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ABSTRACT
Increasing energy efficiency inmanufacturing has significant environmental and cost benefits. Turn-
ing on or off a machine dynamically while considering the production rate requirements can offer
substantial energy savings. In this work, we examine the optimal policies to control production and
turn on and off a machine that operates in working, idle, off, and warmupmodes for the case where
demand inter-arrival, production, and warmup times have phase-type distributions. The optimal
control problem that minimises the expected costs associated with the energy usage in different
energy modes and the inventory and backlog costs is solved using a linear program associated with
the underlying Markov Decision Process. We also present a matrix-geometric method to evaluate
the steady-state performance of the system under a given threshold control policy. We show that
when the inter-arrival time distribution is not exponential, the optimal control policy depends on
both the current phase of the inter-arrival time and inventory position. The phase-dependent policy
implemented by estimating the current phase based on the time elapsed since the last arrival yields
a buffer- and time-based policy to control the energy mode and production. We show that policies
that only use the inventory position information can be effective if the control parameters are cho-
sen appropriately. However, the control policies that use both the inventory and time information
further improve the performance.
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1. Introduction

Manufacturing is a major contributor to global energy
consumption and greenhouse gas emissions (Frigerio,
Cornaggia, and Matta 2021; Masmoudi, Delorme, and
Gianessi 2019; Tan, Karabağ, and Khayyati 2023). Given
the looming threat of climate change, there is a height-
ened importance to address energy consumption and
improve energy efficiency in manufacturing (Zavanella
et al. 2015). Data-driven energy control is emerging as
a powerful tool for achieving this goal. This benefits
the environment and improves manufacturers’ bottom
line as energy costs increase steadily. This article will
explore data-driven optimal energy control policies for
manufacturing systems.

Turning on and off machines based on the data col-
lected from a manufacturing system effectively imple-
ments data-driven energy control in manufacturing.
On/off type of controlling approaches have become
increasingly important in recent years as new technolo-
gies have made it easier to collect, analyse, and act on
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data in real time. The Industrial Internet of Things (IIoT)
technologies introduced by Industry 4.0 allow one to col-
lect real-time data and easily control machines based
on this data (Wang et al. 2019; Zhang et al. 2018). In
addition, many machines are built to operate in vari-
ous energy modes, including idle, working, and standby;
each mode has its own distinct energy consumption lev-
els (Loffredo et al. 2023; Squeo, Frigerio, andMatta 2019;
Wang, Li, and Liu 2013). By collecting data such as the
current load, energymode of themachines, and the num-
ber of waiting parts to be produced, manufacturers can
determine when machines should be turned on or off or
operated on standby to optimise energy consumption.

Our study has been motivated by a current project
related to the on/off scheduling of a painting oven at a
plant of amajor automotivemanufacturer.While a paint-
ing oven for regular colors is utilised heavily at this plant,
another oven for special color vehicles has sufficient idle
time to switch it on and off, according to the arrivals.
A control policy that dynamically switches the oven on
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and off based on the system’s state must account for the
warmup delay when a switched-off oven is switched on
and the production requirements. A buffer-based policy
switches the oven on and off depending on the number
of special color vehicles in a designated upstream area.
Since the vehicles’ arrivals at the oven are generated by the
upstream line, the distribution of the inter-arrival times
hasmemory. The proposed buffer- and time-based policy
in this paper improves the control policy by incorpo-
rating the time since the last arrival of a special vehicle
and the number of waiting vehicles. Various implemen-
tations of similar buffer-based on/off policies in different
industries have been reported in the literature. Exam-
ples include implementations in an engine block produc-
tion line (Chang et al. 2012), an automobile assembly
line (Sun and Li 2012), a CNC system processing alu-
minum parts (Frigerio and Matta 2014), a machining
centre for power-train applications (Marzano, Frigerio,
and Matta 2019), and a motor cylinder head production
system (Loffredo et al. 2023).

In this work, we determine the optimal policy to con-
trol production and turn on/off amake-to-stockmachine
to minimise the expected energy usage costs due to oper-
ating in different energy modes and the inventory and
backlog costs. We examine a machine that operates in
various energy modes, such as working, off, idle, and
warmup, with random demand inter-arrival, production,
and warmup times. Among these modes, the off mode
incurs the lowest energy cost; the energy cost associated
with staying in the idle mode falls between the energy
costs of staying in the off and working modes. When the
machine is turned off, it goes through a warmup delay
before it is turned on. The warmup mode usually incurs
a higher energy cost than the working mode. Our objec-
tive is to devise a control policy that determines when to
turn off or make idle a working machine, when to turn
on a turned-off machine, and when to start production
on an idle machine in a dynamic manner according to
the system state.

The optimal policy to control energy mode and pro-
duction for systems in which the demand inter-arrival,
production, and warmup times are exponential has been
shown to have a threshold-type policy (Özkan and
Tan 2023; Tan, Karabağ, and Khayyati 2023). Accord-
ing to the optimal policy, the machine operates either
between working/off or working/idle modes, and it does
not use working, off, and idle modes together. When it
operates with working/off modes, it is turned off when
the inventory position reaches an upper threshold and
turned on when it drops to a lower threshold. Then, it
starts production as soon as the warmup period is com-
pleted. When it operates with working/idle modes, it
stops production and becomes idle when the inventory

position reaches an upper threshold. Then, it resumes
production when the inventory position reduces to a
lower threshold. These policies are commonly referred to
as buffer-based policies in the literature because they are
characterised by the current inventory position and the
machine’s energy mode (Frigerio and Matta 2015).

In this study, we extend the machine turn-on/off con-
trol problem to the case where the inter-event times have
phase-type distributions. We model this problem as a
Markov Decision Process (MDP) and obtain the opti-
mal solution using linear programming. Furthermore, we
provide a matrix-geometric approach to assess the sys-
tem’s performance when operating under the optimal
control policy. When inter-event times are modelled as
phase-type distributions instead of exponential distribu-
tions, we reveal that the optimal on/off policy depends
not only on the inventory position but also on the time
since the occurrence of the last event. Correspondingly,
the optimal control policy is shown to have a time-and
buffer-based structure. In the literature, time-and buffer-
based on/off policies have been proposed without deter-
mining the optimal policy and shown to be effective in
minimising energy costs (Frigerio and Matta 2015).

Our results extend the work on the optimal energy
mode and production control policies for manufactur-
ing systems and offer an analytical basis to analyse and
implement time-and buffer-based policies. Specifically,
this study provides two notable contributions to the exist-
ing literature. First, by analysing the MDP underlying
our control problem, we show that when the inter-arrival
time distribution is not exponential, the optimal policy is
contingent upon both the inventory position and the cur-
rent phase of the inter-arrival time. We further show that
the current phase can be predicted using the time elapsed
since the last arrival. Therefore, based on the optimal
solution of the control problem, we show that the optimal
policy to control production and turn on/off themachine
when the inter-arrival times are not exponential is a type
of time-and buffer-based policy. Additionally, we intro-
duce a computationally efficient approach to assess the
system’s performance under the optimal policy.

Furthermore, our extensive numerical analysis shows
that policies that use only the inventory position infor-
mation can be effective if the control parameters are cho-
sen appropriately. Specifically, our numerical results yield
that when the production and warmup times become
more variable, a buffer-based policy performs reason-
ably well compared to a phase-dependent policy that
integrates the elapsed time since the last arrival with
the inventory position. For systems with low utilisation,
buffer- and time-based policies significantly outperform
production control policies that do not change the energy
mode of the machine dynamically.
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The subsequent sections of this paper are structured as
follows. Section 2 provides a review of the relevant liter-
ature. Section 3 presents both the model and the optimal
control problem. In Section 4, we present the solution
to the MDP associated with the optimal control problem
using linear programming. In Section 5, the optimal pol-
icy to control production and turn on/off the machine is
discussed. Section 6 provides a detailed description of the
matrix-geometric approach used to assess the system’s
performance under a specified control policy. Section 7
presents the numerical results that compare the perfor-
mance of time-and buffer-based policies. Lastly, the con-
clusions and limitations of this study are presented in
Section 8.

