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Abstract
Policy-gradient algorithms are effective reinforce-
ment learning methods for solving control prob-
lems with continuous state and action spaces. To
compute near-optimal policies, it is essential in
practice to include exploration terms in the learn-
ing objective. Although the effectiveness of these
terms is usually justified by an intrinsic need to
explore environments, we propose a novel analy-
sis and distinguish two different implications of
these techniques. First, they make it possible to
smooth the learning objective and to eliminate
local optima while preserving the global maxi-
mum. Second, they modify the gradient estimates,
increasing the probability that the stochastic pa-
rameter update eventually provides an optimal
policy. In light of these effects, we discuss and
illustrate empirically exploration strategies based
on entropy bonuses, highlighting their limitations
and opening avenues for future works in the de-
sign and analysis of such strategies.

1. Introduction
Many practical problems require making sequential deci-
sions in environments, based on state observations, in order
to minimize a cost or maximize a reward. Reinforcement
learning is a framework for solving such decision-making
problems that has been successful on complex tasks, includ-
ing playing games (Mnih et al., 2015; Silver et al., 2017),
managing power systems (Aittahar et al., 2024), control-
ling robots (Kalashnikov et al., 2018), or interacting with
electricity markets (Boukas et al., 2021).

Reinforcement learning can be divided into three families of
algorithms, namely, model-based, value-based, and policy-
based methods. Each method exhibits different learning
dynamics and requirements for computing high-performing
policies. On the one hand, the first two families of algo-
rithms are subject to the exploration-exploitation dilemma
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during the learning procedure. In short, in order to learn
statistical estimates of the environment or the value func-
tions as fast as possible, from which a good policy can be
computed, it is necessary to take actions that increase the
quality of the estimates that are likely not optimal. This
need for exploration to achieve high performance is theo-
retically well understood and has been the subject of many
works (Dann et al., 2017; Azar et al., 2017; Neu & Pike-
Burke, 2020). On the other hand, in policy-based methods,
and especially for policy-gradient algorithms (Duan et al.,
2016; Andrychowicz et al., 2020), the main theoretical re-
quirement to converge towards globally (or even locally)
optimal solutions is that policies remain sufficiently stochas-
tic during the learning procedure (Bhandari & Russo, 2019;
Bhatt et al., 2019; Agarwal et al., 2020; Zhang et al., 2021a;
Bedi et al., 2022). Interestingly, stochastic policies have
smoother returns (Ahmed et al., 2019; Bolland et al., 2023),
but neither softmax nor Gaussian policies guarantee enough
stochasticity for ensuring (fast) convergence (Mei et al.,
2020; 2021; Bedi et al., 2022). This requirement of stochas-
ticity in policy gradient is often abusively called exploration
and often understood as the need to infinitely sample all
states and actions.

Practitioners have tried to meet the theoretical requirement
of sufficient randomness of policies in policy gradient via
reward-shaping strategies, whereby a learning objective that
promotes or hinders behaviors by providing reward bonuses
for some states and actions is optimized as a surrogate to
the return of the policy. These bonuses typically promote
actions that reduce the uncertainty of the agent about its
environment (Pathak et al., 2017; Burda et al., 2018; Zhang
et al., 2021c), or that maximize the entropy of states and/or
actions (Bellemare et al., 2016; Lee et al., 2019; Guo et al.,
2021; Williams & Peng, 1991; Haarnoja et al., 2019). Op-
timizing a surrogate objective is particularly effective for
solving tasks with complex dynamics and reward functions,
or with sparse rewards (Islam et al., 2019; Lee et al., 2019;
Liu & Abbeel, 2021; Zhang et al., 2021b; Guo et al., 2021).

The differences between theory and practical implementa-
tions of exploration has led to common folklore seeking
to explain the intuition behind and the efficiency of policy-
gradient methods. This work is part of the research line
that studies the maximization of practical surrogate learn-
ing objective functions from a mathematical optimization
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perspective. Close to our work, studies of the learning ob-
jective with entropy regularization (an exploration-based
reward shaping technique where the entropy of the policy is
added in the learning objective) were conducted. It includes
the study by (Ahmed et al., 2019) concluding that it helps
to provide smooth learning objective functions. The same
exploration strategy was reinterpreted as a robust optimiza-
tion method by Husain et al. (2021) and equivalently as a
two-player game by Brekelmans et al. (2022). Bolland et al.
(2023) furthermore argued that optimizing an entropy reg-
ularized objective is equivalent to optimizing the return of
another policy with larger variance. Chung et al. (2021) also
studied the effect on the learning dynamics when including
baselines in policy gradient, which is close to adding ex-
ploration terms in the learning objective. These studies are
specific to some exploration methods and the literature lacks
unified explanations and interpretations about exploration
in policy-gradient methods.

