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ABSTRACT

We propose in this paper an optimal control framework for renewable energy communities (RECs)
equipped with controllable assets. Such RECs allow its members to exchange production surplus
through an internal market. The objective is to control their assets in order to minimise the sum of
individual electricity bills. These bills account for the electricity exchanged through the REC and
with the retailers. Typically, for large companies, another important part of the bills are the costs
related to the power peaks; in our framework, they are determined from the energy exchanges with
the retailers. We compare rule-based control strategies with the two following control algorithms.
The first one is derived from model predictive control techniques, and the second one is built with
reinforcement learning techniques. We also compare variants of these algorithms that neglect the
peak power costs. Results confirm that using policies accounting for the power peaks lead to a
significantly lower sum of electricity bills and thus better control strategies at the cost of higher
computation time. Furthermore, policies trained with reinforcement learning approaches appear
promising for real-time control of the communities, where model predictive control policies may
be computationally expensive in practice. These findings encourage pursuing the efforts toward
development of scalable control algorithms, operating from a centralised standpoint, for renewable
energy communities equipped with controllable assets.

1 Introduction

Decentralisation of renewable electricity production, close to its consumption place, is gaining increasing attention as
a promising approach to decarbonise the electricity demand [1; 2; 3]. In this context, the European Union (EU) has
provided a legal context introducing renewable energy communities (REC) [4]. A REC is a local electricity market
where the members, equipped with renewable energy generation and storage assets, can share local and decarbonised
electricity production with the other members; we refer to this aggregated electricity production as the REC production.
In practice, the members have joined the REC in order to make cost savings in their electricity bills, where they are
charged by their retailers proportionally to their electricity consumption. Moreover, in many parts of the EU, for
large companies, the electricity bills also include another (but prominent) grid fees related to their consumption and
production peaks in the main electrical grid, which we refer to as offtake peaks and injection peaks, respectively. These
large companies thus expect to significantly maximise their cost savings by joining a REC. This can be achieved by
efficiently managing the controllable assets (e.g., batteries) within the REC; we explore this decision-making issue in
this paper.
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According to the European directives, the local market clearing process of RECs is performed at fixed periods, to
which we refer as market periods, through the reallocation of the REC production by a central entity, namely the
Energy Community Manager (ECM). Among his responsibilities, the ECM must communicate for longer periods
(e.g., every month) to the Distribution System Operator (DSO) the results of the clearings performed during this
period. We refer to the latter as the billing period. The ECM must ensure the compliance of the reallocation of the
REC production with the regional (or national) regulations„ which notably requires that the REC production is fully
allocated to the members in the limits of the amount of energy they have consumed, and that no energy is bought from
the retailers to be sold to a member through the REC (and vice-versa). Once the DSO has accepted the clearing results
(in the shed of light of the regulation), they transfer them to the retailers to compute the electricity bills of each REC
member, accounting for the reallocation of the REC production. We refer to these electricity bills as ex-post electricity
bills. The ECM is often remunerated by a fraction of the cost savings realised in the ex-post electricity bills of the
members. We thus assume, in this paper, that the ECM aims to minimise the sum of the ex-post electricity bills; note
that we neglect the remuneration of the ECM in these bills. We refer to this minimised sum of ex-post electricity bills
as the global REC bill.

Ex-post electricity bills include costs related to electricity exchanges with the retailers and through the REC (as deter-
mined by the ECM for each market period). On one hand, the tariffs of buying electricity from the retailers mainly
include the price of the energy consumed, the distribution and transmission fees (the tariffs related to these fees are
fixed by the DSO for all members), and other taxes; for prosumers, the electricity sold to the retailers, at a price fixed
by contract, is deducted from the electricity bills. On the other hand, the electricity production shared through the
REC is only subject to distribution fees; we note that they differ from the fees fixed by the DSO. As mentioned above,
grid fees related to offtake and injection peaks are also part of these ex-post electricity bills. However, the European
regulation does not specify whether these grid fees should be computed as if no REC has been implemented. We argue
that the injection and offtake peaks should be only computed from the energy exchanged with the retailers in order to
accelerate the development of RECs; this is also an assumption that we will make throughout this paper. Indeed, the
overall REC electricity consumption and production are physically seen by the main electrical grid as already aggre-
gated. Furthermore, these costs often constitute a significant fraction of the electricity bills. Beyond the decarbonation
of the demand and the cost savings in the electricity bills, investing into assets that foster consumption from local
renewable sources reduces the risks of outages of the main electrical grid, particularly in winter periods [5; 6]. We
note however that the optimal control framework proposed in this paper can be easily adapted to the case where power
peaks costs would be computed without accounting for the REC.

The scientific literature, discussed in Section 2, does not provide, to date and at the best of our knowledge, any
existing modelling framework that explicitly optimise the controllable assets usage in renewable energy communities
towards the minimisation of global REC bills over time. To address this gap, we propose in this paper a framework
for modelling the optimal usage of controllable assets in RECs. In Section 3, we describe the problem of acting on
the controllable assets to minimise the sum of global REC bills over time as a Partially Observable Markov Decision
Process (POMDP). The dynamics of this POMDP represent the electricity power flows of the members, which are
influenced by external events, and the reward function reflects the (negated) global REC bill as computed by the ECM.
We describe, in Section 4, two practical control algorithms that aim to minimise the sum of the global REC bills
over time. The first one follows a model predictive control scheme [7] by solving an internal optimisation problem
built from the POMDP specifications and predictions of incoming external events. The second one is built through a
reinforcement learning scheme, resulting from a simulation-based policy-search procedure that seeks to approximate
the optimal policy [8; 9]. We also introduce variants of these policies that somehow neglect the costs related to the
peaks. In Section 5, we compare these policies with rule-based strategies against RECs with 2 members built from
synthetic data and with 7 members derived from historical data of an existing REC located in Belgium. We conclude
this paper in Section 6 with a detailed discussion on recommendations of research directions to pursue towards the
development of scalable control algorithms dedicated to RECs.

2 Related work

The work carried out in this paper is related to decision-making issues in REC. We partition this related work into
three parts. The first part is related to the main generic decision-making problems associated to REC. The second
part focuses on model predictive control techniques (MPC) [7] and reinforcement learning techniques (RL) [8] in
microgrids, which can be seen as single-entities RECs. The third part focuses on the scarce literature of the applications
of these techniques in renewable energy communities, highlighting their limitations with respect to the decision-
making problem we address in this paper.
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Decision-making issues for RECs. In a broader perspective, many decision-making problems related to RECs are
challenging. There is a particular focus on investment strategies. These strategies are influenced by energy costs,
which must be carefully set to foster investments into renewable energy generation as well as devices helping to
increase the self-consumption rate (e.g., storage devices)[10; 11; 12; 13]. In [14], the authors show that maximising
the benefits of a REC operation does not necessarily lead to peak reductions in the main electrical grid. However,
they show that fostering investments towards storage devices helps to sensitively decrease the load consumed from the
main electrical grid. In [15], the authors introduce the concept of repartition keys to reallocate the REC production
to the members. Altogether, the results of all these works advocate for pursuing the efforts towards solving these
decision-making challenges to support the deployment of the RECs around the world.

MPC and RL for microgrids. Control algorithms derived from MPC and RL classes of techniques have been
widely used in the past to operate microgrids (see review in [16]). These control algorithms are still popular due to
their promising performances as well as their simplicity to implement and deploy in practice [17; 18; 19]. In [20],
two algorithms derived from MPC and RL were tested on a single building with PV panels and a battery, with similar
performances reported in the results, even though the authors noted that MPC algorithms are more suitable since
they can be adapted more quickly for a new building configuration. In [21], the authors propose a hierarchical model
predictive control scheme to simultaneously minimise the electricity bills and maximise the lifetime within a microgrid
equipped with wind turbines, PV panels and batteries. In [22] and [23], the authors compare several reinforcement
learning algorithms against instances of microgrids and show they are able to extract near-optimal policies. Many of
these works share similarities with the optimal REC control framework proposed in this paper.

MPC and RL for REC. At the best of our knowledge, the literature about the design of control algorithms specifi-
cally dedicated to renewable energy communities is rather scarce. In [24], various MPC strategies have been tested on
RECs. However, unlike the framework proposed in this paper, the peak powers are not taken into account. In [25], a
multi-agent reinforcement learning (MARL) algorithm is designed to optimise the controllable assets of a REC, and is
compared to an algorithm combining MPC and supervised learning. Their approach allowed to decrease energy bills
as well as mitigate offtake and injection peaks. However, their results are restricted by the specific energy community
structure (the members cannot possess their own individual storage devices). In [26], the authors propose another
MARL approach to optimise the balance between consumption and production, thus neglecting the overall electricity
bill. In [27], the authors propose a framework, based on bi-level optimisation, where peak demand and energy bills
are jointly optimised with controllable assets for a single billing period. In this framework, the peaks are computed
before the reallocation of the REC production.

3 Optimal REC Control Problem

This section details the optimal control framework of RECs with some members owning controllable assets. In these
RECs, the electricity bill of each member is the sum of the fees related to the exchanges through the REC, the energy
bought and sold with prices fixed by the retailers, and grid costs related to their power peaks. The sum of these
electricity bills, minimised by the ECM through the determination of the energy exchanged through the REC, forms
the global REC bill,. In this section, we describe how a REC is structured and managed through time by the ECM.
Notably, the latter periodically clears the local market through the reallocation of the REC production by following a
repartition scheme that is explained in Section 3.2. In practice, the ECM is remunerated by charging members either
through fixed fees (e.g., annual subscription plans) or proportionally to the amount of energy exchanged through the
REC. We leave the business model of the ECM out of the scope of this paper. However, the repartition scheme that we
describe further in this section can easily be adapted to account for the ECM remuneration. We conclude that section
by providing a full formulation of the dynamical system as a (particular case of) Partially Observable Markov Decision
Process (POMDP), notably providing a time discretisation that accounts for the billing or market periods, as well as
smaller time periods for a more granular usage of the controllable assets.