2. Literature review

The growing apprehension surrounding rising energy
costs, unpredictable energy supply, and carbon emission
regulations has impacted professionals and prompted a
surge in research efforts to address energy-saving strate-
gies and technologies. Extensive systematic overviews
related to this literature stream have been proposed
byGunasekaran and Spalanzani (2012),Ngai et al. (2013),
Biel and Glock (2016), and Bänsch et al. (2021). Here, we
only review the most relevant and recent studies, i.e. the
ones focussing on implementing on/off types of energy-
controlling policies on production systems and server
vacation models in queueing systems.

Under on/off control policies, a switch-off command is
utilised to deactivate specific auxiliary units, resulting in
themachine entering a low power consumption state and
temporarily interrupting its operation (Frigerio, Cornag-
gia, and Matta 2021). Operational readiness is resumed
with a switch-on command. These control policies gen-
erally rely on two types of real-time information: (i)Buffer
information, and (ii)Time information.

The first group studies systems in which the produc-
tion is interrupted and restarted again based on the num-
ber of parts accumulated in buffers such that machines
can be controlled during starvation periods (Gahm
et al. 2016). As one of the early studies within the stream
of buffer-based control policies, Wang et al. (2016) utilise
a Markovian modelling approach to examine the perfor-
mances of on/off switching policies based on real-time
data of buffers and machines in a serial manufacturing
system. Wang et al. (2019, 2017) consider a very similar
manufacturing system to that of Wang et al. (2016); but,
different than their previouswork, the authors use a fuzzy
logic modelling approach. Jia et al. (2016) develop an
approximate analyticalmethod to assess the performance
of a serial line with Bernoulli machines, in which a sub-
set of the machines is controlled with an on/off switching

policy depending on buffer levels. Su et al. (2016) and Pei
et al. (2022) focus on a production line that includes only
two unreliable machines. They develop an integrated
model that minimises energy consumption and aims to
maintain a given productivity rate. Su et al. (2017) revise
the analytical model given in Su et al. (2016) to deal with
large production lines. Renna (2018) uses a simulation-
based approach to study dynamic and adaptive switch-
ing on/off policies in a pull-controlled production line.
The author reveals that energy-saving control policies
perform better for pull-type production lines when the
production line is balanced, or the bottleneck is the last
machine of the production line. Cui et al. (2021) utilise a
Markovian modelling approach to characterise the inter-
dependent relationships between production rate and
energy consumption for serial production lines. In Frige-
rio, Tan, and Matta (2023), a simulation-based mod-
elling approach is used to analyse buffer-based thresh-
old policies that simultaneously control several serially
connected machines for energy-saving purposes. Addi-
tionally, Loffredo et al. (2021, 2023) use similar types of
buffer-based control policies in parallel-line production
systems.

More recently, Tan, Karabağ, and Khayyati (2023)
characterised the optimal policy to control production
and turn on/off the machine for a make-to-stock system
with exponentially distributed production, warmup, and
demand inter-arrival times. They also use the optimal
policy for the exponential case as an approximate policy
for systems with inter-event times modelled as Markov
Arrival Processes (MAPs). Özkan and Tan (2023) prove
the asymptotic optimality of working/idle and work-
ing/off policies for the same system having exponen-
tially distributed production, demand inter-arrival, and
warmup times under heavy traffic. Our work is closely
related to these two studies and extends them to analysing
the optimal policywith phase-type inter-event times.Our
findings reveal that the optimal policy for this case is
characterised not only by the inventory position as the
case for the exponential case but also by the inter-arrival
time phase.

The second group of studies analyses systems using
time-based control policies, which operate with thresh-
olds on machine idle time to determine when produc-
tion should be interrupted and restarted again. Mouzon,
Yıldırım, and Twomey (2007) and Mouzon and Yıldırım
(2008) focus on a single machine operating in a job shop
environment and present various on/off types of control
policies that depend on the machine’s idle times. These
two works highlight the potential of effectively utilising
a time-based on/off control policy to reduce energy con-
sumption, particularly in non-bottleneck machines. Sun
and Li (2012) introduce an approximate analytical
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method that determines the optimal duration of on/off
times to decrease energy consumption in a serial produc-
tion line. By using a simulation-based approach, Wang,
Li, and Liu (2013), Frigerio andMatta (2015), and Squeo,
Frigerio, and Matta (2019) evaluate how time-based con-
trol policies perform in reducing the energy consumption
of systems composed of a single machine with mul-
tiple energy consumption modes. Frigerio, Cornaggia,
and Matta (2021); Frigerio, Marzano, and Matta (2020)
employ machine learning techniques to establish a time-
based control policy that can adapt its parameters over
time based on a real data set received from the system.

In the queuing literature, models that include servers
with vacations use vacations for modelling planned
off/idle times. Some works in this literature consider
threshold-type policies and fluid queues, e.g. Bar-
ron (2016, 2018) and Xu andWang (2019). However, the
settings in these articles donot allow the policy parameter
to depend on the environment state directly. Further-
more, these parameters do not change with the informa-
tion from the arrival process or with the anticipation of
arrivals. In addition, although a setup cost is incorporated
when a switched-offmachine is switched on, the warmup
delay is not modelled explicitly.

Based on the review given above, we can summarise
the contribution of this study as follows: First, in contrast
to the aforementioned existing studies, we determine the
optimal policy to control production and turn on/off the
machine for a make-to-stock system where production,
warmup, and demand inter-arrival times have phase-
type distributions by solving the LP associated with the
Markovian Decision Process formulation. Second, differ-
ent from existing studies that rely on simulation-based
approaches to analyse systems with heuristic time and
buffer-based control policies, we use analytical methods
to derive optimal control policies and present an analyti-
calmethod to evaluate the system performance under the
time and buffer-based policies. By comparing the optimal
policies for the phase-type inter-event times with time-
and buffer-based policies, we show that policies based
only on inventory position information can be effective
if the control parameters are chosen appropriately.

3. Model

We consider a machine that can operate inWorking (W),
Idle (I), Warmup (R), and Off (O) energy modes. The
control problem we examine is determining in which
energy mode the machine should be operated to min-
imise expected energy usage, inventory, and backlog
costs given the observed inventory/backlog level, the
machine operation mode, and the phase of the inter-
arrival time process. The decisions are taken at the

instances when production is completed, warmup is
completed, or a change in the inter-arrival process occurs.
Upon completion of a part, the control policy determines
whether the machine will be put in idle mode, switched
off, or continue production. Similarly, when a change
in the inter-arrival time process occurs, a machine in
idle mode can resume production, and a switched-off
machine can be switched on that requires awarmup delay
before the machine becomes fully operational again.
When the warmup is completed, themachine can resume
production or stay idle. The energy cost themanufacturer
incurs depends on the energy mode of the machine. The
problem ismaking the dynamic energymodedecisions to
minimise the expected energy consumption, inventory,
and backlog costs.

At time t, the state of the system is denoted by S(t) =
(P(t),N(t),A(t)) where P(t) is the machine’s energy
mode state, N(t) is the inventory/backlog position, and
A(t) is the phase of the inter-arrival time process at time t.

We consider inter-arrival, production, and warmup
times with phase-type distributions. A phase-type distri-
bution can be represented by a random variable describ-
ing the time until absorption of a Markov process with
one absorbing state. Each state of the Markov process
is referred to as a phase. With this representation, a
phase-type distribution can approximate a given general
distribution (Neuts 1994).

