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Resonant phase lags of nonlinear mechanical systems
Martin Volvert

Abstract

The concept of a resonance is central in structural dynamics, because the maximum
amplitude at which a system vibrates occurs near resonance frequencies. Unlike linear
systems, nonlinear systems can exhibit different types of resonances including primary
and secondary (superharmonic, subharmonic, ultra-subharmonic) resonances. An effec-
tive theoretical framework to characterize nonlinear resonances is nonlinear modal anal-
ysis, which has been developed since more than half a century. In this context, primary
resonances received the most attention whereas very little effort was devoted to the char-
acterization of secondary resonances.

This thesis is an attempt to answer two key questions: (i) How to define the primary
and secondary resonances of a nonlinear system? and (ii) How to characterize these
resonances analytically, numerically and experimentally ? To answer the former question,
the concept of a resonant phase lag associated with the amplitude resonance of the l-th
harmonic of the l:ν resonance is proposed. For the latter question, a new definition of
a nonlinear normal mode termed phase resonance nonlinear mode which corresponds to
the structural deformation at the resonant phase lag is introduced. These novel concepts
are introduced based on analytical investigations, validated numerically on single- and
multiple-degree-of-freedom nonlinear systems and demonstrated experimentally on two
beam structures thanks to phase-locked loop testing.
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Nomenclature

Latin letters
Ir Null matrix of size n× n except for the r-th diagonal term which is equal to

1
C Damping matrix
fr Vector with only one non-zero entry of strictly positive amplitude f at the

r-th degree of freedom
fext Vector of external forcing
fnc Vector of nonconservative forces
Fnl Vector of the Fourier coefficients of the nonlinear forces
fnl Vector of nonlinear forces
In Identity matrix of size n× n
J Jacobian matrix
K Stiffness matrix
M Mass matrix
m Multi-index of nonnegative integers
Q Harmonic basis
Q Vector
Rα Rotation matrix
S Vector of the Fourier coefficients of the perturbation
sfl , c

f
l Sine and cosine vectors of the l-th harmonic of the nonlinear forces

sxl , c
x
l Sine and cosine vectors of the l-th harmonic of the displacements

Tf Filtering matrix
TT T -periodic rendering matrix
U,V Vector of constraint equations
w Weight vector of the least mean squares algorithm
X Vector of the Fourier coefficients of the displacements
x Vector of displacements
x∗ Periodic solution of displacements
z Vector of displacements and velocities
zi Eigenvector of the i-th mode
B Complex matrix
L Eigenvector of the monodromy matrix
M Monodromy matrix
P Constant or T -periodic matrix
i Imaginary unit
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A Amplitude
Al Amplitude of the l-th harmonic
Al,ᾱ, ϕl,ᾱ Polar coordinates of the stiffness term of the l-th harmonic of the Van der

Pol transformation
Al,Ω, ϕl,Ω Polar coordinates of the frequency detuning term of the l-th harmonic of the

Van der Pol transformation
Al,ζ̄ , ϕl,ζ̄ Polar coordinates of the damping term of the l-th harmonic of the Van der

Pol transformation
Amax Maximum of amplitude
ap1 , ap2 Clearances
c Damping coefficient
Cd Coefficient related to the stiffness of order d
ci Modal damping of the i-th mode
d Stiffness order
Dn Partial derivative with respect to Tn
e Error of the least mean squares algorithm
Ein Energy injected
Eout Energy dissipated
f Forcing amplitude
fext External forcing
fnl Nonlinear force
f ′
nl Derivative of the nonlinear force with respect to the displacement
gp, gp, gi Gains of the PID controller
hij Hermite polynomials
i, j Integer indexes
K Complete elliptic integral
k Stiffness coefficient
k′i,k Restoring force derivative
kd Stiffness coefficient of the d-th order stiffness term
ki Modal stiffness of the i-th mode
l Harmonic index
l2 Harmonic index
m Mass coefficient
mi Modal mass of the i-th mode
n Number of degrees-of-freedom
NH Number of harmonics
p, q Integer indexes
p1,±, p2,± Regularization functions
r index of the forced degree of freedom
rss Step size scalar of the least mean squares algorithm
s Perturbation
sl, cl Sine and cosine amplitudes of the l-th harmonic
Sf
l , C

f
l Sine and cosine amplitudes of the l-th harmonic of the nonlinear forces

sfl , c
f
l Sine and cosine amplitudes of the l-th harmonic of the nonlinear forces
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S
f ′
l

l2
, C

f ′
l

l2
Sine and cosine amplitudes of the l2-th harmonic of the l-th component of f ′

nl

sf
′

l2
, cf

′

l2
Sine and cosine amplitudes of the l2-th harmonic of f ′

nl

T Period
t Time
T ∗ Least common multiple period
Ti Period of the i-th harmonic
Tn Time scale of order n
tp Local scaled abscissa
u, v Cartesian coordinates of the Van der Pol transformation
ul, vl Cartesian coordinates of the l-th harmonic of the Van der Pol transformation
uΩ, vΩ Cartesian coordinates of the frequency detuning term of the Van der Pol

transformation
Ui, Vi Constraint equations
ui, vi Variables related to the state-space variables
us, vs Pair of state-space variables
uᾱ, vᾱ Cartesian coordinates of the stiffness term of the Van der Pol transformation
uγ̄, vγ Cartesian coordinates of the forcing term of the Van der Pol transformation
uζ̄ , vζ̄ Cartesian coordinates of the damping term of the Van der Pol transformation
wi Modal amplitude of the i-th mode
x Displacement
x0, ẋ0 Initial displacement and velocity
xi Displacement of the i-th DOF
xr Displacement of the forced DOF
xnnm Nonlinear normal mode motion
yi i-th term of the asymptotic expansion
Greek letters
α Delay
αd Mass-normalized stiffness coefficient of the d-th order stiffness term
σ̄ Hill’s coefficient
χ Normalized amplitude
δ Gain for the EPMC
∆• Difference between two values of the quantity •
∆a Clearance size
∆PL Coefficient related to the resonant phase lag approach
∆V F Coefficient related to the velocity feedback approach
Γ Gamma function
γ Mass-normalized forcing amplitude
γext Mass-normalized external forcing
κ Normalized forcing
Λ Amplitude of the undamped, forced linear oscillator away from the resonance
λi Floquet multiplier
µ Gain for the PRNM
ν Integer that accounts for the subharmonic terms
Ω Detuning parameter of the primary resonance
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ω Frequency
ω0 Natural frequency of the linear oscillator
Ωl Detuning parameter of the l:ν resonance
ωl Frequency of the l-th harmonic
ωd Damped natural frequency
ωJ Frequency of the Jacobi elliptic functions
ϕ Phase lag
ϕ′
l Phase lag combination of the l:1 resonance
ϕl Phase lag of the l-th harmonic
σ̄̄σ̄σ Diagonal matrix of the Hill’s coefficients
λλλ Matrix of the Floquet multipliers
∇∇∇(ω) Differential operator
∇∇∇l Diagonal element of the differential operator ∇∇∇(ω)
σσσ Diagonal matrix of the Floquet exponents
Ψ Fundamental matrix of a first-order differential equation
ψ Angle
ψi Column-vector solution of a first-order differential equation
ρ Elliptic modulus
σi Floquet exponent
ν Subharmonic index
τ Adimensional time
θ Angle corresponding to the frequency ω
θl Angle corresponding to the frequency ωl

υi Complex frequency of the i-th mode
ε Scaling parameter
φl Resonant phase lag of the l:ν resonance
ζ Modal damping ratio
Subscripts
•a Quantity • at amplitude resonance
•p Quantity • at phase resonance
•PL Quantity • related to the resonant phase lag approach
•V F Quantity • related to the velocity feedback approach
Superscripts
•̄ Scaled quantity •
•† Pseudo-inverse of the quantity •
•‡ Complex conjugate of the quantity •
•T Transpose of the quantity •
•̈ Second-order time derivative of the quantity •
•̇ First-order time derivative of the quantity •
˜̈• Second-order adimensional time derivative of the quantity •
˜̇• First-order adimensional time derivative of the quantity •
Acronyms
AM Averaging method
DMC Damped motion concept
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DOF Degree of freedom
EB Energy balance
EPMC Extended periodic motion concept
HBM Harmonic balance method
IM Invariant manifold
MDOF Multiple-degree-of-freedom
MMS Method of multiple scales
NFRC Nonlinear frequency response curve
NNM Nonlinear normal mode
PID Proportional, integral and Differential
PLL Phase-locked loop
PLOPT Phase lag oriented perturbation technique
PRNM Phase resonance nonlinear mode
SDOF Single-degree-of-freedom
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Chapter 1

Introduction

1.1 Context

The world surrounding us is intrinsically nonlinear. Yet, real-life problems are often
linearized to obtain an easier solution that approximates sufficiently well the studied phe-
nomenon. This also holds in aerospace and mechanical engineering in which the vibrating
response is often predicted numerically using a linear (or linearized) model.

The theory behind linear modal analysis is well-established and possesses sound the-
oretical, numerical and experimental backgrounds [1, 2]. For linear models, it is easy
to compute the resonance frequencies, normal modes and damping ratios as well as the
response under an external excitation. Specifically, if a structure is excited with harmonic
forcing of frequency ω, the steady-state response has the same frequency ω. If the fre-
quency is close to one of the resonance frequencies, the response amplitude can be high
with the risk of damaging the structure. Away from the resonance frequencies, the re-
sponse amplitude is, however, much lower. Finally, the principle of superposition applies
for linear structures, namely, if an input fa (resp. fb) gives an output xa (resp. xb), then,
fa + fb gives xa + xb.

Driven by the climate crisis, there is a need to reduce fuel consumption, noise and gas
emissions. This implies the reduction of the total mass, through the design of thinner
structures, which can eventually lead to large deformations. Novel materials featuring
nonlinear constitutive laws such as elastomers and composite materials are also more
commonly employed. In addition, contact and friction can occur in real-life structures,
which linear models cannot model.

One of the key features of nonlinear vibration is the dependence of resonance frequen-
cies on the input level [3]. The resulting hardening or softening behavior can generate
multi-stable solutions [4] implying the failure of the superposition principle. Another
important dynamical feature is that nonlinear systems may no longer respond at a sin-
gle frequency in the case of harmonic forcing. Specifically, new harmonics appear in the
response and can, in turn, lead to new resonances; the so-called secondary resonances
appear at fractions or multiples of the primary resonance frequencies. Their amplitude
may sometimes be sufficiently high so as to damage the structure [5].

Nonlinear modal analysis theories have thus been developed to extend the concept
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of a normal mode to nonlinear structures [3, 6–10]. These developments concentrate
mainly on primary resonances. Low-order secondary resonances were studied using first-
order perturbation techniques [4, 11, 12] in order to characterize the relation between
the response amplitude and the resonance frequency. To study more complex secondary
resonances, Yagasaki developed a Mathematica package that solves higher-order averaging
problems [13–15]. The focus in his studies was not on the dynamical characterization of
these resonances, but rather on the study of the fixed points as well as on time series
computation. Recently, experimental techniques based on phase-locked loops (PLLs)
for identifying nonlinear frequency response curves (NFRCs) and nonlinear modes have
emerged, see, e.g., [16–20]. A PLL enables the experimenter to impose a specific phase lag
between the response and the excitation by the means of a PID controller. For instance,
the backbone curves of primary resonances can be identified by setting π

2
as the phase lag

target.
However, the existing body of literature rarely discusses the relation between the

response amplitude and the phase lag for secondary resonances. This represents the main
thrust of this thesis.

1.2 Contributions of the thesis

This thesis attempts to answer two key questions:

i. How to define the l:ν resonance of a nonlinear system where l and ν are arbitrary
integers?

ii. How to characterize these resonances analytically, numerically and experimentally?

To this end, the present thesis centers on the link that exists between the so-called
amplitude and phase resonances of nonlinear systems. With this objective in mind, first-
and higher-order perturbation techniques [14, 15] are employed to derive the equations
governing the dynamics around the l:ν resonance. Then, its amplitude-phase lag relation
is derived giving rise to the concept of a resonant phase lag. These developments form
the basis of a new definition of a nonlinear normal mode (NNM) termed phase resonance
nonlinear mode (PRNM). Eventually, PRNMs can be exploited to fully characterize the
behavior of primary and secondary resonances numerically using continuation techniques
and experimentally using PLLs.

The thesis is organized as follows. Chapter 2 evidences the main differences that exist
between the resonant behavior of linear and nonlinear oscillators. First, a harmonically-
forced linear oscillator is studied around its amplitude and phase resonances. Second,
a Duffing oscillator [12] is taken as a motivating example. The exact solution of the
undamped, unforced system obtained using elliptic functions is compared to the solutions
derived using perturbation techniques. Then, the resonant behavior of the harmonically-
forced, damped system is studied numerically for different forcing levels. It is shown
that this seemingly simple nonlinear oscillator can exhibit a wide variety of secondary
resonances.
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The distinction between the amplitude and phase resonances of nonlinear oscillators
is rarely discussed in the literature. To this end, first-order averaging is used in Chapter
3 to characterize the primary resonance of a single-degree-of-freedom (SDOF) oscillator
with nonlinear polynomial stiffness. Under the assumption of light to moderate damping,
it is established that the resonant phase lag is π/2 meaning that phase resonance happens
in the immediate neighbourhood of amplitude resonance.

Chapter 4 studies the dynamical behavior around secondary resonances of SDOF non-
linear oscillators. The resonant phase lags of the d : 1 and 1 : d resonances of an oscillator
with polynomial stiffness or order d are first derived using first-order averaging. The ana-
lytical developments are illustrated using a Duffing oscillator, a Hemlholtz oscillator and
an oscillator with a quintic stiffness. Higher-order averaging is then exploited to compute
the governing equations of more complex secondary resonances of the Duffing oscillator
and to derive the corresponding resonant phase lags.

