drop.

Additionally, by contrast with the experiment from Fig. 8.4, the two crowns growing at impact
cannot interact with one another since the impacts do not occur simultaneously. Nevertheless,
we note that, between Figs. 8.5 (j) and (k), some mixing has occurred as the blue spot has spread
out until it encountered the red spot. Over a time span of a few minutes, molecular diffusion has
indeed had the time to set in. This effect could be considered as negligible in regard of all the other
competing physical processes in Ch. IV (inertia, capillarity and viscous forces). In the case pre-
sented in Fig. 8.5 though, it seems to become the driving mechanism allowing to get some mixing
in between two drop impacts separated by a large distance and a long time period, by comparison
with the drop radius and impact time, respectively. Other phenomena4 could also be responsible
for this mixing, though, among which we can list the evaporation of the film, visible in Figs. 8.5 (j)
and (k) in the lighter lower right area. This evaporation does not appear to be uniformand could in-
duce non-negligible film thickness gradients and dewetting of the film over the substrate, thereby
creating a flow directed toward the upper left corner of the substrate. We can further mention
that, after the crown fragmentation, the remaining of the drop in the film retracts toward the cen-
tre until all the liquid meets in one point, forming a very circular spot in the film. When the crown
does not fragment, an uprising jet can even be formed (see Figs. 4.5 (c) and 4.6 (c) in Ch. IV). How-
ever, as it is the case in drop impacts on dry walls [128, 235], this retraction could be followed by
a non-negligible and slower outward spreading phase, widening the spot that was left by the drop
after only 1 s.

Besides the initial film thickness, many other parameters could play a major role when consid-
ering twodrop impacts on the samefilm: the timingbetween the two impacts ((quasi-)simultaneous,
separated by a time of the order of the impact time (≲ 1 s), or much longer), the distance between
the two impact positions, which can affect the growing crowns formed at impact if the impacts are
simultaneous [81], or the relative inertia (i.e., radii or impacting velocities) of the two drops. Even
in cases thatmay seem limiting, as we present in Fig. 8.5, mixing can occur because of physical pro-
cesses, such as molecular diffusion, that could be ruled out when studying one impact at a time.
We indeed show two impacts separated by a distance larger than the maximum radius of the cavity
spreading into the film at impact, and by a very long time period in regard of the impact timescale,
yet we are still able to discern some mixing in Fig. 8.5. On actual stalagmites, we could also add
the effect of the gravity-induced drainage, which would further enhance the mixing between the
two spots left by the drop. Unless they have already all precipitated, it is thus not trivial to assess
exactly how ions coming from two successive drops would get redistributed between impacts.

4A slight inclination of the substrate underneath the film could also yield a non-negligible spreading of the spots left
by the drops, however this spreading would be oriented along a specific direction for both impacts. As this is not the
case here, the possible effect of the substrate inclination can be ruled out.
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1.3 Secondary ejections

To the best of our knowledge, there is currently no dedicated study describing the content of the
ejected secondary droplets during the impact of a drop on a film, whether this one can be consid-
ered as thin or not. In the case of stalagmites though, these secondary droplets could carry ions
on the sides of their landing stalagmite, or onto adjacent or close stalagmites, thereby leading to
local calcite addition away from their impact point. The knowledge of the secondary droplet con-
tent could be of interest in other applications, including pathogen dispersal and leaching on plant
leaves [100, 145], or content dispersal from drop impact-induced soil erosion [147, 163]. Our con-
clusions from Ch. IV indicated that the impacting drop content actually entering the film mostly
changed with the initial film thickness, thus we expect the content of the secondary droplets to be
affected by this initial film thickness as well. The literature [144, 145, 236] and our own experi-
ments further suggest that the size, velocity and trajectory of the secondary droplets vary with the
film thickness, as well as with the incoming drop impacting velocity.