The demand inter-arrival time follows a phase-type
distribution with KA phases, and the expected inter-
arrival time is 1

λ
. At time t, the demand inter-arrival

process is in one of KA phases, i.e. A(t) ∈ {A1, . . . ,AKA}.
The process starts in phaseA1 and ends in phaseAKA . The
transition rates among different arrival phases are given
in the matrix QA.

The production time follows a phase-type distribution
withKW phases where the process starts in phaseW1 and
ends in phase WKW . The transition rates among differ-
ent production phases are given in the matrix QW , and
the expected production time is 1

μ
. Similarly, the warmup

time has a phase-type distribution with KR phases. The
process starts in phase R1 and ends in phase RKR . The
transition rates among different warmup phases are given
in the matrix QR. The expected warmup time is 1

τ
.

Since the production time and warmup time have
phase-type distributions with KW and KR phases,
together with the Idle andOff states, themodel hasKW +
KR + 2 machine-related states. Therefore, at time t, the
machine state isP(t) ∈ {W1, . . . ,WKW , I, O, R1, . . . , RKR}.

When production starts in phase W1, the machine
mode cannot be changed. That is, it cannot be turned
off or made idle before the production is completed in
phase WKW . Similarly, while the warmup time process
goes through phases 1 to KR, the machine cannot be
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turned off again before the warmup is completed in phase
KR. As a result, the decision to be taken at any given time t
does not changewith the changes in the phases of produc-
tion time and warmup time processes. To designate the
machine modes that are used for the decisions, the pro-
duction time states {W1, . . . ,WKW } are lumped into state
W and the warmup states {R1, . . . , RKR} are lumped into
state R. Correspondingly, the set of energymodes used in
the decisions is denoted byM = {W, I, O, R}.

The proposed method to derive the optimal con-
trol policy and analyse the system applies to the case
where Markovian Arrival Processes (MAP) are used to
model the inter-event times. This enables analysis of the
production control problems with correlated inter-event
times (ManafzadehDizbin and Tan 2019). This extension
is not given in the paper for brevity.

The energy mode control policy is denoted by u(t) =
{ua,m,n(t)} where ua,m,n(t) ∈ Um is the decision to be
taken depending on the inter-arrival process phase a,
energy mode m, and inventory position n at time t in
the long-run.Um includes the admissible discrete actions
that can be taken when the energy mode is m. Figure 1
depicts the transitions among the different states and the
corresponding decision variables. The transitions from
Working to Idle and Off when the production is com-
pleted, from Idle to Working, from Off to Warmup, and
fromWarmup completion to Idle or Working are instan-
taneous. The time in the Working state corresponds to
the random processing time. Whenever a warmup is
initiated, it is completed after a random warmup time.
When themachine starts working on a part andwhen it is
going through awarmup time, its state cannot be changed
until the completion of the processing or warmup.

The per-unit time energy cost consumed by the
machine when it is in mode m is cm, m ∈ M =
{W, I, O, R}. Im(t) is a binary variable that is 1 if themode

Figure 1. State transitions among the energy states and the cor-
responding decisions.

is m at time t and 0 otherwise. The energy costs at each
production and warmup phases are the same.

The expected energy consumption, inventory, and
backlog cost rate in the long run, depending on the
control policy u(t), χu(t) is given as:

χu(t) = E
u(t)

⎡
⎣ lim

T→∞
1
T

∫ T

t=0
C(S(t))

+
∑
m∈Q

cmIm(t) dt | S(0)
⎤
⎦ , (1)

where C(S(t)) = c−N−(t) + c+N+(t) is the total inven-
tory carrying and backorder cost, c+ is the inventory car-
rying cost, N+(t) = max{N(t), 0} is the inventory level,
c− is the backlog cost andN−(t) = max{−N(t), 0} is the
backlog level.

The energy mode control problem is stated as min-
imising the expected energy consumption, inventory,
and backlog cost rate, χu(t) by determining the state-
dependent decision u(t):

u∗(t) = inf
u(t)

χu(t). (2)

4. Determining the optimal energymode
control policy

Since the inter-event times are modelled as phase-type
distributions, the evolution of S(t) = (P(t),N(t),A(t))
can be described as a continuous time discrete state space
Markov Chain (CTMC). This enables us to formulate
our problem as an MDP and use well-known efficient
solution methods to compute its optimal policy. In this
study, we utilise a solution approach based on linear pro-
gramming to find the optimal policy to control produc-
tion and turn on/off the machine. The LP-based solution
approach has been previously used to find the optimal
control policies in production and/or energy mode con-
trol settings (see, e.g. Karabağ and Tan 2019; Loffredo
et al. 2023; Tan, Karabağ, and Khayyati 2023). Using
the LP approach allows us to leverage advanced opti-
misation software packages, empowering us to solve the
problem more effectively to determine the relevant opti-
mal policies in a shorter time than classical methods like
value/policy iterations.

Let us define c(s, d) as a function that represents the
cost of taking action d in state s and p(j | s, d) as a transi-
tion probability from state s to state j under action d. The
decision variable y(s, d) in the LP formulation represents
the proportion of time, in the long run, that the system
occupies state s when action d is executed. Considering
these parameters and decision variables, the general form
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of the linear programming formulation to determine the
optimal policy can be given as:

min
∑
s∈S

∑
d∈Ds

c(s, d)y(s, d), (3)

s.t. ∑
d∈Dj

y(j, d) −
∑
s∈S

∑
d∈Ds

p(j | s, d)y(s, d) = 0,

∀ j ∈ S, (4)∑
s∈S

∑
d∈Ds

y(s, d) = 1, (5)

y(s, d) ≥ 0, ∀ s ∈ S, ∀d ∈ Ds. (6)

Equation (3) represents the objective function minimis-
ing the long-run average cost. Equation (4) denotes the
system balance equation. That is, the balance equations
ensure that, in the long run, the flow-in and the flow-
out rates for each system state are equal. Given that the
decision variables form a probability mass function, it is
necessary for each decision variable to be non-negative
and their sum to equal exactly 1. These two conditions
are integrated into the formulation via Equations (5)
and (6). Note that our problem has three important char-
acteristics: (i) it has a discrete state space; (ii) both state
and action costs are strictly positive and bounded; and
(iii) there exists a finite number of allowable actions for
each state. These problem characteristics assure an opti-
mal deterministic and stationary policy obtained via the
LP formulation presented above (Bertsekas 2015; Put-
erman 2014). The explicit LP formulation for a specific
systemwhere the demand inter-arrival times have Erlang
and the production and warmup times have exponential
distributions is given in Appendix A.

In our problem definition, there is no restriction on
the inventory level. However, truncating the inventory
level’s lower and upper sides is necessary to use the linear
programming approach with a finite number of variables
and constraints (see, Appendix A). The upper truncation
level bounds the inventory levels, whereas the lower trun-
cation level bounds the backlog levels. Both truncation
levels are chosen to ensure that the long-run probabilities
at those levels remain lower than a prespecified tolerance
level. Since the LP approach allows for different decisions
in each state, the considered solution space is large. As the
number of states that represent the inter-arrival, produc-
tion, warmup times, and truncation levels increase, the
state space gets larger. In this case, finding the solution
with the LP approach gets computationally inefficient and
may be prone to computational issues. As such, the LP
approach can be used to show what type of policies are
better. However, in order to evaluate the performance of

a given system under a given threshold policy, we present
a computationally efficient method that uses a matrix
geometric approach in Section 6.

5. Structure of the control policy

In what follows, we consider a particular system in which
demand inter-arrival times have an Erlang distribution
and production and warmup times have exponential dis-
tributions. Based on our extensive numerical analyses
of this specific system, we discuss the general structure
of the integrated optimal production and energy control
policy.

