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b Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada 
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A B S T R A C T   

Background: Resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of 
functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar 
disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is 
mounting evidence of shared neurobiological alterations across them. 
Methods: To uncover the nature of the relatedness between these psychiatric disorders, we conducted an inno-
vative meta-analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a 
classical voxel level coordinate-based approach, our procedure extracted relevant neuroanatomical labels from 
text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies 
investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) 
and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and 
differences in hypoconnectivity and hyperconnectivity patterns across disorders. 
Results: Hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-mode, fronto- 
parietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dyscon-
nectivity of lower-order (somatomotor, visual, auditory) networks in some cases differed between disorders, 
notably dissociating SZ from BD and MDD. 
Conclusions: Findings suggest that functional brain dysconnectivity of higher-order cognitive networks is largely 
transdiagnostic in nature while that of lower-order networks may best discriminate between mood and psychotic 
disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.   

1. Introduction 

The advent of functional magnetic resonance imaging (fMRI) three 
decades ago has greatly facilitated the investigation of neurobiological 
alterations in major psychiatric disorders such as major depressive dis-
order (MDD), bipolar disorder (BD) and schizophrenia (SZ) (Etkin, 2019; 
Horien et al., 2021; Linden, 2012). The primary focus of psychiatric 
fMRI was the localization of segregated brain regions with abnormal 
activation during performance of various cognitive tasks (Sprooten 
et al., 2017). A major development has then been the characterization of 

aberrant functional brain integration in mental disorders, which are now 
increasingly conceptualized as brain network disorders (Buckholtz and 
Meyer-Lindenberg, 2012; Fornito et al., 2017; Menon, 2011; Williams, 
2016). This endeavor has been greatly promoted by relying on resting- 
state fMRI, with spontaneous slow fluctuations in brain activity 
defining large-scale networks of brain areas with correlated activity 
(Bijsterbosch et al., 2017). Such intrinsic functional brain networks 
recapitulate with good correspondence the repertoire of brain regions 
co-activated during various behaviors (Smith et al., 2009). Current 
models of functional brain dysconnectivity in mental illness most 
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consistently highlight abnormalities within and between three higher- 
order functional brain networks – noting their naming varies across 
the literature (Uddin et al., 2019): the default-mode (medial prefrontal 
cortex, posterior cingulate cortex, posterior inferior parietal lobule), 
fronto-parietal (middle frontal gyrus, anterior inferior parietal lobule) 
and cingulo-opercular (anterior insula and anterior midcingulate cortex) 
networks (Brandl et al., 2019; Buckholtz and Meyer-Lindenberg, 2012; 
Kaiser et al., 2015; Menon, 2011; Sha et al., 2019; Williams, 2016). 

As is the case for task-based activation studies, most resting-state 
connectivity research in mental illness has relied on case-control de-
signs looking at psychiatric disorders in isolation. Consequently, find-
ings from individual studies may attribute undue specificity of brain 
dysfunction patterns to one disorder or another. Indeed, there is growing 
acknowledgment that clinical (Kotov et al., 2021), neurobiological 
(Vanes and Dolan, 2021) and genetic (Cross-Disorder Group of the 
Psychiatric Genomics Consortium, 2013, 2019) boundaries between 
psychiatric disorders are blurrier than postulated by traditional classi-
fications of mental illness such as the DSM-5. For instance, it is now clear 
that there is a greater continuum than once thought between mood and 
psychotic disorders, encompassing MDD, BD and SZ (Chang et al., 2021; 
Cohen et al., 2021; Pearlson, 2015; Pelin et al., 2021; Ravichandran 
et al., 2021). Transdiagnostic research is thus needed to uncover the 
nature of the relatedness between psychiatric disorders, explaining their 
high comorbidity and facilitating the discovery of improved treatments 
(Buckholtz and Meyer-Lindenberg, 2012; Marshall, 2020; Mitelman, 
2019; Vanes and Dolan, 2021). From a dimensional perspective, a 
common psychopathological factor shared among disorders has been 
associated with functional brain dysconnectivity patterns that transcend 
psychiatric diagnoses (Barber et al., 2019; Elliott et al., 2018; Kebets 
et al., 2019; Lees et al., 2021; Sato et al., 2016). Alternatively, direct 
comparative analysis of multiple diagnostic categories has allowed to 
evidence both commonalities and specificities in functional brain con-
nectivity alterations (Baker et al., 2019; Huang et al., 2020; Li et al., 
2021; Ma et al., 2020; Spronk et al., 2021; Xia et al., 2019; Yange et al., 
2018). However, while findings that emerge from this burgeoning field 
of research are promising, original transdiagnostic studies are still scarce 
to date. Hence, a meta-analytic approach pooling and contrasting 
studies that focused on individual disorders can importantly contribute 
transdiagnostic insights. 

