Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Structural Variations of Olivine-type Phosphates: A good Example of how Minerals can inspire the Development of new Materials

F. Hatert, F. Dal Bo, M. Baijot

Warwick, August 27th, 2013

Lithiophilite, La Empleada pegmatite, Argentina

Triphylite and albite, Sapucaia pegmatite, Brazil

Synthetic Intro. Minerals Applicat. **Oxidation of olivine-type phosphates:** Université de Liège the « Quensel-Mason » sequence $Li(Mn^{2+},Fe^{2+})PO_4 \Rightarrow Li_{1-x}(Mn^{2+},Fe^{3+})PO_4 \Rightarrow Mn^{3+},Fe^{3+})PO_4$ (Lithiophilite) (Sicklerite) (Purpurite) $Li(Fe^{2+},Mn^{2+})PO_4 \Rightarrow Li_{1-x}(Fe^{3+},Mn^{2+})PO_4 \Rightarrow (Fe^{3+},Mn^{3+})PO_4$ (Triphylite) (Ferrisicklerite) (Heterosite)

Synthetic Applicat.

Natural sample selection

Sample	Locality	
PK-17	Hagendorf-Süd, Germany	
PK-20	Engelbrechts Claim, Brandberg, Namibia	
PK-1	McDonalds Claim, Brandberg, Namibia	1.1
PK-18	Strathmore tin mine, Namibia	S.ST.
PK-3	Ariakas, Usakos, Namibia	530 1 M
PK-15	Sandamap, Usakos, Namibia	12
K9-5-6 (5 zones)	Koktokay #3 pegmatite, Altai, China	
AB-2-2	Cañada pegmatite, Spain	
AB-X1-2-ME-3	Cañada pegmatite, Spain	1 and a
AB-X1-2-TB-5	Cañada pegmatite, Spain	1. 20

Electron microprobe

- Ion probe (SIMS)
- Single-crystal structure refinements

Sample	Mineral	Composition
PK-17	Triphylite	$Li_{0.99}(Fe^{2+}_{0.73}Fe^{3+}_{0.05}Mn^{2+}_{0.19}Mg_{0.01})PO_4$
PK-20	Triphylite	$Li_{1.06}(Fe^{2+}_{0.65}Mn^{2+}_{0.34})PO_4$
PK-1	Ferrisicklerite	$Li_{0.18}(Fe^{3+}_{0.67}Mn^{2+}_{0.13}Mn^{3+}_{0.12}Mg_{0.07})PO_4$
PK-18	Ferrisicklerite	$Li_{0.18}(Fe^{3+}_{0.73}Mn^{2+}_{0.11}Mn^{3+}_{0.10}Mg_{0.06})PO_4$
PK-3	Heterosite	$(Fe^{3+}_{0.64}Mn^{2+}_{0.05}Mn^{3+}_{0.31}Mg_{0.01})PO_4$
PK-15	Heterosite	$Li_{0.02}(Fe^{3+}_{0.70}Mn^{3+}_{0.25}Mg_{0.03})PO_4$
AB-2-2	Ferrisicklerite	$Li_{0.17}(Fe^{3+}_{0.75}Mn^{2+}_{0.08}Mn^{3+}_{0.10}Mg_{0.06})PO_4$
AB-X1-2-ME-3	Ferrisicklerite	$Li_{0.19}(Fe^{3+}_{0.57}Mn^{3+}_{0.19}Mg_{0.24})PO_4$
AB-X1-2-TB-5	Ferrisicklerite	$Li_{0.23}(Fe^{3+}_{0.67}Mn^{2+}_{0.14}Mn^{3+}_{0.10}Mg_{0.07})PO_4$

Close Li-contents!

Intro.

Applicat.

<u>A structural study of the lithiophilite-</u> sicklerite series

Micro-drilling
Single-crystal structure refinements

- Decrease of the M2-O bond lengths, due to the progressive oxidation of iron and manganese
- Increase of the M1-O bond lengths, due to leaching of lithium (decrease of bond valence sums correlated with the increasing number of vacancies)
- Correlation between M1-O and M2-O!

