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1 Introduction
The idea of the present paper is born from the reading of very interesting papers
of Amrouche, Ciarlet and Mardane [1, 2] concerning the equivalence of a lot of
properties related to Lions’ lemma. All these properties are intimately related
to Stokes’ problem in fluid mechanics, one of them being the LBB condition
of this problem. This led us to investigate the following question : are there
similar results in the abstract case of a general saddle point problem ? We
found that the answer is positive, and this is the object of the present paper.
After obtention of the abstract results, a final section of this paper is devoted
to Stokes’ problem, in order to demonstrate the power of the abstract theory.

2 Frame of the present study
The LBB condition appears in saddle point problems of the following form. Let
V and P be two Hilbert spaces, with scalar products (u, v)V and (p, q)P . Let
a(u, v) be a symmetric bilinear form on V × V and b(p, v) a bilinear form on
P × V , both continuous. Considering f ∈ V ′ and g ∈ P ′, the problem is as
follows Find u ∈ V and p ∈ P such that

∀v ∈ V a(u, v) + b(p, v)=f(v) (1)
∀q ∈ P b(q, v) =g(v) (2)

Let Z be the subspace of V where b(q, v) = 0 whatever q ∈ P . It is well known
[5, 6, 3] that this problem admits a unique solution if the following conditions
are verified :

∀u ∈ Z⊥ a(u, u) ≥ α∥u∥2V (ellipticity) (3)

∀p ∈ P sup
v∈V−{0}

b(p, v)

∥v∥V
≥ β∥p∥P (LBB) (4)

where α and β are strictly positive. Condition 4 is known as LBB condition.
The purpose of the present paper is to highlight the equivalence of this condition
with other ones.
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3 Operators B and B′

It was said above that the bilinear form b is bounded. Precisely,

∀p ∈ P and ∀v ∈ V |b(p, v)| ≤ N∥p∥P ∥v∥V (5)

For a given p ∈ P , b(p, v) may be seen as a linear functional on V . From Riesz’s
representation theorem, this functional may be set on the form (Bp, v)V . This
defines an operator B which is bounded as

∥Bp∥V = sup
v∈V−{0}

(Bp, v)V
∥v∥V

= sup
v∈V−{0}

b(p, v)

∥v∥V
≤ N∥p∥P

Conversely, for a given v ∈ V , b(p, v) may be considered as a functional on P ,
and therefore written in the form (p,B′v)P . The operator B′ verifies

∥B′u∥P = sup
q∈P−{0}

(q,B′u)P
∥q∥P

= sup
q∈P−{0}

b(q, u)

∥q∥P
≤ N∥u∥V

The above defined subset Z is then the kernel of B′. The LBB condition may
be written

sup
v∈V−{0}

(Bp, v)V
∥v∥V

≡ ∥Bp∥V ≥ β∥p|P (LBB2) (6)

Here, a remark has to be done. The LBB condition cannot be verified if ker(B) ̸=
{0}. This constitute a compatibility condition for space P :

Theorem 1 (Compatibility condition for P ) Space P has to comply to the
following compatibility condition :

ker(B) = {0} (7)

Practically, if this condition is not verified, P has to be restricted to ker(B) ⊥.

4 The DR condition
Theorem 2 The LBB condition implies the DR condition which is as follows :

DR condition : To any element w of Z⊥, it is possible to associate an
element p ∈ P such that w = Bp, and ∥w∥V ≥ β∥p∥P

Proof - Trying to minimize the squared distance

∥Bp− w∥2V = (Bp,Bp)V − 2(Bp,w)V + ∥w∥2V

leads to the following variational problem :
Find p ∈ P such that, whatever be q ∈ P , on has

(Bp,Bq)V = (w,Bq)V (8)

The bilinear form (Bp,Bq)V is clearly bounded, and it is elliptic as ∥Bp∥2V ≥
β2∥p∥P from the LBB condition. So, our problem admits an unique solution
p ∈ P which verifies