To date, transdiagnostic meta-analyses of both task-based (Janiri 
et al., 2020; McTeague et al., 2016, 2017, 2020; Sprooten et al., 2017) 
and resting-state (Doucet et al., 2020; Sha et al., 2018, 2019) fMRI 
findings in neuropsychiatric disorders have mostly relied on coordinate- 
based approaches (Costafreda, 2009; Radua and Mataix-Cols, 2012; 
Samartsidis et al., 2017). When applied to case-control studies, methods 
such as activation likelihood estimation (ALE, Eickhoff et al., 2012), 
multilevel kernel density analysis (MKDA, Wager et al., 2007) or signed 
differential mapping (SDM, Radua et al., 2012) quantitatively assess the 
spatial convergence of results from primary studies based on stereotactic 
coordinates of peak statistical differences between patients and controls. 
While coordinate-based meta-analysis has proven successful in unrav-
elling consistent patterns across prior findings from activation studies, it 
is not best suited for synthesizing connectivity results. First, stereotactic 
coordinates are almost universally reported in activation studies (Carp, 
2012) but much less so in the connectivity literature, among other 
reasons because analyses are often conducted at spatial resolutions other 
than the voxel level. Second, the prerequisite of a similar search 
coverage across studies (Müller et al., 2018) is met in most activation 
(most commonly the whole brain) but only few connectivity studies, in 
which region-of-interest analyses have long been the rule rather than the 
exception. Consequently, meta-analyses have often been restricted to 
including only studies with seeds falling within a few seed networks of 
interest (Brandl et al., 2019; Dong et al., 2018; Kaiser et al., 2015; O'Neill 
et al., 2019; Sha et al., 2019), typically focussing on large, higher-order 
networks such as the default-mode, fronto-parietal, cingulo-opercular 
networks, and thereby ignoring less commonly explored networks (e. 

g., visual and somatomotor lower-order networks). To address these 
limitations, we conducted an innovative label-based meta-analysis 
(Costafreda, 2009; Laird et al., 2005; Phan et al., 2002; Radua and 
Mataix-Cols, 2012) aimed at revealing commonalities and specificities 
in hypoconnectivity and hyperconnectivity patterns across MDD, BD 
and SZ. Our meta-analytical approach first avoids excluding studies that 
did not report coordinates by extracting findings from prior studies 
based on text data. In addition, it unravels consistent dysconnectivity 
patterns across both lower- and higher-order distributed networks 
covering the whole brain while controlling for unequal search coverage 
across studies. 

2. Methods and materials 

2.1. Study selection 

A literature search was conducted in the PubMed database up to 
October12, 2021, in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (http 
://www.prisma-statement.org) (see flowchart in Supplementary 
Fig. S1). The search terms were: (“depression” OR “depressive” OR 
“bipolar” OR “schizophrenia” OR “psychosis”) AND (“functional mag-
netic resonance imaging” OR “fMRI”) AND (“rest” OR “resting”) AND 
“connectivity”. Original studies using resting-state functional magnetic 
resonance imaging to characterize functional brain dysconnectivity in 
psychiatric patients with an explicit diagnosis of major depressive dis-
order (MDD), bipolar disorder (BD) or schizophrenia (SZ) were eligible 
for inclusion. Noteworthy, studies were included regardless of whether 
stereotactic coordinates reflecting the peak locations of significant 
group differences were reported. Exclusion criteria were as follows: (1) 
not in English; (2) no direct comparison of patients with a healthy 
control group; (3) functional brain connectivity investigated through 
approaches other than the seed-based voxel-wise (SBVW), seed-to- 
region (STR), network-based connectome-wide (NBCW), independent 
component analysis (ICA) with dual regression, voxel-mirrored homo-
topic connectivity (VMHC), regional homogeneity (ReHo), and ampli-
tude of low-frequency fluctuation (ALFF) methods (Supplementary 
Table S1); (4) no adequate correction for multiple comparisons; and (5) 
entirely overlapping sample with identical search coverage reported in 
another publication. 