When the demand inter-arrival time distribution is
Erlang, a monotonic phase-dependent threshold policy
is the optimal policy to control production and turn
on/off the machine. Figure 2 shows the optimal policy’s
structure for a specific system with Erlang(2) distributed
demand inter-arrival times and exponentially distributed
production andwarmup times. In this case, the switching
decision from one mode to another is contingent upon
whether the inventory/backlog level is higher or lower
than specific thresholds that depend on the inter-arrival
time phase. Given the inventory/backlog level n and the
inter-arrival time phase a, the transition from state i to
state j is triggered depending on the inventory/backlog
level n being above or below the phase-dependent thresh-
old Si,j(a) where i, j ∈ {W, I, O, R}, a ∈ {1, . . . ,KA} at the
decision epochs that are the times when production is
completed, warmup is completed, an inter-arrival phase
change occurs that leads to a part arrival at the last phase.

Figure 3 shows the phase-dependent threshold pol-
icy that governs the transitions among theWorking, Idle,
Warmup, and Off states. A working machine that com-
pletes production of a part when the inter-arrival time
process is in phase a either continues productionwith the
next part if the current inventory level n is lower than
SWI(a) or switches to idle mode if a sufficient number
of parts have been produced, i.e. SWO(a) > n ≥ SWI(a).
If the inventory level is quite high, n ≥ SWO(a) then the
machine is turned off.

When the machine is either off or idle, the inven-
tory/backlog level decreases. When the machine is idle,
it stays idle as long as the inventory/backlog level is still
above SIW(a) and production resumes as soon as the
inventory level falls below SIW(a). An idle machine is not
switched off because keeping the machine off rather than
idle would decrease the cost.

When the machine is off and the inventory level
reaches below SOW(a), the machine is switched back
on, and the warmup period starts. Upon the completion
of warmup, if the current inventory position is higher
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Figure 2. The optimal policy structure for a specific system where inter-arrival times have Erlang(2) and production and warmup times
have exponential distributions.

Figure 3. Phase-dependent threshold policy.

than SOW(a), the machine is kept idle (ready for pro-
duction, but production does not start). Otherwise, i.e.
n ≤ SOW(a), production starts immediately following
the completion of the warmup period.

Accordingly, the state-dependent decisions ua,m,n(t)
depicted in Figure 1 are expressed depending on the
thresholds Sij(a) as:

ua,W,n =

⎧⎪⎨
⎪⎩
2, if n ≥ SWO(a)
1, if SWO(a) > n ≥ SWI(a)
0, if n < SWI(a)

,

ua,O,n =
{
1, if n ≤ SOR(a)
0, if n > SOR(a)

, (7)

ua,R,n =
{
1, if n > SOW(a)
2, if n ≤ SOW(a)

,

ua,I,n =
{
1, if n ≤ SIW(a)
0, if n > SIW(a)

. (8)

5.1. Relationship between phase-dependent and
time-based energy control policies

To implement the phase-dependent policies described
in the preceding section, the phases of the inter-arrival
time process need to be known when taking an action.
However, the phase-type distribution used to model a
given inter-arrival time distribution and the phase of
the fitted distribution is typically not observable in prac-
tice. Accordingly, the current phase must be estimated
from the elapsed times to implement this control pol-
icy for real-life cases. This section proposes a policy for
dynamically controlling production and energy modes
for make-to-stock systems with Erlang-distributed inter-
event times. We show that the current phase of an inter-
event time distribution modelled as a phase-type distri-
bution can be predicted using themonitored inter-arrival
times and predetermined time thresholds. As a result,
a phase-dependent policy can be implemented by using
these time thresholds and the inventory position. This
relationship supports the time- and buffer-based policies
that have been proposed as effective control policies in
the literature (see, e.g. Frigerio and Matta 2015).

5.1.1. Prediction of the current phase based on the
elapsed time for Erlang-type inter-event times
Let the transition time for an event, denoted with T, be a
random variable having an Erlang(K) distribution with
mean E[T] and P(t) ∈ {1, . . . ,K} be the phase of the
Erlang distribution at time t. Let us assume that we can
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observe when the event is initiated, denoted with t0, and
ends, denoted with te; but we cannot observe the inter-
mediary phase where the process is in at time t = t0 + τ ,
t0 ≤ t ≤ te. Theorem 5.1 states that the current phase of
the process at time t can be predicted based on the elapsed
time τ .

Theorem 5.1: Based on the elapsed time τ since an event
that has an inter-event time distribution of Erlang(K) and
mean E[T] is initiated at time t0, the phase of the Erlang(K)
distribution that has the highest transient probability at
t0 + τ is k∗, i.e. Prob[P(t0 + τ) = k∗] > Prob[P(t0 +
τ) = k],∀k 	= k∗ where

k∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
argmin

k

{
k | τ <

k
K
E[T]

}
,

if τ < E[T], k = 1 . . . ,K,
K, if τ ≥ E[T].

(9)

Equivalently,

k∗ =

⎧⎪⎪⎨
⎪⎪⎩
k, if

k − 1
K

E[T] ≤ τ <
k
K
E[T],

k = 1 . . . ,K,
K, if τ ≥ E[T].

(10)

Proof: For an Erlang process, the transient probability of
being in state k at time t is given as:

Prob[P(t0 + τ) = k | P(t0) = 1]

= (μτ)k−1 e−μτ

(k − 1)!
, k = 1, . . . ,K,

(11)

where μ = K/E[T]. The condition for the phase with
the highest probability at time t0 + τ , Prob[P(t0 + τ) =
k∗] > Prob[P(t0 + τ) = k],∀k 	= k∗ with the closed-
form expression for the probability of being in a
given phase given in Equation (11) gives the result in
Equation (10). �

The result given in Equation (10) shows that the cur-
rent phase of the distribution can be predicted by using
the time since the event is initiated and a set of criti-
cal times, kE[T]

K where k = 1, . . . ,K that depend on the
mean E[T] and the coefficient of variation (cv) of the
inter-event time distribution where K = 1/cv2. There-
fore, a phase-dependent policy can be implemented by
first predicting the current phase based on the elapsed
time since the initiation of the event and the critical times
that are determined in advance based on themean and cv
of the inter-event time distribution. Consequently, when

the inter-arrival times follow an Erlang distribution, a
phase-dependent policy is equivalent to a time-based pol-
icy.

This approach can be extended to predict the current
phase for other phase-type distributions based on the
observed elapsed times since the last arrivals. However,
predicting the current phase for a general phase-type dis-
tribution requires using not only the most recent elapsed
time since the last arrival, as in the case of Erlang dis-
tribution but a sequence of the elapsed times. Then, the
sequence of the elapsed times can be analysed using
an appropriate statistical method to predict the current
phase. The predicted phase can then be used to imple-
ment the phase-dependent threshold policy.

6. Matrix geometric solution for the phase
dependent control policy

The LP approach given in Section 4 yields the optimal
policy and the performance under the optimal policy
that uses phase-dependent thresholds. In this section, we
present a matrix geometric method that evaluates the
system’s performance under optimal and approximate
threshold policies that use fewer parameters that depend
on a collection of phases.

The matrix geometric approach analyses the
continuous-time Markov Chain (CTMC) that describes
the dynamics of the system under a given control policy.
We develop an algorithm to generate the state space and
determine the transitions among the states automatically
for a machine with the given inter-event time processes
and the given control policy.

Figure 4 depicts the state-transition diagram for a sys-
tem that operates in the working, idle, warmup, and off
modes and is controlled by the optimal phase-dependent
threshold policy. The system parameters determine the
order of the optimal phase-dependent thresholds. Based
on this order, certain thresholds are reached before the
others. As a result, certain transitions from a given
state may not be possible. Correspondingly, the system’s
dynamics can be determined by a subset of the thresh-
olds. In this example, the dynamics of the system are
determined by five thresholds.

