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SUMMARY

Regenerative medicine is emerging as a novel field in organ transplanta-
tion. In September 2019, the European Cell Therapy and Organ Regenera-
tion Section (ECTORS) of the European Society for Organ Transplantation
(ESOT) held its first meeting to discuss the state-of-the-art of regenerative
medicine in organ transplantation. The present article highlights the key
areas of interest and major advances in this multidisciplinary field in organ
regeneration and discusses its implications for the future of organ trans-
plantation.
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Introduction

Current treatment options for end-stage organ disease

include support of organ function through dialysis, res-

piratory devices or ventricular pumps, lifestyle changes

to slow down disease progression, and eventually trans-

plantation. The impressive advance in knowledge of

genetic editing and cellular reprogramming over the

past period has led to the idea of boosting endogenous

regeneration or supply de novo generated cells and tis-

sues as an alternative to transplantation. However, many

biological, technical and ethical challenges must be

addressed before improvement of organ function

through reparative therapies can be realized. To that

end, the European Cell Therapy and Organ Regenera-

tion Section (ECTORS) was established in 2018 within

the European Society for Organ Transplantation

(ESOT). This section finds its origin in the former Mes-

enchymal stromal cell in Solid Organ Transplantation

(MiSOT) study group [1-3], but also includes experts

on organ machine perfusion, pluripotent stem cells

including human embryonic stem cells and induced

pluripotent stem cells (iPSC), and organoids. The aim

of ECTORS is to advance the knowledge of organ

regeneration through bringing together physicians and

basic scientists from the regenerative medicine and

transplantation fields.

In this article, we discuss the state of the art and

recent advances in organ regenerative medicine research.

This includes repair of transplant organs before and

after transplantation, and of diseased organs in patients

with end-stage organ failure.

Organ regeneration

Organ regeneration ultimately involves the reinstitu-

tion of multiple types of cells and supportive matrix

with the aim to restore integrity and function of dis-

eased organs. If successful, organ regeneration could

eventually make organ transplantation obsolete.

Organ regeneration can be approached from different

angles, depending on the status of the injured organ

and the tools available. One approach is to make

use of the intrinsic regenerative potential of organs

and activate endogenous progenitor cells through

pharmacological or cellular intervention or through

manipulation of organ physiology. Experiments in

this direction are ongoing and promising tools are

under development, including machine perfusion and

mesenchymal stromal cell (MSC) therapy that may

boost organ regeneration. Nevertheless, many hurdles

have to be overcome, including ethical, financial,

logistic and mechanistic challenges, before these tools

can be applied for effective organ regeneration.

Another approach is to build organs or part of

organs from scratch. While it is highly unlikely such

techniques will be feasible in the short-term, this

concept brings with it an immense potential to

regenerate organs of all ages and in all developmen-

tal and disease states.

Organ machine perfusion

In recent years, progress has been made with preserva-

tion of transplant organs on hypothermic machine

perfusion [4,5]. Indeed, in the Netherlands and in the

UK, hypothermic machine preservation has become

standard practice for all kidneys from deceased donors.

The benefit of oxygenation of kidneys on hypothermic

machine perfusion for kidney function has been

demonstrated in seminal studies [6,7]. A multicentre

randomized trial in heart transplant patients demon-

strated that patient and heart survival after warm per-

fusion of heart transplants was noninferior to cold

storage and offers possibilities to assess the metabolic

status of heart transplants [8]. To develop machine

perfusion into a technology that does not only pre-

serve but also regenerates organs, further adaptations

are required, including normothermia. Normothermic

machine perfusion (NMP) is designed to preserve

organs under physiological conditions allowing the

restoration of cellular metabolism and replenishment

of ATP [9-11]. It also has the potential as a platform

for assessment of the donor organ before
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transplantation and for pretransplant therapeutic inter-

ventions to enhance organ quality [12]. The molecular

mechanisms underlying NMP involve oxidative phos-

phorylation, which is amongst the pathways most sig-

nificantly up regulated during NMP. NMP furthermore

leads to increased expression of erythropoietin and

haemeoxygenase-1 and, in addition, a number of

immunological pathways including TNFa signalling via

NFᴋB are also significantly up regulated. The inclusion

of a cytosorb column into the perfusion circuit to

adsorb cytokines and chemokines may be used to

reduce the level of pro-inflammatory cytokines [13].