Single-crystal structure refinements of natural olivine-type phosphates

Applicat.

Synthetic

Minerals

Intro.

Sample	<i>a</i> (Å)	b (Å)	c (Å)	V (Å ³)	R_1 (%)
PK-17	4.704(1)	10.365(1)	6.025(1)	293.7(1)	4.07
PK-20	4.711(1)	10.369(1)	6.038(7)	294.9(1)	3.56
PK-1	4.795(1)	9.979(2)	5.890(1)	281.8(1)	4.01
PK-18	4.795(2)	9.959(6)	5.892(3)	281.3(3)	4.92
PK-3	4.776(3)	9.732(3)	5.826(3)	270.8(2)	6.32
PK-15	4.777(2)	9.776(3)	5.817(2)	271.7(2)	5.76
AB-2-2	4.787(2)	9.954(3)	5.875(2)	280.0(2)	5.87
AB-X1-2-ME-3	4.776(3)	10.035(3)	5.883(3)	282.0(3)	8.24
AB-X1-2-TB-5	4.797(3)	9.978(5)	5.881(3)	281.5(3)	6.92

- Decrease of the M2-O due to the progressive oxidation of iron and manganese
- Increase of the M1-O due to leaching of lithium

Increase of the M1 and M2 bond length distortion coefficients for the oxidized compositions (ferrisicklerites, heterosites)

2.119

2.087

O3

C

b

2.256

03

Jahn-Teller distortion, due to the presence of Mn³⁺ in heterosite

02

С

b

1.985

2.080

O3

2.237

03

Hydrothermal synthesis

T = 400-800 °C, P = 1 kbar

Na already observed in natrophilite, NaMnPO₄, and in karenwebberite, NaFePO₄!

Stability of the triphylite + sarcopside assemblage

Applicat.

Université de Liège

Synthetic

Minerals

Intro.

- The Li-content of triphylite decreases with the temperature
- The Fe-content of triphylite increases with the temperature

Heterosite, Fe³⁺(PO₄)

Triphylite, LiFe²⁺(PO₄)

Natural oxydation mechanism described by Quensel (1937) and Mason (1941) !

Applicat.

Synthetic

Intro.

Minerals

Use of karenwebberite as cathode material for sodium batteries??

- <u>Natural and synthetic olivine-type phosphates</u> were investigated by single-crystal X-ray diffraction, electron-microprobe, and ion probe (SIMS) techniques.
- The Li contents of ferrisicklerites and heterosites are very close to each other, and a progressive oxidation from lithiophilite to sicklerite is observed.
- The oxidation from triphylites to heterosites provokes a decrease of the M2-O bond lengths due to the oxidation of Fe and Mn, as well as an increase of the M1-O bond lengths due to the leaching of Li.
- <u>Synthetic Na-bearing olivine-type phosphates</u>, with compositions like those of karenwebberite, are good candidates as cathode material for sodium batteries.

Applicat.

Variations of unit-cell parameters

Synthetic

Good correlations

Accurate estimation of the Fe/Mn ratio of natural members of the triphylitelithiophilite series, when the Mg content is lower than 0.016 *a.p.f.u.* (accuracy +/- 7 %)

Li-ion batteries

	Layered struct.		Spinel	Triphylite
	LiCoO ₂	LiNiCoO ₂	LiMn ₂ O ₄	LiFePO ₄
Capacity (mAh/g)	140-150	170-180	110-120	160-170
Potentiel (V)	3,9	3,8	4,0	3,4
Resistance to cycling	Poor	Poor	+/-	Good
Exchange speed	Good	Good	Good	Good
Electrode density	Good	+/-	+/-	Poor
Security	+/-	?	Good	Good
Cost of chemicals	High	+/-	Low	Low
Cost of synthesis	Low	High	+/-	Low
Abundance	Low	+/-	High	High
Toxicity	?	?	Low	Very low

Ref: N. Krins, Master thesis ULg, 2004 (LCIS)