Before delving into our contributions, we recall that the
convergence of stochastic ascent methods is driven by the
objective function and how the ascent directions are esti-
mated. First, the objective function shall be (pseudo) con-
cave to find its global maximum (Bottou, 1998). Second,
the convergence rate is influenced by the distribution of the
stochastic ascent estimates (Chen & Luss, 2018; Ajalloeian
& Stich, 2020). In this paper, we rigorously study policy-
gradient methods with exploration-based reward shaping
through the lens of these two optimization theory aspects.
More precisely, we first discuss the effect of exploration
on the learning objective and the relationship between an
optimal policy and a policy maximizing the learning objec-
tive. Second, we elaborate on the distribution of the gradient
estimates of the learning objective and its likelihood of pro-
viding a direction in which the learning objective and the
return increase. We furthermore illustrate how some com-
mon exploration strategies help improve the performance of
policy-gradient algorithms with respect to these two aspects.
In practice, finding good exploration strategies is known
to be problem specific and we thus introduce a general
framework for the study and interpretation of exploration
in policy-gradient methods instead of trying to find the best
exploration method for a given task.

The paper is organized as follows. In Section 2, we provide
the background about policy gradients and about explo-
ration. Section 3 focuses on the effect of exploration on the
learning objective while Section 4 is dedicated to the effect
on the gradient estimates used in the policy-gradient algo-
rithms1. Finally, conclusions and future works are discussed
in Section 5.

1Experimental details and implementations can be found at
https://github.com/adrienBolland/
micro-rl-lib.

2. Background
In this section, we introduce the reinforcement learning
problem in Markov decision processes and discuss the
policy-gradient optimization method with exploration.

2.1. Markov Decision Processes

We study problems in which an agent makes sequential de-
cisions in a stochastic environment in order to maximize
an expected sum of rewards (Sutton & Barto, 2018). The
environment is modeled with an infinite-time Markov Deci-
sion Process (MDP) composed of a state space S , an action
space A, an initial state distribution with density p0, a tran-
sition distribution (modeling the dynamics) with conditional
density p, a bounded reward function ρ, and a discount
factor γ ∈ [0, 1(. When an agent interacts with the MDP,
first, an initial state s0 ∼ p0(·) is sampled, then, the agent
provides at each time step t an action at ∈ A leading to
a new state st+1 ∼ p(·|st, at). Such a sequence of states
and actions ht = (s0, a0, . . . , st−1, at−1, st) ∈ H is called
a history and H is the set of all histories of any arbitrary
length. In addition, after an action at is executed, a reward
rt = ρ(st, at) ∈ R is observed.

A policy π ∈ Π = S → P(A) is a mapping from the state
space S to the set of probability measures on the action
space P(A), where π(a|s) is the associated conditional
probability density of action a in state s. The function
J : Π → R is defined as the function mapping any policy π
to the expected discounted sum of rewards gathered by an
agent interacting in the MDP by sampling actions from the
policy π. We call return of the policy π the value provided
by that function

J(π) =
1

1− γ
E

s∼dπ,γ(·)
a∼π(·|s)

[ρ(s, a)] , (1)

where dπ,γ(·) is the discounted state-visitation probability
(Manne, 1960). In reinforcement learning, we seek to find
an optimal policy π∗ maximizing the expected discounted
sum of rewards J .

2.2. Policy-Gradient Algorithms

Policy-gradient algorithms (locally) optimize a parameter-
ized policy πθ to find the optimal parameter θ∗ for which the
return of the policy J(πθ∗) is maximized. Naively optimiz-
ing the parameterized policy by solely maximizing its return
may provide sub-optimal results. This problem is mitigated
in practice by implementing exploration strategies. These
techniques consist in optimizing a surrogate learning objec-
tive L that intrinsically encourages certain behaviors. In
this work, we consider reward-shaping strategies where the
expected discounted sum of rewards is extended by K addi-
tional reward terms ρinti , called intrinsic motivation terms,
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and optimize the learning objective

L(θ) =
1

1− γ
E

s∼dπθ,γ(·)
a∼πθ(·|s)

[
ρ(s, a) +

K−1∑
i=0

λiρ
int
i (s, a)

]

= J(πθ) + J int(πθ) , (2)

where λi are non-negative weights for each intrinsic reward
and where J int(πθ) is the intrinsic return of the policy. The
parameter maximizing the learning objective is denoted by
θ†, which we distinguish from the optimal policy parameter
θ∗. Most of the intrinsic motivation terms can be classified
in the two following groups.

Uncertainty-based motivations. It is common to provide
bonuses for performing actions that reduce the uncertainty
of the agent about its environment (Pathak et al., 2017;
Burda et al., 2018; Zhang et al., 2021c). The intrinsic moti-
vation terms are then proportional to the prediction errors of
a model of the MDP dynamics. The latter model is usually
learned.

Entropy-based motivations. It is also common to provide
bonuses for visiting states and/or playing actions that are
less likely in histories (Bellemare et al., 2016; Lee et al.,
2019; Guo et al., 2021). In this work, we focus on two of
these bonuses

ρs(s, a) = − log dπθ,γ(ϕ(s)) (3)
ρa(s, a) = − log πθ(a|s) , (4)

where ϕ(s) is a feature built from the state s. The corre-
sponding intrinsic returns are maximized for policies that
visit uniformly every feature, and for policies with uniformly
distributed actions in each state, respectively. Note that these
rewards require to estimate the distribution over the states
and/or actions. Furthermore, they implicitly depend on the
policy parameter θ. The second technique is usually re-
ferred to as entropy regularization (Williams & Peng, 1991;
Haarnoja et al., 2019).