2.2. Data extraction 

2.2.1. Label-based meta-analysis 
Our meta-analytical method is based on the systematic and princi-

pled extraction of neuroanatomical terms describing which functional 
brain connections were investigated or were evidenced as significantly 
impaired in psychiatric patients compared to healthy controls. Text from 
all paper sections (abstract, introduction, methods, results, discussion, 
as well as figure legends and tables) was mined by experts in macro-
neuroanatomy. Our approach dealt with the following confounds: first, 
there are large variations in search coverage from one paper to another – 
a minority of papers considers pairwise connectivity for all brain re-
gions, most of them instead focus on a small part of whole-brain con-
nectivity; second, the spatial granularity at which connectivity is 
explored varies drastically across papers – from voxels to regions to 
networks; third, there is significant variability in the neuroanatomical 
nomenclature used in the literature. 

We implemented a two-step procedure that first manually tran-
scribed the gathered neuroanatomical information at the original level 
of description (region, network, whole brain), then translated it with 
reference to a single common network-level framework. We separately 
coded connections that were the object of a statistical test (tested con-
nections) and those that showed a statistically significant (p < 0.05 after 
correction for multiple comparisons) alteration (impaired connections). 
In the latter case, we further differentiated hypoconnected from 
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hyperconnected connections. We however did not distinguish between 
enhanced and weakened connectivity patterns, as this distinction is 
seldom made in the literature. Thus, hypoconnectivity may indicate 
either larger negative or reduced positive connectivity while hyper-
connectivity may refer to either larger positive or reduced negative 
connectivity. 

2.2.2. Two-step extraction 
For each paper, we extracted pairs of neuroanatomical terms 

describing functional brain connections. Because distinct terms may 
refer to similar brain areas or networks, we first manually transcribed 
the terms used in original papers with best fits from a limited set of 
labelling schemes covering the entire spatial granularity range. Brain 
regions were labelled based on the Automated Anatomical Atlas (AAL, 
116 regions, Tzourio-Mazoyer et al., 2002), AAL3 (170 regions, Rolls 
et al., 2020) or Brodmann atlas (48 regions, WFU PickAtlas software, 
Maldjian et al., 2003); distributed brain networks were labelled based on 
the Cole-Anticevic Brain Network Partition (CAB-NP, 12 networks, Ji 
et al., 2019); and larger brain components such as lobes or the entire 
hemisphere were defined using the TD atlas (WFU PickAtlas software, 
Maldjian et al., 2003). The whole gray matter was defined by a mask 
including all regions from the AAL3 atlas (Rolls et al., 2020). For each 
type of contrast (MDD vs. HC, BD vs. HC, SZ vs. HC) found in a study and 
each type of connection (tested, hypoconnected, hyperconnected), 
comprehensive transcription of the relevant neuroanatomical informa-
tion was accomplished with as few pairs of labels as possible. 

The second step involved translating, in an automated manner, the 
labels obtained at various spatial resolutions into a single common large- 
scale network space, the 12-network CAB-NP (Ji et al., 2019) (see 
Supplementary Material for a secondary analysis at the region level). 

This functional brain atlas covers the whole brain, with many networks 
spanning the cortex, basal ganglia and cerebellum (Fig. 1). Higher-order 
cognitive networks (default-mode, frontoparietal, dorsal attentional, 
cingulo-opercular) are dissociated from lower-order networks (primary 
and secondary visual, somatomotor, auditory) as well as from language 
and ventral (orbito-affective, ventral and posterior multimodal) net-
works. Because the original cortical parcels of the CAB-NP are surface- 
based, we created a publicly available volumetric version of the atlas 
for the whole brain. Of note, all networks are not of equal size (Sup-
plementary Table S2), with three higher-order networks (default-mode, 
frontoparietal and cingulo-opercular networks) together amounting for 
over 50% of the total atlas volume. Brain regions corresponding to 
manually extracted labels were automatically assigned to the large-scale 
network with which they maximally overlapped, and region labels were 
translated into the network space accordingly. For each study, sepa-
rately for each type of contrast available (MDD vs. HC, BD vs. HC, SZ vs. 
HC) and each type of connection (tested, hypoconnected, hyper-
connected), we then coded the absence (0) or presence (1) of pairs of 
network labels defining each of the 12 within-network and 66 between- 
network connections. 