∀q ∈ P 0 = (Bp− w,Bq)V = (B′(Bp− w), q)P
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that is to say
B′(Bp− w) = 0

or Bp− w ∈ Z. Now, calculating the obtained distance, one obtains

d2 = (Bp− w,Bp)V − (Bp− w,w)V = 0

as the first term vanishes by construction and the second one is the scalar
product of Bp− w ∈ Z and w ∈ Z⊥. Thus, Bp = w. Finally, (8) implies

∥Bp∥2V = (w,Bp)V ≤ ∥w∥V ∥Bp∥V

i.e. ∥Bp∥V ≤ ∥w∥V and from the LBB condition,

∥w∥V ≥ β∥p∥P

as announced.

Remark - Let us consider a functional f ∈ V ′ whose kernel is Z. Then,
its Riez representation Rf in V is necessarily in Z⊥. This implies that there
exists a p ∈ P such that Rf = Bp. And reciprocally, a functional whose Riesz
representation lies in Z⊥ necessarily vanishes on Z. Moreover, one has

∥f∥′V = ∥Rf∥V ≥ β∥p∥P

We have thus obained the

Theorem 3 The DR condition is equivalent to the following one
DR’ condition : Any functional f ∈ V ′ whose kernel is Z verifies Rf =

Bp with p ∈ P , and ∥f∥V ′ ≥ β∥p∥P

5 The NORB condition
Theorem 4 The DR condition implies the NORB condition which is as fol-
lows :

NORB condition : In Z⊥, the following inequality holds

∥B′w∥P ≥ β∥w∥V (9)

Proof - Starting from

∥B′w∥P = sup
p∈P−{0}

(B′w, q)P
∥q∥P

= sup
p∈P−{0}

(w,Bq)V
∥q∥P

the DR condition implies that there exists an element p ∈ P such that w = Bp
and ∥w∥V ≥ β∥p∥P . With this choice, the above supremum is not necessarily
reached, so that

∥B′w∥P ≥ ∥w∥2V
∥p∥P

≥ β∥w∥V

as announced.
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6 The ONTO condition
Theorem 5 The NORB condition implies the ONTO condition which is as
follows :

ONTO condition : Whatever be p ∈ P , there exists an element w ∈ Z⊥
such that

B′w = p and ∥w∥V ≤ 1

β
∥p∥P (10)

Proof - Let us minimize the squared distance

∥B′u− p∥2P = ∥B′u∥2P − 2(p,B′u)P + ∥p∥2P

on Z⊥. This leads to the following variational problem :
Find w ∈ Z⊥ such that

∀v ∈ Z⊥ (B′w,B′v)P − (p,B′v)P = 0 (11)

This problem is well posed as from the NORB condition, ∥B′u∥2P ≥ β2∥u∥2V in
Z⊥. Its unique solution w verifies

∀v ∈ Z⊥ (B′w − p,B′v)P = 0

Now, any element z ∈ V may be decomposed as

z = z1 + z2 with z1 ∈ Z⊥, z2 ∈ Z

From the above condition, (B′w − p,B′z1)P = 0. As for z2, one has B′z2 = 0.
Thus one may write

∀z ∈ V (B′w − p,B′z)P = 0

or equivalently
∀z ∈ V (B(B′w − p), z)V = 0

which implies
B(B′w − p) = 0

So, B′w − p ∈ ker(B) = {0} from our hypotheses, and B′w = p. Finally, from
the NORB condition,

∥w∥V ≤ 1

β
∥B′w∥P ≡ 1

β
∥p∥P

as announced.

7 Returning to the LBB condition
We will now prove the following theorem :

Theorem 6 The ONTO condition implies the LBB condition.
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Proof - In the expression

Q(p, v) =
(p,B′v)P
∥v∥V

one may, from the ONTO condition, choose a particular w ∈ Z⊥ such that
B′w = p and ∥w∥V ≤ 1

β ∥p∥P . This choice leads to

Q(p, w) =
∥p∥2P
∥w∥V

≥ β
∥p∥2P
∥p∥P

≡ β∥p∥P

It is cleat that
sup

v∈V−{0}
Q(p, v) ≥ Q(p, w) ≥ β∥p∥P

which is the LBB condition.