In this work, we consider on-policy policy-gradient algo-
rithms, which were among others reviewed by (Duan et al.,
2016) and (Andrychowicz et al., 2020). These algorithms
optimize differentiable parameterized policies with gradient-
based local optimization. They iteratively approximate an
ascent direction d̂ relying on histories sampled from the
policy in the MDP and update the parameters in the ascent
direction, or in a combination of the previous ascent direc-
tions (Hinton et al., 2012; Kingma & Ba, 2014). For the sake
of simplicity and without loss of generality, we consider that
the ascent direction d̂ is composed of the sum of an estimate
of the gradient of the return ĝ ≈ ∇θJ(πθ) and an estimate
of the gradient of the intrinsic return î ≈ ∇θJ

int(πθ). In
practice, the first is usually unbiased while the second is
computed neglecting some partial derivatives of θ and is

thus biased, typically neglecting the influence of the policy
on the intrinsic reward.

3. Study of the Learning Objective
In this section, we study the influence of the exploration
terms on the learning objective defined in equation (2). We
define two criteria under which the learning objective can
be globally optimized by ascent methods, and such that the
solution is close to an optimal policy. We then graphically
illustrate how exploration modifies the learning objective to
remove local extrema.

3.1. Policy-Gradient Learning Objective

Policy-gradient algorithms using exploration maximize the
learning objective function L, as defined in equation (2). We
introduce two criteria related to this learning objective for
studying the performance of the policy-gradient algorithm.
First, we say that a learning objective L is ϵ-coherent when
its global maximum is in an ϵ-neighborhood of the return
of an optimal policy. Second, we call learning objectives
that have a unique maximum and no other stationary point
pseudoconcave.

Coherence criterion. A learning objective L is ϵ-coherent
if, and only if,

J(πθ∗)− J(πθ†) ≤ ϵ , (5)

where θ∗ ∈ argmaxθJ(πθ) and where θ† ∈ argmaxθL(θ).

Pseudoconcavity criterion. A learning objective L is pseu-
doconcave if, and only if,

∃! θ† : ∇L(θ†) = 0 ∧ L(θ†) = max
θ

L(θ) . (6)

If the pseudoconcavity criterion is respected, there is a single
optimum, and it is thus possible to globally optimize the
learning objective function by (stochastic) gradient ascent
(Bottou, 2010)2. If the learning objective is furthermore
ϵ-coherent, the latter solution is also a near-optimal policy,
where ϵ is the bound on the suboptimality of its return.

3.2. Illustration of the Effect of Exploration on the
Learning Objective

Exploration is of paramount importance when complex dy-
namics and reward functions are involved, where many
locally optimal policies may exist (Lee et al., 2019; Liu &
Abbeel, 2021; Zhang et al., 2021b). In the following, we
first define an environment and a policy parameterization

2For the sake of keeping discussions simple, the definition
of pseudoconcavity is simplified (Mangasarian, 1975), and as-
sumptions discussed in Section 1 to ensure convergence when
optimizing Markov chains are neglected.
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introduced by Bolland et al. (2023) that will serve as an ex-
ample where it is possible to graphically illustrate the effect
of exploration on the optimization process. For the sake of
the analysis, we then represent the learning objectives asso-
ciated with different exploration strategies, and depict their
global and local optima. Learning objectives with a single
global optimum respect the pseudoconcavity criterion. In
addition, we represent the neighborhood Ω of the optimal
policy parameters, such that any learning objective with its
global maximum within this region is coherent for a given ϵ.
In light of the coherence and the pseudoconcavity criteria,
we finally elaborate on the policy parameter computed by
stochastic gradient ascent algorithms.

We consider the environment illustrated in Figure 1a where
a car moves in a valley. We denote by x and v the posi-
tion and speed of the car, both forming its state s = (x, v).
The valley contains two separate low points, positioned
in xinitial = −3 and xtarget = 3, separated by a peak.
The car starts at rest v0 = 0 at the highest low point
x0 = xinitial and receives rewards proportional to the
depth of the valley at its current position. The reward
function is provided in Figure 1b. We consider a policy
πK,σ(a|s) = N (a|µK(s), σ), namely a normally disturbed
proportional controller with µK(s) = K×(x−xtarget), pa-
rameterized by the vector θ = (K,σ). Figure 1c illustrates
the contour map of the return of the policy as a function
of the parameters K and σ. The optimal parameters are
represented by a black dot and correspond to a policy that
drives the car so as to pass the peak and reach the lowest
valley floor in xtarget. The green area represents the set of
parameters Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ} for ϵ = 1,
and is used in the following discussion.