After determining the state space and the transi-
tion rates, the system performance for the given control
parameters can be evaluated by finding the long-run
probabilities of the underlying CTMC. Then, the opti-
mal control parameters can be determined by using an
optimisation approach that evaluates the performance for
different values of the control parameters at each step.

Since the backlog level can be infinite, determining
the long-run probabilities by directly utilising the tran-
sition rate matrix is impossible. Truncating the backlog
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Figure 4. Continuous Time Markov Chain state transition diagram for a specific system that operates with the Working, Off and Idle
modes.

level at a given level introduces evaluation errors. Fur-
thermore, even after truncation, the size of the state space
can be very large for efficient analysis (Tan, Karabağ, and
Khayyati 2023). We present a matrix-geometric method
to assess the system’s performance controlled with the
optimal policy efficiently and accurately without the need
to truncate the backlog levels.

In the following part, we introduce an efficientmethod
to determine the long-run probabilities of a machine
where the arrival process is modelled as Marked Marko-
vianArrival Process (MMAP) and the warmup times and
the production time process are modelled as Markovian
Arrival Processes. Using MMAPs and MAPs for mod-
elling inter-event times allowsmodelling correlated inter-
event times with general inter-event time distributions
that can be represented as phase-type distributions. Tan,
Karabağ, and Khayyati (2023) use a similar approach to
analyse a systemwith a buffer-based threshold-type energy
mode and control policy.Ourwork extends this approach
to a system controlled with a phase-dependent threshold
policy.

6.1. MMAPmodel

We consider a setting where the arrival process, the
warmup times, and the production time process are
modelled with an MMAP, MAP, and MAP, respectively.

Markov Arrival Processes (MAP) are used to model cor-
related arrivals with general distributions described as
phase-type distribution using a continuous time Markov
chain (Neuts 1979). As an extension of MAPs, MMAPs
are used to model different types of arrivals referred to
as marked arrivals together with the arrival process (He
and Neuts 1998; Khayyati and Tan 2020). In our setting,
arrivals are considered marked arrivals when the arrival
process is in a given phase or one of the bundled phases.
When a particular marking is observed, the correspond-
ing threshold for thismarking is used. Each time an event
occurs, a marking is generated depending on the system
state following this event and the corresponding state-
dependent threshold to be used. As shown in Figure 3,
the phase-dependent threshold policy is determined by
five thresholds for each phase of the inter-arrival process
a: SWI(a), SWO(a). SOR(a), SOW(a) and SIW(a). Using
Marked Markov Arrival Processes facilitates modelling
the system dynamics for such systems as a continuous
time Markov process.

AMMAPX is described by thematrices (X0,X11, . . . ,
X1C). In this representation, X0 has the transition rates
that do not result in an arrival. In addition, X1c has
the transition rates that result in an arrival marked c,
c = 1, . . . ,C where C is the number of markings. The
infinitesimal generator matrix of the process X is given
as X0 + ∑C

c=1 X1c.
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In our case, the state space is constructed to record
the inventory position N(t), the marking that indi-
cates which phase-dependent threshold to use, the inter-
arrival time process phase A(t), and the machine mode
P(t) (either Off, Warmup including Warmup phase,
Idle or Working including Processing time phase). Fur-
thermore, for the optimal phase-dependent policy, each
marking corresponds to a different phase of the inter-
arrival process, i.e. C = KA. For the phase-independent
policy, C = 1. For an approximate policy that uses bun-
dles of phases, the number of markings will be less than
the number of arrival phases, i.e. C < KA. For example,
an approximate policymay bundle the arrival phases into
two categories, such as high and low, and use different
thresholds for the high and low phases. In this case, C
will be 2. In this example, this approach decreases the
number of policy parameters from 5KA to 10 and will be
computationally more efficient when the inter-arrival cv
is low.

Since the state-dependent energy-mode control policy
uses the current phase of the inter-arrival time, the energy
mode, and the inventory/backlog level, the event arrivals
coinciding with arrival-process phase changes and the
production or warmup phase changes need to be dif-
ferentiated. Accordingly, let (A0,A11, . . . ,A1C,A21, . . . ,
xA2C) denote the inter-arrival time process for themark-
ings, where A0 has the transition rates that do not result
in an arrival of a marking or a demand,A11, . . . ,A1C are
for the arrivals ofmarkings that coincide with the arrivals
of demands, and A21, . . . ,A2C are for transitions that
result in arrival of amarking without a demand, e.g. tran-
sitions for the phase changes that coincide with marking
arrivals, before reaching the last phase that generates the
demand arrival. In this case, QA = A0 + ∑C

c=1(A1c +
A2c).

Let Y denote the CTMC model of the system. Let π

denote the long-run probability vector for the transition
matrix Y. If the state-space is truncated at an appro-
priate backlog level, the long-run probability vector π

can be obtained by finding the solution of the equa-
tions πY = 0 and πu = 1 where u is a column vector
of 1s. In the next section, we present a matrix geometric
method that exploits the special structure of the transi-
tion matrix to obtain the long-run probabilities without
the need to construct the transitionmatrix fully and then
truncate it.

6.2. Obtaining the long-run probabilities and the
performancemeasures

The transition matrix Y for the system controlled with
a phase-dependent control policy has a block-triangular
structure as shown in Equation (12).

(12)
The blocks of the transition matrix Y are generated

according to the events related to arrivals, markings,
and energy mode changes. The formulas for obtaining
Y directly from the matrices are associated with the
MMAP representation of demand inter-arrival, warmup,
and production times and then forming the submatrices
defining the block tridiagonal structure of Y are given
in A.

The long-run probabilities can be determined with-
out truncating the infinite-size state space by utilising
the matrix geometric method (Neuts 1994). Once the
blocks of the transition matrix Y are determined based
on the MMAP representation of the inter-event times,
the balance equations corresponding to the equations
πY = 0 and πu = 1 are written using these blocks. To
rewrite the balance equations using the blocks given
above (G0, G1, G2, B1,1, B2,1, B0,0, B0,1, B1,0), we repre-
sent the long-run probability vector as a concatenation
of vectors for the boundary and repeating states using
π = [b, v0, v1, v2, . . .]. Then, the balance equations can
be expressed as:

bB0,0 + v0B1,0 = 0, (13)

bB0,1 + v0B1,1 + v1B2,1 = 0, (14)

vjG0 + vj+1G1 + vj+2G2 = 0, j = 0, 1, 2, . . . , (15)

b1 +
∞∑
j=0

vj1 = 1. (16)

A general solution for the long-run probability vectors vj,
j = 0, 1, . . . is vj = v0Rj whereR ∈ R

β×β is calculated by
iteratively applying

R = − (
G0 + R2G2

)
G−1
1 (17)

until convergence. Substituting vj = v0Rj in Equa-
tions (13)–(16) yields a set of linear equations that
can be solved to obtain the long-run distribution π =
[b, v0, v1, v2, . . .].
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6.3. Obtaining the performancemeasures

Once the long-run probability vector π is obtained, the
probability of the inventory level being s is determined as
(ei=S̄−s+1,X ⊗ 11,C ⊗ 11,KA ⊗ 11,4 ⊗ 11,KR ⊗ 11,KW )πT

and the probability of being in energy modem is (11,X ⊗
11,C ⊗ 11,KA ⊗ em,4 ⊗ 11,KR ⊗ 11,KW )πT, where ei,x is a
row vector of size xwith its ith entry as 1 and 0 elsewhere,
1i,j denotes a i × jmatrix of ones and πT is the transpose
of π .

The long-run probabilities of being in particular
energy modes and the probabilities of the inventory level
being at different levels allow determining the average
total cost rate that includes the energy cost and also the
inventory holding and backlog costs for given threshold
levels.

