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Abstract

This paper establishes an inequality on Sobolev spaces which implies
Nečas inequality and related results, by using a method due to Friedrichs.

1 Introduction
In the years 1946-1947, Friedrichs [9, 10] presented an interesting way to obtain
inequalities in the Sobolev spaces. The application of its method is restricted
to domains which have particular but not too restrictive properties as will be
described in what follows. We found interesting to investigate the possibility to
obtain by this way the well known Nečas’ inequality (equivalent to Lions’ lemma
[1, 2]). We were led to another inequality, not so known but containing Nečas’
inequality as a consequence. The present paper presents the establishment of
this inequality and some of its consequences, including Nečas inequality, Korn’s
inequality, and a lot of related results. As exposed in the frame of Hilbert spaces,
our presentation is as intuitive as possible.

2 Notations
In this text,

• V is a bounded and connected open set of Rn.

• S is the boundary of V .

• Vector and tensor fields are generally noted by a bold character.

• Einstein’s summation convention on repeated indices is freely used, except
otherwise stated ("no summation on i").

• Di =
∂

∂xi

• Dij = DiDj

• L2(V ) stands for
(
L2(V )

)n and in general, product spaces are noted by a
bold letter.

• f ∈ L2
0(V ) if f ∈ L2(V ) and

∫
V
fdV = 0
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• H1(V) =
(
H1(V )

)n
• H1

0(V) =
(
H1

0 (V )
)n

• ∥f∥2 =
∫
V
f2dV

• ∥f∥2 =
∑

i

∫
V
f2
i dV

• (f, g) =
∫
V
fgdV

• (f ,g) =
∫
V
figidV

• D(V ) is the set of indefinitely differentiable functions having a compact
support on V

• ∥f∥ = norm in L2(V )

• (f, g) = scalar product in L2(V )

• |f |1 = semi-norm in H1(V ) i.e.
√∫

V
DifDifdV

• (f, g)1 = scalar product associated to this semi-norm

• ∥f∥1 = norm in H1(V ), that is ∥f∥21 = ∥f∥2 + |f |21
• ((f, g))1 = scalar product associated to this norm

• |r| = √
rijrij

3 The main result
Theorem 1 Let θ ∈ L2

0(V ) be a scalar field and rij ∈ L2(V ) be the components
of an antisymmetrical tensor field verifying the condition

Dirjk +Djrki +Dkrij = 0 (1)

whatever be the indices i, j, k from 1 to n. Then, if these two fields verifie the
relation

Diθ = Djrij (2)

one has

∥θ∥ ≤ C∥r∥ (3)

Our proof follows the ideas of Fiedrichs [9, 10]. We think that this method,
although a bit technical, is very intuitive, due to its essentially agebraic nature.
In counterpart, restrictions have to be made on the open set but as shown by
Friedrichs in the above references, these conditions are verified in a large class
of practical cases.

4 Conditions on the open set V

The domain V has to be bounded and connected and possesses a uniform Ω prop-
erty, as explained hereafter. This property was initially introduced by Friedrichs
who used the name "Ω-domains".
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4.1 The Ω(η)-property
We will say that a domain V possesses the Ω(η)-property if, noting

Vη = {x | d(x, ∁V ) > η} (4)

there exists a vector field Ω such that 1 2

Ω is Lipshitz - continuous (5)
|DiΩj | ≤

a.e.
L ∀(i, j) (6)

DiΩi ≥
a.e.

1 in V − Vη (7)

Ω = 0 on the boundary of V (8)

4.2 The uniform Ω-property
We will say that a domain possess an uniform Ω-property if there exists a
δ > 0 such that, for all η ∈]0, δ], the Ω(η)-property is verified, with a uniformly
bounded Lipschitz constant L.

