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ABSTRACT

In literature, a variety of models, representations and for-
malisms exist that describe electromagnetic waves and their
interaction with media. The choice of model often depends
on the required properties of the electromagnetic wave, e.g.
the degree of polarization or whether the modeled electro-
magnetic wave is described coherently (amplitude and phase)
or incoherently (only amplitude). In this study, we propose
a more unified theoretical framework that can represent all
cases of coherent, non-coherent, fully polarized, partially po-
larized, and non-polarized electromagnetic waves. The novel
framework also represents them in such a way that the princi-
ples of energy conservation and conservation of polarization
states are already manifested in the equations.

Index Terms— complexification, Jones, Stokes, Mueller,
Fresnel, reflection, transmission, scattering, spinor helicity
formalism, bispinor

1. INTRODUCTION

A unifying parameterization and spectrum-overarching mod-
eling of object properties for the prediction and analysis of
wave-media interaction over a broad electromagnetic spec-
trum is becoming increasingly important, especially in the
light of the growing fleet of earth observation sensors. The
objective of this research is to find a formalism that can not
just represent all cases of coherent, non-coherent, fully polar-
ized and partially polarized electromagnetic waves, but also
describe them in such a way that the principles of energy con-
servation and conservation of an incoming polarization state
are already manifested in the equations. This would result in a
more time efficient, numerically stable and physically robust
computation of the modelled scattering matrices. The uni-
fied theoretical approach would also be the basis for physical
models spanning from optical to radar spectra.

2. THE BISPINORIAL REPRESENTATION OF
POLARIZATION STATES (BRS)

2.1. Notation and signature of the Stokes vector

Remarkably, a number of authors have recognized that the
Stokes vector Sµ =

(
s0 s1 s2 s3

)
with µ = [0, 3] behaves

like Minkowskian four-vectors [1]. This fact implies that Sµ

has a Lorentzian metric signature [2, p. 1] [3, p. 73]. The
metric of the Stokes vector is embedded in the determinant of
the coherency matrix

Pαα̇ =
1

2

[
s0 + s3 s1 − is2

s1 + is2 s0 − s3

]
, (1)

with α, α̇ = [0, 1], which reads:

det
(
Pαα̇

)
=

1

4

[(
s0
)2 − (

s1
)2 − (

s2
)2 − (

s3
)2]

. (2)

The determinant has one positive and three negative entries,
which is a (1, 3) (reads as one comma three) signature or
Lorentzian signature [2, p. 3][3, p. 73]. The intention
is to describe the coherency matrix with a pair of spinors
(bispinors). The signature of the coherency matrix plays a
crucial role. E.g., in order to obtain a (1, 3) signature the
coherency matrix Pαα̇ must be a Hermitian matrix. It forces
the bispinors, which will be examined in the next section, to
be the complex conjugate of each other. Thus we lose two
degrees of freedom. A possible solution to this problem at
hand is to complexify the metric tensor [4, p. 6]. This will
force Sµ ∈ C. The resulting complexified space will be
denoted as MS

C. This complexification will achieve that the
two dependent bispinors will become two independent two
vectors. It follows from here that we can study the physics
of polarization in a complex space with almost no constraint,
like the constrain

(
s0
)2 ≥

(
s1
)2

+
(
s2
)2

+
(
s3
)2

and impose
the reality condition (Lorentzian metric signature) at the end
of the calculations.
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With the intention to provide a better description of
the different DOP (Degree of Polarization) within the BRS
(bispinorial representation of polarization states), the Stokes
vectors describing a fully polarized electromagnetic wave will
be referred as null Stokes vectors, unpolarized electromag-
netic waves as single Stokes vectors and partially polarized
electromagnetic waves as general Stokes vectors.

2.2. The description of BRS in MS
C for all degrees of po-

larization and polarization states

A null Stokes vector transforms in a coherency matrix with a
null determinant. Such a matrix can always be written as an
outer-product of a pair of two dimensional vectors

Pαα̇ = πα ⊗ π̃α̇ = παπ̃α̇ =

[
π1π̃1̇ π1π̃2̇

π2π̃1̇ π2π̃2̇

]
, (3)

where πα and π̃α̇ are known as the spinor variables, with
α, α̇ = [1, 2] [4, p. 6]. Consequently, every matrix char-
acterized by these variables has manifestly vanishing deter-
minants, since the corresponding Stokes vector must be null.
This fact reflects one of the key advantage of the bispinors,
since they are able to describe a fully polarized electromag-
netic wave without the quadratic constraint

(
s0
)2

=
(
s1
)2

+(
s2
)2

+
(
s3
)2

.
It is important to note that equation (3) does not uniquely

fix πα and π̃α̇. In other words if

πα 7→ zπα, (4)

where z ∈ C then π̃α̇ 7→ z−1, such that Pαα̇ remains invari-
ant under this transformation [4, p. 6, 7].