2.2.3. Data extraction reliability 
In addition to the main labels extraction for all 428 studies (SG1), 

separate raters (SP, MD, VP) together independently re-extracted labels 
for a subset of 100 studies. These latter studies were pseudo-randomly 
selected to ensure good representativity of the different types of 
studies (diagnostic group, connectivity method), in proportions similar 
to those found in the entire set (Fig. 2). The similarity of the main and 
confirmatory network labels extractions for this subset of studies was 
computed with Dice similarity coefficients for binary matrices coding for 

Fig. 1. The Cole-Anticevic Brain Network Partition (CAB-NP) (Ji et al., 2019) was used as a reference space to report meta-analytic findings at the large-scale brain 
network level. This functional brain parcellation includes 12 cortico-subcortical distributed networks, here displayed on coronal, sagittal and axial views of glass 
brain representations. VIS1, primary visual network; VIS2, secondary visual network; SMN, sensorimotor network; AUD, auditory network; LAN, language network; 
DAN, dorsal attentional network; FPN, fronto-parietal network; CON, cingulo-opercular network; DMN, default-mode network; PMN, posterior multimodal network; 
VMN, ventral multimodal network; ORA, orbito-affective network. 
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the presence or absence of connection being tested or evidenced as 
impaired, over all studies and across all brain network connections 
defined by the CAB-NP. The similarity of labels extractions was quan-
tified separately for the connections being tested and the connections 
being reported as impaired. 

2.3. Statistical analysis 

Permutation tests were conducted on one or more of 9 two-way bi-
nary tables indicating for each of the 78 connections whether it was 
tested, hypoconnected, hyperconnected (1) or not (0) in each of the 
studies looking at MDD, BD or SZ, respectively. Permutation tests (k =
100,000) investigated effects that were directly tested in original studies 
(hypoconnectivity or hyperconnectivity relative to HC in either of the 
three disorders) or not directly tested (hypoconnectivity vs. hyper-
connectivity in either of the three disorders as well as pairwise com-
parisons between disorders for either hypoconnectivity or 
hyperconnectivity). Mathematical formulations are provided in the 
Supplementary Material. 

To test for hypoconnectivity (or hyperconnectivity) of each pair of 
networks (connection), we used a permutation testing approach 
whereupon a sample proportion test statistic (computed as a ratio of 
observed reported effects over baseline of whether the pair of networks 
in question was tested or not) was used. These ratios had numerators 
equal to the sum of number of studies that observed a significant level of 
either hypoconnectivity (or hyperconnectivity) for each pair of networks 
of interest, and had denominators equal to the number of studies that 
tested the pair of networks of interest as a baseline. We then sampled 
from a subset of the permutations applied to the observed outcomes of 
each study to randomize whether each observed connection effect was 
hypoconnected (or hyperconnected), separately for each disorder (6 
contrasts). By accounting for how often a given pair of networks was 
tested across studies, our procedure thus controlled for the increased 
number of discoveries merely explained by the larger size of some net-
works and/or the bias towards a larger interest in some networks in the 
literature. To test for differences between hypoconnectivity and hyper-
connectivity proportions within each disorder (3 contrasts), we 
employed a similar permutation testing approach, except with a test 
statistic equal to the absolute difference between the proportions of 

studies reporting hypoconnectivity and hyperconnectivity effects. Dif-
ferences in the proportion of hypoconnectivity (or hyperconnectivity) 
between pairs of disorders (6 contrasts) were tested in the same way, 
except with a test statistic equal to the absolute difference between the 
proportion test statistics of two disorders. While coordinate-based meta- 
analyses typically allow assigning varying weights to individual studies 
as a function of their sample sizes (Radua and Mataix-Cols, 2012; 
Samartsidis et al., 2017), it was deemed preferable not to implement 
such a weighting in our permutation testing approach (for a detailed 
rationale, see Supplementary Material). 

Permutation testing for 15 contrasts for each of the 78 connections 
resulted in 1170 tests. To control the false discovery rate (FDR) of the 
tests, we employed an empirical Bayes approach that directly modelled 
the distributions of null and alternative p-values (Nguyen et al., 2019). 
This approach accounted for the atypical distributions of discretely 
supported p-values generated via Monte-Carlo methods and for the 
observed positive and negative correlations among p-values, which 
violate the assumptions of the classical Benjamini-Hocheberg FDR pro-
cedure (Benjamini and Yekutieli, 2001). All results reported at the 
connection level were significant at qFDR < 0.1, this threshold being 
chosen to best balance the risks of false positives (type I error) and false 
negatives (type II error), which are respectively problematic for drawing 
conclusions about transdiagnostic and disorder-specific dysconnectivity 
patterns. 