Other inflammatory pathways up regulated during

NMP, such as the JAK/STAT pathway, are associated

with ischaemic conditioning [14]. It may be through

these processes that NMP protects against ischaemia

reperfusion injury in kidney transplantation.

Also within the field of liver transplantation, the

implementation of machine perfusion is advancing.

Conventional static cold storage is insufficient for the

preservation of high-risk livers and does not allow for

the evaluation of residual functionality of the liver graft.

By applying heart-lung machine technology to the iso-

lated organ, liver machine perfusion allows for better

preservation and functional evaluation of the liver [15].

Liver machine perfusion can either replace conventional

storage [16] or can resuscitate grafts previously pre-

served in a conventional manner [17]. Additionally, by

repeatedly sampling the perfusate and bile produced

during machine perfusion and measuring simple serum

biomarkers, it is possible to assess the functionality of a

graft and to predict the risk of post-transplant compli-

cations [18].

Regeneration cannot be achieved during a few hours

of machine perfusion, but regenerative processes can be

initiated ex vivo while organs are on machine perfusion.

Preservation of organs through machine perfusion pro-

vides an excellent opportunity to apply regenerative

therapies directly to the organs, including cellular and

molecular interventions. The application of microvesi-

cles or exosomes from regenerative cells such as MSC is

an appealing setting to be further investigated [19]. Fur-

thermore, the modulation of the expression of micro-

RNAs with the aim to induce repair may also represent

a yet unexplored approach to donor organ treatment

outside the donor.

Mesenchymal stromal cell therapies

Mesenchymal stromal cell has immunomodulatory and

tissue regenerative properties and therefore make them

an attractive therapeutic candidate within organ trans-

plantation. Over the last decade, a number of studies

have investigated the intravenous administration of

autologous MSC after human kidney transplantation

and demonstrated safety, feasibility and an indication

for immunosuppressive capacities of autologous bone

marrow derived MSC [20,21]. It appears that the tim-

ing of MSC treatment and the concurrent immuno-

suppressive medication influences the effects of MSC

[22,23]. It has for instance been shown that pretrans-

plant but not post-transplant administration of MSC is

effective in prolonging allograft survival in murine

models and there is data suggesting that immunosup-

pressive drug such as tacrolimus, mycophenolic acid

and rapamycin differentially affect MSC proliferation

and immunomodulatory capacity [22,24,25]. With the

first exploratory studies completed over 7 years ago,

long-term safety profiles of MSC treatment are avail-

able. To date, there is currently no evidence for

adverse effects in kidney transplant patients long after

MSC administration [26]. In addition, autologous

MSC therapy promoted a sustained and long-lasting

pro-tolerogenic immune environment, particularly

remarkable in one kidney transplant patient. This

patient was successfully weaned off immunosuppressive

drugs and is now almost two 2 years free from rejec-

tion with optimal kidney allograft function [27]. Treat-

ment with autologous bone marrow MSC in kidney

recipients is now moving from Phase I to Phase II tri-

als. A currently ongoing phase 2 study is testing the

hypothesis that MSC in combination with everolimus

immunosuppression facilitates withdrawal of the cal-

cineurin inhibitor tacrolimus, reduce fibrosis and

decrease the incidence of opportunistic infections com-

pared to standard tacrolimus medication [28]. The pri-

mary end-point of this study is fibrosis measured by

quantitative Sirius Red scoring at 6 months after trans-

plantation. Results will provide information on

whether MSC in combination with everolimus allows

graft survival with preservation of renal structure and

function.