Chapter 5 builds upon the outcomes of Chapters 3 and 4 to define the concept of a
PRNM. The PRNM of the l:ν resonance corresponds to the structural deformation at
the corresponding resonant phase lag. Two numerical methods for computing PRNMs
are developed based on velocity feedback and resonant phase lag approaches. The latter
approach is the method of choice and is then demonstrated numerically using several
nonlinear oscillators.

Chapter 6 shows that exploiting the resonant phase lags derived for SDOF systems in
the case of multi-degree-of-freedom (MDOF) systems should be achieved with great care.
In SDOF systems, the different resonances are well-separated. In MDOF systems, primary
and secondary resonances of different modes can interact, which, in turn, influences the
evolution of the phase lag. Thus, a perturbation technique is used to study the phase lag
of different higher-order harmonics across lower-order resonances. The results obtained
evidence that an augmented resonant phase lag combining carefully selected phase lags
of different harmonics should be considered to track the secondary resonances of MDOF
systems. The developments are demonstrated experimentally using two beam structures,
namely a nonlinear cantilever beam and a nonlinear clamped-clamped beam.

Finally, conclusions and perspectives are drawn in Chapter 7.
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Chapter 2

Resonances of linear and nonlinear
oscillators

2.1 Introduction

The study of the dynamical behavior of linear systems possesses solid theoretical and
experimental backgrounds [1, 21]. Discrepancies between numerical predictions and ex-
perimental results may happen if the nonlinearities can no longer be ignored. Differences
between linear and nonlinear systems can take multiple forms. Under a linear assump-
tion, the system responds mono-harmonically to a mono-harmonic input, and resonances
occur at frequencies which do not change with the forcing level. In nonlinear oscillators,
however, the response to mono-harmonic excitation is generally multi-harmonic, and reso-
nance frequencies can shift according to the forcing amplitude [3], which can lead to jump
phenomena and multi-stable solutions [11]. Furthermore, the multi-harmonic response
can generate new resonances, located at fractions or multiples of the amplitude-dependent
resonance frequency of the system [22].

This chapter illustrates these differences. First, the well-defined amplitude and phase
resonances are recalled for the linear oscillator. Second, the exact solution of the un-
damped, unforced Duffing oscillator is compared to approximate solutions derived using
perturbation techniques. Third, the harmonically-forced, damped Duffing oscillator is
studied numerically to highlight the multi-harmonic behavior of the system as well as
the numerous secondary resonances that exist. Finally, a preliminary answer to the two
central questions of this thesis is provided, namely (i) How to define the l:ν resonance
of a nonlinear system where l and ν are arbitrary integers? and (ii) How to characterize
primary and secondary resonances analytically, numerically and experimentally?
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2.2: Linear oscillators

2.2 Linear oscillators

2.2.1 The harmonic oscillator

The equation of the harmonic oscillator is

mẍ(t) + kx(t) = 0 (2.1)

where x(t) is the displacement, m is the mass and k is the linear stiffness. Time derivatives
are represented using overdots. Through mass normalization, Equation (2.1) can be recast
into

ẍ(t) + ω2
0x(t) = 0 (2.2)

where ω0 =
√

k
m

represents the natural frequency of the system. The solution of Equation
(2.2), which is a second-order differential equation with constant coefficients, is harmonic

x(t) = A sin(ω0t− ϕ) (2.3)

where A is the amplitude of the free vibration, and ϕ is the phase lag. A and ϕ depend
on the initial displacement x0 and velocity ẋ0 of the system

A =

√
x20 +

(
ẋ0
ω0

)2

and tanϕ = −ω0x0
ẋ0

. (2.4)

2.2.2 The damped harmonic oscillator

Dissipation can be introduced in Equation (2.1) through viscous damping cẋ, where c is
the viscous damping coefficient,

mẍ(t) + cẋ(t) + kx(t) = 0 (2.5)

Through mass normalization, the equation of motion reads

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = 0 (2.6)

where ζ = c
2
√
km

is the damping ratio. Assuming a solution of the form x(t) = eυt, the
characteristic equation admits two roots

υ1,2 = ω0

(
−ζ ± i

√
1− ζ2

)
(2.7)

and the solution depends on the sign of 1− ζ2. Because the damping ratios of mechanical
and aerospace structures are generally around 1%, only the case ζ < 1 is considered
herein. The resulting solution is harmonic with a decaying exponential envelope

x(t) = e−ζω0t (C1 cosωdt+ C2 sinωdt) (2.8)

where ωd =
√

1− ζ2ω0 is the damped natural frequency. The constants C1 and C2 depend
on the initial conditions

C1 = x0 and C2 =
1

ωd

(ẋ0 + ζω0x0) . (2.9)
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2.2.3 The damped, forced harmonic oscillator

Considering now the damped, forced harmonic oscillator, we have

mẍ(t) + cẋ(t) + kx(t) = f sinωt (2.10)

where f and ω are the forcing amplitude and frequency, respectively. Equation (2.10) is
recast into

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = γ sinωt (2.11)

where γ = f/m. The solution of this equation is the superposition of the homogeneous
solution, obtained by solving Equation (2.6), and the particular solution of the form

x(t) = A sin(ωt− ϕ) (2.12)

Injecting (2.12) into (2.11) and projecting onto sinωt and cosωt yields{
2ζω0ωA = γ sinϕ

(ω2
0 − ω2)A = γ cosϕ.

(2.13)

This system is easily solved for A and ϕA = γ√
4ζ2ω2

0ω
2+(ω2

0−ω2)
2

tanϕ = 2ζω0ω
ω2
0−ω2 .

(2.14)

The particular solution is the steady-state response of the system from which resonances
can be studied.

2.2.3.1 Amplitude resonance

Amplitude resonance corresponds to a local maximum of the response. It occurs when
both ∂A

∂ω
and ∂A

∂ϕ
are equal to 0. From Equation (2.13), we obtain{

∂A
∂ϕ

= γ
2ζω0ω

(
cosϕ− sinϕ

ω
∂ω
∂ϕ

)
= 0

∂A
∂ω

= γ
2ζω0ω

(
cosϕ ∂ϕ

∂ω
− sinϕ

ω

)
= 0.

(2.15)

Both relations are equivalent. The second relation of Equation (2.13) provides an expres-
sion for ω

ω =

√
ω2
0 −

γ

A
cosϕ (2.16)

from which ∂ω
∂ϕ

can be deduced

∂ω

∂ϕ
=

1

2
√
ω2
0 −

γ
A
cosϕ

(
γ

A
sinϕ+

γ

A2
cosϕ

∂A

∂ϕ

)
. (2.17)
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This quantity can be inserted in the first relation of (2.15):

∂A

∂ϕ
=
γ sinϕ

2ζω0ω

(ω − ζω0 tanϕ)

(ω tanϕ+ ζω0)
= 0. (2.18)

This relationship is satisfied when the phase lag takes the form

tanϕa =
ωa

ζω0

=

√
1− 2ζ2

ζ
(2.19)

where •a denotes a quantity at amplitude resonance. The corresponding frequency and
amplitude are

ωa = ω0

√
1− 2ζ2, Aa =

γ

2ζω2
0

√
1− ζ2

(2.20)

in accordance with [21].

2.2.3.2 Phase resonance

Phase resonance takes place at phase quadrature ϕp = π
2

where •p denotes a quantity
at phase resonance. It occurs when the excitation frequency corresponds to the natural
frequency of the undamped system, i.e., when ω = ωp = ω0 in Equation (2.13). In this
case, injecting the solution x(t) = −A cosω0t into Equation (2.11) gives

Aω2
0 cosω0t+ 2ζω0Aω0 sinω0t− ω2

0A cosω0t = γ sinω0t. (2.21)

Equating the coefficients of cosω0t and sinω0t evidences that the inertia and stiffness
terms compensate each other and that the damping term counterbalances the forcing
term, respectively. The amplitude at phase resonance is

Ap =
γ

2ζω2
0

. (2.22)

2.2.3.3 Results and discussion

For small damping, i.e., for ζ ≪ 1, a reasonable assumption for mechanical and aerospace
structures, there is no need to distinguish between amplitude and phase resonances. In
fact, if we define the difference between amplitude and phase resonances for the amplitude,
frequency and phase lag as

∆A = Aa − Ap =
γ

2ζω2
0

√
1− ζ2

− γ

2ζω2
0

∆ω = ωa − ωp = ω0

√
1− 2ζ2 − ω0

∆ϕ = ϕa − ϕp = atan

√
1− 2ζ2

ζ
− π

2

(2.23)

and perform a Taylor series expansion around ζ = 0 for ∆A, ∆ω and ∆ϕ, we obtain

∆A = O
(
ζ2
)

∆ω = O
(
ζ2
)

∆ϕ = O (ζ) .

(2.24)
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For illustration, the frequency response in Figure 2.1 calculated for ζ = 0.5% and ω0 = 1
rad/s shows that the difference between the two resonance frequencies is indeed very
small, i.e., 2.5× 10−3 %.

(a) (b)

Figure 2.1: Frequency response (black) of a linear oscillator for a forcing amplitude of 0.003
N/kg. (a) Amplitude and (b) phase lag. Amplitude (blue) and phase (orange) resonances.

2.3 Nonlinear oscillators
Calculating the response of a nonlinear oscillator of the form

mẍ(t) + kx(t) = fnl (x(t), ẋ(t)) (2.25)

with fnl (x(t), ẋ(t)) a nonlinear function, is much more complicated than in the linear case.
Dedicated analytical (e.g., perturbations methods [11, 23]) and numerical (e.g., shooting
[24–27] and HBM [4, 28, 29]) techniques are required. Some of them are reviewed in what
follows and applied to the free vibration of the Duffing oscillator.

2.3.1 The undamped, unforced Duffing oscillator

We consider the free vibration of the undamped Duffing oscillator:

mẍ(t) + kx(t) + k3x
3(t) = 0 (2.26)

where k3 is the cubic stiffness coefficient. Through mass normalization, we have

ẍ(t) + ω2
0x(t) + α3x

3(t) = 0 (2.27)

where α3 = k3/m. In this study, the initial conditions are

x(0) = x0, ẋ(0) = 0. (2.28)

9
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2.3.1.1 The exact solution

There exists an exact analytical solution to Equation (2.27) based on Jacobi elliptic func-
tions [12, 30, 31]

x(t) = A cn (ωJt− ϕ, ρ) (2.29)

where cn is the cosine elliptic function with ωJ and ρ the frequency and the modulus of
the Jacobi elliptic functions, respectively, such that

ωJ =
√
ω2
0 + α3A2 (2.30)

ρ =
α3A

2

2 (ω2
0 + α3A2)

. (2.31)

Plugging (2.29) into (2.27) leads to

A =

√√√√−ω2
0

α3

+
ω2
0 + α3x20
α3

√
1 +

2ẋ20α3

ω2
0

(2.32)

sn(ϕ, ρ)
cn(ϕ, ρ)

dn(ϕ, ρ) = − ẋ0
x0ωJ

(2.33)

for general initial displacement x0 and velocity ẋ0. With the initial conditions from (2.28),
i.e., when ẋ0 = 0, we have A = x0 and ϕ = 0, leading to

x(t) = x0 cn (ωJt, ρ) . (2.34)

The associated period T of the solution is

T =
4K(ρ)

ωJ

(2.35)

where K(ρ) is the complete elliptic integral of first kind [30]. The corresponding frequency
is

ω =
2π

T
=

πωJ

2K(ρ)
. (2.36)

For small-amplitude motion, ω can be simplified into

ω = ω0

√
1 +

3α3

4ω2
0

x20. (2.37)

From (2.37), we see that if α3 > 0 (α3 < 0), then the frequency increases (decreases) with
x0 and the system is said to be hardening (softening).

There exist very few nonlinear systems that admit an exact analytical solution. For
instance, the damped, forced Duffing oscillator does not admit such a solution. This is
why we must rely on other techniques to find solutions that approximate, with a sufficient
accuracy, the exact solution.
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2.3.1.2 The averaging method

The averaging method (AM) is based on the Krylov and Bogoliubov technique [11, 32,
33]. It is applied to the general weakly nonlinear oscillator

ẍ(t) + ω2
0x(t) = εf̄nl(x(t), ẋ(t)) (2.38)

where fnl (x(t), ẋ(t)) = εf̄nl (x(t), ẋ(t)), where 0 < ε ≪ 1 is a small parameter. When
ε = 0, the system is unperturbed, and the periodic solution of (2.38) is written as

x(t) = A sin (ω0t− ϕ) (2.39)

where A and ϕ are constants. When ε ̸= 0, the system is perturbed. It is assumed
that the solution can still be expressed as in Equation (2.39) but with time-dependent,
slowly-varying A and ϕ

x(t) = A(t) sin (ω0t− ϕ(t)) (2.40)

such that the velocity can be expressed with the same form as when ε = 0, i.e.,

ẋ(t) = A(t)ω0 cos (ω0t− ϕ(t)). (2.41)

Equation (2.41) holds only if

Ȧ(t) cos (ω0t− ϕ(t))− Aϕ̇(t) cos (ω0t− ϕ(t)) = 0. (2.42)

Differentiating Equation (2.41) and replacing ẍ(t) and x(t) in Equation (2.38) yields

Ȧ(t)ω0 cos (ω0t− ϕ(t)) + A(t)ϕ̇(t)ω0 cos (ω0t− ϕ(t)) =
εf [A(t) sin (ω0t− ϕ(t)), A(t)ω0 cos (ω0t− ϕ(t))] .

