







S Project funded by FRIA grant 4000-8987

## Creep mechanisms of Incoloy 800H at high temperature

- Carlos Rojas-Ulloa<sup>1</sup>, Hélène Morch<sup>1</sup>, Jérôme T. Tchuindjang<sup>3</sup>, Olivier Pensis<sup>4</sup>, Amedeo Di Giovanni<sup>4</sup>, Anne Mertens<sup>3</sup>, Laurent Duchêne<sup>1</sup>, Víctor Tuninetti<sup>2</sup> and **Anne Marie Habraken**<sup>1,5</sup>
- <sup>1</sup>: ArGEnCo department, University of Liège, Belgium
- <sup>2</sup>: Department of mechanical engineering, University of La Frontera, Chile
- <sup>3</sup>: Department of Aerospace and Mechanical Engineering, University of Liège, Belgium
- <sup>4</sup>: R&D department, Drever International, Liège, Belgium
- <sup>5</sup>: Fonds de la Recherche Scientifique F.R.S. F.N.R.S., Belgium





### Industry & Science on 800H alloy

# TERMEC' 2023

#### **Incoloy 800H:** a Fe-Ni-Cr austenitic alloy

- Solution annealed: 1150°C + WQ
- Microstructure:



- Austenitic (FCC)
- Grain twinning
- Intra- & intergranular precipitates
  - M23C6
  - Tix(C,N)
- Average Grain Size  $1 \leq \text{ASTM Gr.} \leq 5$

- Used in many applications:
  - Petrochemical Metallurgy
  - Heat exchangers Power generation



after L.A. Spyrou et al., Eng. Fail. Anal., 2014

Research context

Creep micromechanics

. . .













### Finite element modelling



**Constitutive law:** Chaboche-type law + Graham-Walles viscoplastic & damage function approach

Yield function: **von-Mises** criterion

 $f_{v} = \Sigma_{VM}^{eq} - \sigma_{y} \le 0$  $\widetilde{\mathbf{\sigma}} = (1 - D)^{-1} \mathbf{\sigma}$  Effective stress (effect of damage)  $- \frac{\dot{\mathbf{X}}}{\mathbf{X}} = \sum_{i=1}^{n} \underline{\dot{\mathbf{X}}}_{AF,i} + \underline{\dot{\mathbf{X}}}_{SR,i} \qquad Hardening \& Static Recovery$  $\sigma_y = \sigma_0 + Q[1 - \exp(-b\bar{\epsilon}^p)]$  Voce isotropic hardening Viscoplastic function 1: **Norton** power law **User Choice** Damage function 1: Lemaitre + Kachanov Viscoplastic function 2: Graham-Walles approach [\*]  $\dot{\epsilon^{p}} = \sum_{i=1}^{N} K_{j} e^{\frac{T}{C}} [\Sigma_{VM}^{eq}]^{n_{j}} (\bar{\epsilon}^{p})^{m_{j}} + K_{T} \sigma |\dot{T}| (\bar{\epsilon}^{p})^{m_{T}}$ \*: Model developed in IfW Darmstadt. See Narayana K. Karthik, PhD Thesis, Aachen University, 2020



### Finite element modelling



**Constitutive law:** Chaboche-type law + Graham-Walles viscoplastic & damage function approach



# TERMEC' 2023

#### Creep in 800H: a multiscale phenomenon

Smooth bar samples were placed in a furnace, where thermal and environmental conditions were simulated



**1** D10 sample from each N-batch



Research context





Creep macromechanics

#### Carbide strengthening

Creep micromechanics

- Presence of Nb, Cr & Ti carbides
- Dislocations are pinned

#### Diffusional-driven creep occurs



**Concluding remarks** 





#### Dynamic recovery

- MC Carbides diffuse towards GBs
  - Dislocations are able to move freely





Dislocation pile-up in GBs of 800H alloy after minimum **creep strain rate**\* is reached

TEM image after V. Guttmann & R. Bürgel, Metal Science, 1983

**Concluding remarks** 

















### **Experimental findings**



800H creep test on sample N3 (3 years in-furnace): 1000°C & 35 [MPa]





#### Creep in 800H: a multiscale phenomenon





#### Creep in 800H: a multiscale phenomenon





#### Creep in 800H: a multiscale phenomenon







#### **Concluding remarks**



#### Multiscale modelling: meso-to-macro scale











July 3<sup>rd</sup>, 2023

## Creep mechanisms of Incoloy 800H at high temperature

- Carlos Rojas-Ulloa<sup>1</sup>, Hélène Morch<sup>1</sup>, Jérôme T. Tchuindjang<sup>3</sup>, Olivier Pensis<sup>4</sup>, Amedeo Di Giovanni<sup>4</sup>, Anne Mertens<sup>3</sup>, Laurent Duchêne<sup>1</sup>, Víctor Tuninetti<sup>2</sup> and Anne Marie Habraken<sup>1,5</sup>
- <sup>1</sup>: ArGEnCo department, University of Liège, Belgium
- <sup>2</sup>: Department of mechanical engineering, University of La Frontera, Chile
- <sup>3</sup>: Department of Aerospace and Mechanical Engineering, University of Liège, Belgium
- <sup>4</sup>: R&D department, Drever International, Liège, Belgium
- <sup>5</sup>: Fonds de la Recherche Scientifique F.R.S. F.N.R.S., Belgium







# Post Doc position - Horizon Europe project about Creep Experiments and Modelling

As partner of the European project entitled



#### Al powered characterization and modelling for green steel technology,

the MSM Materials and Solid Mechanics team led by prof. L. Duchêne and AM Habraken is recruiting a Post-Doc researcher (a salary, not a grant).

Duration: 3 years, starting on 1 September 2023,

anne.habraken@uliege.be