2.3.1. Data and code availability 
All data as well as Python and R scripts necessary to reproduce the 

findings reported here are available on Github: https://github.com/pn 
plab/LBMA. The volumetric version of the CAB-NP atlas can be ob-
tained on Figshare: https://figshare.com/articles/dataset/CAB-NP_pro 
jected_on_MNI2009a_GM_volumetric_in_NIfTI_format/14200109. 

3. Results 

3.1. Selected studies 

There was some disparity in the extent to which the three disorders 
were investigated in the literature. Of the 428 studies included in our 
meta-analysis, 37% of them characterized MDD (7429 patients/7414 
controls), 19% examined BD (3330 patients/4096 controls) and 52% 
investigated SZ (11,168 patients/11,754 controls) (Fig. 2A). Most 
studies (61%) employed a seed-based approach to characterize func-
tional connectivity of regions of interest with the whole brain, at the 
voxel level (Fig. 2B). Critically, a large part (40%) of the selected studies 
did not report stereotactic coordinates (Fig. 2B). 

3.2. General network dysconnectivity patterns 

At the level of individual studies, 32% of all within- and between- 
network connections were tested for statistical effects across studies. 
Twenty-five per cent of those tested connections were reported as 
significantly impaired, being either hypoconnected or hyperconnected. 
Similar proportions were observed in MDD, BD and SZ. The distribution 
of tested and impaired (hypoconnected or hyperconnected) connections 
across studies was shown to be reproducible when contrasting two in-
dependent labels extractions, with Dice similarity coefficients of 0.93 
and 0.81 for tested and impaired connections, respectively. 

Not all networks, with 12 connections each, were similarly tested 
(Supplementary Fig. S2). The bias towards testing some network con-
nections more than others took a similar form across disorders (r =
0.92–0.97, all ps < 0.001) (Fig. 3A, Supplementary Fig. S3A). Overall, 
the more a network connection was tested, the more there was evidence 
for its impairment while controlling for increased testing of some con-
nections. This was observed for both hypoconnectivity (r = 0.73, p <
0.001) and hyperconnectivity (r = 0.71, p < 0.001) patterns, similarly in 
all three disorders (r = 0.61–0.72, all ps < 0.001) (Fig. 3B, 

Fig. 2. Proportions of the 428 studies that reported dysconnectivity effects for 
each psychiatric disorder (left, outer circle) and the respective proportions of 
patients (lighter color) and controls (darker color) for each diagnosis (left, inner 
circle). MDD, major depressive disorder; BP, bipolar disorder; SZ, schizo-
phrenia; HC, healthy controls; P, patients. Proportions of the type of method-
ology used to characterize functional brain connectivity (right, outer circle), 
and the respective proportions of studies that reported stereotactic coordinates 
of peak effects (darker color) and did not (lighter color) for each type of 
methods (right, inner circle). SBVW, seed-based voxel-wise; STR, seed-to- 
region; NBCW, network-based connectome-wide; ICA, independent compo-
nent analysis; VMHC, voxel mirrored homotopic connectivity; ReHo, regional 
homogeneity; ALFF, amplitude of low frequency fluctuations; C, with co-
ordinates; NC, without coordinates. See Supplementary Material for details. 
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Supplementary Fig. S3B). The general trend was that the amount of 
evidence for hypoconnectivity or hyperconnectivity varied across 
network connections similarly for MDD, BD and SZ (r = 0.77–0.86, all ps 
< 0.001) (Fig. 3B, Supplementary Fig. S3B). Across disorders and con-
nections, there was more evidence for hypoconnectivity than hyper-
connectivity overall (t = 8.10, p < 0.001). Yet, somewhat paradoxically, 
connections with larger evidence for hypoconnectivity were also those 
with more demonstration of hyperconnectivity (r = 0.88, p < 0.001), 
again similarly in all three disorders (r = 0.69–0.88, all ps < 0.001) 
(Fig. 3B, Supplementary Fig. S3B). 