(2.43)

Finally, taking into account Equations (2.42) and (2.43) and solving for Ȧ and ϕ̇, a system
of first-order equations is obtained

Ȧ =
ε

ω0

f̄nl [A(t) sin (ω0t− ϕ(t)), A(t)ω0 cos (ω0t− ϕ(t))] cos (ω0t− ϕ(t))

ϕ̇ =
ε

A(t)ω0

f̄nl [A(t) sin (ω0t− ϕ(t)), A(t)ω0 cos (ω0t− ϕ(t))] sin (ω0t− ϕ(t))
(2.44)

where Ȧ and ϕ̇ are slowly varying since they are of order O(ε). This system has a suitable
form for first-order averaging. These equations are thus integrated over the period of
motion T during which A and ϕ are considered to be constant

Ȧ =
ε

ω0

1

T

∫ T

0

f̄nl [sin (ω0t− ϕ), Aω0 cos (ω0t− ϕ)] cos (ω0t− ϕ) dt

ϕ̇ =
ε

Aω0

1

T

∫ T

0

f̄nl [A sin (ω0t− ϕ), Aω0 cos (ω0t− ϕ)] sin (ω0t− ϕ) dt
(2.45)
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Applying the AM to Equation (2.27) where α3 = εᾱ3 yields

Ȧ = 0 , ϕ̇ = −3α3

8ω0

A2. (2.46)

A is thus a constant C1 and ϕ = −3α3

8ω0
A2

0t+ C2, where C1 = x0 and C2 =
π
2

based on the
initial conditions (2.28). Eventually,

x(t) = x0 cos

(
ω0

[
1 +

3α3

8ω2
0

x20

]
t

)
+O(ε) (2.47)

where the frequency of the free vibration increases (α3 > 0) or decreases (α3 < 0) with
the initial displacement x0

ω = ω0 +
3α3

8ω0

x20 (2.48)

2.3.1.3 The method of multiple scales

The method of multiple scales (MMS) [23] also solves weakly nonlinear oscillators as
expressed in Equation (2.38). If ε = 0, the solution x(t) can be expressed as in Equation
(2.3). When 0 < ε≪ 1, the solution x(t) is seen as an asymptotic expansion of the form

x(t) = y0(t) + εy1(t) + ε2y2(t) + ε3y3(t) + . . . (2.49)

where each term yi in the expansion adds a smaller and smaller correction to the solution.
In general, only a few terms are retained in the approximate solution.

The MMS assumes that the expansion is a function of multiple independent time scales
rather than only t. To do so, N new time scales T0, T1,..., TN are introduced

Tn = εnt (2.50)

where n is an integer such that Tn is slower than Tn−1. x(t) thus takes the form

x(t, ε) = y0(T0, T1, T2, . . .) + εy1(T0, T1, T2, . . .) + ε2y2(T0, T1, T2, . . .) + . . .

=
N−1∑
i=0

yn(T0, T1, T2, . . . , TN) +O (εTN)
(2.51)

The error being of the order of O (εTN), this expansion is valid for times up to O
(
ε−N

)
.

Time derivatives are calculated using the chain rule

d

dt
= D0 + εD1 + ε2D2 + . . .

d2

dt2
= D2

0 + 2εD1D0 + ε2(D1 + 2D2D0) + . . .

(2.52)

where Dn = ∂
∂Tn

. Substituting Equations (2.51) and (2.52) into Equation (2.38) and
equating the coefficients of like powers of ε, a set of N partial differential equations is to
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be solved sequentially. For a first-order approximation, i.e., writing x(t, ε) = y0(T0, T1) +
εy1(T0, T1) + . . . and subsituting in Equation (2.38) gives

D2
0y0 + ω2

0y0 = 0 (2.53)
D2

0y1 + ω2
0y1 = f̄nl(u0, D0u0)− 2D1D0u0 (2.54)

The general solution of Equation (2.53) is

y0 = A sin(ω0T0 − ϕ) (2.55)

which can be injected into Equation (2.54) to yield

D2
0y1 + ω2

0y1 =f̄nl(A sin(ω0T0 − ϕ), Aω0 cos(ω0T0 − ϕ))
− 2A′ω0 cos(ω0T0 − ϕ)− 2Aϕ′ω0 sin(ω0T0 − ϕ)

(2.56)

The symbol ′ represents the partial derivative with respect to T1. In order to keep εu1 small
compared to u0, the secular terms are eliminated in Equation (2.56), i.e., the coefficients
of sin(ω0T0−ϕ) and cos(ω0T0−ϕ) are set to 0. The two new equations govern the evolution
of A and ϕ.

Applying the MMS to Equation (2.27) where α3 is scaled such that α3 = εᾱ3 yields

A′ = 0 , ϕ′ = −3ᾱ3

8ω0

A2. (2.57)

A is thus a constant C1 and ϕ = − 3α
8ω0
A2

0T1 + C2 where C1 = x0 and C2 = π
2

based on
the initial conditions of the system. Finally, replacing T0 and T1 by t and εt, respectively,
the MMS gives at first approximation the same solution as with the AM both for the
displacement

x(t) = x0 cos

(
ω0

[
1 +

3α3

8ω2
0

x20

]
t

)
+O(ε) (2.58)

and the frequency

ω = ω0 +
3α3

8ω0

x20. (2.59)

2.3.1.4 The harmonic balance method

The harmonic balance method (HBM) has been used extensively in the literature to
compute the periodic responses of large-scale nonlinear mechanical systems [29, 34–38].
The periodic solutions are represented as truncated Fourier series up to the order NH

x(t) = c0 +

NH∑
l=1

(sl sinωlt+ cl cosωlt) =

NH∑
l=0

Al sin (ωlt− ϕl) (2.60)

where Al =
√
s2l + c2l , ϕl = atan2(−cl, sl) and ωl =

lω
ν
, where ν is an integer. The ν-th

harmonic of the series l = ν is defined as the fundamental harmonic whereas the other
harmonics are defined as secondary harmonics.
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Substituting Equation (2.60) in Equation (2.27), equating the coefficient of each har-
monic sinωlt and cosωlt to 0 and neglecting the higher-order harmonic terms produced
by the nonlinearities results in a set of 2NH + 1 nonlinear algebraic equations to solve
for 2NH + 2 unknowns, namely ω and the 2NH + 1 Fourier coefficients. An additional
equation, the phase condition [25], is needed to close the system. In general, this phase
condition sets the phase lag of the first harmonic ϕ1 to 0 or, equivalently, c1 to 0. The
system can then be solved using, for example, a Newton-Raphson procedure. Limiting our
developments to the first harmonic provides an analytical approximation of the frequency
of the free response

ω = ω0

√
1 +

3α3

4ω2
0

A2
1. (2.61)

The displacement is expressed as

x(t) = A1 sin

([
ω0

√
1 +

3α3

4ω2
0

A2
1

]
t− ϕ1

)
. (2.62)

Using the initial conditions (2.28), we find that A1 = x0 and ϕ1 =
π
2
, yielding

ω = ω0

√
1 +

3α3

4ω2
0

x20 (2.63)

and

x(t) = x0 cos

([
ω0

√
1 +

3α3

4ω2
0

x20

]
t

)
. (2.64)

The frequency corresponds to that of the exact solution in Equation (2.37) when small
amplitudes are considered. Furthermore, if x0 is small, we perform a Taylor expansion of
Equation (2.61) up to the second order such that

ω = ω0

(
1 +

3α3

8ω2
0

x20

)
+O(x30). (2.65)

Equation (2.64) is rewritten as

x(t) = x0 cos

(
ω0

[
1 +

3α3

8ω2
0

x20

]
t

)
(2.66)

and we retrieve the solution obtained using the AM and MMS in Equations (2.47) and
(2.58), respectively.

A more accurate response can be found by adding more harmonics in the approximate
solution. In practice, however, only the first few harmonics which have a non-negligible
amplitude are retained. This is especially the case for large-scale nonlinear systems where
a trade-off between accuracy and computational cost is usually sought.
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2.3: Nonlinear oscillators

2.3.1.5 Comparison of the analytical solutions

The different methods highlight that, as the motion amplitude increases, the frequency
increases or decreases when α3 is positive or negative, respectively. This evolution is
depicted in Figure 2.2a with ω0 = 1 rad/s and α3 = 0.1 N/(kg.m3). At small amplitudes,
all methods agree well. When the amplitude increases, the discrepancy between the
frequency of the exact solution and of the approximation methods increases; the HBM with
one harmonic corresponds to the most accurate approximation. For an initial displacement
of 3m, the frequency error with HBM is around 0.3% whereas it is around 3.7% for the
AM and MMS. This is because the latter methods assume a small scaling parameter ε.

The displacement in Figure 2.2b confirms the superior accuracy of the HBM. However,
the corresponding velocity and acceleration signals in Figure 2.3 evidence that the higher-
order harmonics are missed by the HBM with one harmonic. The addition of a third
harmonic greatly improves the agreement with the exact solution.

(a) (b)

Figure 2.2: (a) Frequency as a function of the amplitude of the Duffing oscillator with α3 = 0.1
and ω0 = 1, and (b) displacement. Blue: exact solution; orange: HBM with one harmonic, and
green: AM and MMS.

2.3.2 The harmonically-forced, damped Duffing oscillator

The resonances of a harmonically-forced, damped Duffing oscillator

mẍ(t) + cẋ(t) + kx(t) + k3x
3(t) = f sinωt (2.67)

are studied in detail in this section. The Duffing oscillator is said to be hardening when
k3 > 0, and softening when k3 < 0 as evidenced in Section 2.3.1.1. Through mass
normalization, Equation (2.67) is recast into

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + α3x

3(t) = γ sinωt. (2.68)
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2.3: Nonlinear oscillators

(a) (b)

Figure 2.3: Time series of the Duffing oscillator: (a) Velocity and (b) acceleration. Blue: exact
solution; orange: HBM with 1 (dashed) and 3 (dotted) harmonics.

It should be noted that Equation (2.68) can be further normalized by scaling the time
and amplitude variables as τ = ω0t and χ =

√
α

ω0
x such that:

˜̈χ+ 2ζ ˜̇χ+ χ+ χ3 = κ sin
ω

ω0

τ (2.69)

with ˜̇χ = dχ
dτ

. In this case, only two parameters remain free, namely the damping ratio ζ
and the forcing κ =

√
α3γ

ω3
0

[19]. However, this formulation is not retained here. Equation
(2.68) can be solved analytically using, for instance, the MMS for the primary resonance
but also for the 3:1 and 1:3 resonances [4, 11, 23]. Since the MMS is restricted to weak
nonlinearities, Equation (2.68) is solved numerically using HBM. This allows to study a
wider range of forcing amplitudes. Each harmonic l of the Fourier series of the response
may trigger a resonance if ωl = lω/ν corresponds to the (amplitude-dependent) frequency
of the primary resonance of the system. According to Stoker [39], the resonances can be
divided into four categories, namely

• 1 : 1 primary/fundamental resonance (l = ν = 1);

• l : 1 superharmonic or ultraharmonic resonances;

• 1 : ν subharmonic resonances;

• l : ν ultra-subharmonic resonances.

The resonances are calculated using 15 × ν harmonics where the value of ν depends
on the type of resonance studied. The system parameters are ζ = 0.5%, ω0 = 1 rad/s and
α3 = 1 N/(kg.m3). Stability analysis is also performed using Hill’s method in the HBM
formalism [36, 40].
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2.3: Nonlinear oscillators

2.3.2.1 Primary resonance

The primary resonance is excited by setting the forcing frequency ω in the vicinity of ω0.
Figure 2.4 illustrates the NFRCs for the hardening (α3 = 1 N/(kg.m3)) and softening
(α3 = −1 N/(kg.m3)) cases for a forcing of γ = 0.003 N/kg. In both cases, the frequency
shift leads to multi-stable solutions delimited by the fold bifurcations, i.e., when ∂ω

∂A
= 0,

which can lead to a jump phenomenon [11, 39]. The solutions between the two bifurcations
are unstable. Furthermore, it is observed that for the same forcing, the softening (resp.
hardening) oscillator leads to the greatest (resp. lowest) maximum amplitude.

(a) (b)

Figure 2.4: NFRCs around the primary resonance of the hardening and softening Duffing
oscillators and the linear oscillator (γ = 0.003 N/kg): (a) amplitude and (b) phase lag. Black:
stable; grey: unstable.

2.3.2.2 Secondary resonances

γ = 0.25 N/kg

At this forcing level, two secondary resonances can be observed in Figure 2.5, namely a
small peak around ω0/3 and an isolated branch after 3ω0.

Figure 2.6a represents the 3:1 superharmonic resonance around ω0/3 whereas Figure
2.6b displays the harmonic ratio for the first and third harmonics. This latter figure
evidences the underlying mechanism, i.e., since 3ω ≃ ω0, the third harmonic enters into
resonance and dictates the dynamics of the response.

The 1 : 3 subharmonic resonance in Figure 2.7 appears as an isolated response, i.e., it
is detached from the main branch. In this case, the first harmonic in the vicinity of the
primary resonance is dominant throughout the resonance; the third harmonic is almost
absent. Both resonances, as for primary resonances, can have unstable and multi-stable
solutions that seem to appear between the fold bifurcations.
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2.3: Nonlinear oscillators

Figure 2.5: NFRC of the Duffing oscillator (γ = 0.25 N/kg). Black: stable; grey: unstable.

(a) (b)

Figure 2.6: NFRC around the 3:1 resonance (γ = 0.25 N/kg): (a) amplitude (black: stable;
grey: unstable) and (b) harmonic ratio (black: l = 3; grey: l = 1).
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(a) (b)

Figure 2.7: NFRC around the 1:3 resonance (γ = 0.25 N/kg): (a) amplitude (black: stable;
grey: unstable) and (b) harmonic ratio (black: l = 1; grey: l = 3).

γ = 1 N/kg

In addition to the 3:1 and 1:3 resonances, new secondary resonances appear in Figure 2.8,
both below and above the primary resonance.