Figure 2 illustrates learning objectives combining the intrin-
sic rewards defined in equations (3) and (4) for different
values of the weights λ1 and λ2. Here, the feature from
equations (3) is composed of the position ϕ(s) = x. First,
we observe that for weights approaching zero, the parame-
ter θ† maximizing the learning objective, represented by a
black dot, corresponds to a policy with a high return. More
precisely, it is in the green set Ω such that ϵ-coherence is
guaranteed for a small value of ϵ = 1. Larger weights re-
quire larger values of ϵ for guaranteeing the ϵ-coherence
criterion. Nevertheless, when increasing the weights, we
also observe that the learning objective eventually becomes
pseudoconcave. There appears to be a trade-off between the
two criteria. In Figure 2b, we observe that in this environ-
ment, it is possible to find a learning objective that respects
the pseudoconcavity criterion and the ϵ-coherence criterion
for ϵ = 1. Indeed, there is a single global maximum in
Figure 2b represented by a black dot that is furthermore part
of the set Ω.

Shaping the reward function with an exploration strategy

based on the state-visitation entropy appears to be a good
solution for optimizing the policy. However, a notable draw-
back is that the reward depends on the policy and its (gradi-
ent) computation requires to estimate a complex probability
measure. In this example, the intrinsic reward function
itself was estimated by Monte-Carlo sampling for every
parameter, which would not scale for complex problems
and requires approximations and costly evaluation strategies
(Islam et al., 2019). In Appendix A we present an alternative
problem-dependent intrinsic reward, independent of the pol-
icy parameters and thus simple to compute efficiently, that
still respects the pseudoconcavity and ϵ-coherence criteria,
and in Appendix B we extend the study to more complex
environments where the policy is a deep neural network and
the state-visitation probability is approximated.

The observations suggest that well-chosen exploration strate-
gies can lead to learning objective functions that satisfy the
two criteria defined in the previous section, thereby guaran-
teeing that policies suboptimal by at most ϵ can be computed
by local optimization. When designing exploration strate-
gies, it is essential to keep in mind that we modify the
learning objective for the algorithms to converge to opti-
mal policy parameters, which can be achieved when both
criteria are respected. While strategies such as enforcing en-
tropy can be effective in some environments, they are only
heuristic strategies and not to be relied upon exclusively.
Furthermore, as illustrated, both criteria may be subject to
a trade-off. In more complex environments, an efficient
exploration strategy may require to balance both criteria,
e.g., through a schedule on the learning objective weights.

4. Study of the Ascent Direction Distribution
Optimizing pseudoconcave functions with stochastic ascent
methods are guaranteed to converge (at a certain rate) under
assumptions on the distribution of the gradient estimates
at hand (Bottou, 2010; Chen & Luss, 2018; Ajalloeian &
Stich, 2020). In this section, we study the influence of the
exploration terms on this distribution in the context of pol-
icy gradients. More precisely, we study the probability of
improving the learning objective, which, intuitively, shall
be sufficiently large for the algorithm to be efficient. We
formalize this intuition and illustrate how exploration strate-
gies can increase this probability, leading to more efficient
policy-gradient methods.

4.1. Policy-Gradient Estimated Ascent Direction

In general, gradient ascent algorithms update parameters
in a direction d̂ in order to locally improve an objective
function f . The quality of these algorithms can therefore be
studied (for a small step size α → 0) through the random
variable representing the quantity by which the objective

4
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Figure 1: Illustration of the hill environment in Figure 1a and its reward function in Figure 1b. In Figure 1c, the return of the
policy πK,σ with the global and local maximum represented in black and grey, together with their respective return values.

increases

X = f(θ + αd̂)− f(θ) = α ⟨d̂,∇θf(θ)⟩ , (7)

where ⟨·, ·⟩ is the Euclidean scalar product. This variable
depends on the random event d̂ estimated by Monte-Carlo
simulations in practice. The (asymptotic) convergence of
gradient ascent algorithms can be studied by deriving upper
bounds on the expectation of X , which usually involves
the parameters of the algorithms. Doing so when gradients
are biased is an active research field, where most results do
not fit to our study. We therefore instead elaborate directly
on the distributions P(∥X∥) that quantifies the magnitude
of the variation of the objective function f , and P(X > 0)
that quantifies when the ascent step improves this objective.
In practice, the expectation of the random variable X is
positive and the estimate d̂ is scaled and clipped by many
algorithms, such that the sign of X is arguably of more
importance than its norm. In the following, we study P(X >
0) and assume it to be sufficient to measure the efficiency
of optimization algorithms. In other words, we assume that
all ascent steps lead to a constant variation of the objective,
such that the rate of policy improvement is proportional to
P(X > 0).

In the case of a policy gradient, we first assume that the
learning objectives respect the two previous criteria, and
introduce two new criteria. The latter are independent (but
not mutually exclusive) from those of Section 3. First, we
say that an exploration strategy is δ-efficient if, and only if,
following the ascent direction d̂ ≈ ∇θL(θ) has a probability
at least δ to increasing the learning objective L(θ) almost
everywhere. Second, an exploration strategy is δ-attractive
if, and only if, there exists a neighborhood of θ† containing
the parameter θint maximizing the intrinsic return J int,
where the probability of increasing the return by following
d̂ is almost everywhere at least equal to δ. Note that each
probability measure and random variable is a function of
θ, which we do not explicitly write for the sake of keeping
notations simple.