6.4. Determination of control parameters

The policy considered here has five thresholds for each
marking SWI(a), SWO(a), SOR(a), SOW(a) and SIW(a)
where a is the phase of the demand inter-arrival pro-
cess. Hence, optimising the system requires optimising
5C parameters. The optimisation can be performed using
heuristic methods, e.g. the genetic algorithm. The com-
putational effort for performance evaluation of a set of
thresholds depends on two main steps. The first step is
calculating the matrix R for given system parameters by
using Equation (17), and the second step is solving the
balance equations given in Equations (13)–(16) by using
R. This step is computationally very efficient. For exam-
ple, for an approximate policy that bundles the phases in
high and low categories, the performance of the system
under this policy with its 10 thresholds can be calculated
under 0.2 s. The time to determine the optimal parame-
ters depends on the algorithm used for optimisation and
its parameters. The process of optimising the system is
improved by calculating R once and then repeating the
second step while evaluating the performance of a set of
thresholds.

7. Numerical results

This section presents our numerical results for the system
with Erlang demand inter-arrival times and exponen-
tial processing and warmup times. Our main objective
in these numerical experiments is to understand how
the system parameters affect the control policy and how
incorporating the phase of the inter-arrival time that
indicates the elapsed time since the last arrival improves
the performance.

To examine how the system parameters affect the per-
formance of the control policy, the optimal average cost

Table 1. Parameter of the numerical experimentswith the Erlang
inter-event times.

Parameter Set Parameter Set

μ {1} c+ {1}
λ {0.5, 0.6, 0.7, 0.8, 0.9} cI {50}
τ {0.2} cW {100}
cv2a {0.1, 0.25, 0.5, 1} cO {0}
cv2s {1} cR {150, 200, 250, 300}
cv2R {1} c− {3}

is obtained for different arrival rates, inter-arrival time
cvs, and warmup costs according to the values given
in Table 1. The phase-dependent solution is obtained
by solving the corresponding LP formulation given in
Appendix A. The solution time for the LP solution for
each case is under 30 s using Gurobi optimiser (version
5.5.0) in GAMS on a computer with Intel(R) Core(TM)
i7-1165G7 CPU (2.80GHz, 16GB RAM). The phase-
independent solution is obtained by using the Matrix
Geometric approach given in Section 6 in 2 s on the
same computer. The number of parameters defining the
optimal phase-dependent policies in these experiments
varies between 5 for the cases with cva2 = 1 and 50 for the
cases with cva2 = 0.1. The number of parameters of the
phase-independent policy is 5 for all values of cva2.

Figure 5 illustrates how the optimal cost changes with
the arrival rate for different values of the inter-arrival
time cv and the warmup cost. The figure indicates that
the average cost increases as the demand inter-arrival
rate and the warmup cost increase. A higher cv of the
demand inter-arrival rate and the warmup cost leads to
a higher cost for the same demand inter-arrival rate and
the warmup cost.

We analyse the effect of using the phase of the inter-
arrival time that indicates the elapsed time since the last
arrival in the control policy by comparing the average
cost obtained by utilising the phase-dependent, phase-
independent thresholds policies, and always-on policy.

The energy-saving level that will be obtained by using
the proposed policy can be evaluated by comparing the
results for the proposed policy with the always-on pol-
icy. The always-on policy controls only the machine for
inventory and backlog costs by keeping it working or
idle without turning it off. The phase-dependent policies
use the current phase of the inter-arrival time together
with the current inventory position. In contrast, the
phase-independent policies only use the current inven-
tory position to decidemachinemode changes. The opti-
mal parameters of the policies are determined by using
the approach described in Section 6.

Table 2 gives the comparison of the total costs obtained
by the phase-dependent and the always-on policies for a
production system where the demand inter-arrival times
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Figure 5. The effect of the arrival rate on the optimal cost for different values of the inter-arrival time cv and thewarmup cost (cW = 100,
cI = 50, cO = 0, c+ = 1, c− = 3,μ = 1, τ = 0.2).

have Erlang(2), the production and warmup times have
exponential distributions for different utilisation levels
and warmup costs. The always-on policy uses a single
threshold parameter to decide when to stop production
and stay idle, depending on the inventory level.

Our numerical results indicate that the control policy
that utilises the current phase yields significant advan-
tages compared to the always-on policy that does not
control energymodes together with the production espe-
cially when the system utilisation is low. For example,
when the utilisation is 50% (λ = 0.5), the proposed pol-
icy yields an energy saving of 12% compared to the
always-on policy and when the utilisation is 60% (λ =
0.6), the proposed policy yields an energy saving of
6% compared to the always-on policy. However, as the
utilisation increases, the energy-saving potential dimin-
ishes. This is because when the arrival rate is high,
the production resource cannot be turned off due to
the warmup delay. In this case, the production resource
switches between the idle and workingmodes and, there-
fore, operates according to the always-on policy. In this

case, there will be no energy saving for a heavily utilised
resource. However, when the arrival rate is low, the
unutilised time can be managed effectively by turning off
the machine and then making it operational at the right
time, considering the warmup delay tomeet the demand.

Table 2 also compares the total costs obtained by the
same system’s phase-dependent and phase-independent
threshold policies. The phase-independent policy uses 5
thresholds SWI, SWO. SOR, SOW and SIW that determine
the rules of switching among the energy modes indepen-
dent of the inter-arrival process. The results show that
the phase-independent policy with the right parameters
yields an average cost very close to the cost obtained
with the optimal phase-dependent policy for the case
with Erlang inter-arrival and exponential production and
warmup times. The average and maximum percentage
differences for all the cases are 0.06% and 0.23%, respec-
tively. For this case, having exponential production and
exponential warmup times diminishes the effect of incor-
porating the elapsed time information in the policy. That
is, the effect of changing the decision based on the elapsed
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Table 2. Comparison of the total costs obtained by the phase-dependent, phase-independent, and always-on policies for a system
where the inter-arrival times have Erlang, the production and warmup times have exponential distribution (cW = 100, cI = 50, cO = 0,
c+ = 1, c− = 3,μ = 1, τ = 0.2).

time is limited since the system dynamics following the
change are affected more by the variability in the pro-
duction and warmup times. Our additional numerical
experimentswith Erlang inter-arrival andErlang produc-
tion and warmup times show that as the production and
warmup times become less variable, the benefit of using
a phase-dependent policy that incorporates the elapsed
time since the last arrival increases.

8. Conclusion

In this paper, we explore the optimal control policies to
control production and the energy mode for a machine
operating in various energy modes, including working,
off, idle, and warmup, with inter-arrival, production, and
warmup times that have phase-type distributions. The
optimal control solution that minimises the expected
costs associated with energy usage in different modes
and inventory and backlog costs is determined by solving
a linear program associated with the MDP. A matrix-
geometric method is presented to analyse the system
performance under the optimal control policy.

This study extends the results for the dynamic on/off
control problem given in the literature for systems with
exponential inter-arrival times and presents the optimal

policy when the inter-arrival times have phase-type dis-
tribution. More specifically, based on the LP solution of
the underlying MDP of the problem for a wide range
of parameters, we reveal that when the inter-arrival
time distribution is not exponential, the optimal pol-
icy is defined by the current phase of the inter-arrival
time together with the inventory position. In addition,
we present a method to predict the current phase of
the inter-arrival process by using the time elapsed since
the last arrival. Therefore, by analysing the structure
of the optimal policies, we offer an analytical basis to
analyse and implement time- and buffer-based policies.
Our numerical analysis shows that buffer-based poli-
cies can yield near-optimal results for systems with
high production and warmup time variability if their
parameters are chosen appropriately. In addition, when
the system utilisation is low, using the current phase
to control energy modes outperforms the always-on
policy, which does not coordinate energy modes with
production.