Figure 2.9a reveals that a series of superharmonic resonances for which l is odd and ν =
1 appear in the direct continuation of the main branch. We thus observe the 3:1, 5:1, 7:1...
resonances. For each of these resonances, the corresponding harmonic l becomes more and
more dominant in the response as the forcing increases. Besides, around ω = 0.72 rad/s, a
loss of stability occurs on the main branch, and another resonance bifurcates out of it. The
same scenario appears between the 5:1 and 3:1 resonances. These resonances correspond
to even superharmonic resonances, namely the 2:1 and 4:1 resonances, respectively. Figure
2.9b highlights that the 2:1 resonance follows a mechanism similar to the odd resonances.
The newly-created 1:2 subharmonic resonance is plotted in Figure 2.10.

γ = 3 N/kg

Many new l : ν resonances (with both l and ν different from 1) appear as isolated branches
in the superharmonic and subharmonic regimes in Figure 2.11.

Close-ups of the superharmonic and subharmonic resonances are available in Figures
2.12a and 2.12b, respectively. In the superharmonic case, apart from the odd and even
k : 1 resonances, we can observe from left to right the 7:2, 7:3, 5:3, 3:2, 7,5 and 4:3 ultra-
subharmonic resonances. In the subharmonic regime, from left to right, we observe the
1:4, 5:7, 2:3 and 3:5 ultra-subharmonic resonances, as well as the 1:2 and 1:3 resonances.
For each l : ν resonance, as the forcing increases, the l-th harmonic is more and more
dominant compared to the other harmonics of the response. Finally, we note that each
resonance for which ν > 1 appears as an isolated branch.
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2.3: Nonlinear oscillators

Figure 2.8: NFRC of the Duffing oscillator (γ = 1 N/kg). Black: stable; grey: unstable.

(a) (b)

Figure 2.9: NFRC in the superharmonic regime (γ = 1 N/kg): (a) amplitude (black: stable;
grey: unstable) and (b) harmonic ratio (l = 2: black, l = 1: grey).
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(a) (b)

Figure 2.10: NFRC around the 1:2 resonance (γ = 1 N/kg): (a) amplitude (black: stable; grey:
unstable) and (b) harmonic ratio (l = 1: black, l = 2: grey).

Figure 2.11: NFRC of the Duffing oscillator (γ = 3 N/kg). Black: stable; grey: unstable.
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2.4: Conclusions and discussion

(a) (b)

Figure 2.12: NFRC of the Duffing oscillator (γ = 3 N/kg): (a) superharmonic regime and (b)
subharmonic regime. Black: stable; grey: unstable.

2.4 Conclusions and discussion

In this chapter, the resonances of linear and Duffing oscillators were studied both ana-
lytically and numerically to highlight the main differences that exist between linear and
nonlinear systems.

As exemplified in Figures 2.4, 2.5, 2.8 and 2.11, the resonant behavior of nonlinear
systems is much more complex than that of linear systems. First, the primary resonance
undergoes a hardening effect that shifts the resonance peak toward greater frequencies.
This is accompanied by the appearance of two fold bifurcations giving rise to the coex-
istence of stable and unstable solutions. The presence of multiple solutions can lead to
a jump phenomenon, i.e., the system can switch from one stable solution to another,
with potential damage to the system [5, 11]. Another major difference with linear sys-
tems is the multi-harmonic nature of the system response, which can, in turn, generate
secondary resonances. As seen in Figure 2.11, before and after the primary resonance,
many resonance peaks coexist. The l:1 superharmonic resonances with l odd, associated
with the resonance of the l-th harmonic of the Fourier series, appear in the continuation
of the main branch; they can thus be easily calculated using numerical continuation [41,
42]. Conversely, the l:1 superharmonic resonances with l even bifurcate out of the main
branch, meaning that they should be calculated using advanced bifurcation analysis tech-
niques [29, 43, 44]. The remaining resonances appear as isolated branches of solutions,
require a minimum forcing amplitude to exist and can be revealed through the calculation
of basins of attraction.

All in all, characterizing the resonant behavior of a nonlinear system remains a great
challenge both numerically and experimentally; it represents the main thrust of this thesis.
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Definition of the resonances of linear systems

The most natural definition of a resonance is the amplitude resonance. Expressing the
system’s response as x(t) = A sin (ωt− ϕ), amplitude resonance corresponds to a local
maximum in the frequency response function, i.e., dA

dω
= 0.

A much less obvious definition is the phase resonance introduced by Fraiejs de Veubeke
[45]. It occurs when the motion is in quadrature with the excitation, i.e., ϕp = π

2
. The

underlying motivation for phase resonance testing [46] is that the structural response cor-
responds to the undamped normal mode and that the excitation frequency is the natural
frequency of the undamped system; this greatly facilitates the correlation between nu-
merical and experimental results. Moreover, since the phase is very sensitive to frequency
alterations in the neighborhood of resonance, the phase measurement is an ideal way to
ascertain resonance conditions. The consideration of phase resonance is particularly suit-
able in the case of light damping, because it occurs in the immediate neighborhood of
amplitude resonance. Historically, phase resonance laid down the foundations of the first
experimental modal analysis methods.

Definition of the resonances of nonlinear systems

For nonlinear oscillators, the response x(t) is written as a Fourier series

x(t) =
∞∑
l=0

Al sin (ωlt− ϕl) (2.70)

and any harmonic l can trigger a resonance l : ν, as discussed in Section 2.3.2. The
response has a period Tν = 2νπ

ω
which corresponds to the period of its first harmonic

term. The maximum of amplitude over one period Tν is labelled Amax.

Amplitude resonance

The amplitude resonance of a nonlinear system occurs when dAmax

dω
= 0. Despite its

apparent simplicity, this definition is not straightforward to implement numerically and
experimentally. Indeed, it is only very recently that a multi-harmonic numerical contin-
uation method that can track the locus of the points of maximum amplitude has been
devised [47]. Experimentally, no such method exists yet.

Because the l-th harmonic plays a key role in the dynamics of the l:ν resonance, a
simpler alternative is to consider the amplitude resonance of this harmonic, i.e., dAl

dω
= 0.

Since a single harmonic comes into play, this definition facilitates analytical and numerical
investigations. For instance, Petrov [48] was the first to develop a numerical method to
track the amplitude resonance of a single harmonic, both for primary and odd superhar-
monic resonances. Interestingly, Renault et al [49] proposed a similar method to track
the antiresonances of nonlinear frequency responses. However, an experimental version of
those algorithms is yet to be developed.
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Phase resonance

Similarly to linear systems, the phase resonance of a nonlinear system amounts to ex-
cite the undamped nonlinear normal mode (NNM) at the undamped nonlinear natural
frequency. To do so, a multi-harmonic forcing must counterbalance the damping forces
with the result that each harmonic of the displacement is in phase quadrature with the
corresponding harmonic of the forcing [50]. If the numerical computation of nonlinear
modes has now reached maturity [26, 27, 51, 52], there is still no constructive experi-
mental method to identify the NNMs exactly as this requires an unpractical multi-point,
multi-harmonic forcing. We note that a relatively accurate identification of an isolated
NNM can be obtained using phase quadrature testing and mono-point, mono-harmonic
forcing [26, 50, 53, 54], but secondary resonances and modal interactions cannot be tackled
using this testing strategy.

Goal of the thesis

It turns out that none of the previous definitions of a nonlinear resonance can be applied
numerically and experimentally to primary and secondary resonances. To address this
problem, we make the choice to restrict ourselves in this thesis to nonlinear systems
excited by a mono-point, mono-harmonic forcing. This choice is also motivated by the
fact that this is a commonly-used excitation signal in academia and industry.

Inspired by the work of Leung and Fung in [55] and the recent progress of phase-
locked-loop testing [16–20], we concentrate our attention on the evolution of the phase
lag between the l-th harmonic of the displacement and the harmonic forcing around the
l:ν resonance. Specifically, nonlinear resonance is said to occur at the phase lag which
corresponds to the amplitude resonance of the l-th harmonic. This strategy is termed
phase resonance of the l-th harmonic, and the corresponding phase lag is termed resonant
phase lag. For primary resonances, the resonant phase lag is π/2 [50, 56]. Interestingly,
Haller demonstrated using Melnikov analysis that the resonant phase lag is close to π/2
for 1 : ν subharmonic resonances with ν odd, but the proof was for the ν-th harmonic
and not the l-th harmonic. Consequently, one key objective of this thesis is to determine
the resonant phase lags for the different families of secondary resonances. This will be (i)
achieved through analytical developments in Chapters 3 and 4, (ii) validated numerically
for SDOF and MDOF systems in Chapters 5 and 6, and (iii) demonstrated experimentally
in Chapter 6.

If successful, this strategy would be particularly suitable for numerical and experi-
mental investigations. Indeed, it is relatively easy to follow a specific phase lag numeri-
cally using numerical continuation but also experimentally using phase-locked loops. An
important remark is that, because mono-harmonic forcing is considered, the structural
deformation at the phase resonance of the l-th harmonic will deviate away from a NNM
and will be termed phase resonance nonlinear mode (PRNM) in this manuscript.
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Chapter 3

Primary resonance of nonlinear
oscillators

3.1 Introduction

Exact analytical solutions of nonlinear mechanical systems do not always exist even for
very simple problems. For instance, the undamped, unforced Duffing oscillator admits
an exact analytical solution, but the damped, forced one does not. Therefore, perturba-
tion techniques are often used to derive approximate analytical solutions provided that
the problem at hand is weakly nonlinear. Several perturbation techniques exist in the
literature. Among them, the AM and the MMS were already discussed in Chapter 2 for
the undamped, unforced Duffing oscillator. Other techniques exist such as the Melnikov
analysis [32, 57] and normal forms theory [58–62].

In the first part of this chapter, a near-resonance AM is applied to a damped, forced
oscillator with polynomial stiffness to derive analytical solutions around the primary res-
onance. A peculiar attention is devoted to the amplitude and phase resonances as well
as their stability. In the second part of the chapter, the analytical solutions for different
systems, including the Duffing oscillator [4, 15, 22, 63–68], the Helmholtz oscillator [69]
and an oscillator with quintic and sceptic stiffness, are compared to the numerical solution
computed with the HBM.

3.2 Oscillator with polynomial stiffness

The equation of motion of a harmonically-forced, damped oscillator with polynomial
stiffness is

mẍ(t) + cẋ(t) + kx(t) +
n∑

d=2

kdx
d(t) = f sinωt (3.1)

where kd represents the nonlinear stiffness coefficient of order d. The natural frequency
of the undamped, linearized system is ω0 =

√
k
m

. Through mass normalization, Equation
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3.2: Oscillator with polynomial stiffness

(3.1) can be recast into

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) +

∞∑
d=2

αdx
d(t) = γ sinωt (3.2)

where αd = kd/m. Equation (3.2) is scaled such that ζ = εζ̄, αd = εᾱd and γ = εγ̄, with
ζ̄, ᾱd, γ̄ = O(1) and 0 < ε≪ 1 a small parameter, to obtain a weakly nonlinear oscillator

ẍ(t) + ω2
0x(t) = ε

(
γ̄ sinωt− 2ζ̄ω0ẋ(t)−

∞∑
d=2

ᾱdx
d(t)

)
. (3.3)

Since this oscillator is forced harmonically with a frequency ω, we seek a near-resonance
solution of frequency ω close to ω0 [70].

3.2.1 The near-resonance averaging method

The response of system (3.3) is expressed using a Van der Pol transformation with a
frequency ω such that ω2 − ω2

0 = εΩ

x(t) = u(t) cosωt− v(t) sinωt. (3.4)

The rest of the procedure is similar to that in Section 2.3.1.2. First, we impose the
condition that the velocity should be

ẋ(t) = −u(t)ω sinωt− v(t)ω cosωt (3.5)

which only holds if
u̇(t) cosωt− v̇(t) sinωt = 0. (3.6)

Second, we differentiate Equation (3.5) and replace ẍ(t) and x(t) in Equation (2.38). It
yields

u̇(t)ω sinωt+ v̇(t)ω cosωt = −ε
(
f̄nl(x(t), ẋ(t)) + Ωx(t)

)
. (3.7)

The frequency detuning parameter Ω now appears in the weakly nonlinear term. Finally,
taking into account Equations (3.6) and (3.7) and solving for u̇ and v̇, a system of first-
order equations is obtained{

u̇(t) = − ε
ω

(
f̄nl(x(t), ẋ(t)) + Ωx(t)

)
sinωt

v̇(t) = − ε
ω

(
f̄nl(x(t), ẋ(t)) + Ωx(t)

)
cosωt

(3.8)

which has a suitable form to apply first-order AM
u̇(t) = − ε

ω
1
T

T∫
0

(
f̄nl(x(t), ẋ(t)) + Ωx(t)

)
sinωt dt

v̇(t) = − ε
ω

1
T

T∫
0

(
f̄nl(x(t), ẋ(t)) + Ωx(t)

)
cosωt dt.

(3.9)
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3.2: Oscillator with polynomial stiffness

With the change of variable ωt = θ, Equation (3.9) is rewritten as
u̇(t) = − ε

ω
1
2π

2π∫
0

(f(x(θ), ẋ(θ)) + Ωx(θ)) sin θ dθ

v̇(t) = − ε
ω

1
2π

2π∫
0

(f(x(θ), ẋ(θ)) + Ωx(θ)) cos θ dθ.

(3.10)

The solution x(t) is often represented in polar coordinates x(t) = A(t) sin (ωt− ϕ(t)) with{
A(t) =

√
u2(t) + v2(t)

ϕ(t) = atan2(−u(t),−v(t)).
(3.11)

Conversely, u(t) = −A(t) sinϕ(t) and v(t) = −A(t) cosϕ(t). Furthermore, we can express
the time derivatives of A and ϕ as{

Ȧ = ∂A
∂u
u̇+ ∂A

∂v
v̇ = 1

A
(uu̇+ vv̇)

ϕ̇ = ∂ϕ
∂u
u̇+ ∂ϕ

∂v
v̇ = 1

A2 (vu̇− uv̇)
(3.12)

where, for conciseness, the time dependence for u, v, A and ϕ is dropped.