Allogeneic MSCs offer an alternative cellular thera-

peutic strategy to autologous therapies. Allogeneic MSC

can be expanded on a large scale and are amenable to

cryopreservation. A number of commercial organiza-

tions are actively developing allogeneic MSC-based

products as ‘off-the-shelf’ cellular therapies. Such a pro-

duct would be available as required and be used by

those treatment centres that lack a dedicated GMP cel-

lular-production facility. However, there is evidence that

allogeneic MSC can elicit an anti-MSC immune
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response [29], which may cross-react with the donor

kidney and increase the incidence of rejection and

impact allograft survival in the long term. In a recent

Phase I study, a single dose of 1.5–3 9 106/kg

unmatched third party MSC were infused 3 � 2 days

after transplantation. Four out of 10 patients developed

de novo donor-specific antibodies (dnDSA) against the

MSC, one of which was also directed against the kidney

graft. Renal function remained stable in patients during

the study period leaving clinical relevance of the dnDSA

unclear [30]. The Neptune study was set op to investi-

gate the effect of third party allogeneic MSC after kid-

ney transplantation with the aim to lower calcineurin

inhibitor levels. To minimize the chance of anti-donor

immune responses, a matching strategy was chosen to

prevent repeated mismatches between the allogeneic

MSC and the transplant kidney [31]. The results of this

study are expected in the near future.

MSC mechanism of action

While clinical studies to the effects of MSC in organ

transplant patients are ongoing, questions remain

regarding their mode of action. It has been demon-

strated that MSC interacts with a variety of immune

and progenitor cells through the secretion of growth

factors, cytokines and extracellular vesicles and induce

beneficial immunomodulatory and regenerative effects

[32,33]. It became clear some years ago, however, that

intravenously infused MSC largely accumulate in the

lungs due to size restriction of the pulmonary capillary

network and have a short lifespan [34]. In recent years,

important steps have been made in elucidating the

mechanism of action of MSC therapy after intravenous

infusion. It was demonstrated that during their brief

presence MSC instruct host immune cells to adapt a

regulatory function, and this effect persists after disap-

pearance of the administered cells [35-37]. These regu-

latory immune cells migrate to other sites, such as the

liver and lymph nodes but potentially also to sites of

inflammation, where they may control inflammatory

responses [38,39]. Thus, the short lifespan of MSC

does not preclude a beneficial immunomodulatory

effect of MSC in organ transplant patients. The impli-

cation of the short lifespan of MSC on their regenera-

tive effects is yet unclear, but during their brief

presence MSC may induce macrophages with regenera-

tive properties [40,41]. An alternative to intravenous

administration could be to deliver MSC directly to

transplant organs on machine perfusion via the arterial

flow.

Merging the fields of machine perfusion and
MSC therapy

The first reports on the ex vivo delivery of MSC to

porcine liver and kidney grafts have recently been pub-

lished. In the liver, administered MSC show a wide

range and patchy distribution [42] whereas in the kid-

ney MSC localize specifically to the glomeruli [43,44].

The distribution pattern of MSC in liver and kidney is

likely to depend on the size restriction of capillary net-

works in the organs, similar to the accumulation of

MSC in the capillaries of the lungs after intravenous

administration. This was demonstrated by arterial

administration of dead MSC to kidneys on machine

perfusion. While dead MSC are incapable of actively

adhering to surfaces, the resulting distribution pattern

was identical to that of living MSC [44]. When admin-

istering cells to organs on machine perfusion, it is

important to use perfusion conditions that not only

support the transplant organ, but also the administered

cells. It appears that machine perfusion fluid has an

effect on the adhesive properties of MSC in suspension,

but that it does not affect the secretion of trophic fac-

tors by MSC [45]. Whether loading of transplant

organs with MSC is beneficial for short-term and/or

long-term organ function after transplantation, or

whether other cell types at different doses would be

more efficient will have to be determined in future

studies.