5 Function Hε

We will also need a function Hε such that

Hε ∈ C∞ (9)
Hε ≥ 0 (10)
Hε = 1 in Vε (11)
Hε = 0 outside of Vε/3 (12)

|DpHε| ≤ Kp

εp
(13)

As is well known, such a function may be obtained with a mollifier, i.e. a positive
radial function ρε ∈ C∞(Rn) verifying

ρε = 0 for |x| ≥ ε∫
|x|≤ε

ρεdV = 1

If δV2ε/3
is the characteristic function of V2ε/3, it is easy to verify [11] that a

suitable Hε is given by
Hε = δV2ε/3

∗ ρε/3

6 Proof of the theorem

6.1 Harmonicity of both fields
A direct result of the hypotheses of the theorem is that both fields θ and rij are
harmonic on Ω. At first, Dijrij = 0 from the fact that the differential operator

1This is a slightly modified version of original Friedrichs’ conditions. In fact, Friedrichs
required that Ω be of class C1

2In what follows, the precision almost everywhere will be omitted.
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is symmetric while the tensor is antisymmetric. Using (2) leads then to

Diiθ = Dijrij = 0 (14)

Now, from (1),
Diirjk +Dijrki +Dikrij = 0

and combining this result with (2) leads to

0 = Diirjk +Dj(Dkθ) +Dk(−Djθ) = Diirjk (15)

So, both fields are harmonic, which implies that they are of class C∞(Ω)
[11, 12].

6.2 Identities
Our proof will be based on two identities.

6.2.1 First identity

The fundamental relation (2) directly implies

θDiθ = θDjrij = Dj (θrij)− rijDjθ (16)

By a second use of (2), the last term of the second member may be transformed
as follows

−rijDjθ = −rijDkrjk = −Dk (rijrjk) + rjkDkrij (17)

In order to evaluate the last term, let us start from the fact that (1) implies

0 = rjk (Dkrij +Dirjk +Djrki)

= rjkDkrij + rjkDirjk + rjkDjrki

The last term of the last member may be transformed as follows

rjkDjrki = rkjDkrji = −rjkDkrji = rjkDkrij

that is to say, it is equal to the first term of the same member. One obtains
thus

0 = 2rjkDkrij + rjkDirjk

= 2rjkDkrij +
1

2
Di (rjkrjk)

that is
rjkDkrij = −1

4
Di (rjkrjk) (18)

Assembling results (16), (17) and (18) leads to the

First identity :

Di

(
θ2
)

= 2θDiθ

= 2Dj (θrij)− 2Dk (rijrjk)−
1

2
Di (rjkrjk) (19)
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6.2.2 Second identity

Our purpose is to obtain an identity concerning DiθDiθ. From (2),

DiθDiθ = DjrijDkrik (20)

First partial result - One has

Dkk (rijrij) = 2Dk (rijDkrij) = 2 (Dkrij) (Dkrij) + 2rijDkkrij

and the last term vanishes from the harmonicity of the rij , so that

(Dkrij) (Dkrij) =
1

2
Dkk (rijrij) (21)

Second partial result - Let us compute

Djk (rijrik) = Dj (rijDkrik + rikDkrij)

= (Djrij) (Dkrik) + rijDjkrik + (Djrik) (Dkrij) + rikDjkrij

Now from (2),
rijDjkrik = rijDjiθ = 0

and
rikDjkrij = rikDkiθ = 0

as Dijθ is symmetrical and rij , antisymmetrical. One is thus led to

DiθDiθ = (Djrij) (Dkrik) = Djk (rijrik)− (Djrik) (Dkrij) (22)

Third partial result - Relation (1) visibly implies

0 = (Dirjk +Djrki +Dkrij) (Dirjk +Djrki +Dkrij)

= (Djrjk)(Dirjk) + (Djrki)(Djrki) + (Dkrij)(Dkrij)

+2 ((Dirjk)(Djrki) + (Djrki)(Dkrij) + (Dkrij)(Dirjk))

By modifying the name of summation indices, one can see that all squared terms
are equal to (Dkrij)(Dkrij) and that all double products reduce to
2(Djrki)(Dkrij). Then, using result (21) leads to

0 = 3(Dkrij)(Dkrij) + 6(Djrki)(Dkrij)

=
3

2
Dkk(rijrij)− 6(Djrik)(Dkrij)

that is to say,

(Djrik)(Dkrij) = −1

4
Dkk(rijrij) (23)

Assembling results (20), (21) and (23) finally gives the

Second identity :

DiθDiθ = Djk(rijrik)−
1

4
Dkk(rijrij) (24)
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6.3 Step 1 : an integration by parts
Multiplying the first identity by Ωi and integrating leads to∫

V

[ΩiDi(θ
2)− 2ΩiDj(θrij) + 2ΩiDk(rijrjk +

1

2
ΩiDi(rjkrjk]dV = 0 (25)