3.2.2 Averaging around the primary resonance

Applying the AM to the oscillator (3.1) consists in solving
u̇ = − ε

ω
1
2π

2π∫
0

(
γ̄ sin θ − 2ζ̄ω0ẋ(θ)−

∞∑
d=2

ᾱdx
d(θ) + Ωx(θ)

)
sin θ dθ

v̇ = − ε
ω

1
2π

2π∫
0

(
γ̄ sin θ − 2ζ̄ω0ẋ(θ)−

∞∑
d=2

ᾱdx
d(θ) + Ωx(θ)

)
cos θ dθ.

(3.13)

Equation (3.13) is solved by averaging the different physical terms, namely the forcing,
damping, frequency detuning and polynomial stiffness terms separately. For clarity, Equa-
tion (3.13) is rewritten as {

u̇ = − ε
ω

(
u̇γ̄ + u̇ζ̄ + u̇ᾱd

+ u̇Ω
)

v̇ = − ε
ω

(
v̇γ̄ + v̇ζ̄ + v̇ᾱd

+ v̇Ω
) (3.14)

where the pairs (u̇γ̄, v̇γ̄),
(
u̇ζ̄ , v̇ζ̄

)
, (u̇ᾱd

, v̇ᾱd
) and (u̇Ω, v̇Ω) correspond to the u̇ and v̇ coordi-

nates of the forcing, damping, polynomial stiffness and frequency detuning, respectively.
To solve these integrals, the following trigonometric integral over a full circle (see Ap-
pendix B) is used

1

2π

∫ 2π

0

cosa θ sinb θ dθ =
1

4π
[(−1)a + 1]

[
(−1)b + 1

] Γ (a
2
+ 1

2

)
Γ
(
b
2
+ 1

2

)
Γ
(
a
2
+ b

2
+ 1
) (3.15)

where Γ is the Gamma function. Equation (3.15) is always equal to 0 if either a or b is
odd. Replacing a→ 2a and b→ 2b yields

1

2π

∫ 2π

0

cos2a θ sin2b θ dθ =
1

π

Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

)
Γ (a+ b+ 1)

. (3.16)
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3.2: Oscillator with polynomial stiffness

3.2.2.1 Averaging of the forcing term

For u̇ and v̇, we have respectively

u̇γ̄ =
1

2π

∫ 2π

0

γ̄ sin2 θ dθ =
γ̄

2
(3.17)

and

v̇γ̄ =
1

2π

∫ 2π

0

γ̄ cos θ sin θ dθ = 0. (3.18)

3.2.2.2 Averaging of the damping term

For u̇ and v̇, we have respectively

u̇ζ̄ = −
1

2π

∫ 2π

0

2ζ̄ω0

(
−uω sin2 θ − vω cos θ sin θ

)
dθ = ζ̄ω0ωu (3.19)

and

v̇ζ̄ = −
1

2π

∫ 2π

0

2ζ̄ω0

(
−uω cos θ sin θ − vω cos2 θ

)
dθ = ζ̄ω0ωv. (3.20)

3.2.2.3 Averaging of the frequency detuning term

For u̇ and v̇, we have respectively

u̇Ω =
1

2π

∫ 2π

0

Ω
(
u cos θ sin θ − v sin2 θ

)
dθ = −Ωv

2
(3.21)

and

v̇Ω =
1

2π

∫ 2π

0

Ω
(
u cos2 θ − v cos θ sin θ

)
dθ =

Ωu

2
. (3.22)

3.2.2.4 Averaging of the polynomial stiffness term

For u̇ and v̇, we need to solve respectively

u̇ᾱd
= −

∞∑
d=2

1

2π

∫ 2π

0

ᾱd (u cos θ − v sin θ)d sin θ dθ (3.23)

and

v̇ᾱd
= −

∞∑
d=2

1

2π

∫ 2π

0

ᾱd (u cos θ − v sin θ)d cos θ dθ. (3.24)

To do so, the binomial expansion is applied to the polynomial term

(u cos θ − v sin θ)d =
d∑

p=0

(
d

p

)
(u cosϕ)d−p(−v sin θ)p. (3.25)
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It yields

u̇ᾱd
= −

∞∑
d=2

αd

d∑
p=0

(
d

p

)
ud−p(−v)p 1

2π

∫ 2π

0

cosd−p θ sinp+1 θ dθ (3.26)

and

v̇ᾱd
= −

∞∑
d=2

ᾱd

d∑
p=0

(
d

p

)
ud−p(−v)p 1

2π

∫ 2π

0

cosd−p+1 θ sinp θ dθ. (3.27)

The result of the integrals depends on the parity of the exponents of the sine and cosine
terms, i.e., the parity of d and p. Therefore, u̇ᾱd

and v̇ᾱd
are split into{

u̇ᾱd
= u̇ᾱ2i+1,2j+1

+ u̇ᾱ2i+1,2j
+ u̇ᾱ2i,2j

+ u̇ᾱ2i,2j+1

v̇ᾱd
= v̇ᾱ2i+1,2j+1

+ v̇ᾱ2i+1,2j
+ v̇ᾱ2i,2j

+ v̇ᾱ2i,2j+1

(3.28)

where the different terms u̇ᾱ•,• and v̇ᾱ•,• account for the parity of d and p. The different
combinations are studied hereafter.

Case 1: d and p are odd. We set d = 2i+ 1 and p = 2j + 1. We have

u̇ᾱ2i+1,2j+1
=

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ ̸= 0 (3.29)

and

v̇ᾱ2i+1,2j+1
=

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0

(3.30)
since both exponents are odd.

Case 2: d is odd and p is even. We set d = 2i+ 1 and p = 2j

u̇ᾱ2i+1,2j
= −

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0 (3.31)

and

v̇ᾱ2i+1,2j
= −

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ ̸= 0 (3.32)

Case 3: d and p are even. We set d = 2i and p = 2j

u̇ᾱ2i,2j
= −

∞∑
i=0

ᾱ2i

i∑
j=0

(
2i

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (3.33)

and

u̇ᾱ2i,2j
= −

∞∑
i=0

ᾱ2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j θ dθ = 0 (3.34)
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3.2: Oscillator with polynomial stiffness

Case 4: d is even and p is odd. We set d = 2i and p = 2j + 1

u̇ᾱ2i+1,2j
=

∞∑
i=0

ᾱ2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j)−1 θ sin2(j+1) θ dθ = 0

(3.35)
and

u̇ᾱ2i+1,2j
=

∞∑
i=0

ᾱ2i

i∑
j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (3.36)

Summary: It follows that only u̇ᾱ2i+1,2j+1
and v̇ᾱ2i+1,2j

are non null and therefore{
u̇ᾱd

= u̇ᾱ2i+1,2j+1

v̇ᾱd
= v̇ᾱ2i+1,2j

.
(3.37)

We note that the stiffness terms of even order do not participate in the motion around
the primary resonance at first order.

3.2.2.5 Averaged solution of the oscillator with polynomial stiffness

Finally, the averaged equations for u̇ and for v̇ are
u̇ = − ε

ω

(
γ̄
2
+ ζ̄ω0ωu− Ωv

2
+

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+1
2j+1

)
u2(i−j)v2j+1

2π

2π∫
0

cos2(i−j) θ sin2(j+1) θ dθ

)

v̇ = − ε
ω

(
ζ̄ω0ωv +

Ωu
2
−

∞∑
i=1

ᾱ2i+1

i∑
j=0

(
2i+1
2j

)
u2(i−j)+1v2j

2π

2π∫
0

cos2(i−j+1) θ sin2j θ dθ

)
.

(3.38)
Using the same notation as in Equation (3.14), the solution in polar coordinates readsȦ = − ε

ω

(
Ȧγ̄ + Ȧζ̄ + Ȧᾱ3 + ȦΩ

)
ϕ̇ = − ε

ω

(
ϕ̇γ̄ + ϕ̇ζ̄ + ϕ̇ᾱ3 + ϕ̇Ω

) (3.39)

where the A• and ϕ• terms are computed thanks to Equation (3.12). We have
Ȧγ̄ = − γ̄

2
sinϕ

Ȧζ̄ = −ζ̄ω0ωA

ȦΩ = 0

Ȧᾱ = 1
A

(
uu̇ᾱ2i+1,2j+1

+ vv̇ᾱ2i+1,2j

) (3.40)

and 
ϕ̇γ̄ = − γ̄

2A
cosϕ

ϕ̇ζ̄ = 0

ϕ̇Ω = −Ω
2

ϕ̇ᾱ = 1
A2

(
vu̇ᾱ2i+1,2j+1

− uv̇ᾱ2i+1,2j

)
.

(3.41)

However, the simplification of the expression of the polynomial stiffness terms Ȧᾱd
and

ϕ̇ᾱd
is not straightforward. Some developments are necessary and are detailed hereafter.
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3.2: Oscillator with polynomial stiffness

3.2.2.6 Polynomial stiffness solution for Ȧᾱd

From (3.12), we have

Ȧᾱd
=

1

2πA

∞∑
i=1

ᾱ2i+1

(
i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)+1v2j+1

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

−
i∑

j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j+1

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)
.

(3.42)

The goal of this section is to prove that this relation is equal to 0. Equivalently, we want
to prove that(

2i+ 1

2j + 1

)∫ 2π

0

cos θ2(i−j) sin2(j+1) θ dθ −
(
2i+ 1

2j

)∫ 2π

0

cos θ2(i−j+1) sin2j θ dθ = 0. (3.43)

First, we use Equation (3.16) to rewrite the left hand side of Equation (3.43) as

2

Γ (i+ 2)

((
2i+ 1

2j + 1

)
Γ

(
i− j + 1

2

)
Γ

(
j + 1 +

1

2

)
−
(
2i+ 1

2j

)
Γ

(
i+ 1− j + 1

2

)
Γ

(
j +

1

2

))
.

(3.44)

Second, we can make use of the following property of the Gamma function

Γ

(
n+

1

2

)
=

(
n− 1

2

n

)
n!
√
π (3.45)

for non-negative integer values of n and the following binomial coefficient recurrence
property (

n

i

)
=
n− i+ 1

i

(
n

i− 1

)
(3.46)

to rewrite Equation (3.44) as

2π

Γ(i+ 2)
(i− j)!j!

(
i− j − 1

2

i− j

)(
j − 1

2

j

)(
2i+ 1

2j

)(
2i− 2j + 1

2j + 1

(
j +

1

2

)
−
(
i− j + 1

2

))
(3.47)

which is equal to 0. This proves the relation from Equation (3.42) and

Ȧᾱd
= 0. (3.48)

3.2.2.7 Polynomial stiffness solution for ϕ̇ᾱd

From (3.12), we have

ϕ̇ᾱd
=

1

A2

∞∑
i=1

ᾱ2i+1

( i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2(j+1) 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

+
i∑

j=0

(
2i+ 1

2j

)
u2(i−j+1)v2j+1 1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)
.

(3.49)
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3.2: Oscillator with polynomial stiffness

The goal of this section is to show that

i∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2(j+1) 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

+
i∑

j=0

(
2i+ 1

2j

)
u2(i−j+1)v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ = C2i+1A
2(i+1)

(3.50)

with C2i+1 a constant to be determined, such that

ϕ̇ᾱd
=

1

A2

∞∑
i=1

ᾱ2i+1C2i+1A
2(i+1). (3.51)

First, from the left hand side of Equation (3.50), we take out the j = i and j = 0 terms
of the first and second summation terms, respectively, leaving(

2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ

+
i∑

j=1

(
2i+ 1

2j

)
u2(i−j+1)v2j

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

+
i−1∑
j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2(j+1) 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ.

(3.52)

Second, on the third term of (3.52), we make the change of variable j → j − 1 such that
it is rewritten

i∑
j=1

(
2i+ 1

2j − 1

)
u2(i−j+1)v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ. (3.53)

Equation (3.52) becomes(
2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ

+
i∑

j=1

((
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

))
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ.

(3.54)

Third, using the recurrence relation of the binomial coefficients, we have(
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

)
=

(
2(i+ 1)

2j

)
. (3.55)
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3.2: Oscillator with polynomial stiffness

Fourth, the following relations are always verified(
2i+ 1

0

)
= 1 =

(
2(i+ 1)

0

)
(
2i+ 1

2i+ 1

)
= 1 =

(
2(i+ 1)

2(i+ 1)

)
.

(3.56)

Equation (3.54) becomes
i+1∑
j=0

(
2(i+ 1)

2j

)
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ. (3.57)

Furthermore, it can be proven (see Appendix B) that(
2(i+ 1)

2j

)
=

(
i+ 1

j

)
Γ(i+ 1 + 1

2
)

Γ(j + 1
2
)Γ(i+ 1− j + 1

2
)
. (3.58)

From (3.16), it yields(
2(i+ 1)

2j

)
1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ = C2i+1

(
i+ 1

j

)
(3.59)

with

C2i+1 =
1√
π

Γ(i+ 3
2
)

Γ(i+ 2)
=

(
2(i+ 1)

i+ 1

)
2−2(i+1) (3.60)

a constant that only depends on i. Finally, Equation (3.49) becomes

ϕ̇ᾱd
=

1

A2

∞∑
i=1

ᾱ2i+1C2i+1

i+1∑
j=0

(
i+ 1

j

)
u2(i+1−j)v2j

=
1

A2

∞∑
i=1

ᾱ2i+1C2i+1

(
u2 + v2

)i+1

=
1

A2

∞∑
i=1

ᾱ2i+1C2i+1A
2(i+1).

(3.61)

3.2.2.8 Averaged solution in polar coordinates of the oscillator with polyno-
mial stiffness

The system of equations from (3.38) in polar coordinates readsȦ = − ε
ω

(
ζ̄ω0ωA− γ̄

2
sinϕ

)
ϕ̇ = − ε

ωA

(
∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − Ω

2
A− γ̄

2
cosϕ

)
.