Efficiency criterion. An exploration strategy is δ-efficient
if, and only if,

∀∞θ : P(D > 0) ≥ δ , (8)

where D = ⟨d̂,∇θL(θ)⟩.
Attraction criterion. An exploration strategy is δ-attractive
if, and only if,

∃B(θ†) : θint ∈ B(θ†) , (9)

such that

∀∞θ ∈ B(θ†) : P(G > 0) ≥ δ , (10)

where θint = argmaxθJ
int(πθ), B(θ†) is a ball centered in

θ†, and G = ⟨d̂,∇θJ(πθ)⟩.
First, the efficiency criterion quantifies how often a stochas-
tic gradient ascent step is going to improve the learning
objective. The larger, the better the learning objective and
its stochastic ascent direction approximations. Second, the
rationale behind the attraction criterion is that in many ex-
ploration strategies, the intrinsic reward is dense, and it is
then presumably easy to optimize the intrinsic return in the
sense that P( ⟨̂i,∇θJ

int(πθ)⟩ > 0). It implies that it is
easy to locally improve the learning objective by (solely)
increasing the value of the intrinsic motivation terms. It
furthermore implies that policy-gradient algorithms may
be subject to converging towards θint rather than θ† when
P( ⟨d̂,∇θJ(πθ)⟩ > 0) is small. If the criterion is respected
for large δ, the latter is less likely to happen as policy gradi-
ents will eventually tend to improve the return of the policy
if it approaches θint and enters the ball B(θ†); eventually
converging towards θ†.
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Figure 2: Contour map of (scaled) learning objective functions for different values of λ1 and λ2. The darker the map, the
larger the learning objective value. The green area represents the set Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ = 1}, such that
when the parameter maximizing the learning objective is part of Ω, then the learning objective function is ϵ-coherent with
ϵ = 1. The black dot is the parameter θ† globally maximizing the learning objective and the grey dot is the local (non-global)
maximum of the learning objective if it exists. Both are labeled with the return values of the corresponding policies.

4.2. Illustration of the Effect of Exploration on the
Estimated Ascent Direction

Exploration is usually promoted and tested for problems
where the reward function is sparse, typically in maze-
environments (Islam et al., 2019; Liu & Abbeel, 2021; Guo
et al., 2021). In this section, we first introduce a new maze-
environment with sparse rewards where we illustrate the
influence of exploration on the gradient estimates of the
learning objective. To this end, we present two learning
objective functions and elaborate on the influence of explo-
ration on the performance of policy-gradient algorithms in
the light of the efficiency and attraction criteria.

Let us consider a maze-environment consisting of a hor-
izontal corridor composed of S ∈ N tiles. The state of
the environment is the index of the tile s ∈ {1, . . . , S},
and the actions consists in going left a = −1 or right
a = +1. When an action is taken, the agent stays idle
with probability p = 0.7, and moves with probability
1 − p = 0.3 in the direction indicated by the action, then
s′ = min(S,max(1, s+ a)). The agent starts in state s = 1
and the target state s = S = 15 is absorbing. Zero rewards
are observed except when the agent reaches the target state
where a reward r = 100 is observed. A discount factor of

γ = 0.99 is considered. Finally, we study the policy going
with probability θ to the right and probability 1− θ to the
left, and with density

πθ(a|s) =
{

θ if a = 1
1− θ if a = −1 .

(11)

The return J(πθ) is represented in black in Figure 3a as a
function of θ along with two intrinsic returns, Ja(πθ) in
orange and Js(πθ) in blue. The intrinsic reward ρa(s, a) =
− log πθ(a|s), from equation (4), and the intrinsic reward
ρs(s, a) = − log dπθ,γ(s), from equation (3), are used re-
spectively. In Figure 3b, we illustrate the return of the policy
without exploration J(πθ), along with two learning objec-
tive functions, La(θ) and Ls(θ), using as exploration strate-
gies the intrinsic returns Ja(πθ) and Js(πθ). We observe
that the return is a pseudoconcave function with respect to
θ and the optimal parameter is θ∗ = 1. In addition, the
two learning objectives respect the ϵ-coherence criterion for
ϵ = 0, implying that θ∗ = θ†, and respect the pseudocon-
cavity criterion. It is important to note that with regard to the
discussion from Section 3, there is no interest in optimizing
the learning objectives rather than directly optimizing the
return, as the latter is already pseudoconcave. In the follow-
ing we illustrate how choosing a correct exploration strategy

6



Behind the Myth of Exploration in Policy Gradients

still deeply influences the policy-gradient algorithms when
it comes to building gradient estimates.