3.1 REC Structure and Management

A member of the REC is characterized by (i) its tariffs for energy bought (sold) from (to) the retailers and (ii) its means
of consumption and electricity production (some of them being controllable). The tariffs related to energy exchanges
with the retailers are composed of the price of (bought or sold) energy, distribution and tranmission fees, and taxes;
recall that we do not consider the fixed terms in these tariffs (e.g., subscription plans). According to the contract
fixed by retailers with the members (and more generally with end users), the price of energy itself is either fixed or
variable through time (e.g., peak and off-peak hours or real-time markets such as BELPEX for Belgium). To maintain
a reasonable complexity in this paper, we only consider contracts with fixed price plans. However, the framework
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Figure 1: Renewable energy community timeline. During a billing period, each member consumes and produces in
real time electricity on their own and by the usage of their controllable assets; in the timeline, black ticks refer to
time steps during which control actions are taken. At the end of a billing period, the ECM computes the (optimal)
reallocation of the REC production for each market period. This reallocation creates new meter readings and are
emitted by the ECM to the DSO and the retailers to compute the global REC bill.

that we propose in this paper may easily be adapted for variable prices of energy through time. Energy exchanges
through the REC are subject to distribution fees that are proportional to the amount of energy exchanged. Unlike the
tariffs of energy exchanges with the retailers, the tariffs related to distribution fees within the REC are fixed for all
members. Note that these distribution fees, to which we concisely refer in the remainder of this paper as REC fees,
are different than those that are charged by the DSO (to the users of its electrical network) for electricity exchanges
with the retailers. Additional (but often prominent) costs are grid fees related to offtake and injection peaks. Similarly
to the REC fees, their respective tariffs are fixed for all the members by the DSO. In this paper, we assume that these
peaks correspond, for each billing period and for each member of the REC, to maximum values of energy exchanged
with the retailers across the market periods elapsed in that billing period. We also assume that peak tariffs are the
highest in the electricity bills of the members of the REC; however, this is not a strict hypothesis, but rather a design
choice that follows the typical structure of electricity bills.

The net consumption and production of the members (i.e., after accounting for self-consumption at electrical level)
are independently metered in real time. At the end of fixed time periods, that we denote as billing periods (e.g.,
every month), we assume that the ECM clears the local market by following a known reallocation scheme, which is
described in Section 3.2, to share the REC production to the other members for each market period. This reallocation
scheme aims to minimise the sum of the ex-post electricity bills while ensuring its compliance with the European
Union directives. The result of this reallocation scheme, which may be concisely represented as repartition keys [15],
is emitted by the ECM to the retailers and the DSO (along with the meter readings). Once the reallocation scheme is
accepted by the DSO, the retailers emit the ex-post electricity bills to their respective members. These bills account
for the energy bought (sold) from (to) the retailers, the distribution fees related to the energy exchanges through the
REC, the costs related to the offtake and injection peaks (accounting for the reallocation scheme). Figure 1 illustrates
the timeline of the REC.

3.2 Optimal reallocation scheme

For a member, sharing a fraction of its energy production or receiving a fraction of the REC production impacts its ex-
post electricity bill. More precisely, if a member has a surplus of electricity production while another has a positive net
consumption, selling the former to the retailer and buying the latter from another retailer will cost more than sharing
the production via the REC, notably because of the peaks measured after sharing the REC production (retailer’s/main
grid point of view). We assume that the ECM applies an optimal reallocation scheme. This scheme, resulting in the
global REC bill, is formalised hereafter.

Let us consider a REC with M members for which the electricity bills are computed for R market periods within a
billing period. Let C−

m,r and C+
m,r be the values of the meter readings, both non-negative and expressed in kWh, of

a member m ∈ {1, . . . ,M} that respectively correspond to its net consumption and its net production for the market
period r ∈ {1, . . . , R}. Traditionally, this member is billed by its retailer, for the entire billing period, at a cost of B−

m
for its net consumption and remunerated at a price of B+

m for its net production. Recall that these cost coefficients
are sums of proportional terms (to energy amounts, we neglect fixed terms) related to prices of buying and selling
energy, to distribution/transmission fees, and to other taxes. Electricity flows create offtake and injection peaks, which
respectively correspond to the greatest values of the net consumption and the net production meter readings measured
during the billing period. These values are billed to the members through the unique tariffs P− and P+ that are
applied to offtake and injection peaks, respectively. In this paper, we do not convert the peak values into power units
(kW) to avoid overburdening the reallocation scheme modelling. If the member was not participating in the REC, its
electricity bill, to which we refer as EBm, would be computed as follows:

4
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EBm =

(
R∑

r=1

B−
mC−

m,r −B+
mC+

m,r

)
+ P− max

r∈{1,...,R}
C−

m,r + P+ max
r∈{1,...,R}

C+
m,r. (1)

In others words, energy consumption and production are proportionally billed and remunerated at the prices fixed by
the retailers for each market period and peaks are proportionally billed at unique prices for all members, We denote
as EB =

∑M
1 EBm the total combined value of the electricity bills of the members. Inside a REC, the members can

exchange their electricity production (to the other members) at each market period; these exchanges, characterised by
either sharing a fraction of the net production of a member to the REC or sharing a fraction of the REC production to
a member, are subject to REC fees that are defined by Λ+ and Λ−, respectively. Note that these distribution fees are
not necessarily equal to the hidden distribution fees that fall within prices fixed by the retailers. To model the energy
exchanges through the REC, we introduce the decision variable e−m,r, which is the quantity of electricity production
allocated to the member m for the market period r. Similarly, we introduce the decision variable e+m,r which is the
quantity of electricity production shared by the member m for the market period r. Recall that the ECM cannot shape
its repartition scheme in order to buy energy from the retailer of a member to share it to another member through
the REC. To that end, the value of the former (e−m,r) is bounded by the value of the consumption meter reading after
accounting of the production meter reading, and vice versa for the latter (e+m,r):

0 ⩽ e−m,r ⩽ max(C−
m,r − C+

m,r, 0), ∀m ∈ {1, . . . ,M} , ∀r ∈ {1, . . . , R} , (2)

0 ⩽ e+m,r ⩽ max(C+
m,r − C−

m,r, 0), ∀m ∈ {1, . . . ,M} , ∀r ∈ {1, . . . , R} . (3)

Any quantity of net electricity production exchanged through the REC is shared with a member:

M∑
m=1

e−m,r =

M∑
m=1

e+m,r, ∀r ∈ {1, . . . , R} . (4)

Within the REC, the offtake and injection peaks are measured after the reallocation of the REC production, and the
energy exchanges in the REC are still subject to the network fees. Once the REC production has been reallocated (by
the ECM), the ex-post electricity bill of the current billing period is computed (at the end of this billing period) for a
given member as follows:

EB′
m(e−m, e+m) =

(
R∑

r=1

B−
m(C−

m,r − e−m,r)−B+
m(C+

m,r − e+m,r) + Λ−e−m,r + Λ+e+m,r

)
+ (5)

P−
(

max
r∈{1,...,R}

C−
m,r − e−m,r

)
+ P+

(
max

r∈{1,...,R}
C+

m,r − e+m,r

)
,

where e−m = (e−m,1, . . . , e
−
m,R), e

+
m = (e+m,1, . . . , e

+
m,R). Note that intermediate ex-post electricity bills can be com-

puted at any time during the billing period (accounting for the elapsed time within that billing period). More formally,
let τ ∈]0; 1] be a ratio value of the time elapsed in the billing period; τ = 1 corresponds to a fully elapsed billing
period (in which case ex-post electricity bills are computed by Equation (5)). If τ < 1, we compute, for each member,
its intermediate ex-post electricity bill as follows:

EB′′
m(e−m, e+m, τ) =

⌈τR⌉∑
r=1

B−
m(C−

m,r − e−m,r)−B+
m(C+

m,r − e+m,r) + Λ−e−m,r + Λ+e+m,r

+ (6)

τ

[
P−

(
max

r∈{1,...,⌈τR⌉}
C−

m,r − e−m,r

)
+ P+

(
max

r∈{1,...,⌈τR⌉}
C+

m,r − e+m,r

)]
.

Note that, if τ < 1, values of meter reading inputs for all members (C+ and C−) that comes after the market period
indexed by ⌈τR⌉ are undefined, and so are corresponding variables (e+ and e−).
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The goal of the ECM is to minimise the sum of ex-post electricity bills by identifying the optimal energy exchanges
through the REC. The (possibly intermediate) global REC bill, accounting for the elapsed time during the billing
period and referred to as GRBτ , is the result of the following minimisation problem:

GRBτ = min
(e∗,−,e∗,+)

M∑
m=1

EB′
m(e∗,−m , e∗,+m , τ) (7)

where e∗,− = (e∗,−1 , . . . , e∗,−M ) and e∗,+ = (e∗,+1 , . . . , e∗,+M ). We provide, in Appendix B, illustrative examples of this
optimal reallocation scheme in order to provide some intuition about this formulation and its complexities and to show
the importance of accounting for the peak costs during the computation of the optimal reallocation scheme.