An integration by parts formally leads to

I =

∫
V

[θ2DiΩi − 2θrijDjΩi + 2rijrjkDkΩi +
1

2
rjkrjkDiΩi]dV = 0 (26)

But the validity of this integration by parts is not obvious, as no hypothesis has
been made on the behaviour of the derivatives of θ and r near the boundary. In
order to circumvent this difficulty, let us consider any η ∈]0, δ[ and replace in
(25) Ωi by HηΩi. The integration by parts is then valid, as Hη vanishes in the
vicinity of the boundary. The result is Iη = 0, where

Iη =

∫
V

[θ2Di(HηΩi)−2θrijDj(HηΩi)+2rijrjkDk(HηΩi)+
1

2
rjkrjkDi(HηΩi)]dV

(27)
This integral may be splitted in two terms, namely Iη1 =

∫
Vη

...dV and Iη2 =∫
V−Vη

...dV . In the first integral, Hη = 1 and Iη1 has the same form as I, but
integrated on Vη. In the second one, observe that

|Ωi| ≤ Lη

|Hη| ≤ K0

|DiHη| ≤ K1

η

from which

|Dk(HηΩi)| ≤ |DkHη||Ωi|+ |Hη||DkΩi|

≤ K1

η
Lη +K0L = L(K0 +K1) = C1

Therefore, one obtains, with the appropriate constants,

Iη2 ≤
∫
V−Vη

[C2θ
2 + C3|r||θ|+ C4|r|2 + C5|r|2]dV

≤ C6

∫
V−Vη

(θ2 + |r|2)dV

a quantity which vanishes if η tends to zero. Simultaneously, Iη1 converges to
I, so that (26) is true.

6.4 Step 2
Let us now adopt a fixed value of ε ∈]0, δ[ . From (26), it is easy to deduce∫

V

θ2DiΩi = 2

∫
V

θrijDjΩidV −2

∫
V

rijrjkDkΩidV − 1

2

∫
V

rjkrjkDiΩidV (28)
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which may be rewritten as∫
V−Vε

θ2DiΩi = −
∫
Vε

θ2DiΩi + 2

∫
V

θrijDjΩidV

− 2

∫
V

rijrjkDkΩidV − 1

2

∫
V

rjkrjkDiΩidV (29)

Since DiΩi ≥ 1 in V − Vε, one has∫
V−Vε

θ2DiΩidV ≥
∫
V−Vε

θ2dV

As the derivatves of the Ωi are bounded, this leads to the following evaluation :∫
V−Vε

θ2dV ≤ C∗
7

∫
Vε

θ2dV + C8∥θ∥∥r∥+ C9∥r∥2 (30)

which also implies, with C7 = C∗
7 + 1,∫

V

θ2dV ≤ C7

∫
Vε

θ2dV + C8∥θ∥∥r∥+ C9∥r∥2 (31)

6.5 Step 3
It remains to evaluate the integral of θ2 on Vε. First, from Poincaré’s inequality,∫

Vε

θ2dV ≤ 1

Vε

∣∣∣∣∫
Vε

θdV

∣∣∣∣2 + C10

∫
Vε

DiθDiθdV (32)

Now, it has to be noted that equation (2) remains valid if a constant is added
to θ. For sake of simplicity, we will momentarily fix this constant by setting∫

Vε

θdV = 0 (33)

Starting from the second inequality

DiθDiθ = Djk(rijrik)−
1

4
Dkk(rijrij)

let us multiply this result by Hε and integrate on V. This leads to∫
V

HεDiθDiθdV =

∫
V

HεDjk(rijrik)dV − 1

4

∫
V

HεDkk(rijrij)dV

After a double integration by parts, the second member of this equality reduces
to ∫

V

rijrikDjkHεdV − 1

4

∫
V

rijrijDkkHεdV (34)

and, since the derivatives of Hε are bounded, the absolute value of this expres-
sion admits a bound of the form C11∥r∥2. Owing to the fact that Hε is a positive
function and equals 1 in Vε, one has∫

V

HεDiθDiθdV ≥
∫
Vε

DiθDiθdV
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so that, finally, ∫
Vε

DiθDiθdV ≤ C11∥r∥2 (35)