Let us compute the estimate ĝ and d̂ relying on REIN-
FORCE (Williams, 1992) by sampling 8 histories of length
T = 100. In this particular environment, P(D > 0) equals
P(G > 0), and equal the probability that the derivative is
positive. We represent in Figure 3c this probability for the
return and for both learning objectives. First, we see that the
learning objectives are more efficient than the return, mean-
ing they are δ-efficient for larger values of δ. Depending on
the parameter, the objective La(θ) or Ls(θ) is best in that
regard. Second, concerning the attraction criterion, we repre-
sent at the top of Figure 3c the intervals Ba = [θint,a, θ†,a]
and Bs = [θint,s, θ†,s]. They correspond to the smallest
balls containing the maximizers of the intrinsic return and
of the learning objective. Let the minima of the orange and
blue curves over these intervals be denoted by δa and δs.
By definition of the attraction criterion, it is thus respected
for any values of δ at most equal to δa and δs, for La(θ)
and Ls(θ), respectively. All these observations can even-
tually be explained as the computation of ĝ is always zero
when the target is not sampled in the histories, which is
highly likely for policies with small values of θ. Adding the
exploration terms here leads to policy-gradient algorithms
that compute more easily an optimal policy while naive
optimization without exploration would fail or be sample
inefficient.

We have empirically shown that a well-chosen exploration
strategy in policy gradients may not only remove local ex-
trema from the objective function, but may also increase the
probability that stochastic ascent steps improve the objective
function. Under the previous assumptions, this probability
measures the efficiency of algorithms. Furthermore, among
different learning objectives respecting the coherence and
pseudoconcavity criteria, it is best to choose one that has
high values for δ in both the efficiency and attraction cri-
teria. In Appendix A we use these criteria to study other
reward-shaping strategies, and in Appendix B we extend
the study to more complex environments where the policy
is a deep neural network. In the experiments, we used RE-
INFORCE estimates, yet the considerations generalize to
any reinforcement learning technique where exploration can
help to compute good estimates of the learning objective.
Typically, estimating a critic by stochastic gradient ascent
suffers from this problem as it is also built from an estimate
computed from sampled rewards.

The problem discussed in this section strongly relates to
overfitting or generalization in reinforcement learning. In
situations where the same state and action pairs are repeat-
edly sampled with high probability, the policy may appear
optimal by neglecting the rewards observed in state and
action pairs sampled with low probability. The gradient

estimates will then be zero with high probability, and the
gradient updates will not lead to policy improvements. In
the previous example, gradient estimates computed from
policies with a small parameter value θ wrongly indicate
that a stationary point has been reached as they equal zero
with high probability. We quantify this effect with a novel
definition of local optimality. We define as locally optimal
policies over a space with probability ∆ the policies that
maximize the reward on expectation over a set of states and
actions observed in a history with probability at least ∆.
Formally, a policy π is locally optimal over a space with
probability ∆ if, and only if,

∃ E ∈
{
X
∣∣∣ ∫

X
dπ,γ(s)π(a|s) dads ≥ ∆

}
:

π ∈ argmax
π′

∫
E
dπ

′,γ(s)π′(a|s)ρ(a, s) dads . (12)

In the typical case of environments with sparse rewards,
many policies observe with high probability state and action
pairs with zero rewards and are locally optimal for large
probabilities ∆. Typically, in the previous example, the joint
set {1, . . . , S − 2} × {−1, 1} is a set of state and action
pairs E that respects the definition equation (12) for policies
when θ is small for large values ∆. As we have shown,
exploration mitigates the convergence of policy-gradient
algorithms towards these locally optimal policies. Note
that assuming a non-zero reward is uniformly distributed
over the state and action space, exploration policies with
uniform probabilities over visited states and actions are the
best prior choice for sampling non-zero rewards with high
probability. It can thus also be considered as the best choice
of exploration to reduce the probability that the stochastic
gradient ascent steps do not increase the objective value.
Generally, such policy initialization priors may be learned
from the framework developed by Lee et al. (2019).

5. Conclusion
In conclusion, this research takes a step towards dispelling
misunderstandings about exploration through the study of
its effects on the performance of policy-gradient algorithms.
More particularly, we distinguished two effects exploration
has on the optimization. First, it modifies the learning objec-
tive in order to remove local extrema. Second, it modifies
the gradient estimates and increases the likelihood that the
update steps lead to improved returns. These two phenom-
ena were studied through four criteria that we introduced
and illustrated.

These ideas apply to other direct policy optimization algo-
rithms. Indeed, the four criteria do not assume any structure
on the learning objective and can thus be straightforwardly
applied to any objective function optimized by a direct pol-
icy search algorithm. In particular, for off-policy policy
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(b) Learning objective functions.
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Figure 3: Figure 3a represents the return of the policy along with two intrinsic return functions. In Figure 3b the return
is also represented together with two learning objective functions, corresponding to the two intrinsic returns. Figure 3c
illustrates the probability (estimated by Monte-Carlo) of positive stochastic gradient (derivative) estimates J(πθ), La(θ),
and Ls(θ). At the top of the figure, the intervals Ba = [θint,a, θ†,a] and Bs = [θint,s, θ†,s] are represented. These intervals
represent the smallest balls containing the parameters maximizing the intrinsic return and the learning objective, for both
exploration strategies.

gradient, we may simply consider that the off-policy objec-
tive is itself a surrogate or that the gradients of the return are
biased estimates based on past histories. Ideas introduced
in this work also apply to other reinforcement learning tech-
niques. Typically, for value-based RL with sparse-reward
environments, convergence towards a value function out-
putting zero is expected with high probability. This is mostly
due to the low probability of sampling non-zero rewards by
Monte-Carlo. The discussions from Section 4 then apply,
and a similar analysis can be performed.