This work can be extended in several ways. First,
our work focuses on a system with a single machine.
Extending our work to determine the optimal energy and
production control strategies for a system with multi-
ple machines is a future research direction. Second, in
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this study, the optimal policy to control energy mode
and production in a system with phase-type inter-arrival
times is obtained numerically through the solution of
the LP associated with the MDP. Exploring the analyt-
ical characterisation of the optimal policy structure is
a challenging future research direction. Third, develop-
ing a method that estimates the current state to imple-
ment time- and buffer-based policies in systems with
MAP inter-event times is also left for future research.
Lastly, in our work, we assume that the machine never
breaks down, i.e. is reliable. Extending this work to a set-
ting with an unreliable machine enables us to examine
the impact of maintenance decisions on the system and
policy performance metrics. This is also left for future
research.

In conclusion, we show that policies that only use
the inventory position information can be effective if
the control parameters are chosen appropriately. How-
ever, as the inter-arrival time variability decreases, the
benefit of using the time- and buffer-based policies
increases.
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Appendices

Appendix 1. LP formulation for the Case with
Erlang inter-arrival, Exponential Production,
andWarmup Times

In this section, we give the linear programming formulation
for the case in which the time between two successive demand
arrivals is considered to follow an Erlang process. The inven-
tory level is limited to a range between B and B, with any excess
or shortage above or below this range being truncated with
these two levels.We determine these truncation levels using the
procedure described in the main text.

The decision variables of the LP formulation are denoted by
Ya,m,n,ua,m,n where a ∈ A,m ∈ M, n ∈ N , ua,m,n ∈ Um. To sim-
plify the notation, in the formulation, Ya,m,n,um is used instead
of Ya,m,n,ua,m,n . These decision variables are interpreted as the
long-run fraction of the time spent in state (a,m, n)with action
um. With the given sets and decision variables, the formulation
is:

min π =
∑
a∈A

∑
m∈M

∑
n∈N1

∑
um∈Um

c+nYa,m,n,um

+
∑
a∈A

∑
m∈M

∑
n∈N2

∑
um∈Um

c−|n|Ya,m,n,um

+
∑
a∈A

∑
n∈N

∑
uI∈UI

cIYa,I,n,uI

+
∑
a∈A

∑
n∈N

∑
uR∈UR

cRYa,R,n,uR

+
∑
a∈A

∑
n∈N

∑
uW∈UW

cWYa,W,n,uW

+
∑
a∈A

∑
n∈N

∑
uO∈U0

cOYa,0,n,u0 (A1)

subject to ∑
uW∈UW

Y1,W,B,uW −
∑

uW∈UW

λYKA ,W,B,uW

−
∑

uW∈UW

λYKA ,W,B+1,uW − λYKA ,I,B,1

− λYKA ,I,B+1,1 − δY1,R,B,1

−
∑

uW∈UW

(1 − λ − μ)Y1,W,B,uW

= 0, ∀ a ∈ {1} ,m ∈ {W} , n ∈ {
B
}
, (A2)∑

uW∈UW

Y1,W,n,uW − μY1,W,n−1,1

−
∑

uW∈UW

λYKA ,W,n+1,uW − λYKA ,I,n+1,1

− δY1,R,n,1

−
∑

uW∈UW

(1 − λ − μ)Y1,W,n,uW

= 0, ∀ a ∈ {1} ,m ∈ {W} , n ∈ N4, (A3)∑
uW∈UW\{1}

Y1,W,B̄−1,uW − μY1,W,B̄−2,1

− λYKA ,I,B̄,1 − δY1,R,B̄−1,1

−
∑

uW∈UW\{1}
(1 − λ − μ)

× Y1,W,B̄−1,uW = 0,

∀ a ∈ {1} ,m ∈ {W} , n ∈ {
B̄ − 1

}
, (A4)∑

uW∈UW

Ya,W,B,uW −
∑

uW∈UW

λYa−1,W,B,uW

− λYa−1,I,B,1 − δYa,R,B,1

−
∑

uW∈UW

(1 − λ − μ)Ya,W,B,uW

= 0, ∀ a ∈ A \ {1} ,m ∈ {W} , n ∈ {
B
}
,
(A5)∑

uW∈UW

Ya,W,n,uW − μYa,W,n−1,1

−
∑

uW∈UW

λYa−1,W,n,uW

− λYa−1,I,n,1 − δYa,R,n,1

−
∑

uW∈UW

(1 − λ − μ)Ya,W,n,uW
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= 0, ∀ a ∈ A \ {1} ,m ∈ {W} , n ∈ N4,
(A6)∑

uW∈UW\{1}
Ya,W,B̄−1,uW − μYa,W,B̄−2,1

− λYa−1,I,B̄−1,1 − δYa,R,B̄−1,1

−
∑

uW∈UW\{1}
λYa−1,W,B̄−1,uW

−
∑

uW∈UW\{1}
(1 − λ − μ)Ya,W,B̄−1,uW = 0,

∀ d ∈ A \ {1} ,m ∈ {W} , n ∈ {
B̄ − 1

}
, (A7)∑

uI∈UI

Y1,I,B,uI − λYKA ,I,B,0 − λYKA ,I,B+1,0

− δY1,R,B,0

−
∑
uI∈UI

(1 − λ)Y1,I,B,uI

= 0, ∀ a ∈ {1} ,m ∈ {I} , n ∈ {
B
}
, (A8)∑

uI∈UI

Y1,I,n,uI − λYKA ,I,n+1,0 − μY1,W,n−1,0

− δY1,R,n,0

−
∑
uI∈UI

(1 − λ)Y1,I,n,uI = 0,

∀ a ∈ {1} ,m ∈ {I} , n ∈ N3, (A9)∑
uI∈UI\{1}

Y1,I,B̄,uI − μY1,W,B̄−1,0 − δY1,R,B̄,0

−
∑

uI∈UI\{1}
(1 − λ)Y1,I,B̄,uI = 0,

∀ a ∈ {1} ,m ∈ {I} , n ∈ {
B̄
}
, (A10)∑

uI∈UI

Ya,I,B,uI − λYa−1,I,B,0 − δYa,R,B,0

−
∑
uI∈UI

(1 − λ)Ya,I,B,uI = 0,

∀ a ∈ A \ {1} ,m ∈ {I} , n ∈ {
B
}
, (A11)∑

uI∈UI

Ya,I,n,uI − λYa−1,I,n,0 − μYa,W,n−1,0

− δYa,R,n,0 −
∑
uI∈UI

(1 − λ)Ya,I,n,uI = 0,

∀ a ∈ A \ {1} ,m ∈ {I} , n ∈ N3, (A12)∑
uI∈UI\{1}

Ya,I,B̄,uI − λYa−1,I,B̄,0

− μYa,W,B̄−1,0 − δYa,R,B̄,0

−
∑
uI∈UI

(1 − λ)Ya,I,B̄,uI = 0,

∀ a ∈ A \ {1} ,m ∈ {I} , n ∈ {
B̄
}
, (A13)