Adding this result to (31) leads to

∥θ∥2 ≤ C8∥θ∥∥r∥+ C12∥r∥2

which, from the classical theory of second order inequations, leads to

∥θ∥ ≤ C8∥r∥+
√
C2

8∥r∥2 + 4C12∥r∥2
2

= C13∥r∥ (36)

6.6 Step 4 : Adjusting the condition on the mean of θ
In the preceeding step, use was made of the unnatural condition

∫
Vε

θdV = 0.
Let us consider a function θ whose integral on V is zero, and which verifies the
fundamental relation (2). Any θ∗ of the form θ∗ = θ − c, where c is a constant,
also verifies the fundamental relation. A possible choice is

0 =

∫
Vε

θ∗dV =

∫
Vε

θdV − cVε

i.e.
c =

1

Vε

∫
Vε

θdV

As just proved above, this θ∗ verifies

∥θ∗∥2 ≤ C2
13∥r∥2

Now ∫
V

θ∗
2

dV =

∫
V

θ2dV − 2c

∫
V

θdV + c2V

=

∫
V

θ2dV + c2V

≥
∫
V

θ2dV

so that it is also true that
∥θ∥ ≤ C13∥r∥

and theorem (1) is proved.

6.7 Case where θ is not of zero mean
When relation (2) is verified but θ̄ = 1

V

∫
V
θdV ̸= 0, it is clear that θ̂ = θ − θ̄

verifies the conditions of theorem (1), so that

∥θ̂∥ ≤ C13∥r∥

As
∥θ∥2 = ∥θ̂∥2 + θ̄2V

the general result is
∥θ∥2 ≤ θ̄2V + C2

13∥r∥2 (37)
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7 Equation ∆u = gradp

7.1 Preliminaries
Let us first recall the following expression of the laplacian of a vector field

∆ui = Djjui

= Dj(Djui −Diuj) +Dijuj

= Di(divu)−Djωij(u) (38)

where
ωij(u) = Diuj −Djui (39)

For sake of brevity, we often will note ωij in place of ωij(u) when no confusion
is possible. Visibly,

Diωjk +Djωki +Dkωij = Dijuk −Dikuj +Djkui −Djiuk +Dkiuj −Dkjui = 0
(40)

i.e. ωij verifies condition (1).
Now, it’s a classical result [21] that in H1

0(V ),

|u|21 =

∫
V

DjuiDjuidV

is equivalent to the natural norm of H1(V )

∥u∥21 = ∥u∥2 + |u|21
Moreover, in H1

0(V ), the following identity holds :

|u|21 =

∫
V

(|divu|2 + 1

2
ωijωij)dV

= ∥ divu∥2 + 1

2
∥ω∥2 (41)

Indeed, for any vector field e whose components lie in D(V ), one has∫
V

DjeiDjeidV = −
∫
V

eiDjjeidV

= −
∫
V

eiDijejdV +

∫
V

eiDjωij(e)dV

=

∫
V

DieiDjejdV −
∫
V

ωij(e)DjeidV

In the last term, renaming summation indexes gives

ωij(e)Djei =
1

2
(ωij(e)Djei + ωji(e)Diej)

=
1

2
ωij(e)(Djei −Diej)

= −1

2
ωij(e)ωij(e)

so that (41) is true for e. This result may be extended to H1
0(V ) from classical

density arguments. The same is true for the scalar product, that is, when fields
u and v are elements of H1

0(V ),

(u,v)1 =

∫
V

(
divudivv +

1

2
ωij(u)ωij(v)

)
dV (42)
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7.2 Formulation of the problem
Let us consider the following problem :

Given a field p ∈ L2
0(V ), find a vector field u ∈ H1

0(V ) such that, whatever
be v ∈ H1

0(V ),
(u,v)1 = (p,divv) (43)

The main result is :

Theorem 2 The solution u of problem (43) verifies

∥p∥ ≤ 1

β
|u|1 (44)

Indeed, this problem is equivalent to

∆ui = Dip

that is
Di divu−Djωij(u) = Dip

or
Djωij(u) = Diθ

with
θ = divu− p

We are thus in the frame of theorem (1) so that there exists a constant C
depending on V such that

∥θ∥ ≤ C∥ω∥

or explicitely,
∥divu− p∥ ≤ C∥ω∥

But this implies

∥p∥ ≤ ∥divu∥+ ∥p− divu∥

≤ ∥divu∥+ C
√
2

1√
2
∥ω∥

≤
√
1 + 2C2

√
∥divu∥2 + 1

2
∥ω∥2

which is the announced result.