3.3. Network dysconnectivity among higher-order networks 

All within- and between-network connections among the FPN, CON 
and DMN showed both significant hypoconnectivity and hyper-
connectivity in all three disorders (all significant results reported here-
after survived a qFDR < 0.1 threshold). While there was a consistent 
trend towards more evidence of hypoconnectivity than hyper-
connectivity for all those connections across disorders, this effect was 
only significant for 4 out of 6 connections (excluding DMN-DMN and 
FPN-DMN) in SZ (Fig. 4). The consistent trend towards more evidence of 
hypoconnectivity among the FPN, CON and DMN networks in SZ 
compared to MDD and BD was not significant for any within- or 
between-network connection. Direct pairwise comparisons between 
disorders did not reveal any significant difference in the amount of 

evidence for either hypoconnectivity or hyperconnectivity among these 
higher-order networks (Fig. 5). It should however be noted that 
exploratory analysis at the region rather than network level, as reported 
here, suggests that between-disorders differences may emerge once 
considering dysconnectivity between small brain regions rather than 
large-scale brain networks (Supplementary Fig. S4). 

3.4. Network dysconnectivity of lower-order networks 

Lower-order networks showed impaired connectivity with some of 
the above higher-order networks, either transdiagnostically or with 
significant differences between disorders (Fig. 4). Regarding the SMN, 
SMN-CON hypoconnectivity was observed in all three disorders, yet 
with SMN-CON hyperconnectivity being also evidenced in SZ. SMN-FPN 
hypoconnectivity was seen in MDD and BD, while SMN-FPN hyper-
connectivity was observed in MDD and SZ. Noteworthy, SMN-FPN 
hyperconnectivity was more observed in SZ than MDD and BD. SMN- 
DMN hypoconnectivity was only seen in BD. Regarding VIS2, VIS2- 
FPN hyperconnectivity was evidenced in both BD and SZ while VIS2- 
DMN hyperconnectivity was seen in MDD and SZ, yet with VIS2-DMN 
hypoconnectivity being also observed in MDD. Finally, regarding 
AUD, AUD-DMN hypoconnectivity was observed in both BD and SZ, 
with more evidence of AUD-DMN in SZ than MDD. AUD-CON, for which 
hypoconnectivity was more observed than hyperconnectivity in SZ only, 
was more hypoconnected in SZ than MDD. AUD-FPN hyperconnectivity 

Fig. 3. General network dysconnectivity patterns across psychiatric disorders are depicted in 3D correlations plots. In each psychiatric disorder, there were marked 
positive correlations between how often the 78 connections between pairs of networks were tested for a statistical effect across studies, how often there was a report 
of hypoconnectivity among those tested connections, and how often hyperconnectivity was shown (upper row). The proportions (%) of how often the 78 connections 
were tested or reported as functionally impaired (hypoconnectivity or hyperconnectivity) were strongly positively correlated among psychiatric disorders (lower 
row). Large symbols are in 3D space while smaller symbols are their projections in 2D spaces. MDD, major depressive disorder; BP, bipolar disorder; SZ, 
schizophrenia. 

S. Grot et al.                                                                                                                                                                                                                                     



Progress in Neuropsychopharmacology & Biological Psychiatry 131 (2024) 110950

6

was only seen in SZ. 
Among lower-order networks, there was evidence of shared SMN- 

SMN and VIS2-VIS2 hypoconnectivity in BD and SZ, but not MDD 
(Fig. 4). SMN-VIS2, SMN-AUD and AUD-AUD hypoconnectivity was 
only observed in SZ. There was evidence of more hypoconnectivity than 
hyperconnectivity for SMN-SMN, VIS2-VIS2, AUD-AUD and SMN-AUD 

in SZ. Pairwise comparisons between disorders indicated that there is 
more evidence for AUD-AUD hypoconnectivity in SZ compared to both 
MDD and BD and SMN-SMN hypoconnectivity in SZ compared to MDD 
(Fig. 5). 

Fig. 4. Network dysconnectivity in each psychiatric disorder (MDD, major depressive disorder, blue; BP, bipolar disorder, green; SZ, schizophrenia, red) is shown 
separately for hypoconnectivity (down-pointing triangles) and hyperconnectivity (up-pointing triangles) effects. Indication of more evidence for hypoconnectivity 
than hyperconnectivity, and conversely, is shown separately. The size of triangles reflects the proportion (%) of studies that conducted a statistical test for each of the 
78 connections. The colors darkness indicates the proportion of studies (%) that reported a statistical effect, relative to how often a connection was tested. Thick 
edges around triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

Meta-analytic findings reveal similar functional brain dysconnec-
tivity within and between the FPN, CON and DMN networks across 
mood and psychotic disorders, suggesting higher-order network dys-
connectivity is mostly transdiagnostic in nature at the large-scale 
network level. By contrast, dysconnectivity patterns within lower- 
order networks such as the SMN and AUD networks as well as be-
tween these lower-order networks and higher-order networks were 
shown to differ between disorders, notably differentiating SZ from BD 
and MDD. Consistent dysconnectivity patterns were not evidenced for 
other networks such as LAN and ORA networks. 