Lessons learned from stem cell clinical trials
outside the field of organ transplantation

Cellular therapies are notoriously difficult to initiate,

in part due to regulatory requirements and the need

for clinical grade cell production facilities and associ-

ated costs. By learning from previously approved trials,

time and money might be saved and pitfalls related to

cell production, logistics, inclusion criteria and clinical

protocols avoided. While completed cell therapy trials

in the field of organ transplantation with published

results are relatively sparse, other fields have more

extensive experience with MSC therapies. In the field

of ischaemic heart disease, a number of trials have

been finalized [46,47] or are ongoing [48,49]. Such tri-

als teach us that it is advisable to keep the various

processes in trials as simple as possible and choose

clinically relevant inclusion criteria to increase clinical

success rate. It is important to constantly follow-up on

the regulation and collaborates with relevant partners

with expertise in cell production, clinical trial set up
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and regulatory aspects. When trials become more

advanced, partnering with a commercial party may offer

possibilities for progression towards efficacy testing and

eventually the implementation of cellular therapies as an

accessible treatment option for organ disease patients.

Corporate perspective on cell therapy

When cell therapy trials become larger and therapies

start moving from the experimental setting to the thera-

peutic setting, academic centres are generally insuffi-

ciently equipped and funded to continue the research

efforts without the help of a commercial partner. Ather-

sys, amongst other clinical-stage biotechnology compa-

nies to collaborate with the academic sector, has

developed a patented, allogeneic adult stem cell-derived

off-the-shelf product for indications in areas of neuro-

logical, cardiovascular and inflammatory and immune

disorders. Over the course of several years, the Athersys

product has been investigated in a preclinical cardiac

transplant model [50] and has been administered safely

to patients receiving a liver transplant [51]. Outside the

organ transplantation field, TiGenix-Takeda received

marketing approval in the European Union in 2018 for

the first allogeneic MSC product, and in the same year

Mesoblast announced the positive results of its open-la-

bel Phase III trial in steroid-refractory acute GvHD,

demonstrating that corporate involvement can bring

cellular therapies closer to the clinic.

Decellularization and recellularization

Organs that are in a severe state of degeneration are

unlikely to be responsive to reparative therapies through

machine perfusion and adult stem cell therapies. For

these organs, radical regenerative strategies are required.

Recently, effective protocols for porcine and human liv-

ers decellularization have been developed that consider-

able shorten the duration of decellularization by

increased pressure and flow without increased damage

to the extracellular matrix [52]. The development of

organ decellularization techniques has resulted in the

accumulation of knowledge on the generation of acellu-

lar scaffolds for application in regenerative medicine,

including for recellularization purposes. An interesting

initiative in this field is the heterotopic implantation of

decellularized hearts with the intent to allow the recipi-

ent body to repopulate the scaffold with endothelial and

stromal cell types [53]. Other advances in this field are

the generation of allogenic hydrogels for applications in

tissue engineering, including 3D bioprinting [54].

The emergence of organoids for regenerative
research

In recent years, considerable progress has been achieved

in creating organ-like structures known as organoids

from adult and pluripotent stem cells for virtually all

types of tissue [55]. Kidney organoids with a surprising

level of complexity can now be created within a few

weeks from an undefined clump of pluripotent stem

cells [56-59]. While initial work led to the generation of

kidney organoids resembling first-trimester kidney tissue

in structural organization and gene expression patterns,

recent advances in culture protocols are driving differ-

entiation further towards the second-trimester stadium

[60]. Furthermore, implantation of organoids and sub-

sequent vascularization in the host has been indicated

to steer kidney organoid differentiation towards more

maturity [61,62]. Importantly, it has been recently

shown that the implantation of kidney organoids for a

5 days period leads to the organization of endogenous

endothelial cells [60].