The total intensity of a Stokes vector corresponds to the
trace of the coherency matrix. With bispinors this can be ex-
pressed as

n∑
a=1

πα
(a) · π̃α̇

(a) = π⃗aα · ⃗̃πaα̇ = 0, (5)

where πα
(a) · π̃α̇

(a) is the dot product of the a´th bispinor.
The corresponding transformation group of MS

C is SL (2,C)⊗
SL (2,C). This means, that there are two linear conditions on
πα and π̃α̇. In other words, the statement of energy conser-
vation means that each of the n dimensional two vectors π⃗aα

and ⃗̃πaα̇ define a two plane that are orthogonal to each other,
since their dot product vanishes [5, p. 15].

In contrast to the null Stokes vector, the general Stokes
vector is transformed into a coherency matrix whose deter-
minant does not vanish. That means it is a rank two matrix.
A rank two matrix can be written as an outer-product of two
pairs of two dimensional vectors [4, p. 7]

Pαα̇
(a) = π⃗aα

I ⊗ ⃗̃πaα̇
I = π⃗aα

I
⃗̃πaα̇
I , (6)

where I = [1, 2]. The connection of the bispinors with the de-
terminant of the coherency matrix is expressed by the depen-
dence det

(
Pαα̇
(a)

)
= π⃗aα

1 π⃗2
aα · ⃗̃πaα̇

1
⃗̃π2
aα̇, where (·) indicates

an ordinary multiplication.
Nevertheless, equation (6) represents a fundamentally dif-

ficult problem, since it cannot be solved explicitly in a simple
way. The reason for this is that the bispinors do not have just
one exact solution. The problem can be resolved by the con-
straint that the determinants of the bispinors are equal to each
other [4, p. 7]

π⃗aα
1 π⃗2

aα = ⃗̃πaα̇
1

⃗̃π2
aα̇. (7)

In contrast to the behaviour seen in the null Stokes case,
the transformation that leaves the coherency matrix invariant
is in the general Stokes case a SL (2,C) transformation: if
π⃗I
aα 7→ W I

J π⃗
J
aα then ⃗̃πaα̇

I 7→
(
W−1

)J
I
⃗̃πaα̇
J where W I

J ∈
SL (2,C) [4, p. 7].

Regarding the results of this transformation, some inter-
esting implications may be made. One particularly useful im-
plication is that the two indices I and J can be expanded in
terms of a pair of null Stokes vectors π⃗aα, ⃗̃πaα̇ and η⃗aα, ⃗̃ηaα̇

[4, p. 9]

π⃗aα
I = π⃗aα ⊗ ξ+I + η⃗aα ⊗ ξ−I

⃗̃πaα̇
J = ⃗̃πaα̇ ⊗ ξ+J + ⃗̃ηaα̇ ⊗ ξ−J

, (8)

where π⃗aα, ⃗̃πaα̇ are the null Stokes bispinors as discussed in
the previous section. The variables ξ+I and ξ−I are two basis
vectors representing the SL (2,C) space, which will be dis-
cussed in the following paragraphs.

It is interesting, that this approach provides enough flex-
ibility to handle complex issues like the geometrization of
energy conservation and the conservation of an incoming
polarization state, even if the individual components of the
bispinors have not yet been determined at all. Moreover, the
description of an arbitrarily polarized state is symmetrized by
describing it as a pair of fully polarized elements.

As already stated in the previous paragraphs, the two com-
ponents of the bispinors are independent entities in MS

C. This
means we can freely define π⃗aα

I or ⃗̃πaα̇
I . However, we have

to take care that the conditions shown in equations (5) and
(7) are obeyed. For a null Stokes vector we can define the
bispinors πα and π̃α̇ as

πα =
1√
2k+

(
k+

u+

)
, π̃α̇ =

1√
2k+

(
k+

u−

)
, (9)

where k± = D ± s3, u± = s1 ± is2. The function D scales
the polarized part of the electromagnetic wave according to
whether it has an incoming or outgoing energy contribution

D = sgn
(
s0
)√

(s1)
2
+ (s2)

2
+ (s3)

2. This particular solu-
tion offers a significant advantage with respect to the deter-
mination of the parameter z, emerging from the equation (4).
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A1)

A2)

B1)

B2)

Fig. 1. The simulated reflected intensity of saline water at 100 [GHz] at a temperature of 20◦ [C] and a salinity of 35 [ppt] at
different DOP. Pictures A1 − A2: Horizontal part of the reflected intensity. Pictures B1 − B2: Vertical part of the reflected
intensity.