4.1. Higher-order network dysconnectivity 

Highly significant evidence for dysconnectivity patterns shared by all 
three disorders (MDD, BD, SZ) among heteromodal networks impli-
cating the prefrontal cortex (FPN, CON, DMN) reflect their key role in 
current models of psychopathology (Buckholtz and Meyer-Lindenberg, 
2012; Menon, 2011; Williams, 2016). The various cognitive functions 
supported by these networks, such as executive control and self- 
referential monitoring (Marek and Dosenbach, 2018; Menon and 

D'Esposito, 2021; Uddin, 2015; Whitfield-Gabrieli and Ford, 2012), are 
indeed impaired across mood and psychotic disorders (East-Richard 
et al., 2020; Green et al., 2019; Rock et al., 2014). Accordingly, both 
original (Baker et al., 2019; Li et al., 2022; Ma et al., 2020; Xia et al., 
2019) and meta-analytical (Doucet et al., 2020; Sha et al., 2018, 2019) 
transdiagnostic works highlight shared functional brain connectivity 
abnormalities of the FPN, CON and DMN across a wide range of psy-
chiatric disorders or in relation to a general psychopathology factor 
(Mitelman, 2019; Vanes and Dolan, 2021). 

Both increased and decreased abnormal connectivity was evidenced 
for each neurocognitive network, although hypoconnectivity was more 
frequently reported, particularly in SZ. This paradoxical result might not 
only be explained by inconsistencies in the literature but also by our 
choice to explore dysconnectivity at the large-scale network rather than 
region level. Distinct regions that compose a network are likely to be 
characterized by opposite dysconnectivity patterns. For instance, the 
DMN has been reported to be hypoconnected to the ventral insula but 
hyperconnected to the dorsal insula across several psychiatric disorders 
(Sha et al., 2019). This spatial granularity issue may similarly account 
for the lack of significant differences in the dysconnectivity of neuro-
cognitive networks between MDD, BD and SZ in this study. Our targeted 
analysis conducted at the region level and some past studies that 

Fig. 5. Network dysconnectivity differences between psychiatric disorders (MDD, major depressive disorder, blue; BP, bipolar disorder, green; SZ, schizophrenia, 
red) is shown separately for greater hypoconnectivity (down-pointing triangles) and greater hyperconnectivity (up-pointing triangles) effects in one disorder than 
another. The size of triangles reflects the proportion (%) of studies (averaged between disorders) that conducted a statistical test for each of the 78 connections. The 
colors darkness indicates the between-disorders difference in the proportion of studies (%) that reported a statistical effect, relative to how often a connection was 
tested (on average in two disorders). Thick edges around triangles represent differences in dysconnectivity effects that were significant at qFDR < 0.1. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reported findings at the region or voxel level (Baker et al., 2019; Brandl 
et al., 2019; Dong et al., 2018; Huang et al., 2020; Kaiser et al., 2015) 
lend support to this hypothesis. 

4.2. Lower-order network dysconnectivity 

Strong evidence that the functional brain connectivity of unimodal 
networks (SMN, VIS, AUD) is impaired in both mood and psychotic 
disorders might seem surprising, given it is seldom the focus of psychi-
atric brain imaging. The present meta-analytical results nonetheless 
indicate that connectivity alterations within motor and sensory net-
works as well as between them and neurocognitive networks are often 
reported, hence underscoring a lack of emphasis on such findings in the 
literature. This observation echoes recent calls to better promote 
research centered on motor and sensory systems in psychiatric neuro-
science, as exemplified by the delayed inclusion of a domain dedicated 
to motor systems (Bernard and Mittal, 2015; Garvey and Cuthbert, 
2017) and the suggestion to add a sensory processing domain (Harrison 
et al., 2019) in the Research Domain Criteria (RDoC) framework 
(Cuthbert and Insel, 2013). Motor abnormalities that include neuro-
logical soft signs, extrapyramidal symptoms (dyskinesia, parkinsonism) 
and catatonic phenomena, are observed in a wide range of disorders 
(Northoff et al., 2020; Peralta and Cuesta, 2017). Similarly, aberrant 
sensory processing and perceptual signaling are encountered in disor-
ders other than SZ (Harrison et al., 2019; Javitt and Freedman, 2015; 
Javitt and Sweet, 2015). Accordingly, we observed several dysconnec-
tivity patterns of motor (SMN) and sensory (VIS2, AUD) networks being 
shared by at least two disorders, in line with previous studies that re-
ported transdiagnostic alterations of unimodal networks using fMRI 
(Elliott et al., 2018; Huang et al., 2020; Kebets et al., 2019; Tu et al., 
2021; Xia et al., 2019). A notable result was however that, in some in-
stances, there was more evidence for dysconnectivity of these networks 
(SMN, AUD) in SZ compared to BD and MDD. Gradients of impairments 
in connectivity that scale as a function of illness severity along the 
mood/psychosis cont have been reported before (Ma et al., 2020; Tu 
et al., 2021; Yange et al., 2018), and may account for more aggravated 
motor symptoms (Peralta and Cuesta, 2017) and the frequent presence 
of auditory hallucinations in SZ (Alderson-Day et al., 2015). 