(3.62)

At steady state, Ȧ = ϕ̇ = 0. It results thatζ̄ω0ωA = γ̄
2
sinϕ

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − Ω

2
A = γ̄

2
cosϕ.

(3.63)
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3.2: Oscillator with polynomial stiffness

3.2.3 Stability analysis

As for the Duffing oscillator, the stability analysis can be performed by studying the
eigenvalues of the Jacobian matrix of the equations of motion from (3.63)

det(J) =

∣∣∣∣∣∣∣
−2ζ̄ω0ω − λ 2

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − ΩA

−2
∞∑
i=1

(2i+ 1)ᾱ2i+1C2i+1A
2i + Ω −2ζ̄ω0ωA− λ.

∣∣∣∣∣∣∣ (3.64)

Again, the solution is asymptotically stable if all the eigenvalues λ of the system have a
strictly negative real part, which is not the case when

4ζ̄2ω2
0ω

2A+

(
2

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − ΩA

)(
2

∞∑
i=1

(2i+ 1)ᾱ2i+1C2i+1A
2i − Ω

)
< 0.

(3.65)
The loss of stability happens between fold bifurcations, i.e., when ∂ω

∂A
= 0. This is proven

by adding together the square of the two relations in Equation (3.63)

4ζ̄2ω2
0ω

2A2 +

(
2

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − ΩA

)2

= γ̄2 (3.66)

taking the derivative with respect to A and setting ∂ω
∂A

= 0, which imposes a fold bifurca-
tion. We finally find that these folds occur when

4ζ̄2ω2
0ω

2A+

(
2

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − ΩA

)(
2

∞∑
i=1

(2i+ 1)ᾱ2i+1C2i+1A
2i − Ω

)
= 0.

(3.67)

3.2.4 Amplitude and phase resonances

Amplitude resonance occurs when both ∂A
∂ω

and ∂A
∂ϕ

are equal to 0. From Equation (3.63),
we obtain {

∂A
∂ϕ

= γ̄
2ζ̄ω0ω

(
cosϕ− sinϕ

ω
∂ω
∂ϕ

)
= 0

∂A
∂ω

= γ̄
2ζ̄ω0ω

(
cosϕ ∂ϕ

∂ω
− sinϕ

ω

)
= 0.

(3.68)

Both relations are equivalent. ∂ω
∂ϕ

is obtained by isolating Ω in the second relation of
(3.63) and making use of the chain rule ∂ω

∂ϕ
= ∂ω

∂Ω
∂Ω
∂ϕ

with

∂Ω

∂ϕ
=

(
4

∞∑
i=1

iᾱ2i+1C2i+1A
2i−1 +

γ̄

A2
cosϕ

)
∂A

∂ϕ
+
γ̄

A
sinϕ (3.69)

and ∂ω
∂Ω

=
[
∂Ω
∂ω

]−1
= ε

2ω
. It yields

∂ω

∂ϕ
=

ε

2ω

([
4

∞∑
i=1

iᾱ2i+1C2i+1A
2i−1 +

γ̄

A2
cosϕ

]
∂A

∂ϕ
+
γ̄

A
sinϕ

)
. (3.70)
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Eventually,

∂A

∂ϕ
=

γ̄ sinϕ
(
ω − εζ̄ω0 tanϕ

)
ζ̄ω0

(
2ω2 tanϕ+ ε

(
4

∞∑
i=1

iα2i+1C2i+1

(
γ̄

2ζ̄ω0ω
sinϕ

)2i
tanϕ+ 2ζ̄ω0ω

)) = 0.

(3.71)
This relation is verified when

tanϕa =
ωa

εζ̄ω0

(3.72)

and since we consider small damping ratios ζ = εζ̄, ϕa is close to π
2
.

On the other hand, phase resonance for linear and nonlinear systems occurs when the
external forcing counterbalances exactly the damping forces [50]. From the first equation
in Equation (3.63), we see that this happens when the phase lag is π/2. Phase resonance
thus occurs in the immediate vicinity of amplitude resonance.

3.2.5 Discussion on the harmonic forcing

In Equation (3.1), the choice was made to have a sine forcing. In the case of a cosine
forcing f cosωt, the governing equations of motion writeȦ = − ε

ω

(
ζ̄ω0ωA− γ̄

2
cosϕ

)
ϕ̇ = − ε

ωA

(
∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − Ω

2
A− γ̄

2
sinϕ

)
.

(3.73)

At steady state, Ȧ = ϕ̇ = 0. It resultsζ̄ω0ωA = γ̄
2
cosϕ

∞∑
i=1

ᾱ2i+1C2i+1A
2i+1 − Ω

2
A = γ̄

2
sinϕ.

(3.74)

The amplitude resonance condition becomes

tanϕa =
εζ̄ω0

ωa

(3.75)

and phase resonance resonance occurs when ϕp = 0.

3.3 Applications

3.3.1 The Duffing oscillator

3.3.1.1 Averaged solution of the Duffing oscillator

The equation of motion of the harmonically-forced Duffing oscillator is Equation (2.68).
Only α3 is different from 0 in the polynomial stiffness term and the averaged equations
in polar coordinates read{

Ȧ = − ε
ω

(
ζ̄ω0ωA− γ̄

2
sinϕ

)
ϕ̇ = − ε

ωA

(
3
8
ᾱ3A

3 − Ω
2
A− γ̄

2
cosϕ

)
.

(3.76)
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The steady-state solution around the primary resonance is obtained by setting Ȧ = ϕ̇ = 0{
ζ̄ω0ωA = γ̄

2
sinϕ

ᾱ3

8

(
3A2 − 4Ω

ᾱ3

)
A = γ̄

2
cosϕ.

(3.77)

3.3.1.2 Amplitude resonance

Imposing tanϕa = ωa

εζ̄ω0
in Equation (3.77), it is possible to derive Aa, ωa and ϕa as a

function of the unscaled system parameters

Aa =

√
2ω2

0

3α3

(
(ζ2 − 1) +

√
(1− ζ2)2 + 3α3γ2

4ζ2ω6
0

)
ωa =

ω0√
2

√
1− 3ζ2 +

√
(1− ζ2)2 + 3α3γ2

4ζ2ω6
0

tanϕa =

√
1−3ζ2+

√
(1−ζ2)2+

3α3γ
2

4ζ2ω6
0√

2ζ
.

(3.78)

To the best of our knowledge, this is the first time that an explicit function for the
amplitude, frequency and phase lag at amplitude resonance is derived for the Duffing
oscillator.

3.3.1.3 Phase resonance

Imposing ϕp = π/2 in Equations (3.77) yieldsAp =
γ

2ζω0ωp

ωp = ω0

√
1 + 3α3

4ω2
0
A2

p

(3.79)

from which the expressions of the amplitude and frequency at phase resonance as a func-
tion of the forcing amplitude only can be deduced

Ap =

√
2ω2

0

3α3

(√
1 + 3α3γ2

4ζ2ω6
0
− 1
)

ωp =
ω0√
2

√
1 +

√
1 + 3α3γ2

4ζ2ω6
0
.

(3.80)

We note that Equations (3.79) correspond to those that would be obtained by applying the
energy balance principle to the NNMs of the undamped, unforced system and neglecting
higher-order harmonics, as performed in Section 2.3.1.4. Under this latter assumption,
this means that phase resonance testing amounts to exciting the underlying NNMs.

3.3.1.4 Difference between amplitude and phase resonances

The difference between amplitude and phase resonances of the Duffing oscillator is neg-
ligible if the system is weakly nonlinear, i.e., if ε ≪ 1. Indeed, similarly to what was
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achieved in Section 2.2.3.3 in the linear case, we compute ∆A, ∆ω and ∆ϕ

∆A =

√
2ω2

0

3α3


√√√√(ζ2 − 1) +

√
(1− ζ2)2 + 3α3γ2

4ζ2ω6
0

−

√√√√√1 +
3α3γ2

4ζ2ω6
0

− 1


∆ω =

ω0√
2


√√√√1− 3ζ2 +

√
(1− ζ2)2 + 3α3γ2

4ζ2ω6
0

−

√√√√1 +

√
1 +

3α3γ2

4ζ2ω6
0



∆ϕ =

√
1− 3ζ2 +

√
(1− ζ2)2 + 3α3γ2

4ζ2ω6
0

√
2ζ

− π

2

(3.81)

and perform a Taylor series expansion around ε = 0, we find

∆A =
ζ̄ γ̄

4ω2
0

ε2 +O
(
ε3
)
= O

(
ε2
)

∆ω = −ω2
0 ζ̄

2ε2 +O
(
ε3
)
= O

(
ε2
)

∆ϕ = −ζ̄ε+O
(
ε2
)
= O (ε)

(3.82)

which is similar to what was obtained in the linear case. The main difference is that, for
the Duffing oscillator, we assume small forcing and nonlinear stiffness in addition to small
damping. Figure 3.1 displays the NFRC of the Duffing oscillator for ζ = 0.5%, ω0 = 1
rad/s and α3 = 0.1 N/(kg.m3). It confirms that there is no distinguishable difference
between the amplitude and phase resonance curves.

(a) (b)

Figure 3.1: NFRCs (black: stable; grey: unstable) around the primary resonance of the Duffing
oscillator for forcing amplitudes of 0.002 N/kg, 0.005 N/kg and 0.01 N/kg. Amplitude (blue)
and phase (orange) resonance curves: (a) amplitude and (b) phase lag.
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3.3.1.5 Comparison between the averaging method and other methods

The equations of motion obtained with the AM in Equation (3.77) can be directly com-
pared to those obtained with the MMS and the HBM with one or more harmonics. The
equations of motion using the MMS are directly obtained from [4]{

ζ̄ω2
0A = γ̄

2
sinϕ

ᾱ3

8

(
3A2 − 8ω0Ω

ᾱ3

)
A = γ̄

2
cosϕ

(3.83)

with ω−ω0 = εΩ in this case. These results are compared to the HBM with 15 harmonics,
considered as the reference solution, in Figures 3.2 and 3.3 for the hardening and softening
cases, respectively. First, in both cases, the AM results are in much better agreement with
the reference solution than the MMS results. Second, the MMS results in the hardening
case overestimate the maximum amplitude whereas it is underestimated in the softening
case. This is explained by the fact that both phase and amplitude resonances are reached
when ϕ = π/2. Therefore, Aa = Ap =

γ
2ζω2

0
with the MMS, which is exactly the amplitude

at phase resonance of the linear oscillator. On the other hand, the AM results show
that near resonance, i.e., near ϕ = π/2, the solution is A ≈ γ

2ζω0ω
, which is inversely

proportional to the frequency ω. In the hardening case, ω > ω0 and the amplitude at
amplitude resonance is thus lower than in the linear case, whereas it is greater in the
softening case since ω < ω0. This is what is observed in Figures 3.2 and 3.3. The
difference between AM and MMS comes from the fact that a linear detuning with respect
to the linear resonance frequency is considered in the MMS, i.e., ω − ω0 = εΩ, whereas
ω2 − ω2

0 = εΩ is considered in the AM. This is also the reason why an explicit function
of the amplitude, frequency and phase lag at amplitude resonance is not encountered in
the literature, since the Duffing oscillator studied using the MMS does not differentiate
between phase and amplitude resonances. Finally, it should be noted that the HBM
limited to only one harmonic gives the same results as the AM.

3.3.2 The Helmholtz oscillator

The Helmholtz oscillator contains a quadratic stiffness. The mass-normalized equation of
motion reads

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + α2x

2(t) = γ sinωt. (3.84)

Since the stiffness terms with even powers do not participate in the motion around the
primary resonance when applying a first-order AM, it results that it behaves as a linear
oscillator {

2ζ̄ω0ωA = γ̄ sinϕ

ΩA = γ̄ cosϕ.
(3.85)

Therefore, the solution at amplitude resonance expressed with the unscaled parameters is
Aa =

γ

2ζω2
0

√
1−ζ2

ωa = ω0

√
1− ζ2

ϕa =

√
1−ζ2

ζ

(3.86)
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(a) (b)

Figure 3.2: NFRCs around the primary resonance of the hardening Duffing oscillator for a
forcing amplitude of 0.01 N/kg using the HBM (black), the AM (blue), the MMS (orange) and
compared to the linear case (grey): (a) amplitude and (b) phase lag.

(a) (b)

Figure 3.3: NFRCs around the primary resonance of the softening Duffing oscillator for a
forcing amplitude of 0.01 N/kg using the HBM (black), the AM (blue), the MMS (orange) and
compared to the linear case (grey): (a) amplitude and (b) phase lag.
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and is close to phase resonance as discussed in Section 2.2.3.3. Figure 3.4 compares
the NFRC of the Helmholtz oscillator obtained with Equation (3.85) and the reference
solution obtained with the HBM. We see that the softening effect of the quadratic stiffness
is missed by the AM. However, even for the reference solution, there is no distinguishable
difference between the amplitude and phase resonance curves. Therefore, the conclusion
made in Section 3.2.4 that phase resonance occurs in the vicinity of amplitude resonance
still holds even when the quadratic nonlinearity cannot be neglected. Furthermore, we
see that the amplitude at amplitude resonance of the reference solution is higher than
the one of the AM. This is due to the fact that amplitude resonance occurs for a lower
frequency for the reference solution than the averaged solution. Indeed, assuming that
amplitude resonance can still be written Aa ≈ Ap = γ̄

2ζ̄ω0ω
, the lower the frequency, the

higher the amplitude.

(a) (b)

Figure 3.4: NFRCs (HBM: black; AM: green) around the primary resonance of the Helmholtz
oscillator for forcing amplitudes of 0.002 N/kg, 0.005 N/kg and 0.01 N/kg, amplitude (HBM:
yellow) and phase resonance (HBM: blue; AM: orange) curves: (a) amplitude and (b) phase lag.

