The GWB BE-Meuse-RWM040 "Chalk of the Geer basin": delayed effect for nitrate in deep, old groundwater

<u>Serge Brouyère¹</u>, Philippe Orban¹, & Francis Delloye²

¹Université de Liège, Urban & Environmental Engineering, Hydrogeology & Environmental Geology, Liège, Belgium²Service public de Wallonie, DGO3 Department Water & Environment, Groundwater Direction, Jambes, Belgium

Serge.Brouyere@ulg.ac.be

32nd CIS-Groundwater Working Group Meeting Kempiński Hotel, Triq ir-Rokon, Gozo, Malta 25-26 April 2017

Image adapted from Programme Action Hesbaye

GWB BE-Meuse-RWM040 "Chalk of the Geer basin"

Groundwater abstraction

30 millions m³/year of drinking water to supply approx. 600,000 people in the region of Liège

Geology

- soils and loess deposits
- residual flint conglomerate and locally sands
- fractured, dual-porosity chalk (aquifer reservoir)
- clay (aquifer base)

32nd CIS Groundwater Working Group Meeting - Malta - 25-26/04/2017

GWB BE-Meuse-RWM040 "Chalk of the Geer basin"

Intensive agriculture (65% of the basin)

Groundwater quality

nitrate concentrations close to and even above the 50mg/L NO₃ threshold

32nd CIS Groundwater Working Group Meeting - Malta - 25-26/04/2017

GWB BE-Meuse-RWM040

"Chalk of the Geer basin"

To face this problem, different measures taken:

- GWB BE-Meuse-RWM040 classified in 1994 as vulnerable to NO_3 in the sense of the EU Nitrate Directive (91/676/CEE)
- Action programme in accordance with the Code of Good Agricultural Practice
- Investigations on fate and management of NO_3 in the basin (Programme Action Hesbaye (Dautrebande et al. 1996, Hallet, 1998...)
- More recently, NO₃ treatment plant built by CILE (water company)

Despite these efforts, key remaining questions:

- Any natural mechanisms contributing to delay groundwater quality improvement in response to the applied measures?
- How long do we have to wait until NO_3 trend reversal is observed in groundwater of the Geer basin?

GWB BE-Meuse-RWM040

"Chalk of the Geer basin"

Spatial distribution of nitrate content S : NO3 =~ 30 – 90 mg/L NE : NO3 =~ 20 – 25 mg/L N : NO3 =~ 0 mg/L

Spatial distribution of tritium content

S : UT =~ 10, young water NE : UT =~ 5, mixing between old/young N : UT =~ 1, old water

32nd CIS Groundwater Working Group Meeting - Malta - 25-26/04/2017

NO₃

27.20

0.00

0.00

0.00

71,00

28.06

Nitrate concentration (mg/l)

CILE galleries

River network

Geer basin

20 Kilometers

20.64 22,19

22.93

29.00

36.90

1.57

52.00 55.00

99.00

42.18

36.00

91.44

45.00

42.00

Modeling nitrate trends in groundwater

32nd CIS Groundwater Working Group Meeting - Malta - 25-26/04/2017

Modeling nitrate trends in groundwater

32nd CIS Groundwater Working Group Meeting - Malta - 25-26/04/2017

Conclusions and lessons learned

In the Geer basin, spatial distribution of NO₃ strongly linked to hydrodynamic conditions and groundwater mixing Good description of regional hydrodynamic conditions is essential

Strong correspondence between NO_3 and ³H patterns in GW Combined NO_3 – gw age dating tracers useful to distinguish between NO_3 pollution corresponding to very different time scales

NO₃ trend assessment indicative as a first warning However regional GW flow and transport models are essential for reliable prediction of future NO₃ concentrations in GW

Observations and modelling results indicate that Article 4(4) can be used to extend the time to achieve good chemical status in the GWB BE-Meuse-RWM040 "Chalk of the Geer basin"