7.3 Corollaries
Corollary 1 The solution of problem (43) verifies the inequality

∥p∥2 ≤ 1

β2
∥divu∥ (45)

Indeed,

∥p∥2 ≤ 1

β2
|u|21 =

1

β2
(p, divu) ≤ 1

β2
∥p∥∥divu∥
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Corollary 2 The solution of problem (43) verifies the inequality

|u|1 ≤ 1

β
∥ divu∥ (46)

Indeed,
|u|21 = (p,divu) ≤ ∥p∥∥divu∥

and using corollary (1) leads to

|u|21 ≤ 1

β2
∥ divu∥2

8 Nečas inequality

8.1 Establishment of the inequality
The natural norm for the elements f of the dual H−1(V ) of H1

0 is

|f |−1 = sup
v∈H1

0(V ),̸=0

| < f,v > |
|v[1

In the case where f = gradp, with p ∈ L2
0(V ), one has

< gradp,v >= −(p,divv)

so that
|gradp|−1 = sup

v∈H1
0(V ),̸=0

|(p, divv)|
|v|1

Let us first suppose that the mean of p is zero. Considering the vector field
u ∈ H1

0(V ) that verifies ∆u = gradp, one has

sup
v∈H1

0(V ),̸=0

|(p,divv)|
|v|1

= sup
v∈H1

0(V ), ̸=0

|(u,v)1|
|v|1

= |u|1

that is to say
|u|1 = |gradp|−1

From result (44) then follows the first form of Nečas’ inaquality

Theorem 3 (Nečas’ inequality 1) For any p ∈ L2
0(V ), one has

∥p∥ ≤ 1

β
|gradp|−1 (47)

In the case where the mean of p does not vanish, p̂ = p− p̄ has the same gradient
as p so that

∥p̂∥ ≤ 1

β
|gradp|−1

As ∥p∥2 = ∥p̂∥2 + p̄2V , one obtains the second form of Nečas’ inequality

Theorem 4 (Nečas’ inequality 2) For any p ∈ L2(V ), one has

∥p∥2 ≤ p̄2V +
1

β2
|gradp|2−1 (48)
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8.2 An equivalent form
It is easy to see that inequality (47) is equivalent to

∀p ∈ L2
0(V ) sup

v∈H1
0(V ),̸=0

(p,divv)

|v|1
≥ β∥p∥ (49)

This may also be written

inf
p∈L2

0(V ),̸=0
sup

v∈H1
0(V ),̸=0

(p, divv)

|v|1
≥ β (50)

This is precisely the so-called LBB condition, also referred as inf-sup condition,
which ensures the existence of the solution of Stokes’problem in fluid mechanics
[5, 6, 3].

8.3 H−1-norms of the derivatives of a p ∈ L2
0(V )

We have seen that the element u ∈ H1
0(V ) which is the solution of the problem

∀v ∈ H1
0(V ) (u,v)1 = (p, div v) (51)

verifies the relation
|u|21 = |gradp|21 = (p, divu)

Now, this problem may be split in the n following ones :
Find ui ∈ H1

0 (V ) such that

∀vi ∈ H1
0 (V ) (ui, vi)1 = (p,Diui) (no summation on i) (52)

As (p,D1u1) = − < D1p, u1 > etc., the obtained ui verifies

|ui|21 = |Dip|2−1 = (p,Diui) (no summation on i) (53)

As ∥D1u1∥2 ≤ |u1|21, ∥D2u2∥2 ≤ |u2|21, etc., one has

|ui|2 ≤ ∥p∥|ui|1

so that
|Dip|−1 = |ui|1 ≤ ∥p∥ (54)

which is an important property :

Theorem 5 The H−1-norms of the derivatives of any p ∈ L2
0(V ) are bounded

by ∥p∥

Now, as |u|21 =
∑

i |ui|21, one has

|gradp|2−1 =
∑
i

|Dip|2−1 (55)

and Nečas’ inequality may be expressed in the following form :

Theorem 6 (Nečas’ inequality 3) For any p ∈ L2(V ), one has

∥p∥2 ≤ p2V +
1

β2

∑
i

|Dip|2−1 (56)
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9 The set divH1
0(V )

9.1 Introduction
Let q be an element of L2

0(V ) that verifies

∀v ∈ H1
0(V ) (q,divv) = 0

As
(q,divv) = − < gradq,v >

this mean that q vanishes. This result means that the set div(H1
0(V ) is dense

in L2
0(V ). The question is now : would it be true that both sets coincide ? In

order to answer to this question, we need to develop some tools.