3.3 Decision Process associated to RECs

We formalise the above-mentioned REC dynamical system as an infinite-time decision process. The latter is a par-
ticular instance of Partially Observable Markov Decision Processes (POMDP) in that the agent interacting with this
decision process fully observes the electrical state of the system (in this case, controllable assets state and meter read-
ings) but has a partial view on external events that are not influenced by its decision. However, these external events
have an impact, altogether with the decisions of the agent, on the state transitions (meter readings increments) and
reward function (the global REC bill). We recall that a billing period covers a fixed number of market periods. Typ-
ically, market periods have a fixed duration (e.g., fifteen minutes). During a market period, there is a need to take
actions on the controllable assets. Thus, we introduce a time discretisation inside a market period such that, at any
time step, an action can be applied to controllable assets for a fixed duration. More formally, this POMDP provides a
time discretisation from a time step (t ∈ T = N) to the next, which also accounts for the duration of market periods
and billing periods, respectively expressed as a number of time steps and a number of market periods. We provide
below the components of this decision process that we describe from a high-level perspective (see Appendix A.1 for
more mathematical details):

State space. A state of the system contains, for each member, the current state of their controllable assets, the
elapsed time of the current billing period and their meter readings, collected at the end of each elapsed market period
(including the current one) for the current billing period. We denote as S the set of all such states, and the unique
initial state as S0 ∈ S.

Exogenous space. An exogenous variable contains, for each member, their consumption and production powers
generated from their non-controllable assets, averaged during the current time interval. We denote as E the set of
such exogenous variables. We assume that the initial exogenous variable is a random variable following a probability
distribution P E

0 (·) and that exogenous variables transitions from any time step t to the next are steered by an unknown
non-Markovian conditional distribution that we denote as P E(et+1|e0:t) for all t ∈ T , where e0:t = (e0, . . . , et).

Action space. An action contains the (control) decisions to be applied to controllable assets. We denote the set of
such actions as U . The set of actions that can be applied in a given state s ∈ S may be restricted, and are referred to
as admissible actions. These admissible actions are given by the function U(s), such that U(s) ⊆ U .

Transition dynamics. The transition dynamics of the state space are defined as follows. Controllable assets states
are updated for each discrete time step t ∈ T according to a model depending on the asset specifications, their
current state st ∈ S and the action ut ∈ U(st). After the electricity flows have been computed by accounting for
the controllable assets usage, the meter readings are updated for the market period to which the next time step is
associated. The state transition is concisely expressed by the function f as follows:

st+1 = f(st, et, ut). (8)

Cost function. The cost function describes the global REC bill computation as described in Section 3.2. More
formally, this function provides a zero cost at all time steps except at the end of each billing period where the solution
GRB of the optimal reallocation scheme is returned. In short, the cost signal is defined as follows:

ρt =

{
GRB1 if t is the last timestep of a billing period,
0 otherwise.

(9)

6
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Note that this cost signal can be easily modified to output intermediate global REC bills at other time steps:

ρt =

{
GRBτ(t) if an intermediate global REC bill is needed at time step t,
0 otherwise,

(10)

where τ(t) is the value of τ in Equation (6) that is computed from (the information contained in) state st.

To maintain a reasonable complexity, we neglect the operational costs related to the controllable assets (e.g., discharg-
ing fees for storage devices). In practice, the cost function can be extended to incorporate these operational costs at
each time step depending on the actions performed.

4 Optimal control of RECs

A process that chooses the next action to execute based on the current information of the system is called a policy.
This information is composed of the current state and the history of past exogenous variables values. In this section,
we describe how to select a policy that optimally reduces the sum of the global REC bills of the REC through time,
as follows. Since these optimal policies cannot be computed directly as P E

0 and P E are not known, we propose
to approximate them through practical policies derived from model predictive control and reinforcement learning
schemes [7; 8], for which we provide a high-level description in this section. To assess the efficiency of policies
accounting for the peak power costs to minimise the sum of global REC bills over time, we introduce simpler variants
which neglect the costs associated to the peaks when choosing the action. All the mathematical details about these
policies are available in Appendix A.2.

4.1 Optimal policies

In this paper, we call admissible policies for a REC policies that provide actions that are feasible in the REC dynamical
system. Formally, let Π be the set of such policies:

Π =
{
π : S ×HE → U | π(s, e0:t) ∈ U(s, et),∀(s, e0:t) ∈ S ×HE

}
.

where HE is the set of all possible ordered sequences of exogenous variables defined as

HE =
⋃

n∈N+

En. (11)

We measure the performance of a policy when executed starting from a given state and a given sequence of past
exogenous variable as the opposite of the expected discounted sum of the future costs arising from the actions chosen
by the policy through time [9]:

Vπ(sk, e0:k) = lim
T→∞

E
et+1∼PE(·|e0:t)

T−1∑
t=k

−γtρ(st, et, ut, st+1), (12)

where γ ∈]0, 1[ is a discount factor that indicates the relative importance of future costs compared to present costs.
For any t ≥ k, the next states are computed as st+1 = f(st, et, ut) and the related action as ut = π(st, e0:t). We
define the expected return of a policy π ∈ Π, starting from the initial state S0, as follows:

J(π) = E
e0∼PE0 (·)

Vπ(S0, e0:0). (13)

The optimal REC control problem is to identify a policy π∗ ∈ Π that maximises Equation (13):

π∗ ∈ argmax
π∈Π

J(π). (14)

7
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(Intermediate)

Global
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Action
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Figure 2: Illustration of how MPC policies compute the next action to apply in the REC dynamical system from a
given state and a sequence of exogenous variables. The latter is composed of the current exogenous variable and
values for the future ones (up to the policy horizon t+K). Colors are used to differentiate the billing periods that the
MPC policies consider during its optimisation process.

4.2 Model Predictive Control (MPC) policies

The MPC policy solves an internal optimisation problem minimising a discounted sum of the future costs (possibly
over several billing periods) starting from a state and an exogenous variable sequence, and arising from a sequence
of admissible actions up to a fixed time horizon K that we denote as policy foresight. This optimisation problem
expects, as inputs, a sequence of future exogenous variables; they are usually computed with external methods, which
are left out of the scope of this paper. If the last time step of this optimisation problem does not coincide with the end
of a billing period, no cost signal is associated to the actions applied during this period. In that case, the objective
function does not quantify the impact of these actions in the associated global REC bill. To avoid this pitfall, an
intermediate global REC bill accounting for the elapsed time of that billing period, as defined in Section 3.2, is added
to the objective function at the last time step. To that end, we introduce a cost signal, namely ĜRB, which outputs
this intermediate bill for time step t+K if it is not located at the end of a billing period, and otherwise 0. In short, the
MPC policy computes the next (admissible) action u∗

t at the time step t such that

ĜRBt = argmax
ut

[
max

(ut′+1,...,ut′+K)
−

(
ĜRB +

t+K∑
t′=t

γt′ρ(st′ , êt′ , ut′ , st′+1)

)]
, (15)

where êt = et is the current exogenous variable and êt+1:t+K are future values of exogenous variables up to the policy
foresight. We model this optimisation problem as a mixed-integer linear program (MILP). We also consider a variant
of this policy, namely the MPC retail policy, which only differs from the MPC policy in that the objective function of
the MILPs does not include the costs related to the peaks. We have used CPLEX to solve the MILPs built by the MPC
policies. Figure 2 provides an illustration of the computation steps of MPC policies.

4.3 Reinforcement Learning (RL) policy

In Reinforcement Learning, one typically considers differentiable policies parameterised by a vector of parameters
θ ∈ Θ. The goal is thus to identify the optimal parameters to maximize the expected return of the resulting policy:

θ∗ ∈ argmax
θ∈Θ

J(πθ). (16)
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However, this policy cannot be computed directly as we do not possess the distributions P E
0 and P E . Instead, we

focus on reinforcement learning algorithms performing stochastic gradient ascent on the objective function J , where
the gradient is estimated through simulations of the policies in the POMDP. In particular, we use the Proximal Policy
Optimization [28] (PPO) algorithm. This algorithm learns, simultaneously with the parameterised policy, another
parametric function, called the critic. The latter is used, in combination with heuristic rules defined in the PPO
algorithm, to mitigate the high variance issues associated to simulation-based gradient estimates. Neural networks
are used as parametric functions, along with recurrent layers to consume sequences of exogenous variables values
[29; 30].

Policy gradient algorithms are often more efficient when costs are defined at every time steps. However, in the cost
function defined in Section 3, sparsity increases with the duration of a billing period (the longer the billing period gets,
the more we have zeros in the costs). To attempt to mitigate this issue, we consider another version of this policy,
denoted RL dense, in which zero costs are replaced by intermediate global REC bills during the policy search.

Similarly to the policy MPC retail, we consider a variant of this policy that we denote as RL retail. In this variant,
cost signals are modified, before updating the parameters of the policy, as if there were no power peak costs (i.e.,
assuming that P− = P+ = 0). We also define a policy which combines the cost modifications applied in the policy
search procedure for the RL dense and RL retail policies. We refer to that policy as RL dense retail. To implement the
RL policies with the above-mentioned procedure, we have used the PPO implementation of the python programming
library RLlib [31] to implement this policy search procedure, along with the deep learning python library PyTorch [32]
to implement the neural network models.

5 Experiments

In this section, we simulate the policies described in Section 4. Note that, in practice, we do not simulate algorithms
for infinite time; in our experiments, we always choose a time horizon that is sufficiently long to cover several billing
(and consequently, market) periods. Due to the scarcity of historical data associated with existing RECs, we sample
exogenous variables (up to the fixed time horizon of the simulations) by applying a time-correlated white noise to
(scarcely) existing data; see Appendix C.1 for more details about this sampling procedure. We first describe how
future exogenous values are computed for the MPC policies in the context of our simulations. We then introduce
baseline policies in Section 5.2 that we compare with MPC and RL policies against two REC instances, referred to as
REC-2 and REC-7; they respectively count 2 and 7 members, see Appendices C.3 and C.4 for more details about the
experimental protocol settings. The first one is an illustrative example built from synthetic data, and the second one
from historical data from an existing REC located in Wallonia, Belgium. We compare the results of all the simulated
policies, respectively for each REC instance, in Sections 5.3 and 5.4. The settings related to the procedure to build the
RL policies follow the usual recommendations related to policy gradient algorithms [33; 34], as detailed in Appendix
C.

