





### A regional flux-based risk assessment approach of contaminated sites on surface water and groundwater bodies

S.Brouyère, P.Jamin, D.Caterina, A.Dassargues, C.Hérivaux, S.Crèvecoeur, J.-P.Thomé, I.C.Popescu

Contaminated Site Management in Europe

Gent, October 27th 2009





### Context of the FRAC-WECO project

- **D** Context: EU Water Framework Directive
- Relevance: management of heavily industrialized area with numerous contaminated sites
- Main objectives: risk assessment of contaminated site using mega-site approaches based on criteria able to reflect the risk of water quality degradation
  - In a cumulative way
  - At the water body scale

# Context of the FRAC-WECO project

- Flux-based Risk Assessment of Contaminants on Water resources and ECOsystems
- Financed by the Belgian Science Policy 2006-2010, gathering 5 scientific partners from Belgium and France
  - ULg-Aquapôle: Coordinator, hydrogeology
  - ULg-LEAE: Ecotoxicity, TRIAD like approach
  - VUB: Spatially distributed ground water recharge from remote sensing
  - VITO: Behaviour of contaminants
  - BRGM: Socio economical aspects
- Today's presentation focuses on risk assessment methodology and application on groundwater body RWM073













### Methodology

#### Regional risk assessment

- Risk assessment of contaminated site
  - Classical schema: simple S-P-R







- **D** 1 site means
  - 1 or few sources
  - 1 or few contaminants
  - 1 or few pathways
  - 1 or few well identified receptors
  - Good characterization of context

# Methodology Regional risk assessment

 Risk assessment of multiple contaminations on multiple receptors at regional scale

- FRAC→WECO: more than point sources and point receptors
- Need for a lot of information about S, P and R



 $\rightarrow$  Flux based risk assessment in order to consider the additive effect of various sources

→GIS data base to manage SPR information (Development in progress at ULg) Contaminated Site Management in Europe - FRAC-WECO presentation October 27th 2009

RECEPTORS

### Methodology

#### Regional risk assessment

#### Local Risk Assessment Criteria

- 1S → 1R<sub>point</sub>: OK with usual concentration-based criteria (referential is a function of the type of receptor)
  - $\Box$  f<sub>M</sub> = mass flux

**D** Q = amount of contaminated water  $\times$  t<sup>-1</sup>

 $C = f_M / Q$ 



- nS → 1R<sub>point</sub>: cumulative approach (flux-based) and still usual concentration-based referentials
  - **\Box f**<sub>M</sub><sup>cum</sup> = cumulative mass flux
  - **D** Q = amount of contaminated water × t<sup>-1</sup>



# Methodology Re

#### Regional risk assessment

#### Regional Risk Assessment Criteria

•  $nS \rightarrow 1 R_{RGW/SW}$ : cumulative approach (flux based) but what referential to use?



# Methodology

### Quality indicator

#### Contaminant through GW

- GWB discretization and modelling 1. of contaminant leaching + plume dispersion
- For each plume, classification of 2. concentrations according to threshold values of the Walloon region SEQ-ESO

C. Rentier et al., 2006 : A framework for an optimized Groundwater monitoring network and aggregated indicators. Environmental Geology, vol. 50/2, p194-201.

- In each grid cell: SEQ-ESO 3. indicator taking into account the various contaminants and possible flux cumulative effects
- Aggregation into a limited number 4. of global SEQ-ESO indicators







# Application of methodology Simplified test cases

The regional risk assessment methodology using indexes from SEQ-ESO has been tested on simplified cases (in the same time than general model development).

- Simplified model, 500 x 400 x 20 m, with no-fluxes boundary conditions N, S, W and river E.
- Flow and transport parameters coming from former studies on the Meuse alluvial plain.
   GW flow
- Chemical pollutant properties coming from literature.
- Tested for 3 species
  Benzene: high mobility, high degradation, 1 g/l
   Benzo(a)pyrene: low mobility, low degradation, 1 µg/l
   Trichloroethylene: high mobility, low degradation, 1 g/l



# Application of methodology Simplified test cases

#### Evolution of SEQ-ESO index during 20 years simulation



#### Benzo(a)pyrene





#### TCE



Contaminated Site Management in Europe - FRAC-WECO presentation October 27th 2009

### Application of methodology Simplified test cases

#### Evolution of SEQ-ESO index during 20 years simulation Integrating several pollutant species



# Application of methodology RWM073 case

- RWM073: Alluvial plain of the Meuse River between town of Engis and Herstal
- Heavy industrial past: metallurgy, cokery, mining, urban areas,...



# Application of methodology RWM073 case

#### RWM073 modelling

- Local alluvial aquifer fed by rainfall and runoff water from the slop of the watershed, and drained by the Meuse
- Watershed mainly composed by low permeable deposits but a groundwater flow occurs in the shallow altered fringe of those sediments from crest to alluvial plain

#### Modelling Steps:

- $\rightarrow$  Run GW flow model on the watershed
- $\rightarrow$  Extract the results about GW flow and apply them on the alluvial plain boundaries

 $\rightarrow$  Run GW transport model on the alluvial plain







### Application of methodology RWM073 case



**Contaminated Site Management in Europe - FRAC-WECO presentation October 27th 2009** 



### **Conclusions and perspectives**

#### **D** Main outcome if the research:

- An efficient and flexible methodology of risk assessment for groundwater (or surface water) at the regional scale of the megasite (or groundwater body)
- A physically based cumulative flux approach giving a global indicator of water quality/degradation
- The easy usability of this indicator for costs and benefits analyse of management plans
- The ability to test scenarios and model trends what is Water Framework Directive compliant

#### **□** First encouraging results that have to be push further:

- Complete regional real application on RWM073
- Complete the development and feed the GIS SPR data base
- Integrate uncertainties/probabilistic scenarios of pollution sources, pollutants properties, GW flow,...
- Perform socio-economical analysis (BRGM)
- Integrate the ecotoxicological indicator of LEAE