9.2 Subspace B0(V )

Problem (43) consists to find u ∈ H1
0(V ) such that for any v ∈ H1

0(V )

(u,v)1 = (p, divv) ≡< −gradp, v > (57)

In other words, the solution u is the Riesz representation of the functional
(−gradp), what will be noted u = −Rgradp. It is clear that

|Rgradp|21 = |(p,divRgradp)| ≤ ∥p∥∥divRgradp∥ ≤ ∥p∥|Rgradp|1
from which

|Rgradp|1 ≤ ∥p∥
that is, operator Rgrad is bounded. Let B0(V ) = RgradL2

0(V ) be its image
in H1

0(V ). From the above proven fact (47) that

∥p∥ ≤ 1

β
|gradp|1 ≡ 1

β
|Rgradp|1

this operator is also invertible, so that B0(V ) is a closed subspace of H1
0(V ).

An important property of B0(V ) is a direct consequence of corollary (2) :

Theorem 7 On subspace B0(V ), one has |u|1 ≤ 1
β ∥ divu∥

9.3 Subspace I0(V )

Let us look at the elements w ∈ H1
0(V ) which are orthogonal to B0(V ). These

elements verify by definition

∀u ∈ B0(V ) (w,u)1 = 0

As the general form of the elements of B0(V ) is u = Rgradp with p ∈ L2
0(V ),

this condition reduces to

∀p ∈ L2
0(V ) 0 = (Rgradp,w)1 = −(p,divw)

which implies divw = 0. So, the set of elements that are orthogonal to B0(V )
is the incompressible subspace, as defined by

I0(V ) = {w ∈ H1
0(V ) | divv = 0}

Being the kernel of the bounded operator div, it is a closed subspace. Thus,

H1
0(V ) = B0(V )⊕ I0(V )
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9.4 de Rham’s theorem
Let us confider an element f ∈ H−1(V ) such that for any incompressible field
v ∈ H1

0(V ), one has
< f ,v >= 0 (58)

It is equivalent to say that (Rf ,v)1 = 0 for any incompressible field, so that
Rf ∈ B0(V ). Consequently, there exist a p ∈ L2

0(V ) such that Rf = Rgradp
or, equivalently, f = gradp. One has thus proved the following theorem :

Theorem 8 (de Rham’s theorem) Any element f ∈ H−1(V) whose kernel
is the incompressible subspace of H1

0(V ) is of the form f = gradp with p ∈ L2
0.

9.5 Problem div v = q

An element q ∈ L2
0(V ) being given, let us look for a vector field v ∈ B0(V ) such

that
divv = q

For this purpose, we will minimize in B0(V ) the squared distance

∥ divv − q∥2 = ∥ divv∥2 − 2(q,divv) + ∥q∥2

which leads to the following variational problem
Find v ∈ B0(v) such that

∀w ∈ B0(V ) (divv,divw) = (q,divw)

Noting that in B0(V ),

|(divv,divw)| ≤ |v|1|w|1 (boundedness)
∥ divv∥2 ≥ β2|v|21 (ellipticity)

one can conclude that this problem admits an unique solution v ∈ B0(V ). This
solution verifies

(divv − q,divw) = 0

whatever be w ∈ B0(V ). Moreover, as any element r ∈ H1
0(V ) admits the

decomposition

r = rB + rI with rB ∈ B0(V ), rI ∈ I0(V )

with, of course, div rI = 0, one has also

∀r ∈ H1
0(V ) 0 = (divv − q,div r) ≡< r,−grad(divv − q) >

whatever be r ∈ H1
0(V ). This implies (divv − q) = constant and as the mean

of this expression vanishes,
divv = q

Furthermore, from theorem (7), this solution verifies

|v|1 ≤ 1

β
∥ divv∥ =

1

β
∥q∥

We have thus obtained the following theorem:

Theorem 9 (Divergences of H1
0(V )) Any element q of L2

0(V ) is the diver-
gence of an element v ∈ H1

0(V ) verifying |v|1 ≤ 1
β ∥q∥
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9.6 A remark
The above proposition implies Nečas’ inequality. Indeed, considering the ex-
pression

Q(p,v) =
(p,divv)

|v|1
this theorem allows to choosing a particular v∗ such that divv∗ = p and

|v∗|1 ≤ 1

β
∥ divv∗∥ =

1

β
∥p∥

This choice leads to
Q(p,v∗) ≥ β

(p, p)

∥p∥
≡ β∥p∥

and the supremum of Q(p,v) is at least equal to this value. So, Nečas’ inequality
and theorem (9) are equivalent. This fact was pointed by Ciarlet et al. [1, 2].

Note that a direct proof of theorem (9) has been given by Bogovskii [4] by
using the Calderon-Zygmund singular integral.

10 Korn’s inequality

10.1 Strain and rotation tensors
In this section, a proof of Korn’s inequality will be given, starting from Bel-
trami’s relations. At any u ∈ H1(V ) may be associated the two tensor fields

εij =
1

2
(Diuj +Djui) (strain tensor)

ωij =
1

2
(Diuj −Djui) (rotation tensor)

Obviously,
Diuj = εij + ωij

It is clear that the strain tensor is symmetric, while the rotation tensor is anti-
symmetric. As a result,

εijωij = 0

so that
|u|21 =

∫
V

εijεijdV +

∫
V

ωijωijdV = ∥ε∥2 + ∥ω∥2 (59)

Finally, one has

Diωjk+Djωki+Dkωij =
1

2
(Dijuk−Dikuj+Djkui−Djiuk+Dkiuj−Dkjui) = 0

that is to say, the rotation tensor verifies the condition (1).
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10.2 Beltrami’s relations
Substracting the two relations

Dkiuj = Dkεij +Dkωij

Dikuj = Diεkj +Diωkj

leads to

0 = Dkεij −Diεkj +Dkωij −Diωkj

= Dkεij −Diεkj +Dkωij +Diωjk

= Dkεij −Diεkj −Djωki

where use has been made of condition (1). The result writes

Djωki = Dkεij −Diεkj (60)

and is generally attributed to Beltrami.

10.3 Bounding the rotation tensor
Beltrami’s relations immediatly lead to

|Djωki|−1 ≤ ∥εij∥+ ∥εkj∥ ≤
√
2∥εj∥

where use is made of the abusive notation

∥εj∥ =

√∑
l

∥εlj∥2

Taking the sum of the squares leads to∑
j

|Djωki|2−1 ≤ 2
∑
j

∥εj∥2 = 2∥ε∥2

Now, using Nečas’ inequality , one obtains

∥ωki∥2 ≤ ωki
2V +

2

β2
∥ε∥2

Summing all components, one obtains

∥ω∥2 ≤ V
∑
ij

ωij
2 +

2n2

β2
∥ε∥2 (61)

10.4 Korn’s inequality
From the preceeding result, one may write

|u|21 ≤ ∥ε∥2 + ∥ω∥2

≤ V
∑
ij

ωij
2 +

(
1 +

2n2

β2

)
∥ε∥2 (62)
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Concerning the norm in H1(V ), Poincaré’s inequality

∥u∥21 ≤ C1V
∑
i

ui
2 + C2|u|21

leads to the general result

∥u∥21 ≤ C1V
∑
i

ui
2 + C2V

∑
ij

ωij
2 + C3∥ε∥2 (63)

which is Korn’s inequality.
Starting from Beltrami relations to prove Korn’s inegality is not the most

usual way. But the obtained result is optimal from a physical point of view, as it
emphasizes the role of rigid body motions, namely, n translations and n(n−1)/2
rotations (as the rotation tensor is antisymmetric).

A completely different proof has been given by Gobert [13]. It seems to be
the most general proof (open set having the cone property) but it makes use of
the Calderon-Zygmund singular integral. An elegant proof has also been given
by Oleinik [16, 17].