5.1 Computing future exogenous values for MPC policies

MPC policies expect future values of exogenous variables to compute its next action. In a realistic settings, these
future values, usually computed with forecasting methods [35; 36], differ from the actual future values; this difference
often increases with the length of these values, and has an (often negative) impact in the performance of the MPC
policies. As mentioned earlier in this section, sequences of exogenous variables are sampled, from existing data, at
once before simulating the policies. We thus propose the following procedure to compute the future values of the
exogenous variables (during the simulation of the MPC policies). At each time step t, the future exogenous value at
the next time step t+1, that we provide to the MPC policies, corresponds to the actual one. From t+2 (if K > 1), the
time series of future exogenous values progressively converges (from the true future values) to the existing data (again,
from t + 2). We characterise the speed of this convergence by a parameter α ∈]0, 1], such that if α = 0, then the
time series provided to the MPC policies is equals to the existing data from t+ 2; and that if α = 1, then all the next
exogenous variables are equals to the true future values (again, from t+2). In this procedure, another characteristic is
that, as long as α gets closer to 0, the convergence speed of the predicted time series (to the existing data) dramatically
increases; see Appendix C.2 for a more detailed description of this sampling procedure. We refer to this parameter (α)
as the foresight efficiency.

5.2 Baseline policies

We introduce the following baseline policies to provide boundaries in which the expected returns of the MPC and RL
policies are located:
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Self-consumption. The two following rule-based policies output the next actions to be applied to the controllable
assets by maximising some self-consumption criterion. The first one, denoted as REC policy, compares the total net
consumption and the total net production of the non-controllable assets of the REC. It then uses the controllable assets,
to either absorb the excess of electricity consumption or the surplus of electricity production. The second one, denoted
as SELF policy, uses the same approach but individually for each member equipped with controllable assets.

Perfect-foresight. We consider the particular case of MPC policies where α = 1 and K = T with T a finite time
horizon that is fixed for the simulations. In that case, as defined in Section 4.2, the MPC policies perfectly "predict"
the future exogenous values at each time step until the time horizon T , thus leading to the minimal discounted sum of
the global REC bills for that horizon. Under these conditions, the MPC retail policy leads to the minimal discounted
sum of the global REC bill with P+ = P− = 0. We refer to these respective policies as OPT policy and OPT retail.

5.3 REC-2

REC-2 is composed of 2 members. One of them is only equipped with non-controllable assets that consume electricity;
the other one is equipped with PV panels, that always produce more electricity than consumed by the other non-
controllable assets, and is also equipped with a battery. Their corresponding consumption and production profiles
(from non-controllable assets) are derived from synthetic historical data; see Appendix C.3 for more details about
these profiles. We set the time horizon of the simulations at T = 101. Expected returns of baseline policies and MPC
policies are estimated over 1024 simulations. In order to evaluate the RL policies, we first train 16 policy functions
using different random seeds. This training procedure is carried as follows. Each policy function is trained for 600
iterations with the PPO algorithm, each iteration being comprised of 64 simulations of the policy functions. At the
end of these simulations, we have 16 instances of trained RL policies. We estimate their expected returns by running
64 simulations for each of these RL policies, and we average them.

Figure 3 shows the expected returns of all the simulated policies in REC-2; see Appendix C.3 for more details about
the simulation settings of REC-2. We first notice that the expected returns of MPC policies quickly converge as K
grows. Furthermore, MPC policies with perfect foresight efficiency (α = 1) yield optimal expected returns (with
respect to the sampled exogenous variables time series). We observe that the SELF policy has the worst expected
return. Since the owner of the battery only produces electricity from its non-controllable assets, this policy will only
charge the battery until full capacity is reached. The profiles show that no electricity production is available for the
first time steps. By consequence, the producer turned to consume electricity which could not be absorbed by the REC,
thus increasing the energy consumption bills as well as the offtake peaks, at least for the first billing period. The
REC policy mitigates this issue by accounting for the electricity consumption of all the members. However, the other
policies (eventually) yield better expected returns than these rule-based policies. The performance of RL policies
neglecting peak costs are close to REC policy; they might have learnt to operate the battery similarly to the latter.
Although the RL policies have a worse expected return than the OPT retail policy, it manages to get slightly better
than some of the MPC policies with noisy prediction. This illustrates the advantage of having access to predictions
of future exogenous variables values (given that the foresight efficiency is reasonably high). Note that the expected
return of RL dense is slightly worse than the RL policy.

During the simulations of the PPO algorithm (see Appendix C.3 for detailed results), we also noticed that the RL dense
policy got a slightly better expected return, for the first iterations, than the RL policy (we even have observed a higher
gap for RL retail and RL retail dense). Both observations are due to the modified cost signal (by adding intermediate
global REC bills, with or without peak costs). Indeed, having cost signals at every time steps allowed to speed up the
policy updates (in terms of expected return) for the first few iterations. However, the discounted sum of the original
cost signals is not equal to the discounted sum of the modified cost signals. By consequence, the RL dense policy
might have converged too quickly to a local optimum due to the difference between the two formulations.

5.4 REC-7

REC-7 is composed of 7 members. Some of them are equipped with PV panels. Similarly to REC-2, one of them
is equipped with a (controllable) battery. Consumption and production profiles are derived from available historical
data from an existing REC located in Wallonia, Belgium; see Appendix C.4 for more details. We set the time horizon
of the simulations at T = 721. Expected returns of baseline policies and MPC policies (with their respective policy
horizons and foresight efficiencies) are estimated over 4096 simulations. Expected returns of baseline policies and
MPC policies are estimated over 1024 simulations. We evaluate the RL policies exactly like for REC-2, excepted that
we run the PPO algorithm on 32 policies for 1000 iterations and that we perform, for each policy, 128 simulations at
each iteration to train them, and another 128 simulations to estimate the expected return of the RL policies.

10
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Figure 3: Expected returns of MPC policies (averaged over 16 runs) in REC-2, given policy horizon and foresight
efficiency, along with expected returns of RL and baselines policies. Recall that α is the foresight efficiency defined
in Section 4.2, with α = 1 corresponding to perfect foresight.

Similarly to Section 5.3, we report the results of simulating the policies in REC-7 in Figure 4. We first notice that
REC policy has a worse expected return than the SELF policy. This is surprising, and might be due to the composition
of this REC. More surprisingly, RL policies neglecting peak costs also have a worse expected return than the SELF
policy. The RL policy barely managed to get better than the latter. They might have suffered from either the high
sparsity of the cost function, or the dense formulation (with intermediate global REC bills) of the discounted sum
of costs (for the RL retail dense). Only RL dense managed to get slightly better than the OPT retail policy. While
MPC policies are still the best policies in REC-7 (beating RL dense with a rather low policy foresight), their variants
neglecting the peak costs are still better than most of the policies.

5.5 General comments

Overall, MPC policies and RL policies are better than self-consumption rule-based policies, excepted for REC-7 where
the SELF policy is better than some RL policies, but notably not the RL dense one. Note that, at the exception of the
REC policy in REC-7, the expected return of the policies were not very far from each other. This might be due to the
limited impact of the controllable assets in the cost savings [37]. As expected, MPC policies accounting for the peak
costs got the best expected returns with a reasonably low policy foresight. However, as shown by the results, they are
dependent on both the policy horizon and the foresight efficiency. In our results, the expected return of RL policies
were, at best, close to the OPT retail policy.

Both densifying the reward signals and accounting for the peak costs prove to be useful. Indeed, in the case of REC-7,
RL dense obtains better results than the other RL policies. Indeed, densifying the reward signals without peak costs has
a limited effect (RL retail dense), as well as taking into account the peak costs without densifying the reward signals
(RL policy). This is not true for REC-2 where the non-densified RL policy (accounting for the peak costs) beats RL
dense. This is probably mainly due to the limited time horizon, providing an already quite dense reward signal.

The required computation time for computing the next action with MPC policies dramatically increases with the
number of members and the policy horizon, as shown in Table 1. Conversely, and similarly to the baseline policies,
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Figure 4: Expected returns of MPC policies (averaged over 16 runs) in REC-7, given policy horizon and foresight
efficiency, along with expected returns of RL and baselines policies.

MPC policies RL policies Baselines

REC instance T
8

T
4

T
2 T Update Action REC SELF

REC-2 0.01 0.02 0.04 0.82 43.20 6e−4 1e−3

REC-7 0.05 0.11 0.20 0.40 321.27 1e−4 1e−3

Table 1: Sample computation times required to compute the next action for MPC policies (given policy horizons), RL
policies (also including update iteration of the PPO algorithm) and baselines (SELF and REC) policies. Times are
expressed in seconds, and are averaged over 32 independent runs. These computation times have been carried on a
laptop equipped with 32 GB of RAM and a (Intel Gen Core i7) CPU with 12 cores and 16 threads.

computing the next action with RL policies (once trained) is much faster and scales with large sizes of RECs. However,
the overall runtime of training RL policies may dramatically increase (with the size of RECs), especially with the
frequency of the reward function computation (e.g., at every time steps).

There is thus a trade-off between MPC policies (very good results but slow) and RL policies (less good results but
very fast at runtime while very slow to train) that must be made depending on the context of the REC specific needs.

6 Conclusion and Future work

In this paper, we have proposed a generic modelling framework to optimise RECs with controllable assets towards the
minimisation of the sum of the ex-post electricity bills (accounting for the energy exchanges through the REC), which
we call the global REC bill. One of the prominent costs of these electricity bills are the offtake and injection peak
fees, which are computed from the energy exchanges with the retailers. In this framework, we have formalised how the
Energy Community Manager optimally reallocates (to minimise the sum of the ex-post electricity bills), at regular time
intervals, the surplus of electricity production to the members. This formalisation is integrated in the cost function of a
Partially Observable Markov Decision Process, which also encapsulates the dynamics related to the electricity power
flows (accounting for the controllable assets). We have tested practical policies that approximate the optimal ones, from
the model predictive control and reinforcement learning classes of techniques. These policies have been compared to
baseline algorithms, including variants of these policies that neglect the peak costs, or rule-based policies that operate
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the controllable assets to maximise self-consumption criteria. The tests were carried against a synthetic REC instance,
and against a REC instance derived from historical data of an existing REC located in Wallonia, Belgium. The results
obtained from these tests show how policies, accounting for the peak costs, may sensitively decrease the global REC
bills. They also strongly encourage pursuing the efforts towards the development of REC frameworks to optimise
the controllable assets from a centralised standpoint, possibly by addressing the following limitations of the approach
proposed in this paper.