∑
uO∈UO

Y1,O,B,uO − λYKA ,O,B,0 − λYKA ,O,B+1,0

− λYKA ,I,B,2 − λYKA ,I,B+1,2

−
∑

uO∈UO

(1 − λ)Y1,O,B,uO = 0,

∀ a ∈ {1} ,m ∈ {O} , n ∈ {
B
}
, (A14)∑

uO∈UO

Y1,O,n,uO − λYKA ,O,n+1,0

− λYKA ,I,n+1,2 − μY1,W,n−1,2

−
∑

uO∈UO

(1 − λ)Y1,O,n,uO = 0,

∀ a ∈ {1} ,m ∈ {O} , n ∈ N3, (A15)∑
uO∈UO

Y1,O,B̄,uO − μY1,W,B̄−1,2

−
∑

uO∈UO

(1 − λ)Y1,O,B̄,uO = 0,

∀ a ∈ {1} ,m ∈ {O} , n ∈ {
B̄
}
, (A16)∑

uO∈UO

Ya,O,B,uO − λYa−1,O,B,0 − λYa−1,I,B,2

−
∑

uO∈UO

(1 − λ)Ya,O,B,uO = 0,

∀ a ∈ A \ {1} ,m ∈ {O} , n ∈ {
B
}
, (A17)∑

uO∈UO

Ya,O,n,uO − λYa−1,O,n,0

− λYa−1,I,n,2 − μYa,W,n−1,2

−
∑

uO∈UO

(1 − λ)Ya,O,n,uO = 0,

∀ a ∈ A \ {1} ,m ∈ {O} , n ∈ N \ {
B
}
,
(A18)∑

uR∈UR

Y1,R,B,uR −
∑

uR∈UR

λYKA ,R,B,uR

−
∑

uR∈UR

λYKA ,R,B+1,uR − λYKA ,O,B,1

− λYKA ,O,B+1,1

−
∑

uR∈UR

(1 − λ − δ)Y1,R,B,uR = 0,

∀ a ∈ {1} ,m ∈ {R} , n ∈ {
B
}
, (A19)∑

uR∈UR

Y1,R,n,uR −
∑

uR∈UR

λYKA ,R,n+1,uR

− λYKA ,O,n+1,1 −
∑

uR∈UR

(1 − λ − δ)

× Y1,R,n,uR = 0,

∀ a ∈ {1} ,m ∈ {R} , n ∈ N4, (A20)
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∑
uR∈UR

Y1,R,B̄−1,uR −
∑

uR∈UR\{1}
λYKA ,R,B̄,uR

− λYKA ,O,B̄,1 −
∑

uR∈UR

(1 − λ − δ)

× Y1,R,B̄−1,uR = 0,

∀ a ∈ {1} ,m ∈ {R} , n ∈ {
B̄ − 1

}
, (A21)∑

uR∈UR

Ya,R,n,uR −
∑

uR∈UR

λYa−1,R,n,uR

− λYa−1,O,n,1 −
∑

uR∈UR

(1 − λ − δ)

× Ya,R,n,uR = 0,

∀ a ∈ A \ {1} ,m ∈ {R} , n ∈ N \ {
B̄
}
,
(A22)∑

uR∈UR\{1}
Ya,R,B̄,uR − λYa−1,O,B̄,1

−
∑

uR∈UR\{1}
(1 − λ − δ)Ya,R,B̄,uR = 0,

∀ a ∈ A \ {1} ,m ∈ {R} , n ∈ {
B̄
}
, (A23)∑

a∈A

∑
m∈M

∑
n∈N

∑
um∈Um

Ya,m,n,um = 1, (A24)

Ya,W,B̄,uW = 0 ∀ a ∈ A,m ∈ {W} , n ∈ {
B̄
}
, (A25)

Ya,W,B̄−1,uW = 0 ∀ a ∈ A,m ∈ {W} , n ∈ {
B̄ − 1

}
, (A26)

Y1,R,B̄,uR = 0 ∀ a ∈ {1} ,m ∈ {R} , n ∈ {
B̄
}
, (A27)

Ya,R,B̄,1 = 0 ∀ a ∈ A \ {1} ,m ∈ {R} , n ∈ {
B̄
}
, (A28)

Ya,m,n,um ≥ 0 ∀ a ∈ A,m ∈ M, n ∈ N , um ∈ Um. (A29)

In Equation (A1), we give the objective function aiming at
minimising the system’s long-run expected cost rate. Equa-
tions (A2) to (A23) stand for the balance equations of the
system. They ensure that the probabilities of leaving from and
entering a particular state are in equilibrium in the long run.
The unreachable states in the formulation are eliminated by
Equations (A25) to (A28). Lastly, the sum of decision variables
must be one and each of them must be greater than or equal to
zero as they constitute a probability mass function. With Equa-
tions (A24) and (A29), we ensure that these two conditions are
satisfied.

Appendix 2. Forming the CTMCmodel of the
system

We use the following equations for obtaining the CTMCmodel
of the system from the matrices that describe demand inter-
arrival, production, and warmup time processes. The tran-
sitions related to the arrival of a part and inter-arrival time
process phase change are given as:

Y1 =
X∑
i=1

C∑
c1=1

C∑
c2=1

(
Ji,i+δi<X ,X ⊗ Jc1,c2,C ⊗ A1c2 ,

⊗
(
�1,S̄−(i+δi<X)+1,c2 + J2,2,4

+ �3,S̄−(i+δi<X)+1,c2 + J4,4,4
)

⊗IKR ⊗ IKW

)
,

+
X∑
i=1

C∑
c1=1

C∑
c2=1

(
Ji,i,X ⊗ Jc1,c2,C ⊗ A2c2 ,

⊗ (
�1,S̄−i+1,c2 + J2,2,4 + �3,S̄−i+1,c2 + J4,4,4

)
⊗IKR ⊗ IKW

)
,

and Y2 = ∑X
i=1 (Ji,i,X ⊗ IC ⊗ A0 ⊗ I4 ⊗ IKR ⊗ IKW ), where

Ji,j,x denotes a x × x square matrix with 1 in row i and col-
umn j and 0 elsewhere, Ix denotes the identity matrix of size
x, s = S̄ − i + 1 denotes the inventory/stock level, and

	s,c =

⎡
⎢⎣

δs>SON (c) δs≤SON (c)
0 0
0 0

δs≥SWO(c) 0

0 0
δs>SOW (c) δs≤SOW (c)
δs>SIW (c) δs≤SIW (c)

δs≥SWI(c)∧s<SWO(c) δs<SWO(c)∧s<SWI(c)

⎤
⎥⎦ ,

and

�m,s,c = 	s,c ·
((
em,4

)T ⊗ [
1 1 1 1

])
that controls the evolution of the energymodes of themachine.

The transitions related to the completion of a warmup pro-
cess and warmup process phase change are given as:

Y3 =
X∑
i=1

C∑
c=1

(
Ji,i,X ⊗ Jc,c,C ⊗ IKA ⊗ �2,S̄−i+1,c ⊗ R1 ⊗ IKW

)
,

and

Y4 =
X∑
i=1

(
Ji,i,X ⊗ IC ⊗ IKA ⊗ J2,2,4 ⊗ R0 ⊗ IKW

)
.

Similarly, the transitions related to the completion of a produc-
tion process and production process phase change are:

Y5 =
X∑
i=2

C∑
c=1

(
Ji,i−1,X ⊗ Jc,c,C ⊗ IKA ⊗ �4,S̄−(i−1)+1,c

⊗IKR ⊗ W1
)
,

and

Y6 =
X∑
i=2

(
Ji,i,X ⊗ IC ⊗ IKA ⊗ J4,4,4 ⊗ IKR ⊗ W0

)
.

Finally,Y = ∑6
i=1 Yi yields the transitionmatrix for theCTMC

model of the system.
Let f1(i, j) denote the block of Y between rows (i − 1)β + 1

and iβ , and columns (j − 1)β + 1 and jβ , and let f2(i1, i2, j1, j2)
denote the block of Y between rows (i1 − 1)β + 1 and i2β , and
columns (j1 − 1)β + 1 and j2β , whereβ = 4CKAKRKW . Then,
the repeating and the boundary levels to be used in the matrix
geometric method can be defined as:

G0 = f1(X − 1,X), (A30)



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 19

G1 = f1(X − 1,X − 1), (A31)

G2 = f1(X − 1,X − 2), (A32)

B1,1 = f1(X − 3,X − 3), (A33)

B2,1 = f1(X − 2,X − 3), (A34)

B0,0 = f2(1,X − 4, 1,X − 4), (A35)

B0,1 = f2(1,X − 4,X − 3,X − 3), (A36)

B1,0 = f2(X − 3,X − 3, 1,X − 4). (A37)
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