4.3. Strengths and limitations 

The main strength of the present study lies in the use of text labels 
rather than stereotactic coordinates as the source of information for our 
meta-analysis (Costafreda, 2009; Radua and Mataix-Cols, 2012; 
Samartsidis et al., 2017). By doing so, a comprehensive inclusion of 
numerous prior studies that did not report coordinates was possible. 
Moreover, dysconnectivity patterns could be explored for the whole 
brain rather than focussing on a few selected networks of interest. The 
use of a whole-brain cortico-subcortical atlas that includes atypical 
auditory and language networks (Ji et al., 2019) further represents an 
improvement over previous meta-analyses. Besides, the manual extrac-
tion of text labels and subsequent automatic assignment to large-scale 
networks were shown to be reproducible. A future step will be to 
apply natural language processing algorithms to fully automatize the 
extraction of relevant papers and text labels (Jonnalagadda et al., 2015; 
Marshall et al., 2020), making our label-based meta-analytical approach 
an even more appealing alternative to traditional (coordinate-based) 
meta-analyses of brain imaging findings. 

The systematic exploration of whole-brain connectivity comes at a 
cost. Multiple testing over all connections with sufficient statistical 
power can only be performed for a limited number of brain networks, 
not dozens or hundreds of local brain regions given the amount of 
available published studies. As aforementioned, networks such as the 
DMN or CON merge together distinct brain areas or subnetworks with 
distinct connectivity profiles and functions (Andrews-Hanna et al., 
2010; Uddin, 2015), and are thus likely to be differentially impacted by 

psychopathology (Brandl et al., 2019; Sha et al., 2019). In addition, we 
adopted a conservative approach where a brain area corresponding to a 
text label could only be assigned to a single network, which it maximally 
overlapped with. The complexity of small regions with multimodal 
integration zones that in fact belong to multiple networks (e.g., the 
thalamus; Giraldo-Chica and Woodward, 2017) was thus ignored. For 
the same reason, the inferior frontal gyrus and amygdala were not 
respectively assigned to the LAN and ORA in our analysis, as one would 
have expected (Cavelti et al., 2018; Li et al., 2018). This may account for 
the lack of significant findings in these networks, despite past evidence 
of their roles in language disturbances associated with thought disorder 
and verbal hallucinations in SZ (Cavelti et al., 2018; Du et al., 2021) or 
emotional dysregulation across mood and psychotic disorders (Ho et al., 
2019; Li et al., 2018; Upthegrove et al., 2017). As additional research in 
the field accumulates, we are hopeful that future label-based meta-an-
alyses will be able to provide finer-grained assessments of functional 
brain dysconnectivity in psychiatric disorders. 

5. Conclusions 

Using a novel meta-analytical approach, we explored the relatedness 
of functional brain dysconnectivity patterns across three major psychi-
atric disorders. In line with prevailing models of psychopathology, 
transdiagnostic abnormal connectivity among core higher-order neu-
rocognitive networks was highlighted. More surprisingly, lower-order 
(motor, visual, auditory) networks were also affected across disorders, 
however revealing gradients of impairment from mood to psychotic 
disorders. These findings underscore the role that motor and sensory 
processes play in the etiology of major psychiatric disorders and thus 
call for dedicated research on this topic (Garvey and Cuthbert, 2017; 
Harrison et al., 2019). 
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