The optimal reallocation scheme, described in Section 3.2, is computed by solving an optimisation problem, which
is done in practice through third-party solvers. As long as the size of the RECs stays relatively low, solving this
reallocation scheme is quite fast. But as RECs grow, with dozens, even hundreds of members, commercial third-
party solvers coupled with heavy-duty hardware begin to be required to scale the computation time, especially when
simulations are needed for e.g., running business cases for REC investments, or training algorithms (like RL policies)
to optimally operate RECs with controllable assets. However, these solvers usually exploit interior point methods to
solve convex optimisation problems. Running these algorithms with GPUs may be much faster compared to non-
commercial third-party solvers [38][39][40]. Another research direction would be to pursue the efforts to identify
closed-form approaches to compute approximations for optimal reallocation schemes (accounting for the peak costs)
which still lead to efficient policies that rely on this approximation.

Similar issues arise for MPC policies. Indeed, they require to solve mixed-integer linear programs (see Appendix
A.3 for more details). As the size of the REC and the policy horizon both grow, their computation time dramatically
increases. These policies also require predictions of the future electricity flows of the non-controllable assets of the
REC members. Scarcity of historical data, controllable assets with complex dynamics, and the difficulty to build
algorithms dedicated to predictions of these flows make it challenging to scale MPC techniques with big sized RECs.
Like for the optimal reallocation scheme, adapting these MPC policies to run on GPUs might be an alternative to
solve MILPs [ref needed]. As for the electricity flows predictions, to face the scarcity of historical data for a given
REC, transfer learning techniques might help, provided the existence of supervised learning models predicting similar
electricity flows [41].

The RL policies have been shown to be a promising alternative to MPC policies, especially when the reward signals
are densified, as they keep a rather low complexity to be used to operate RECs with controllable assets once they
have been trained. For the training procedure, since the REC control problem is centralised (by the ECM), we have
used a single-agent policy gradient algorithm called PPO [28]. While building RL policies through this single-agent
configuration should be the proper approach, they are in practice difficult to train due to both the presence of recurrent
layers [34] and the amount of information needed to feed to the parametric functions used by the RL policies, which
quadratically grows with the number of members in the REC and the length of a billing period. The complexity of
the cost signal, which is mainly due to the peak costs and requires solving an optimisation problem, further plague
the scaling of the training procedure for RECs with large sizes. Yet, according to our results, the presence of these
peak costs sensitively impacted the expected return of these RL policies, particularly in REC-7, our largest REC in our
simulations having 7 members. To mitigate these scaling issues, a surrogate cooperative multi-agent POMDP, where
each member could be an agent, might be designed to build the RL policies, while keeping them compatible with the
original (centralised) POMDP [42; 26; 25].
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A Mathematical details

A.1 Decision Process

In this section, we provide a detailed description of the decision process introduced in Section 3 as a particular instance
of Partially Observable Markov Decision Process (POMDPs). This POMDP provides the following time discretisation.
The duration between two consecutive time steps (for controllable assets and thus meter reading transitions) is defined
by the value δ ∈ R+. The duration of a market period, expressed in number of time steps, is defined by the value
∆M ∈ N+. The duration of a billing period, expressed in number of market periods, is defined by the value ∆B ∈ N+.
We describe below, in detail, the components of the POMDP. Let M be the number of members of the REC. A state
s ∈ S contains the following information:

• the number of time steps elapsed in the current market period s∆M ∈ N,
• the number of market periods elapsed in the current billing period s∆B ∈ N,
• the state of the controllable assets scm of each member m ∈ {1, . . . ,M},
• the production meter reading s

r+
(m,n) ⩾ 0 of each member m ∈ {1, . . . ,M} at each market period n ∈

{1, . . . ,∆B},
• the consumption meter reading s

r−
(m,n) ⩾ 0 of each member m ∈ {1, . . . ,M} at each market period n ∈

{1, . . . ,∆B}.

An exogenous variable e ∈ E contains the following information:

• the electricity net production of each member epm ⩾ 0,
• the electricity net consumption of each member ecm ⩾ 0.

Since these net electricity flows account for self-consumption during the time interval between t and t + 1, we have
that epmecm = 0. The dynamics of the controllable assets are derived from their specifications. The dynamics related
to the states memorising the elapsed time in the current billing period are defined as follows:

s∆M
0 = s∆B

0 = 0, (17)

s∆M
t+1 =

{
1, if s∆M

t = ∆M ,

s∆M
t + 1, otherwise,

(18)

s∆B
t+1 =


0, if s∆B

t = ∆B ,

s∆B
t , if s∆M

t < ∆M ,

s∆B
t + 1, otherwise.

(19)

Let qcm be a function giving the amount of electricity consumption (positive) or production (negative) generated by
applying the action uc

m in the controllable asset state for each member scm. The dynamics related to the production
and consumption meter readings are defined for all members m ∈ {1, . . . ,M} as follows:

s
r+
(m,n),0 = s

r−
(m,n),0 = 0, ∀n ∈ {1, . . . ,∆B} (20)

s
r+
(m,n),t+1 =


0 if s∆B

t = ∆B ,

s
r+
(m,n),t+1 if s∆B

t > n− 1,
s
r+
(m,n),t+1 + l+m,t otherwise,

(21)

s
r−
(m,n),t+1 =


0 if s∆B

t = ∆B ,

s
r−
(m,n),t+1 if s∆B

t > n− 1,
s
r−
(m,n),t+1 + l−m,t otherwise,

(22)

where
l+m,t = max(qcm(scm,t, u

c
m,t)− ecm,t + epm,t, 0.0), (23)

l−m,t = max(qcm(scm,t, u
c
m,t) + ecm,t − epm,t, 0.0). (24)
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are respectively the net electricity production (i.e., after accounting of self-consumption) and the net electricity con-
sumption (i.e., after accounting of self-consumption) of the member m at time step t.

As defined in Section 3.3, the cost signal of the POMDP is computed by solving the minimisation problem defined in
Equation (7), resulting in what we call the global REC bill, from input values (related to meter readings and elapsed
time in the billing period) provided by states at last time steps of billing periods; otherwise the cost signal is zero.
However, intermediate global REC bills can be computed during the simulation of the POMDP by adapting the value
of τ , introduced in Equation (6), to correspond to the time elapsed during the billing period. More formally, given
decision variables e+m and e−m for each member m ∈ {1, . . . ,M}, related to the energy exchanged by the members
through the REC as defined in Section 3.2, we rewrite Equation (6) to account for the input values provided by a state
s ∈ S as follows:

EB′′
m(e+m, e−m, s) =

(
δB∑
n=1

B−
m(sr

−

(m,n) − e−m,n)−B+
m(sr

+

(m,n) − e+m,n) + Λ−e−m,n + Λ+e+m,n

)
+ (25)

s∆BM

∆B∆M

[
P−

(
max

n∈{1,...,δB}
sr
−

(m,n) − e−m,n

)
+ P+

(
max

n∈{1,...,δB}
sr

+

(m,n) − e+m,n

)]
,

where δB = min(s∆B+1,∆B), and s∆BM is the number of time steps elapsed during the billing period corresponding
to the state s:

s∆BM =


∆M∆B if s∆B = ∆B ,

s∆B∆M if s∆M = ∆M ,

s∆B∆M + s∆M otherwise.
(26)

A.2 Policies

In this section, we provide a detailed description of the policies introduced in Sections 4 and 5.2 in the context of
the POMDP described above. Namely, (i) the MPC policies which decide, given an approximate prediction of the
future exogenous values, the next optimal action to apply (with respect to the time horizon and the values of the
prediction); (ii) the RL policies which approximate the optimal policies through parameterised functions that output
the next action by exploiting only the current state and history of exogenous values; (iii) the SELF policy and the
REC policies that outputs the next action which maximises some self-consumption criteria given the current state and
exogenous variables values.