i. Camera + lamp

ii. Collecting substrate
(outer part)

iii. Collecting substrate
(inner part)

iv. Levelling plate

100 µm

(b) Levelling plate close-up (side view)

i

ii

(c) Colorimetry algorithm calibration

(a) Experimental setup

Figure 8.6: Experimental methodology. Prior to panels (a-b), impacts were conducted in the same manner as de-
scribed in Fig. 4.1 (a) to produce the ejections drawn in both schematics. (a) Top view of the setup. i. Fixed camera and
lamp allowing to record pictures of the droplets. ii-iii. Two-piece collecting substrate over which drops have landed.
The outer part has a diameter of 35 cm, the inner one a 14 cm-diameter. The outer part can be pivoted such that all
the regions of interests containing droplets can be successively positioned under the camera. The inner part can be
removed to be positioned under the camera. iv. Levelling transparent plate allowing to frame the droplets. (b) Side
view of the levelling plate operation. i. Following the impact, droplets of all sizes and colours are dispersed over a
region of interest of the collecting substrate. The region of interest of the collecting substrate is positioned under the
camera. ii. When the levelling plate is placed on top on the region of interest of the collecting substrate, droplets are
framed such that they all have the same thickness of 100 µm. The plate has 4 bolts which can be tightened in order to
maintain a constant spacing between the levelling plate and the underneath substrate. The screws are not attached to
the collecting substrate but simply placed on top of it. A second levelling plate corresponding to the inner part of the
collecting substrate (see (a) iii) was also used, which is not represented here but operates on the same principle. The
main levelling plate has a width of about 13 cm following the rounded edge of the collecting substrate, a maximum
length of 13 cm and aminimum length of about 11 cm in themiddle. The second levelling plate has a diameter of 14 cm
and a central square hole of 4 cm long sides (see Fig. 8.7 for better visualisation). (c) Examples of calibration pictures
that could be used to implement the same colorimetry algorithm as described in Ch. IV, for this set of data. These
pictures represent the levelling plate covering a thin film of the same thickness as imposed to the ejected droplets (see
(c)), but with known red and green dye concentrations.
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We propose to look at preliminary examples of collections of secondary droplets ejected dur-
ing impacts similar to those presented in Ch. IV. The experimental setup used is schematised in
Fig. 8.6. By using the same colorimetry technique as presented in Ch. IV, we could retrieve the
concentration content of the ejected droplets from photographs of these droplets. In the case of
the direct photographs of the impacts shown in Ch. IV, we had used the fact that the green dye
volume fraction was the same everywhere in the film, and thereby known, to assess both the film
thickness and red dye concentration in every point of the photographs. We proceeded in a similar
manner here and recorded photographs of the secondary droplets from the top. We kept using
the same green dye volume fraction in both the impacting drop and the film (set to pg = 0.05,
see Ch. IV), such that any secondary droplet containing red dye came from the liquid originally in
the impacting drop. To avoid any effect related to the three-dimensional aspect of the secondary
droplets, we imposed a constant, fixed height to these droplets so that they form a cylinder rather
than a spherical cap or assimilated shape [63]. Knowing the constant height and green dye con-
centration in the secondary droplets, it is therefore possible to infer their exact content along with
their radius from top photographs. We could use dyed drops impacting transparent films, but the
film dye eases the detection of the droplets during the image analysis processing. To obtain the top
photographs, as illustrated in Figs. 8.6 (a) ii-iii, we placed the thin film on which the drop impact
was performed at the centre of a 35 cm-diameter circular plate of white, matt plastic, to which we
refer as the collection substrate. This substrate was divided between a central disk and an outer
annulus. The thin film, created in the same manner as described in Ch. IV by pouring a small vol-
ume of water over a 4 cm × 4 cm hydrophilic piece of tape, was positioned on the central piece
of the collection substrate. The outer annulus could be freely rotated and was placed on a rigid,
wooden plate. A Canon EOS 5D mark III camera was placed at a fixed position on top of the outer
annulus from the collection substrate, at a distance of about 30 cm, next to a powerful LED lamp
(Fig. 8.6 (a) i).