11 Traces of incompressible fields

11.1 Norm of the traces
Any element u ∈ H1(V ) possess a trace Tu on the boundary S of V. Re-
ciprocally, at any trace is associated a class Class(Tu) of elements of H1(V )
having this trace. Two different elements of a same class only differ by an ele-
ment of H1

0(V ). A natural norm for Tu is thus the norm of the quotient space
H1(V )/H1

0(V ), which is the minimum value of the norm of an element of this
class :

∥Tu∥T = inf
v∈H1

0(V )
∥u− v∥1 (64)

Minimizing this norm consists to find v ∈ H1
0(V ) such that

∀w ∈ H1
0(V ) ((u− v,w))1 = 0

This defines a privileged element RTu = u− v, the minimal one in Class(Tu).
Note that this element is orthogonal to H1

0(V ). By construction,

∥Tu∥T = ∥RTu∥1 (65)

11.2 Traces of incompressible fields
An interesting question is to know if a given trace Tu on the boundary may
also be the trace of an incompressible field, in other words, if Class(Tu) contains
incompressible fields. Firstly, noting that any invompressible field v verifies∫

S

v · ndS =

∫
V

divvdV = 0

a necessary condition on the trace Tu is∫
S

Tu · ndS ≡
∫
V

div(RTu) = 0 (66)

17



We will now prove that if condition (66) is satisfied, Class(Tu) contains an
incompressible field. For this purpose, let us substract from RTu an element b
of the above defined subspace B0(V ) such that

divb = div(RTu) (67)

which is possible by virtue of (66). This substraction does not modify the trace,
and the element w = RTu − b is incompressible by construction. Now, it
remains to be proved that this w continuously depends on RTu. From (67)
follows

|b|1 ≤ 1

β
∥div(RTu∥ ≤ C1

β
∥RTu∥1

As b ∈ B0(V ) ⊂ H1
0(V ), Friedrichs’ inequality applies and

∥b∥1 ≤ C2|b|1 ≤ C1C2

β
∥RTu∥1

Allowing to the fact that b and RTu are orthogonal, one obtains

∥w∥1 =
√

∥RTu∥2 + ∥b∥2

≤

√(
1 +

C2
1C

2
2

β2

)
∥RTu∥1

≤ C3∥Tu∥T

We have thus obtained the following theorem :

Theorem 10 At any trace Tu verifying
∫
S
Tu · ndS = 0 may be associated an

uncompressible field w verfying ∥w∥1 ≤ C3∥Tu∥T

Corollary 3 Let u be any element of H1(V ) whose trace on the boundary veri-
fies condition (66). There exists an incompressible field w having the same trace
on the boundary and verifying

∥w∥1 ≤ C3∥u∥1 (68)

Indeed, ∥Tu∥T ≤ ∥u∥1

12 A result concerning harmonic vector fields
Let us first consider a vector field which is harmonic in V and which verifies∫

S

u · ndS ≡
∫
V

divudV = 0 (69)

Fron (38), the harmonicity condition may be written

Di divu−Djωij(u) = 0

and it is clear that te fields θ = divu and ωij comply with the exigencies of
theorem (1). Therefore, one has

∥ divu∥ ≤ C∥ω(u)∥ (70)
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If now condition (69) is not satisfied, it suffices to substract from u the particular
vector field

v =
θ

n
x with θ =

1

V

∫
V

divudV

This leads to a harmonic field u∗ = u− v which conforms to (69) and has the
same rotation tensor as u. Applying (70) to this field leads to

∥ divu∗∥ ≤ C∥ω(u∗∥ = C∥ω(u)∥

and since
∥ divu∥2 = ∥ divu∗∥2 + V θ

2

we have obtained the following theorem :

Theorem 11 Any harmonic field u ∈ H1(V ) verifies the following inequality :

∥divu∥2 ≤ V divu
2
+ C1∥ω(u)∥2 (71)

13 Conclusions
We have thus established an inequality on Sobolev spaces by using a tech-
nique due to Friedrichs. This technique is essentially of algebraic nature and
therefore, elementary. The obtained inequality has a lot of consequences, as
Nečas’ inequality, de Rham’s theorem, the fact that the divergences are onto
in L2, Korn’s inequality, results on the traces of incompressible fields and an
inequality for harmonic vector fields. All these results have been obtained in
the particularly intuitive Hilbertian frame.

It is well true that Friedrichs’ technique makes assuptions on the domain.
Friedrichs [9, 10] showed that his conditions are not too restrictives, as allowing
corners and edges at the boundary. However, it could be interesting to further
explore the characterization of Friedrichs’ Ω-domains, as the existence of the Ω
field is a very useful property.
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