A.3 MPC Policies

The MPC policies compute the next action by solving an optimisation problem accounting for the structure of the
POMDP introduced in Section 3.3 and future exogenous variables values; we refer to this sequence of values as ê.
More formally, these policies compute the optimal sequence of actions that minimises, with respect to the current state
and the predicted exogenous values, the discounted sum of the upcoming global REC bills. To that end, it solves a
mixed-integer linear (MILP) program that is modelled as follows. Let T ∆M

t:t+K be the last time steps of market periods
between t and t+K:

T ∆M

t:t+K =
{
t′ ∈

{
t− s∆BM

t′ , . . . , t+K
}
|s∆M

t′ = ∆M or t′ = t+K
}
. (27)

Let (g−
m,t∆M

, g+
m,t∆M

, r−
m,t∆M

, r+
m,t∆M

) be the non negative auxiliary variables that respectively correspond, for each

member m ∈ {1, . . . ,M} and for each last time step market period t∆M ∈ T ∆M

t:t+K , to the amount of energy
bought(sold) from(to) the retailer, as well as energy bought(sold) from(to) the REC (local market). Let T ∆B

t+1:t+K
be the time steps that correspond to the last time step of billing periods between t+ 1 and t+K:

T ∆B

t+1:t+K =
{
t′ ∈ {t+ 1, . . . , t+K} |s∆B

t′ = ∆B or t′ = t+K
}
. (28)

Let p−
m,t∆B

and p+
m,t∆B

be the non negative auxiliary variables that respectively correspond to the offtake and injection

peaks for each member m ∈ {1, . . . ,M} and for each end of billing period t∆B ∈ T ∆B

t:t+K . We concisely denote the
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energy exchanges summed over an entire billing period, which ends at t∆B ∈ T ∆B

t+1:t+K , as follows:

g−
m,t∆B

=
∑

t∆M ∈T ∆B←M

t∆B

g−
m,t∆M

, (29)

g+
m,t∆B

=
∑

t∆M ∈T ∆B←M

t∆B

g+
m,t∆M

,

r−
m,t∆B

=
∑

t∆M ∈T ∆B←M

t∆B

r−
m,t∆M

,

r+
m,t∆B

=
∑

t∆M ∈T ∆B←M

t∆B

r+
m,t∆M

,

where T ∆B←M

t∆B
= T ∆M

t∆B−s
∆BM
t′ :t∆B

is the set of time steps corresponding to end of market periods that belong to the

billing period ending at time step t∆B . To compute the next action, the MPC policies select an optimal sequence (of
decisions) minimising the following objective function (discounted sum of the upcoming global REC bills):

ĜRB(st, êt:t+K , ût:t+K) = (30)

min(
g−
m,t∆M

,g+

m,t∆M
,r−

m,t∆M
,r+

m,t∆M

)
, ∀t∆M ∈T ∆B

t:t+K

∑
t∆B∈T ∆B

t:t+K

γ(t∆B−t)
M∑

m=1[
B−

mg−
m,t∆B

−B+
mg+

m,t∆B
+ Λ−r−

m,t∆B
+ Λ+r+

m,t∆B
+

P+p+
m,t∆B

+ P−p−
m,t∆B

s∆BM

t∆B

]
where γ is the discount factor associated to the POMDP. Note that MPC retail only differs from MPC policy in that
it sets P+ = P− = 0 in its internal optimisation problem. The decision variables of the MILP, which correspond to
a sequence of actions in the POMDP, is constrained accordingly to the function U defined in Section 3. Since these
constraints depend on the current state (of the controllable assets), we introduce auxiliary variables for the sequence
of states for each member m equipped with controllable assets. In these sequences, the first state corresponds to st,
while the subsequent states are defined through the transition function f c

m. For each member, the variables related to
the offtake and injection peaks correspond, for a given billing period ending at time step t∆B ∈ T ∆B

t∆B
, to the maximum

values of the energy exchanged with the retailer across the market periods within this billing period:

p−
m,t∆B

⩾ g−
m,t∆M

, (31)

p+
m,t∆B

⩾ g+
m,t∆M

, (32)

for all m ∈ {1, . . . ,M} and t∆M ∈ T ∆B←M

t∆B
. We introduce, in the optimisation problem modelled by the MPC

policies, the constraints related to the energy exchanges described in Section 3.2 as follows:

g−
m,t∆M

+ r−
m,t∆M

=


sr,−t + l−

m,t:t∆M
if t∆M > t and t∆M −∆M < t,

l−
m,(t−t∆M ):t∆M

if t∆M > t,

sr,−
t∆M

otherwise,
(33)

g+
m,t∆M

+ r+
m,t∆M

=


sr,+t + l+

m,t:t∆M
if t∆M > t and t∆M −∆M < t,

l+
m,(t−t∆M ):t∆M

if t∆M > t,

sr,+
t∆M

otherwise,
,

M∑
m=1

r−
m,t∆M

=

M∑
m=1

r+
m,t∆M

,
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for all t∆M ∈ T ∆M

t:t+K , where

l−m,tmin:tmax
= max

(
tmax∑

t′=tmin

l−m,t′ −
tmax∑

t′=tmin

l+m,t′ , 0

)
(34)

and

l+m,tmin:tmax
= max

(
tmax∑

t′=tmin

l+m,t′ −
tmax∑

t′=tmin

l−m,t′ , 0

)
(35)

are respectively the net electricity consumption and production from time step t to t′ > t. We introduce auxiliary
variables to compute the net electricity flows (for members that are equipped with controllable assets). To account for
self-consumption, we define the value of these variables as follows. If l− > l+, then the variable corresponding to the
net consumption is equals to l+ − l−. Similarly, if l+ > l−, then the variable corresponding to the net production is
equals to l−−l+. These two variables are mutually exclusive, only one of them can be non-zero at any time (l−l+ = 0).
For net electricity flows involving controllable assets, we have implemented this mutual exclusion constraint by using
special ordered sets [43] (of type 1, which themselves require to introduce binary variables). We have followed the
same approach to implement Equations (34) and (35).

A.4 RL Policies

Unlike the MPC policies, the RL policies compute the next action without an explicit approximation of the future
exogenous values by using parameterised closed-form functions which are differentiable (with respect to their pa-
rameters). In this section, we describe how this policy computes the next action through parameterised functions.
Thereafter, we describe how these parameters are determined through reinforcement learning to approximate the opti-
mal policies.

We consider stochastic and parameterised functions which are differentiable with respect to their parameters (usually,
deep neural networks). These functions take as input the history of exogenous variables and the states, which are
usually transformed (e.g., to decrease dimensionality), and output the parameters of a Gaussian distribution that are
used to sample the next action to be applied in the POMDP. We refer to these transformed inputs as observations,
and we introduce the observation space O. We optimise the parameter of one of these functions to maximise its
expected return with PPO [28]. Furthermore, we rely on an additional differentiable parameterised function, called the
critic, which we use in combination with PPO. We respectively denote the two functions as πθ and vϕ, where θ is the
parameter of the function π acting as the policy and ϕ is the parameter of the critic function v. The policy obtained after
the last iteration of PPO is what we call a RL policy. After initialising the parameters θ and ϕ, this algorithm iterates on
the following steps (over a fixed number of iterations). It runs the policy over several independent simulations of the
POMDP over a fixed time horizon T . The result of these simulations are sequences of transitions that are associated
with reward signals. We refer to these sequences as episodes. From these episodes, stored in a training set that we
denote as T S , it performs Nupd ∈ N+ updates of the policy πθ (with respect to its parameters). For each update step
1 ⩽ i ⩽ Nupd, a (small) subset of the transitions of size BS ∈ N+ is sampled, which is denoted as TSi ⊆ T S. Then,
for each of these subsets, the update of the policy is computed as follows. Let

Âϕ(ot) =

T∑
t′=t

(γ′λGAE)
t′−t

(rt + γvϕ′(ot)− vϕ(ot)) (36)

be the so-called generalised advantage estimation of the policy πθ [44] where vϕ′ and vϕ are respectively the prior
and the current critic functions, γ′ ⩽ γ is the discount factor used in the PPO algorithm (that can be set lower than the
one fixed for the POMDP [45]) and λGAE ∈]0; 1] is a hyperparameter that further increases the importance of the first
reward signals. The descending gradient used to update the policy is computed from the following loss function:

Lπ(θ) = − 1

BS

∑
(ot,ut,rt)∈T S

[
min(rθ(ot, ut)Âϕ(ot),max(1− ϵ,min(rθ(ot, ut), 1 + ϵ))Âϕ(ot))

]
, (37)

where θ′ = θ before the first update, rθ(ot, ut) =
πθ(ut|ot)
πθ′ (ut|ot) is the probability ratio between the initial policy and the

updated one and ϵ is a hyperparameter that somehow limits the value of the loss function. The PPO algorithm updates
the critic through another loss function which penalises the mean squared error of the critic function:

Lv(ϕ) =
λvϕ

BS

∑
(ot,ut,rt)∈T S

(vϕ′(ot)− vϕ(ot))
2
, (38)
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where λvϕ is a hyperparameter that scales the importance of this loss function for updating the critic function. The
gradient ascent updates are computed with ADAM [46], which dynamically modifies the learning rate, starting from
an initial one to which we refer as η. These updates are usually clipped by a global norm defined by a hyperparameter
that we denote as β > 0.

We implement parameterised policy and critic functions with deep neural networks, containing recurrent layers [34;
29] to memorise the past exogenous variables in the form of hidden states. These hidden states are incorporated to the
observation of the policies. We use the TBPTT algorithm [30] to backpropagate the gradients of the recurrent layers
up to a limited time horizon in the past transitions that we denote as Trnn.

A.5 Baseline policies

The REC policy and the SELF policy computes the next action by respectively maximising the global self-consumption
rate of the REC (as if the whole REC is composed of one member only) and the individual self-consumption rate for
each member equipped with controllable assets. To that end, they respectively solve the optimisation problem defined
below with c1 = 1 and c2 = 1, and setting the other coefficient to 0:

min
uc,∗
m,t∈U(scm,t),

∀m∈{1,...,M}

c1l
REC
t + c2

∑
m∈Mc

lm,t (39a)

s.t. lm,t ⩾ l−m,t − l+m,t ∀m ∈ {1, . . . ,M} , (39b)

lm,t ⩾ l+m,t − l−m,t ∀m ∈ {1, . . . ,M} , (39c)

lREC
t ⩾

M∑
m=1

l−m,t − l+m,t, (39d)

lREC
t ⩾ −

M∑
m=1

l−m,t − l+m,t. (39e)

The terms enabled by the coefficient value c1 refer to the global self-consumption rate of the REC and the terms
enabled by the coefficient value c2 refer to the individual self-consumption rates.

B Illustrative examples of the optimal reallocation scheme

In this section, we provide three illustrative examples of the optimal reallocation scheme described in Section 3.2.
The first one is a REC composed of 2 members. The second one is a REC composed of 3 members, with peak costs
coefficients set to 0. The third one is another REC composed of 3 members with large peak costs (compared than
the other cost coefficients). We consider, for all these RECs, a single billing period with 2 market periods. Note
that, expected for the second REC, peak cost coefficients are always (sensitively) larger than the other ones (prices of
energy and distributions fees).