Other surrogates of organ-like microcultures are liver

organoids. These can be generated from Leucine rich

repeat-containing G protein-coupled receptor 5 (Lgr5+)

adult liver stem cells or from pluripotent stem cells and

resemble the original liver epithelial architecture

[63,64]. To implement the use of liver organoids for

liver repair, new techniques are being explored includ-

ing the use of decellularized liver to use as a scaffold for

repopulation by organoid-derived cells [65]. Further-

more, improvements in the large-scale expansion of

human liver organoids in oxygenated spinner flasks

bring the application of these cells for whole-size graft

repair in the clinical setting a step closer [66]. Advance-

ments in upscaling have also been made for drug

screening on cardiac organoids, where bioengineered

human cardiac organoids find use for high-throughput

testing of small molecules with pro-regenerative poten-

tial to stimulate cardiomyocyte proliferation [67] and

long-term expansion methodology for airway organoids

to allow disease modelling [68]. Other applications from

the field of bioengineering include the implementation

of organ-on-a-chip devices to promote kidney organoid

vascularization [69] or the application of extrusion-

based printing for the generation of kidney organoids

aiming to provide solutions for current issues related to

organoid inter-batch variability [70].

In the near term, organoids offer an unprecedented

opportunity in organ transplantation research, including

their application as models for studying organ disease, for

(personalized) drug testing or for studying organ
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development and physiology. In the future, it is antici-

pated that organoids will be applied as regenerative thera-

pies. In the field of organ transplantation, this implies

repair of aged and diseased transplant organs, and in the

treatment of end-stage organ disease patients with an aim

to repair organs and to delay or replace transplantation.

Ethical perspective

Developments in regenerative medicine raise many ethi-

cal issues including use of animal-testing in clinical

research, research using human embryonic stem cells,

foetal stems cells or discarded organs, issues with bio-

banking of ‘live’ material, informed consent for donation

and use, commercialization of human cell-derived prod-

ucts, as well as research integrity and communication

with the general public [71]. Human organoids may

prove to be a useful alternative to animal models in clini-

cal research and thus impact the ethical discourse on use

of animal experiments in medical research. However, the

human source of the stem cells used to develop organoids

is of importance in this discussion. Similarly, patient or

healthy volunteer-derived cellular therapies that replace

current medications may increase the demand for human

cells and tissues for research and therapies. Depending on

the model and therapy, potential cellular sources include

autologous tissues, placenta, umbilical cord or embryos.

In particular, use of embryonic cells is controversial and

views on this practice vary from protection of the human

embryo leading to absolute prohibition to acceptance of

usage given the potential for reducing human suffering.

Ability to use this kind of cells for clinical research will

depend on the context and relevant legal framework for

that setting. A great step forward has been the generation

of iPSC with properties of embryonic stem cells, which

reduces the demand for embryonic stem cells. With

regard to donor consent, research is needed to explore

how donors perceive use of their cells to develop cellular

therapies and what information and consenting process

they find preferable. Issues of ownership and benefits

from products and potential gains/profit from cell-

derived therapies also require attention. While cell thera-

pies present potential for innovation in care for patients

with organ failure, their efficacy must first be proven in

controlled trials [72]. This raises ethical concerns regard-

ing the balance between risks and benefits for participants

in (first-in-) human trials, patient selection, equality in

access, risk-benefit assessment of treatment options,

information provision, minimal requirements for

informed consent, invasiveness and burden of the treat-

ment, potential for adverse side-effects, long-term follow-

up, and reimbursement. Ethical issues need to be consid-

ered for stem cells donors and participants in trials, as

well as for researchers who may face pressure to publish,

produce or commercialize their discoveries.

Conclusion

Regenerative medicine is a rapidly evolving tool that

will affect the lives of the future organ transplant

patient. Whilst regenerative medicine has the potential

to make traditional organ transplantation redundant,

multiple biological, technical, ethical and medical hur-

dles must be surmounted. Regenerative medicine will

need to move to the forefront of transplantation

research in the years to come to make its promises a

reality.
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