3.3.3 The oscillator with quintic and sceptic stiffness

The mass-normalized equation of the oscillator with quintic and sceptic stiffness terms is

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + α5x

5(t) + α7x
7(t) = γ sinωt. (3.87)

In polar coordinates, the equations of motion read{
Ȧ = − ε

ω

(
ζ̄ω0ωA− γ̄

2
sinϕ

)
ϕ̇ = − ε

ωA

(
5
16
ᾱ5A

5 + 35
128
ᾱ7A

7 − Ω
2
A− γ̄

2
cosϕ

)
.

(3.88)

At steady-state {
ζ̄ω0ωA = γ̄

2
sinϕ

5
16
ᾱ5A

5 + 35
128
ᾱ7A

7 − Ω
2
A = γ̄

2
cosϕ.

(3.89)
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The NFRCs computed with the AM and compared with the HBM are depicted in Figure
3.5. The agreement is almost perfect for both the NFRCs and the phase resonance curves.
Again, the phase resonance curve predicts accurately the locus of points of maximum
amplitude.

(a) (b)

Figure 3.5: NFRCs (HBM: black (stable) and grey (unstable); AM: solid green (stable) and
dotted green (unstable)) around the primary resonance of the oscillator with quintic and sceptic
stiffness for forcing amplitudes of 0.002 N/kg, 0.005 N/kg and 0.01 N/kg and the phase resonance
curve (HBM: blue; AM: orange): (a) amplitude and (b) phase lag.

3.3.4 Oscillator with only one odd stiffness term

The mass-normalized equation of the oscillator with one nonlinear stiffness term of order
d, with d odd, is

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + αdx

d(t) = γ sinωt. (3.90)

At steady-state {
ζ̄ω0ωA = γ̄

2
cosϕ

ᾱdCdA
d − Ω

2
A = γ̄

2
sinϕ

(3.91)

where
Cd =

(
d+ 1
d+1
2

)
2−d−1. (3.92)

At phase resonance, ϕp =
π
2
, it yieldsAp =

γ
2ζω0ωp

ωp = ω0

√
1 + 2αdCd

ω2
0
Ad−1

p .
(3.93)

From the second relation of (3.93), we see that the frequency at phase resonance ωp

increases (decreases) when αd > 0 (αd < 0), the oscillator is said to be hardening (soften-
ing).
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3.4: Conclusion

Figure 3.6: Comparison of the phase resonance curves of oscillators with polynomial stiffness
term.

The phase resonance curves for oscillators with different values of d is presented in
Figure 3.6 with αd = ±0.1 N/(kg.md). At low amplitudes, the effect of the nonlinearity
on the detuning is more important when d is small. The tendency changes at around 4%
of detuning in both the hardening and softening cases, where the greater d, the greater
the detuning.

3.4 Conclusion
In this chapter, first-order AM was applied to characterize the primary resonance of an
oscillator with nonlinear polynomial stiffness. The first important finding is that ampli-
tude resonance always occurs when tanϕa =

ωa

εζ̄ω0
regardless of the powers included in the

polynomial stiffness function1. Secondly, we demonstrated that phase resonance, which
occurs when the motion is in quadrature with the excitation, happens in the immediate
neighbourhood of amplitude resonance for light to moderate damping, i.e., for damping
ratios of the order or less than 1%. The resonant phase lag at primary resonance is thus
equal to π/2. The distinction between the amplitude and phase resonances of nonlin-
ear oscillators is rarely discussed in the literature; these results complement what was
obtained in [50, 56].

An important difficulty when considering amplitude resonance is that a method for
identifying experimentally the amplitude resonance curve has not yet been devised. Con-
versely, a direct identification of the phase resonance curve is possible thanks to phase-
locked loops, see, e.g., [16–20]. Phase resonance has thus the potential to establish a
rigorous link between numerical and experimental modal analysis of nonlinear systems.

1We, however, note that the stiffness terms with even powers do not participate in the motion at first
order.
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Chapter 4

Secondary resonances of nonlinear
oscillators

4.1 Introduction

Unlike primary resonances, there exists no linear counterpart to secondary resonances;
they exist solely due to the nonlinearity present in the system. The l:ν resonance occurs
when the frequency of the l-th harmonic is close to the natural frequency of the system,
i.e., when ωl =

lω
ν
≃ ω0. In 1949 and 1950, Levenson and Stoker classified the resonances

of a Duffing oscillator in 4 categories, namely the primary resonance of order 1:1, the
superharmonic resonances of order l:1, the subharmonic resonances of order 1:ν and the
ultra-subharmonic resonances of order l:ν [39, 66]. Since then, these resonances were
extensively studied for the damped Duffing oscillator. For instance, the superharmonic
resonances that are in the direct continuation or bifurcate out of the main branch were
studied in [22, 71, 72]. More recently, Marchionne et al. showed numerically that the l:ν
resonances with ν > 1 are isolated from the main branch [68].

Similarly to the primary resonance, secondary resonances can be studied analytically
using perturbation techniques [11, 23, 32]. Using a first-order MMS, the 3:1 and 1:3
resonances of the Duffing oscillator were studied in [4, 12]. First-order averaging was also
used to obtain approximations to the 1:1, 3:1 and 1:3 resonances [15, 73], with results
comparable to those of the MMS. To obtain analytically more complex resonances, higher-
order perturbation techniques must be employed [11, 70, 74]. Using a higher-order AM,
Yagasaki was able to find analytical solutions of several l:ν resonances with l and ν
nonnecessarily equal to 1 [13–15]. Perturbation techniques were also applied to other
nonlinear systems in order to find secondary resonances of SDOF systems [13, 14, 75,
76] and two-DOF systems [13, 77]. However, the main focus of those analytical studies
is generally on the amplitude-frequency relations and not on the amplitude-phase lag
relations.

The main thrust of this chapter is thus to pay specific attention to the amplitude-
phase lag relation of the l-th harmonic of the l:ν resonance with the objective to extend
the phase resonance concept to secondary resonances. To this end, the resonant phase
lag ϕl is defined as the phase lag associated with the amplitude resonance of the l-th
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4.2: First-order averaging

harmonic.
This chapter revisits the work initiated in [13–15, 55] by studying analytically the

resonant behavior of a harmonically-forced oscillator with polynomial stiffness of order d.
A first-order AM is used to study the d:1 and 1:d resonances and derive the corresponding
resonant phase lags. This is illustrated on a Duffing oscillator, a Helmholtz oscillator and
an oscillator with quintic nonlinearity. Then, higher-order AM is employed to study the
superharmonic (l:1), subharmonic (1:ν) and ultra-subharmonic (l:ν) resonances of the
Duffing oscillator.

4.2 First-order averaging

4.2.1 Weakly nonlinear oscillator with hard excitation

The equation of motion of a weakly nonlinear oscillator with hard excitation is

ẍ(t) + ω2
0x(t) = εf̄nl (x(t), ẋ(t)) + γ sinωt (4.1)

with 0 < ε≪ 1 and γ = O(1) whose effect on the response away from ω0 is not small. If
ε = 0, then Equation (4.1) has a periodic solution x(t) = Λ sinωt with Λ = γ/(ω2

0 − ω2)
away from ω0. Introducing z(t) = x(t) − Λ sinωt in Equation (4.1) yields a weakly
nonlinear oscillator

z̈(t) + ω2
0z(t) = εf̄nl(z(t), ż(t), ωt) (4.2)

and, as for the primary resonance in Chapter 3, the response of Equation (4.2) is expressed
using a Van der Pol transformation with a frequency ωl close to a fraction of the natural
frequency such that ω2

l − ω2
0 = εΩl

z(t) = ul(t) cosωlt− vl(t) sinωlt (4.3)

and the velocity is such that

ż(t) = −ul(t)ωl sinωlt− vl(t)ωl cosωlt. (4.4)

Equation (4.4) holds only if

u̇l(t) cosωlt− v̇l(t) sinωlt. (4.5)

Equation (4.2) now reads

ul(t)ωl sinωlt+ vl(t)ωl cosωlt = −ε
(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
(4.6)

which can be transformed into a system of first-order equations using Equation (4.5){
u̇l(t) = − ε

ωl

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
sinωlt

v̇l(t) = − ε
ωl

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
cosωlt.

(4.7)

44



4.2: First-order averaging

In polar coordinates z(t) = Al(t) sin (ωlt− ϕl(t)) with{
Al(t) =

√
u2l (t) + v2l (t)

ϕl(t) = atan2(−ul(t),−vl(t))
(4.8)

Equation (4.7) reads{
Ȧl(t) =

ε
ωl

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
cos (ωlt− ϕl)

ϕ̇l(t) =
ε

Alωl

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
sin (ωlt− ϕl)

(4.9)

and is suitable to apply first or higher-order AM [14, 15]. For first-order AM, Equation
(4.9) is integrated over one period during which Al and ϕl are considered constant since
they are slowly varying with time

Ȧl(t) =
ε
ωl

1
T ∗

T ∗∫
0

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
cos (ωlt− ϕl) dt

ϕ̇l(t) =
ε

Al(t)ωl

1
T ∗

T ∗∫
0

(
f̄nl(z(t), ż(t), ωt) + Ωlz(t)

)
sin (ωlt− ϕl) dt

(4.10)

where T ∗ is the least common multiple between T = 2π
ω

and Tl =
2π
ωl

, i.e., T ∗ = 2νπ
ω

.
Finally, the displacement x(t) = Al sin (ωlt− ϕl)+Λ sinωt can be seen as a Fourier Series
with two harmonics, namely the primary harmonic (l = ν = 1) of amplitude Λ and no
phase lag and the l-th harmonic of amplitude Al and phase lag ϕl.

4.2.2 Oscillator with polynomial stiffness of order d

The equation of motion is

mẍ(t) + cẋ(t) + kx(t) + kdx
d(t) = f sinωt (4.11)

where kd represents the nonlinear stiffness coefficient of order d. The natural frequency
of the undamped, linearized system is ω0 =

√
k
m

. Through mass normalization, Equation
(4.11) can be recast into

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + αdx

d(t) = γ sinωt (4.12)

where αd = kd/m. Equation (4.12) is scaled such that ζ = εζ̄ and αd = εᾱd, with ζ̄,
ᾱd = O(1) and 0 < ε ≪ 1. The resulting system is a weakly nonlinear oscillator with
hard excitation

ẍ(t) + ω2
0x(t) = ε

(
−2ζ̄ω0ẋ(t)− ᾱdx

d(t)
)
+ γ sinωt (4.13)

and has the same form as Equation (4.1). It is thus suitable for first-order AM. Following
the procedure detailed in Section 4.2.1 and dropping the time dependence for Al and ϕl
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4.2: First-order averaging

for conciseness, the following system is obtained

Ȧl =
ε

ωl

1

T ∗

T ∗∫
0

(
−2ζ̄ω0 (ż(t) + Λω cosωt)− ᾱd (z(t) + Λ sinωt)d + Ωlz(t)

)
cos (ωlt− ϕl) dt

ϕ̇l =
ε

Alωl

1

T ∗

T ∗∫
0

(
−2ζ̄ω0 (ż(t) + Λω cosωt)− ᾱd (z(t) + Λ sinωt)d + Ωlz(t)

)
sin (ωlt− ϕl) dt

(4.14)

For clarity, Equation (4.14) is rewritten asȦl =
ε
ωl

(
Ȧl,ζ̄ + Ȧl,ᾱ + Ȧl,Ωl

)
ϕ̇l =

ε
Alωl

(
ϕ̇l,ζ̄ + ϕ̇l,ᾱ + ϕ̇l,Ωl

) (4.15)

where the pairs
(
Ȧl,ζ̄ , ϕ̇l,ζ̄

)
,
(
Ȧl,ᾱ, ϕ̇l,ᾱ

)
and

(
Ȧl,Ωl

, ϕ̇l,Ωl

)
correspond to the Ȧl and ϕ̇l

coordinates of the damping, polynomial stiffness and frequency detuning, respectively.
Letting θl = ωlt in Equation (4.14), the averaged equations for the damping, frequency
detuning and polynomial stiffness terms are derived.

4.2.2.1 Averaging of the damping term

For Ȧl,ζ̄ and ϕ̇l,ζ̄ , we have respectively

Ȧl,ζ̄ = −
1

2π

∫ 2lπ

0

2ζ̄ω0

(
Alωl cos (θl − ϕl) + Λω cos

νθl
l

)
cos (θl − ϕl) dθl = −ζ̄ω0ωllAl

(4.16)
and

ϕ̇l,ζ̄ = −
1

2π

∫ 2lπ

0

2ζ̄ω0

(
Alωl cos (θl − ϕl) + Λω cos

νθl
l

)
sin (θl − ϕl) dθl = 0. (4.17)

4.2.2.2 Averaging of the frequency detuning term

For Ȧl,Ωl
and ϕ̇l,Ωl

, we have respectively

Ȧl,Ωl
=

1

2π

∫ 2lπ

0

AlΩl sin (θl − ϕl) cos (θl − ϕl) dθl = 0 (4.18)

and

ϕ̇l,Ωl
=

1

2π

∫ 2lπ

0

AlΩl sin (θl − ϕl) sin (θl − ϕl) dθl =
lΩl

2
Al. (4.19)
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4.2.2.3 Averaging of the polynomial stiffness term

For Ȧl,ᾱ and ϕ̇l,ᾱ, we have respectively

Ȧl,ᾱ = − 1

2π

∫ 2lπ

0

ᾱd

(
Al sin (θl − ϕl) + Λ sin

νθl
l

)d

cos (θl − ϕl) dθl (4.20)

and

ϕ̇l,ᾱ = − 1

2π

∫ 2lπ

0

ᾱd

(
Al sin (θl − ϕl) + Λ sin

νθl
l

)d

sin (θl − ϕl) dθl. (4.21)

Solving Ȧl,ᾱ and ϕ̇l,ᾱ is not trivial and requires a symbolic software, such as Mathematica.
However, for the d:1 (l = d and ν = 1) and the 1:d (l = 1 and ν = d) resonances, there
exists an elegant analytical solution for both Ȧl,ᾱ and ϕ̇l,ᾱ. It can be expressed using the
binomial expansion(

Al sin (θl − ϕl) + Λ sin
νθl
l

)d

=
d∑

p=0

(
d

p

)
(Al sin (θl − ϕl))

d−p

(
Λ sin

νθl
l

)p

(4.22)

together with the expansion of odd and even powers of trigonometric functions [73, 78]
sin2i+1 ψ = 1

22i

i∑
p=0

(−1)i−p
(
2i+1
p

)
sin ((2i− 2p+ 1)ψ)

sin2i ψ = 1
22i−1

i−1∑
p=0

(−1)i−p
(
2i
p

)
cos (2(i− p)ψ) + 1

22i

(
2i
i

) (4.23)

Therefore, the focus of this section is on the d:1 and 1:d resonances of the oscillator with
polynomial stiffness xd.