Our framework opens the door for further theoretical anal-
ysis, and the potential development of new criteria. We
believe that deriving practical conditions on the exploration
strategies, and the scheduling of the intrinsic return, for guar-
anteeing fast convergence should be the focus of attention.
It could be achieved by bounding the policy improvement
on expectation, which is nevertheless usually a hard task
without strong assumptions. We furthermore believe that
we provide a new lens on exploration necessary for inter-
preting and developing exploration strategies, in the sense
of optimizing surrogate learning objective functions.
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A. Reward Shaping and Exploration Strategies
As discussed in the manuscript, exploration strategies are reward-shaping strategies where the intrinsic reward bonuses
are, among others, dependent on the policy parameters. This dependency makes the shaping strategies adaptive but makes
the computation of gradients and the study of the learning objectives more complex. In this section, we study handcrafted
reward-shaping strategies to have pseudoconcave and dense reward functions in the hill and maze environments. We then
illustrate that the same criteria can be used to study these expert-knowledge based shaped rewards.

For the hill environment from Section 3, we illustrate in Figure 4a an intrinsic reward bonus making the sum of rewards
in equation (2) concave. The corresponding learning objective has a unique maximum, which is part of the set Ω =
{θ′|maxθ J(πθ)− J(πθ′) ≤ ϵ} with ϵ = 1 and θ = (K,σ). It can be seen in Figure 4b where the global maximum in
black is within the set Ω in green. Both, the ϵ-coherence and the pseudoconcavity criteria are thus respected for ϵ = 1. Here,
the intrinsic reward function is a simple function independent of the policy πθ. Finding such an intrinsic reward may be
complex for other environments but the example underlines that exploration and reward shaping are mostly equivalent and
that designing reward functions that are concave may help converging towards optimal policies.
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Figure 4: In Figure 4a, an alternative intrinsic reward function ensuring that the sum of rewards is a pseudoconcave function.
In Figure 4b, the contour function of the learning objective.

For the maze environment, the return J(πθ) is represented in black in Figure 5a together with the intrinsic return Jd(πθ) in
green. The latter is the return of the dense handcrafted reward function ρd(s, a) = (a− 1)/2 penalizing actions taken from
a suboptimal policy. In Figure 5b, the corresponding learning objective function is shown. In the same experimental setting
as in Section 4, we observe that the objective function is δ-efficient for higher values of δ compared to the already-discussed
learning objectives. Furthermore, the attraction criterion is respected for any value of δ as the unique global maxima of the
learning objective, intrinsic return, and return are all equals.

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

5

10

15

20

25 J(πθ)

Jd(πθ)

(a) Return.

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

5

10

15

20

25 J(πθ)

Ld(θ)

(b) Learning objectives.
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Figure 5: In Figure 5a the return of the maze environment is represented together with the intrinsic return of a dense
handcrafted reward function. Figure 5b represents the corresponding learning objective and Figure 5c the probability that
the REINFORCE estimates are positive.
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B. Extended Experiments
In this section, we introduce more complex environments and extend the experimental setting using neural networks for
parameterizing the policies. In this setting, it is impracticable to compute and represent naively the objective functions and
probability distributions from the different criteria. We therefore also introduce a new setting for evaluating the criteria
along parameter trajectories.

We consider a passageway environment, inspired by that introduced by Tao et al. (2020), and represented in Figure 6. An
agent has to move from rooms to rooms going through passageways and reach a final position. The passageways shall be
opened by reaching positions where switches are located. To do so, the agent may choose actions that consist in moving to
the four adjacent positions or to stay idle. We consider two reward settings: the dense passageway and the sparse passageway.
In the first, rewards of −1 are perceived for every non-idle move, and rewards of 100 are perceived in the target position. In
the second setting, zero-rewards are perceived everywhere, except in the target position where a bonus of 100 is provided.
We consider a discount factor of γ = 0.98 and optimize a fully connected neural network of three hidden layers taking as
input the position-pair and the switch-state and outputting a categorical distribution over actions.

Figure 6: Illustration of the passageway environment. The agent moves within the black walls, starting from the blue tile, it
must reach the red switches to open the gray doors, and reach the final green position.