The way we have specified the spinor, however, allows us to
interpret the parameter z as the phase of the electromagnetic
wave, which in turn is defined as an action of the group U(1).

It has already been seen above that, in the general Stokes
case, the bispinors can be expanded in terms of a pair of null
Stokes vectors π⃗aα and η⃗aα with respect to the basis ξ+I and
ξ−I (8). To simplify the formulation of BRS, we are free to
define ξ+I and ξ−I as the standard basis ξ+I = (1 0) and ξ−I =
(0 1). Under this definition of basis vectors and respecting
the constraints defined in equations (5) and (7), the bispinors
can be derived as:

πα
I = h+

(
k+

u+

)
⊗ ξ+I + h−

(
−u−

k+

)
⊗ ξ−I

π̃α̇
I = h+

(
k+

u−

)
⊗ ξ+I + h−

(
−u+

k+

)
⊗ ξ−I

. (10)

The new parameter h± extends the term 1√
2k+

in (9) with
respect to the sign function D and is defined as h± =√

s0±D
2D

1√
2k+

.

3. RESULTS AND DISCUSSION

In this section, the main results of the BRS formalism are sum-
marized by discussing a straightforward example. It involves
salt water at a refractive index at 100 [GHz], a temperature of
20◦ [C], and a salinity of 35 [ppt] (parts per thousand). We

place the simulated transmitter and receiver one meter above
the medium. This means, that the reflected wave travels from
zero meter (surface) to one meter (sensor). The angles of inci-
dence are varied from 0◦ to 90◦. The simulation includes only
the Fresnel reflection, described by the process g1 at the sur-
face of the medium. The DOP of the incident wave is varied
between zero (unpolarized) and one (fully polarized).

Figure 1 (A1−B2) visualizes the simulated reflected in-
tensity at different DOP from zero (unpolarized) to one (to-
tally polarized). Figure 1 (A1−A2) illustrates the horizontal
component and Figure 1 (B1−B2) the vertical component of
the reflected intensity. It is very interesting to see that at low
DOP even the horizontally polarized part of the wave shows
a Brewster’s angle effect, that will disappear at DOP = 1.
The reason for this is that at low DOP, the horizontal compo-
nent of the received electromagnetic wave includes vertically
polarized parts of the unpolarized incoming wave, where the
Brewster’s angle is predominant. A visual representation of
this can be seen in Figure 2 (A1 − A2). This figure clearly
shows that the Brewster’s angle is induced by the unpolarized
part of the wave (which contains also the vertical polariza-
tion) and its effect decreases with increasing DOP (Figure 2,
A2).

In the vertically polarized component of the wave the op-
posite is observed (Figure 1 (B1 − B2)). In this case, the
Brewster’s angle is not predominantly present at low DOP
and it reaches its maximum at DOP = 1. This is largely
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A1)

A2)

B1)

B2)

Fig. 2. The polarized (null Stokes) and unpolarized part (single Stokes) of the simulated reflected intensity at the surface for
different DOP. The x-axis represents the varying incident angle and the y-axis represents the intensity. Pictures A1 − A2:
Horizontal part of the polarized (top) and unpolarized (bottom) intensity. Pictures B1−B2: Vertical part of the polarized (top)
and unpolarized (bottom) reflected intensity.

attributed to the presence of a horizontal part in the vertical
component of the received wave. This phenomenon is graph-
ically depicted in Figure 2 (B1−B2). From this figure it can
be seen that the decrease of the Brewster’s angle is caused by
the unpolarized part of the wave, which contains also the hor-
izontal polarization. Its effect weakens with increasing DOP,
where the Brewster’s angle gains more and more dominant
(Figure 2, B1).

4. CONCLUSION AND OUTLOOK

The most significant observation of this study is related to the
appearance of the Brewster’s angle in horizontally polarized
waves for DOP less than one. In addition, the intensity in the
horizontal or vertical part of the wave is lower as the wave
becomes more depolarized. An important note must be made
here regarding the DOP and the phase of the electromagnetic
wave. It is a well-known problem that the commonly used
formalisms, as reffered to Stokes or Jones vector are not able
to calculate the Fresnel reflection under different DOP and
completely preserve the phase of the considered wave without
artificial interaction. Due to the limited space in this paper,
the simulation includes only the Fresnel reflection, neglecting
transmission, absorption and dispersion or surface roughness
effects. Our presentation at the conference will also address
these configurations in detail.
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