In Figs. 8.6 (a) i and (b), we illustrate how the secondary droplets could be maintained at a con-
stant height while photographs of them were taken. We positioned on top of the outer annulus
of the collection substrate a transparent, rigid plate assorted by four bolts in all the corners of the
plate, that we call levelling plate. By positioning the levelling plate on top of 100 µm-thick gauge
strips, we could tighten the nuts of the bolts to achieve a constant spacing everywhere between
the levelling plate and the surface underneath. Hence, by placing the levelling plate on top of the
ejected droplets, we ensured that these latter had a constant, known thickness. Once a photograph
of an area covered by secondary droplets was obtained, we removed the levelling plate, wiped it
out carefully and rotated the outer annulus of the collecting substrate in order to capture a new
sub-collection of droplets. We repeated this procedure until we had covered the entire annulus.
Given the dimensions of the levelling plate (about 13 cm in maximum length and width, and 11 cm
in minimum length, see Figs. 8.6 (a) iv and 8.7 (a)), we usually needed 6 or 7 photographs per ex-
periment. A second levelling plate was used to capture the secondary droplets ejected directly
around the contour of the film, which had the exact same size as the central disk of the collection
substrate (see Figs. 8.6 (a) iii and 8.7 (a)). To use the colorimetry algorithm presented in Ch. IV,
a set of calibration pictures are needed, such as the ones shown in Fig. 8.6 (c). They represent the
levelling plate relative to the outer annulus of the collection substrate, positioned over films of vari-
able, known red and green dye volume fractions. Without thoroughly discussing the issues arising
with this experiment and the solution to address them, we can note that they mostly consisted of:
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(a)

(b) i

ii

iii

Figure 8.7: Example of collection and recording of the secondary droplets ejected away during the impact of a drop
on a 300 µm-thick film, which corresponds to h⋆ = 2.61. (a) A drop containing red and green dyes has just impacted a
thin green film and produced secondary droplets which have been ejected at various distances from the impact point
position. The central illustration from (a) only serves as a reminder of the kind of impacts that can be observed on
300 µm-thick films but does not correspond to this particular experiment (scaling is appropriate with respect to the
radii of the ejected droplets). Around the impacted area, the levelling plates press and maintain the ejected droplets
at a fixed thickness. The levelling plate right around the film is only used once while the levelling plate positioned
further away from the film is used several times to capture the droplets ejected all around the film. In between two
photographs, the levelling plate is wiped out carefully and the substrate underneath is subjected to a sufficient rotation
to capture a new sub-collection of droplets. (b) i-iii. Three examples of photographs of the levelling plate used to cap-
ture the droplets ejected the furthest away from the film (at least in the area that we could cover). In each photograph,
a close-up view of some droplets is presented, as indicated by the red dashed circles. The scale bars are 5 cm. The scale
bar in (a) refers only to (a), and the scale bar in (b) i refers to (b) i-iii. The close-up views in (b) do not correspond to
the scale bar (note that the close-up view areas all have the exact same size, which is the same size as in Fig. 8.8, and
correspond more or less to twice the emphasized areas in the original pictures).

(i) the fact that some ejected droplets landed outside of the area covered by our collection substrate,
(ii) the coffee-ring effect displayed by some tiny secondary droplets that had evaporated before the
photograph was taken, (iii) the limited resolution of the camera with respect to the significant as-
pect ratio between the area overwhich the secondary droplets canpossibly land (over a∼ 50 cmra-
dius) and their minimum size (about 100 µm or smaller [145]), which is around 108, and (iv) the dif-
ficulty inmaintaining a thin filmunder the levelling plate during the calibration (see lighter areas in
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(a)

(b)

i

ii

iii

Figure 8.8: Same as Fig. 8.7, but for a 85 µm-thick film, which corresponds to h⋆ = 0.74 (the (a) and (b) panels have
been inverted purely for graphical purpose).

the pictures of Fig. 8.6 (c)).
A complete, systematic analysis over the range of initial film thicknesses and drop impacting