8 Equivalence theorem
We have thus proved the following implications

LBB ⇒ DR ⇒ NORB ⇒ ONTO ⇒ LBB (12)

so that the following theorem may be written :

Theorem 7 The four conditions LBB, DR, NORB and ONTO are equivalent.

9 The case of Stokes’ problem
As an illustration, let us consider Stoke’s problem with zero speeds on the
boundary. For this problem, in space Rn,

V = (H1
0 (Ω))

n (13)
V ′ = (H−1(Ω))n (14)

P = L2
0(Ω) = {p ∈ L2(Ω) |

∫
Ω

pdx = 0} (15)

a(u,v) = µ

∫
Ω

DiujDivjdx (16)

b(p,v) =

∫
V

p divvdx (17)

Here and in what follows, use is made of Einstein’s summation convention. On
L2
0(Ω), we will naturally use the classical scalar product

(p, q) =

∫
Ω

pqdx (18)

The simplest choice for a scalar product on (H1
0 (Ω))

n is

(u,v)1 = (Djui, Djvi) (19)
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to which corresponds the norm

|u|21 = (Djui, Djui) (20)

With this choice, Riesz’ representation theorem acquires a very simple meaning.
Indeed,

(Rf ,v)1 =< f ,v >

is equivalent to

< fj , vj >= (DiRfj , Divj) = − < DiiRfj , vj >

and, this being true for any vj ,

−∆Rf = f (21)

Considering the bilinear form b, one has

b(p,v) = (p,divv) = − < Dip, vi >= −(RDip, vi)1

that is to say

Bp = −Rgradp (22)
B′u = divu (23)

Examining these results, one first see that Z = ker(B′) = ker(div) is the
incompressible subspace. Secondly, Bp = 0 is equivalent to gradp = 0 i.e.
p = constant. This is why one has to work with L2

0(Ω) : one has to conform to
the compatibility condition for space P . We are now able to see the different
conditions of the problem

• LLB 1 condition :

∀p ∈ L2
0(Ω) sup

v∈(H1
0 (Ω))n−{0}

(p,divv)

|v|1
≥ β∥p∥L2

0(Ω) (24)

• LLB2 condition :

∥Rgradp∥(H1
0 (Ω))n ≥ β∥p∥L2

0(Ω)

or equivalently,
∥gradp∥(H−1(Ω))n ≥ β∥p∥L2

0(Ω) (25)

This is Nečas inequality [17]

• DR’ condition : Any f ∈ (H−1(Ω))n whose kernel is Z verifies

Rf = Rgradp

or equivalently
f = gradp with p ∈ L2

0(Ω) (26)

and one has
∥f∥(H−1(Ω))n ≥ β∥p∥L2

0(Ω) (27)

This result is generally cited as de Rham’s theorem
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• NORB condition :

∀w ∈ Z⊥ ∥ divw∥L2
0(Ω) ≥ β∥w∥(H1

0 (Ω))n (28)

• ONTO condition :

∀p ∈ L2
0(Ω) ∃w ∈ Z⊥ | divw = p and ∥w∥(H1

0 (Ω))n ≤ 1

β
∥p∥L2

0(Ω)

(29)

From theorem (7), all these conditions are equivalent. So, the general theory
directly gives the equivalence results presented by Amrouche, Ciarlet and Mar-
dane [1, 2].

10 Conclusion
We have thus found that the equivalence of different conditions for Stokes’ prob-
lem, which has been pointed by Amrouche, Ciarlet and Mardane, is not an
isolated fact related to this concrete problem. Such an equivalence remains
true in the general abstract frame. The application of the abstract results to
Stokes’problem has been exposed as an illustration. Incidentally, our develop-
ments are largely founded on Hilbertian techniques which, in the present case,
proved to be intuitive and powerful.
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