B.1 REC composed of 2 members

When there are only 2 members in the REC, that we denote m1 and m2, the optimal solution can be computed directly
as follows for each meter reading r. When one of the members has a positive net production and the other one has a
positive net consumption (i.e., that C+

m1,r > 0 or C−
m2,r > 0 or vice versa), that member allocates as much as possible

of its net production to the REC, and the REC reallocates the whole net electricity production to the other member. In
other situations, no REC production is reallocated. In this REC composition, either buying energy from the retailers
instead of buying it from the REC if possible or selling energy instead of sharing it with the REC if possible is always
suboptimal in both cases due to the assumptions on the inputs of this optimal reallocation scheme problem. Table 2
shows an example of an optimal reallocation scheme in this REC.

B.2 REC without peaks costs

When the offtake and injection peaks costs coefficients are neutralised (i.e., P+ = P− = 0), the optimal reallocation
scheme can be solved with greedy algorithms for each market period [47]. More precisely, this greedy algorithm
works as follows. Firstly, this algorithm identifies whether the net consumption (of the REC) is greater than the net
production. If that is the case, it allocates the whole net production to the members in decreasing order of their energy
buying prices. Otherwise, in a similar manner, it shares the net production of the members to the REC in the increasing
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Buying
e/kWh

Selling
e/kWh

Network
e/kWh

M1 M2 M1 M2 P− P+ Λ− Λ+

0.20 0.22 0.04 0.05 1.00 1.00 0.02 0.03

(a)

Net consumption
kWh

Retail
kWh

REC
kWh

Market period M1 M2 M1 M2 M1 M2

1 252.59 −596.18 0.00 −343.59 252.59 −252.59

2 811.43 −244.02 567.41 0.00 244.02 −244.02

Offtake peak
kWh

Injection peak
kWh

Global REC Bill
e

Billing period M1 M2 M1 M2 NO-REC REC

1 567.41 0.00 0.00 343.59 1578.40 1032.13

(b)

Table 2: Optimal reallocation scheme problem over 2 market periods for a REC composed of 2 members. Retail prices
and network costs are specified in (a). Energy exchanges, peaks and electricity bills are reported in (b). The sum of the
individual electricity bills (before accounting for energy exchanges through the REC) is reported in red. The global
REC bill (after accounting for energy exchanges through the REC) is reported in blue.

order of their energy selling prices. Table 3 shows the optimal reallocation scheme following that REC composition
(i.e., a REC with 3 members where offtake and injection peak costs coefficients are set to 0). Note that repartition
schemes that are compted by the above-mentioned greedy algorithm are optimal only if all buying and selling prices
are strictly positive.

B.3 REC with peaks costs

Despite our efforts, we did not identify any closed form solution of the optimal reallocation scheme problem. However,
as this optimisation problem is repeatedly solved with different inputs, we have observed during our tests that reusing
the previous solutions sensitively speeds-up the solving process. Table 4 shows results of optimal reallocation schemes
that either neglect or account for the peak costs.

C Experimental protocol details

In this section, we provide the details of the experimental protocol (including numerical values) under which the
policies, described in detail in Appendix A.2, have been simulated in REC-2 and REC-7. More precisely, we outline
the configuration on the exogenous variables sampling for both REC instances, as well as the structure of each REC
instance, and the configuration of the MPC and RL policies with respect to these REC instances.

C.1 Sampling exogenous variables

Weather and daytime related time series, notably solar-based energy production and the companies’ energy consump-
tion, are typically time correlated. As an attempt to replicate these time series dynamics, we propose the following
approach to simulate P E

0 and P E from historical data. Let e be an exogenous time series. Let ω be a white noise time
series (centred on zero) sampled with a standard deviation that we denote σ. To take into account time correlation, we
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Buying
e/kWh

Selling
e/kWh

Network
e/kWh

M1 M2 M3 M1 M2 M3 P− P+ Λ− Λ+

0.20 0.22 0.24 0.04 0.05 0.06 0.00 0.00 0.02 0.03

(a)

Net consumption
kWh

Retail
kWh

REC
kWh

Market period M1 M2 M3 M1 M2 M3 M1 M2 M3

1 368.10 −608.36 −564.67 0.00 −240.26 0.00 368.10 −368.10 0.00

2 486.34 186.40 −162.35 486.34 24.05 −162.35 0.00 162.35 −162.35

Billing period M1 M2 M3 M1 M2 M3 NO-REC REC

1 / / / / / / 137.86 83.19

(b)

Table 3: Optimal reallocation scheme over 2 market periods for a REC composed of 3 members which are not subject
to peak costs. Retail prices and network costs are specified in (a). Energy exchanges, peaks and electricity bills are
reported in (b). The sum of the individual electricity bills (before accounting for energy exchanges through the REC)
is reported in red. The global REC bill (after accounting for energy exchanges through the REC) is reported in blue.

derive a new noise x, to which we refer as red noise1, as follows:

x0 = ω0, (40)

xt+1 = rxt +
√

(1− r2)wt+1, ∀t ⩾ 1, (41)

where r ∈ ]0, 1] controls the time correlation of the red noise. We then define the two distributions P E
0 and P E such

that the value of a sample ẽt of the two distributions is given at time step t by

ẽt = xt + et. (42)

C.2 Future exogenous variables values for MPC policies

Let ẽ be the historical sequence of exogenous variables from which new sequences are sampled through the procedure
described in Section C.1. Let e be the exogenous time series containing the future values from the time step t (as
sampled through the procedure described in Section C.1). We thus define the time series êt:t+K to be the prediction of
the exogenous variables from t to t+K, computed as follows:

ê′t = αt′−tet′ + (1− αt′−t)ẽt′ , ∀t′ ∈ {t, . . . , t+K} , (43)
where α controls the convergence speed of the exogenous time series to the mode of the two distributions P E

0 and P E .
Note that, in practice, these predictions are computed through algorithms built with supervised learning techniques
[35; 36], provided that a reasonably large training dataset is available. This is not the case for the context of our
research work, where the scarcity of historical data for RECs challenges the building process of such forecasting
algorithms.

C.3 REC-2

REC-2 is composed of a consumer and a producer, which we denote as M1 and M2, respectively; the first one is
equipped with a load only, and the second one is equipped with loads and PV panels, with the latter always producing
more than what the load consumes. The duration between two time steps δ is set to 1 hour. A billing period occurs
every 5 market periods. A market period lasts 4 time steps. In other words, optimal reallocation schemes are computed
for the last 20 hours at each end of billing period. Figure 5 shows the consumption and production profiles of the

1https://atmos.washington.edu/~breth/classes/AM582/lect/lect8-notes.pdf

22

https://atmos.washington.edu/~breth/classes/AM582/lect/lect8-notes.pdf


PREPRINT. UNDER REVIEW.

Buying
e/kWh

Selling
e/kWh

Network
e/kWh

M1 M2 M3 M1 M2 M3 P− P+ Λ− Λ+

0.20 0.22 0.24 0.04 0.05 0.06 1.00 1.00 0.02 0.03

(a)

Net consumption
kWh

Retail
kWh

REC
kWh

Market period M1 M2 M3 M1 M2 M3 M1 M2 M3

1 −642.66 644.85 748.11 0.00 644.85 105.44 −642.66 0.00 642.66

2 −666.00 142.05 −150.40 −523.94 0.00 −150.40 −142.05 142.05 0.00

3 232.98 −111.48 813.45 232.98 0.00 701.97 0.00 −111.48 111.48

4 −538.31 542.80 −579.49 0.00 0.00 −575.00 −538.31 542.80 −4.50

Offtake peak
kWh

Injection peak
kWh

Global REC Bill
e

Billing period M1 M2 M3 M1 M2 M3 NO-REC REC

1 232.98 644.85 701.97 523.94 0.00 575.00 3638.90 3068.45

(b)

Net consumption
kWh

Retail
kWh

REC
kWh

Market period M1 M2 M3 M1 M2 M3 M1 M2 M3

1 −642.66 644.85 748.11 0.00 2.18 748.11 −642.66 642.66 0.00

2 −666.00 142.005 −150.4 −523.94 0.00 −150.4 −142.05 142.05 0.00

3 232.98 −111.48 813.45 186.85 0.00 748.11 46.13 −111.48 65.34

4 −538.31 542.8 −579.49 −424.59 0.00 −150.4 −113.71 542.8 −429.09

Offtake peak
kWh

Injection peak
kWh

Global REC Bill
e

Billing period M1 M2 M3 M1 M2 M3 NO-REC REC

1 186.85 2.18 748.11 523.94 0.00 150.4 3638.9 2024.38

(c)

Table 4: Optimal reallocation scheme over 4 market periods for a REC composed of 4 members. Retail prices and
network costs are specified in (a). Energy exchanges, peaks and electricity bills (that results from neglecting the peak
costs) are reported in (b). The sum of the individual electricity bills (before accounting for energy exchanges through
the REC) is reported in red. The global REC bills (after accounting for energy exchanges through the REC) computed
by neglecting and accounting for the peak costs are reported in purple and blue, respectively.
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Figure 5: Consumption/production profiles of members in REC-2. Member M1 does not produce electricity and
member M2 does not consume electricity (through their respective non-controllable assets).