In the dense passageway, we optimize the policy by maximizing three learning objective functions J(πθ), La(θ), and Ls(θ).
For the latter objective, we use a ten-components Gaussian mixture model over the sampled batch to approximate the
state-visitation density. The optimization is performed using the Adam update rule (Kingma & Ba, 2014) with REINFORCE
ascent directions computed over 64 histories of constant length T = 100. The length T of the histories is chosen such that
the realization value T from a geometric distribution with success probability parameter 1− γ has at least a cumulative
probability of 0.85. We discuss the experimental setting and results for comparing the objective functions J(πθ) and La(θ).
The same setting and results hold for the second learning objective function Ls(θ), see Figure 7. First, on the one hand,
we see in Figure 7a that optimizing the return ends up with high probability in a local optimum, where the policy keeps
the agent at the original position. On the other hand, optimizing the learning objective La(θ) allows to converge towards
an optimal policy. This learning objective is thus ϵ-coherent with ϵ ≈ 0. Second, to asses the pseudoconcavity criterion,
we verify if any parameter θ computed during the stochastic gradient ascent steps on the return of the policy J(πθ) is a
local optimum of the learning objective function La(θ). To that end, we perform 5 gradient ascent steps (with the Adam
update rule) on the learning objective starting at each parameter θ. In Figure 7b, we represent the expected improvement of
the learning objective (in orange) and of the return (in blue). For the first hundreds of parameter values (even after local
convergence of the return), it is possible to increase the learning objective, which results in a decrease of return. The policy
parameters are thus no local optima of the learning objective. After more iterations, the improvement reaches zero, which is
likely an artifact of the optimization algorithm used, namely REINFORCE with the Adam optimizer. These results indicate
that, along this parameter trajectory, the return J(πθ) has a local optimum (or saddle point), in opposition to the learning
objective La(θ). The latter illustrates the validity of the pseudoconcavity criterion in that region of the parameter space.

In the previous experiments with the dense-passageway environment, the local optimum exists due to the negative rewards
associated to idle-actions. If we consider the sparse-passageway environment, the REINFORCE algorithm will eventually
(after a likely long number of iterations) converge towards an optimal policy. There is only a single and global maximum.
Yet, if we consider a smaller discount factor γ = 0.95, the relative importance of future rewards decreases, and by the
previous rule of thumb, we may select a REINFORCE horizon of T = 40. The likelihood of randomly observing the target
state is drastically decreased. On the one hand, the REINFORCE algorithm now fails again to find with high probability an
optimal policy. On the other hand, the learning objective function Ls(θ) with intrinsic exploration rewards proportional to
the likelihood of the state-visitation loglikelihood allows to rapidly find an optimal policy. The evolution of the return during
optimization is represented in Figure 8a. We illustrate that these results can be justified by the efficiency and attraction
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Figure 7: In Figure 7a, the evolution of the return of policies during the optimization is represented in the dense-passageway
environment (with γ = 0.98). In orange, the learning objective La(θ) is optimized and in blue the return J(πθ) is optimized
performing Adam steps in REINFORCE directions. Note that the median, worst and best cases over five runs are represented
for the orange curve. For the blue curve, the statistics are computed over the 4 runs that converged towards a return of
zero (i.e., towards a non-global optimum). The fifth run, which is not represented, converged similarly to the policies
optimized with the learning objective, and is a rare lucky event where no exploration is needed for reaching an optimal
policy. Each iteration in Figure 7a corresponds to parameters that were computed with stochastic gradient ascent steps.
For each parameter generated by the ascent on the return J(πθ), we represent in Figure 7b the improvement (on average
over 100 simulations) of the objective functions La(θ) and J(πθ) after 5 Adam steps with REINFORCE directions of the
objective La(θ). Similarly to Figure 7a, the median, worst and best cases over the 4 runs are represented. In Figure 7c and
Figure 7d, the same experiment is performed using the learning objective Ls(θ) instead.

criteria. For each parameters obtained during the stochastic ascent steps on the return, we estimate the probability of
improving both objective functions by stochastic gradient ascent, and illustrate the efficiency criterion. In Figure 8b, we
observe that the improvement probability is negligible for the return. After some iterations, there is a sudden improvement
of this probability, resulting from one lucky event out of the 5 where REINFORCE managed to converge towards an optimal
policy. On the contrary, the probability of improving the learning objective remains much higher for each parameter. The
efficiency of the learning objective with exploration is higher than that of the return. In order to illustrate the attraction
criterion, we estimate the probability of improving the return and the learning objective, both by gradient ascent steps on the
learning objective, for each parameters obtained during the stochastic ascent steps on the objective Ls(θ). As can be seen
in Figure 8c, the probability of improving the learning objective is again high during the optimization. The probability of
improving the return, on the contrary, is small at the beginning and increases after some iterations. This indicates that once
the policy has a sufficiently large intrinsic return, the attraction criterion is respected for a high value δ.
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(b) Parameters during ascent on J(πθ).
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(c) Parameters during ascent on Ls(θ).

Figure 8: In Figure 8a, the median, worst and best cases over 5 runs of the evolution of the return during the optimization
is represented for the learning objective functions Ls(θ) and J(πθ). The optimization is performed by Adam steps in
REINFORCE directions in the the sparse-passageway environment with γ = 0.95. Figure 8b provides the estimated
probability of improving the return J(πθ) and the learning objective Ls(θ) when following their REINFORCE gradient
estimate. This value is estimated at each run of the optimization of the policy with learning objective J(πθ). Figure 8c
provides the estimated probability of improving the learning objective and the return when following the REINFORCE
gradient estimate of the learning objective. These values are estimated at each run of the optimization of the policy with the
learning objective Ls(θ). The probabilities were estimated with the frequencies of improving by more than 0.2 the objective
functions when following 5 Adam ascent steps using REINFORCE update directions.

14