velocities already covered in Ch. IV is likewise out of the scope of this work. In the light of the
regimes established within our study of drop impacts on thin films, we can nevertheless observe
the differences appearing among two distinct cases, which are illustrated in Figs. 8.7 and 8.8. First,
in Fig. 8.7, we show a partial collection of secondary droplets produced by the impact of a 2.3mm-
radius drop on a 300 µm-thick film, which corresponds to h⋆ = 2.61. In Fig. 8.7 (a), we see the two
levelling plates covering droplets both very close to the film and away from it. In Figs. 8.7 (b) i-iii,
a close-up view on some droplets from other examples of photographs taken of the outer annulus
levelling plate are shown. The same visualisations obtained by impacting a drop on a 85 µm-thick
film, for which h⋆ = 0.74, are shown in Figs. 8.8 (a) i-iii (close-up views of the secondary droplets)
and (b) (the two levelling plates). The photographs presented were selected because they exhibit
general features of the secondary droplets ejected for these film thicknesses. The observations
made are thus not specific to these photographs. We observe that, in Fig. 8.7 (a), few secondary
droplets were ejected away from the impact point position (usually no more than 4-5 per photo-
graph) while many secondary droplets having a smaller radius are visible in Fig. 8.8 (b). A larger
number of ejected droplets presenting a large radius variability are visible close to the impact point
position in Fig. 8.7 (a), while in Fig. 8.8 (b), the radii of the ejected droplets close to the impact point
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are similar to the radii of the ejected droplets away from the impact point. In Ch. IV, specifically
in Fig. 4.13, we had observed that the part of the drop actually entering the film during the impact,
φd)f ′ , was smaller than 0.2 for h⋆ < 1, then increased with increasing film thickness while remain-
ing ≲ 0.5 in the range covered by our experiments. Parallel to that, we had inferred from our
measurements that the volume of the initial film actually going into the ejections, φf )e, remains of
the order of∼ 0.1 times the impacting drop volume for the entire film thickness range covered in
the experiments. These results are in accordance with the observations that can be made here. In
Figs. 8.7 (a) i-iii, we indeed note that the droplets seem greener than the droplets of Fig. 8.8 (b) i-iii,
which present a brown colour as a result of the mixing between the red and green. Hence, a larger
amount of liquid originating from the film seems to be contained within the drops over the thicker
film shown in Fig. 8.7. The droplets from Fig. 8.7 (a) i-iii also seem to present a larger colour vari-
ability, although the droplets from Fig. 8.8 (b) i-iii are not easily distinguishable and may present a
similar variability that we are not able to assess. Although we cannot infer the exact values ofφd)f ′

and φf )e from the measurements presented in this section, these preliminary experiments tend to
confirm the conclusions from Ch. IV.

2. A series of complex processes
In this chapter, we proposed to conduct a few preliminary experiments on the mixing occurring
during the impact of a drop on a thin film in various contexts. We had indeed only explored the im-
pacts on horizontal films of uniform thickness in Ch. IV, while it was observed that not all impacts
resemble the impacts presented in, e.g., Figs. 4.5 and 4.6 from Ch. IV. Among all the possibilities
that can be found in the case of drop impacts on stalagmite, three experiments were carried out.
First, we observed drop impacts on a film of variable thickness, which could occur as a result of
the drainage of the film. We approximated the thickness gradients that may exist in the film at first
order by a rectangular step covered by a thin film. The experiments revealed that the height of the
step, the distance between the drop impact point position and the edge of the step, the position
of the drop impact relative to the step (either on top of it or in the thicker part of the film), and
the relative film thicknesses on each side of the step, could all possibly affect the outcome of the
impact. For instance, an impact close to a step covered by a film presenting a significant thick-
ness difference yields an asymmetric retraction of the crown formed upon impact. From there,
instead of collapsing toward the impact point position, the crown may lead to the formation of an
elongated tail. We also reviewed how two drop impacts may interact with one another, since the
dripping period of drops in caves can become ≲ 1 s. Recent studies [81] have shown that drops
impacting simultaneously the same film at a distance sufficiently short for the two crowns formed
during impact to touch each other lead tomixing inside the intersect line between the crowns. Our
experiment also showed that, even if the drops are separated by a large distance and long time pe-
riod with respect to the drop radius and impact time, respectively, mixing could still appear in the
film. In this case though, the mixing would most likely be due to molecular diffusion setting in af-
ter the drop impacts, a process that could be eluded until now. The last experiment focused on the
mixing occurring inside the ejected secondary droplets at impact. We showed that the impact on
the thicker film produced a smaller number of droplets with larger radii, which also seem to land
closer to the stalagmite. By contrast, the impact on the thinner film led to the ejection of smaller
droplets further away from the impact point position. The droplets ejected by the impact on the
thicker film also presented a greener colour. Hence, we could retrieve qualitatively the results pre-
sented in Ch. IV regarding the proportions φd)f ′ and φf )e. Although these experiments are only
preliminary, they show that the drop impact on a thin film involves even more complex physics
than what could manifest from the experiments of Ch. IV. We hope that future contributions will
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allow to decipher the dynamics at play during the impacts presented in this chapter, and help im-
prove stalagmite growth modelling for palaeoclimate reconstruction, as well as other applications
in which drop impacts on thin films play a preponderant role.
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