REC
Member

Buying
e/kWh

Selling
e/kWh

M1 0.10 0.01
M2 0.12 0.01

Table 5: Buying and selling prices of members in REC-2.

members. Table 5 shows the buying and selling prices as defined by retailer contracts in REC-2. Offtake and injection
peak cost coefficients are both set to 1 e/kWh. Network fees are set to Λ− = 0.03 e/kWh and Λ+ = 0.01 e/kWh.
The member M2 is equipped with a battery following linear charging power dynamics. More formally, let scM2 be the
state of charge of the battery, uM2 be the charging power applied to the battery (negative is discharging), U− and U+

be the respective discharging and charging powers bounds, and Sc
M2 be its maximum capacity. The dynamics of the

state of charge is defined as follows:

scM2,0 =
Sc
M2

2
, (44)

scM2,t+1 = scM2,t + δ

[
ν+u+

M2,t −
u−
M2,t

ν−

]
,

where u+
M2,t and u−

M2,t are respectively charging and discharging power of the battery, and ν+ and ν− are respectively
charging and discharging efficiencies. Table 6 shows the producer’s battery specifications. The time horizon of the
simulations is fixed to 101 time steps, with a discount factor of 0.9995.
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Specification Value

Maximum capacity (Sc
M2) 1.00 kWh

Maximum charging power (U+) 0.05 kW
Maximum discharging power (U−) 0.10 kW

Charging efficiency (ν+) 1.00
Discharging efficiency (ν−) 1.00

Table 6: Specifications of the battery owned by member M2 in REC-2.

C.3.1 Exogenous variables sampling

Exogenous variables are sampled from the consumption and production profiles of the REC members, as shown in
Figure 5. To generate the red noise, we set the correlation parameter to r = 0.5 and the standard deviation of the white
noise to σ = 0.3.

C.3.2 MPC and baseline policies

To evaluate the MPC and the baseline policies, we sample 64 exogenous time series through the procedure described
in Appendix C.1, and we run the simulations with each of these time series independently. More precisely, they are
evaluated by averaging the sample expected returns resulting from these simulations through 16 distinct random seeds.
We run the MPC policies with the values of α in {1.0, 0.85, 0.5} and the values of K ∈ {1, 2, . . . , 101}.

C.3.3 RL policies

The RL policies transform an input data to its corresponding observation (as specified in Appendix A.4) as follows.
The states of the controllable assets and the counters (as continuous values) are kept. For each member, the values
of the consumption(production) meter readings and the net consumption(production) – before the controllable assets
usage – are summed up for the current time step; the other values (of exogenous variables and meter readings) of the
previous time steps are discarded. Afterwards, the consumption and production meter reading are replaced, for each
member, by a net consumption meter reading (negative value is net production meter reading). Since standardisation
of the observation (and the rewards) is recommended for training policies in a reinforcement learning setting [33],
we proceed to that end as follows. Let O be an observation vector of size N > 1. Each value oi of this observation
vector, with i between 1 and N , is shifted by a fixed mean value and divided by a fixed standard deviation value. These
statistics are computed by a simulation of the OPT policy (described in Section 5.2) through the historical exogenous
variables. Note that, for the RL dense policies, we add in the observation the last reward computed during the current
billing period. These rewards are standardised in the same fashion as the observations.

Thereafter, the observation is fed to the underlying deep neural network, for which the architecture is shown in Figure
6. The input hidden state is either the last output of the recurrent layers, or an initial vector of zero values (before the
first step of an episode). The result of this forward computation is a pair of values corresponding to the parameters of a
Gaussian distribution, namely the mean and the log standard deviation. Before sampling a value from this distribution,
the standard deviation is transformed by the exponential function and shifted with a value ϵ = 1e−6 (to avoid exploding
gradients). The sampled value is then clipped between −1 and 1 and projected into the bounds of the action space (in
this case, between the maximum discharging and the maximum charging powers of the battery). If this action is not
admissible (e.g., discharging power greater than the content of the battery), it is projected to the closest feasible value
(e.g., discharging power value corresponding to the content of the battery).

The weights of the underlying neural network of the prior policy (before the first update of the PPO algorithm) are
initialised accordingly to the programming library RLLib [31]. Additionally, as recommended by [33], we divide the
weights of the last layer outputting the action distribution by a hyperparameter that we denote as W . Through the
simulation process of policy functions, the training set records the transitions along with the respective parameters of
the (Gaussian) distribution that sampled the actions and the critic values. It also records the standardised values of the
rewards, which are used instead of the original reward signals to compute the loss function of the policy. The policy is
then updated as explained in Appendix A.2. Table 7 shows the hyperparameters (including the grid search space) used
to train the RL policies.

To evaluate the RL policies, we have run the PPO algorithm for 600 iterations through 16 distinct random seeds.
For each iteration, the current policy is run through 64 simulations in the environment (by sampling 64 exogenous
time series). At the end of this procedure, 64 additional simulations are sampled, and the expected return estimate is
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Figure 6: Forward view of the underlying deep recurrent learning model of RL policies for REC-2 for a single obser-
vation. Yellow nodes are the inputs (including the RNN hidden states). Green nodes are hidden layers with activation
functions. Orange nodes are output (including the next RNN hidden states).

computed by averaging the expected return samples across the random seeds. Figure 7 shows the evaluation of the RL
policies at each iteration of the PPO algorithm.

C.4 REC-7

From now on, as the experimental settings share many similarities with those in REC-2, we only describe the parts that
differ from the latter. REC-7 is composed of 7 members, which are denoted from M1 to M7. The duration between
two time steps δ is set to 3 minutes. A billing period occurs every 45 market periods. Figure 8 shows the consumption
and production profiles of the members, derived from historical data of an existing REC in Wallonia, Belgium. Table
8 shows the buying and selling prices of members as defined by their retailer contracts. Offtake and injection peak
cost coefficients are both set to 1.210 e/kWh. Network fees are set to Λ− = 0.143 e/kWh and Λ+ = 0.126
e/kWh. Similarly to REC-2, only the member M1 is equipped with a battery following the same charging dynamics
as described by Equation (44). Table 9 shows the producer’s battery specifications (by reusing the notation introduced
in Section C.3). The time horizon of the simulations is fixed to 720 time steps, with a discount factor of 0.99993.

C.4.1 MPC and baseline policies

To evaluate the MPC and the baseline policies, we sample 64 exogenous time series through the procedure de-
scribed in Appendix C.1, and we run the simulations with each of these time series independently. More pre-
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Hyperparameter Search space RL policy RL dense RL retail RL retail dense

λGAE {0.90, 0.95, 0.99} 0.90 0.90 0.90 0.90
η {5e−4, 5e−5, 5e−6} 5e−5 5e−5 5e−5 5e−5
γ {0.9995, 0.95, 0.99} 0.99 0.99 0.99 0.99
β {1, 2, 4} 2 2 1 1

Nupd {5, 10} 10 10 10 10
B {32, 64, 96} 64 64 64 64
λvϕ {1, 0.1, 0.01, 0.001} 1 0.01 1 1
Trnn {25, 50, 100} 50 50 50 50
W {1, 10, 100} 1 1 1 1

Table 7: Values of hyperparameters related to PPO for RL policies in REC-2, with the search space in the second
column; see Appendix A.2 for more details about the hyperparameters. Unspecified hyperparameters have been left
to default values defined by the programming library RLlib [31].
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Figure 7: Mean expected return with standard error over training iterations of the RL policies in REC-2.

REC
Member

Buying
e/kWh

Selling
e/kWh

M1 0.214907 0.075388
M2 0.208757 0.075152
M3 0.202735 0.076381
M4 0.20846 0.077213
M5 0.20846 0.078153
M6 0.206301 0.080649
M7 0.210234 0.081928

Table 8: Retail buying and selling prices for REC-7.
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Figure 8: Consumption and production profiles for REC-7 (resampled for ease of readability). The members M2, M3,
M4 and M5 do not produce electricity. The members M6 and M7 both consume and produce electricity. Electricity
flows of the member M1 are only generated from its battery.

Specification Value

Maximum capacity (Sc
M2) 5256 kWh

Maximum charge power (U+) 525 kW
Maximum discharge power (U−) 1051 kW

Charging efficiency (ν+) 0.88
Discharging efficiency (ν−) 0.71

Table 9: Specifications of the battery of member M1 in REC-7.

cisely, they are evaluated by averaging the sample expected returns resulting from these simulations through 16
distinct random seeds. We run the MPC policies with the values of α in {1.0, 0.95, 0.5} and the values of K in
{1, . . . , 100, 132, 164, 196, 266, 330, 394, 458, 522, 586, 650, 721}.

C.4.2 RL policies

Figure 9 shows the architectures of two independent deep neural networks. The first one computes the parameters
of Gaussian distributions (to sample the next actions) and the second one is the critic value. Table 10 shows the
hyperparameters (including the grid search space) used to train the RL policies. To evaluate the RL policies, we have
run the PPO algorithm for 1000 iterations through 16 distinct random seeds. For each iteration, the current policy is run
through 128 simulations in the environment. At the end of this procedure, 128 additional simulations are sampled to
estimate the expected return. Figure 10 shows the evaluation of the RL policies at each iteration of the PPO algorithm.
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Figure 9: Forward view of underlying deep recurrent learning model of RL policies for REC-7 for a single observa-
tion. Yellow nodes are the inputs (including the RNN hidden states). Green nodes are hidden layers with activation
functions. Orange nodes are output (including the next RNN hidden states).

Hyperparameter Search space RL policy RL dense RL retail RL retail dense

λGAE {0.9, 0.95, 0.99} 0.9 0.9 0.9 0.9
η {5e−4, 5e−5, 5e−6} 5e−5 5e−5 5e−5 5e−5
γ {0.99993, 0.95, 0.99} 0.99 0.99 0.99 0.99
β {1, 2, 4} 2 2 1 1

Nupd {5, 10} 5 5 5 5
B {360, 720} 360 360 360 360
λvϕ {1, 0.1, 0.01, 0.001} 0.001 0.001 0.001 0.001
Trnn {180, 360} 360 360 360 360
W {1, 10, 100} 100 100 100 100

Table 10: Values of hyperparameters related to PPO for RL policies in REC-7, with the search space in the second
column; see Appendix A.2 for more details about the hyperparameters. Unspecified hyperparameters have been left
to default values defined by the programming library RLlib [31].
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Figure 10: Mean expected return with standard error over training iterations of the RL policies in REC-7.
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