Averaging of the polynomial stiffness term for the d :1 superharmonic reso-
nance

In this case, l = d and ν = 1, and a distinction must be made between odd and even
values of d. When d is odd, we have

Ȧd,ᾱ = −(−1)
d−1
2 ᾱd

d

2d
Λd sinϕd (4.24)

and

ϕ̇d,ᾱ = −(−1)
d−1
2

d

2d+1
ᾱd

(
2Λd cosϕd +

(
2p

p

)
Ad

d+

p−1∑
q=1

(
d

2q

)(
d− 2q + 1

p− q

)(
2q

q

)
Ad−2q

d Λ2q

) (4.25)

with p = d+1
2

. When d is even,

Ȧd,ᾱ = −(−1)
d
2 ᾱd

d

2d
Λd cosϕd (4.26)

and
ϕ̇d,ᾱ = −(−1)

d+2
2
d

2d
ᾱdΛ

d sinϕd (4.27)
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Averaging of the polynomial stiffness term for the 1:d subharmonic resonance

In this case, l = 1 and ν = d. When d is odd, we have

Ȧ1,ᾱ = (−1)
d−1
2
d

2d
ᾱdA

d−1
1 Λ sin dϕ1 (4.28)

and

ϕ̇1,ᾱ =
d

2d+1
ᾱd

((
2p

p

)
Ad

1+

p−1∑
q=1

(
d

2q

)(
d− 2q + 1

p− q

)(
2q

q

)
Ad−2q

1 Λ2q + (−1)
d−1
2 2Ad−1

1 Λcos dϕ1

) (4.29)

with p = d+1
2

. When d is even,

Ȧ1,ᾱ = −(−1)
d+2
2
d

2d
ᾱdA

d−1
1 Λcos dϕ1 (4.30)

and
ϕ̇1,ᾱ = −(−1)

d
2
d

2d
ᾱdA

d−1
1 Λ sin dϕ1. (4.31)

4.2.3 Averaged solution of the oscillator with polynomial stiffness
of order d

4.2.3.1 d :1 superharmonic resonance

The averaged equations that govern the d:1 resonance are

Ȧd =
ε
ωd

(
−ζ̄ω0ωddAd − (−1) d−1

2 ᾱd
d
2d
Λd sinϕd

)
ϕ̇d =

ε

Adωd

(
dΩd

2
Ad − (−1)

d−1
2

d

2d+1
ᾱd

(
2Λd cosϕd +

(
2p

p

)
Ad

d

+

p−1∑
q=1

(
d

2q

)(
d− 2q + 1

p− q

)(
2q

q

)
Ad−2q

d Λ2q

)) (4.32)

when d is odd and Ȧd =
ε
ωd

(
−ζ̄ω0ωddAd − (−1) d

2 ᾱd
d
2d
Λd cosϕd

)
ϕ̇d =

ε
Adωd

(
dΩd

2
Ad − (−1) d+2

2
d
2d
ᾱdΛ

d sinϕd

) (4.33)

when d is even.
At steady-state, i.e., when Ȧd = ϕ̇d = 0, we have
ζ̄ω0ωdAd = (−1) d+1

2
1
2d
ᾱdΛ

d sinϕd

Ωd

2
Ad = (−1) d−1

2
1

2d+1 ᾱd

(
2Λd cosϕd + Ad

d

(
2p
p

)
+

p−1∑
q=1

(
d
2q

)(
d−2q+1
p−q

)(
2q
q

)
Ad−2q

d Λ2q

)
(4.34)
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when d is odd and {
ζ̄ω0ωdAd = (−1) d+2

2
1
2d
ᾱdΛ

d cosϕd

Ωd

2
Ad = (−1) d+2

2
1
2d
ᾱdΛ

d sinϕd

(4.35)

when d is even.

4.2.3.2 1:d subharmonic resonance

The averaged equations that govern the 1:d resonance are

Ȧ1 =
ε
ω1

(
−ζ̄ω0ω1A1 − (−1) d−1

2
d
2d
ᾱdA

d−1
1 Λ sin dϕ1

)
ϕ̇1 =

ε

A1ω1

(
Ω1

2
A1 +

d

2d+1
ᾱd

((
2p

p

)
Ad

1

+

p−1∑
q=1

(
d

2q

)(
d− 2q + 1

p− q

)(
2q

q

)
Ad−2q

1 Λ2q + (−1)
d−1
2 2Ad−1

1 Λcos dϕ1

))
(4.36)

when d is odd andȦ1 =
ε
ω1

(
−ζ̄ω0ω1A1 − (−1) d+2

2
d
2d
ᾱdA

d−1
1 Λcos dϕ1

)
ϕ̇1 =

ε
A1ω1

(
Ω1

2
A1 − (−1) d

2
d
2d
ᾱdA

d−1
1 Λ sin dϕ1

) (4.37)

when d is even.
At steady-state, i.e., when Ȧ1 = ϕ̇1 = 0, we have
ζ̄ω0ω1 = (−1) d+1

2
d
2d
ᾱdA

d−2
1 Λ sin dϕ1

Ω1

2
A1 = − d

2d+1 ᾱd

((
2p
p

)
Ad

1 +
p−1∑
q=1

(
d
2q

)(
d−2q+1
p−q

)(
2q
q

)
Ad−2q

1 Λ2q + (−1) d−1
2 2Ad−1

1 Λcos dϕ1

)
(4.38)

when d is odd and {
ζ̄ω0ω1 = (−1) d

2
d
2d
ᾱdA

d−2
1 Λcos dϕ1

Ω1

2
= (−1) d

2
d
2d
ᾱdA

d−2
1 Λ sin dϕ1

(4.39)

when d is even. It should be noted that when d = 2, then the system becomes{
ζ̄ω0ω1 = −1

2
ᾱ2Λcos 2ϕ1

Ω1

2
= −1

2
ᾱ2Λ sin 2ϕ1

(4.40)

and no longer involves A1. The 1 : 2 subharmonic resonance cannot be approximated
using a first-order AM.

4.2.3.3 Resonant phase lags of the d :1 and 1:d resonances of the oscillator
with polynomial stiffness

First-order AM gives relations of the form{
f1(Al, ω, ϕl) = 0

f2(Al, ω, ϕl) = 0.
(4.41)
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for the d :1 and 1:d resonances. If we assume that the frequency is constant, i.e., ω ≃ νω0

l
,

then Equation (4.41) can be rewritten as{
f1(Al, ϕl) = 0

f2(Al, ϕl) = 0
(4.42)

A direct relationship between Al and ϕl can thus be derived. The resonant phase lag is
the one that solves dAl

dϕl
.

d :1 superharmonic resonance

Assuming a constant frequency ω = ω0

d
and d odd, we have

Ad = (−1)
d+1
2

1

2d
ᾱd

ζω2
0

Λd sinϕd (4.43)

Ad is positive and maximum when ϕd =
π
2

or ϕd = −π
2

if d+1
2

is even or odd, respectively.
When d is even,

Ad = (−1)
d+2
2

1

2d
ᾱd

ζω2
0

Λd cosϕd (4.44)

Ad is positive and maximum when ϕd = 0 or ϕd = π if d+2
2

is even or odd, respectively.

1:d subharmonic resonance

Assuming a constant frequency ω = dω0 and d odd,

A1 =

(
(−1)

d+1
2
d

2d
ᾱd

ζω2
0

Λ sin dϕ1

) 1
2−d

(4.45)

A1 is positive and maximum when ϕ1 =
3π
2d

+ 2iπ
d

with i = 0, . . . , d or ϕ1 =
π
2d

+ 2iπ
d

with
i = 0, . . . , d if d+1

2
is even or odd, respectively. It is interesting to note that in both cases,

π
2

is always a resonant phase lag.
When d is even,

A1 =

(
(−1)

d
2
d

2d
ᾱd

ζω2
0

Λ sin dϕ1

) 1
2−d

(4.46)

A1 is positive and maximum when ϕ1 = π
d
+ 2iπ

d
with i = 0, . . . , d or ϕ1 = 2iπ

d
with

i = 0, . . . , d if d
2

is even or odd, respectively.

4.2.4 The Duffing oscillator

To study the secondary resonances of the Duffing oscillator, Equation (2.68) is scaled such
that ζ = ζ̄ and α3 = εᾱ3, with ζ̄, ᾱ3 = O(1):

ẍ(t) + ω2
0x(t) = −ε

(
2ζ̄ω0ẋ(t) + ᾱ3x

3(t)
)
+ γ sinωt. (4.47)
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Applying the procedure from Section 4.2.1 yields a weakly nonlinear oscillator

z̈(t) + ω2
0z(t) = −ε

(
ᾱ3(z(t) + Λ sinωt)3 + 2ζ̄ω0(ż(t) + ωΛcosωt)

)
(4.48)

for which first-order AM can be applied for the 3:1 and 1:3 resonances. Unless specified
otherwise, the system parameters are ζ = 0.005, ω0 = 1 and α3 = 0.1 N/m2.

4.2.4.1 3:1 superharmonic resonance

From Equation (4.32), first-order AM when l = 3 and ν = 1 (such that εΩ3 = 9ω2 − ω2
0)

provides Ȧ3 = − ε
ω

(
ζ̄ω0ωA3 − ᾱ3Λ3

24
sinϕ3

)
ϕ̇3 = − ε

ωA3

(
ᾱ3

24

(
3A2

3 + 6Λ2 − 4Ω3

ᾱ3

)
A3 − ᾱ3Λ3

24
cosϕ3

)
.

(4.49)

At steady-state {
24ζ̄ω0ω

ᾱ3
A3 = Λ3 sinϕ3(

3A2
3 + 6Λ2 − 4Ω3

ᾱ3

)
A3 = Λ3 cosϕ3

(4.50)

Amplitude resonance

The amplitude resonance for the 3 : 1 resonance occurs when ∂A3

∂ω
= ∂A3

∂ϕ3
= 0

∂A3

∂ϕ
= ᾱ3Λ3

24ζω0ω

([
7ω2−ω2

0

ω(ω2
0−ω2)

]
sinϕ3

∂ω
∂ϕ3

+ cosϕ3

)
= 0

∂A3

∂ω
= ᾱ3Λ3

24ζω0ω

([
7ω2−ω2

0

ω(ω2
0−ω2)

]
sinϕ3 + cosϕ3

∂ϕ3

∂ω

)
= 0.

(4.51)

Isolating Ω3 from (4.50), using the chain rule ∂ω
∂ϕ3

= ∂ω
∂Ω3

∂Ω3

∂ϕ3
and inserting it in ∂A3

∂ϕ3
gives

∂A3

∂ϕ3

=
ᾱ3Λ

3
(

(7ω2−ω2
0)

ω(ω2
0−ω2)

εζ̄ω0

3
sinϕ3 +

(
1− ε ᾱ3Λ2

3(ω2
0−ω2)

+ ε 2ζ̄ω0ω
ω2
0−ω2

1
tanϕ3

)
cosϕ3

)
24ζω0ω

(
1− ε

(
ᾱ3Λ2

3(ω2
0−ω2)

+ 2ζ̄ω0ω
ω2
0−ω2

1
tanϕ3

− ᾱ3
3Λ

3 sinϕ3
2

6912ζ̄2ω2
0ω

3 − ζ̄ω0

3 sinϕ3 tanϕ3

)) . (4.52)

The numerator is 0 when

tan2 ϕ3 −
3ω(ω2

0 − ω2)

εζ̄ω0(ω2
0 − 7ω2)

(
1− εᾱ3Λ

2

3(ω2
0 − ω2)

)
tanϕ3 −

6ω2

(ω2
0 − 7ω2)

= 0. (4.53)

Solving this equation for tanϕ3 and keeping only the leading term, the phase lag at
amplitude resonance writes

tanϕ3,a =
3ωa(ω

2
0 − ω2

a)

εζ̄ω0(ω2
0 − 7ω2

a)
. (4.54)

Since ω is close to ω0

3
for the 3:1 resonance, it follows that

ω2
0 − ω2

a

ω2
0 − 7ω2

a

≃ 4 (4.55)
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which yields

tanϕ3,a =
12ωa

εζ̄ω0

. (4.56)

Inserting this relation in Equations (4.50) and assuming that the static response is con-
stant, i.e., Λ ≈ Λ∗ = 9γ

8ω0
, provides an expression of the amplitude of the third harmonic

and of the frequency at amplitude resonance
A3,a =

α3Λ3
∗

2ζω0

√
ζ2ω2

0+144ω2
a

ωa =

√
−c2+
√

c22−4c1c3

2c1

(4.57)

where 
c1 =

1728
α3

c2 = −144
(
2Λ2

∗ +
4ω2

0

3α3
− 3ζ2

4α3

)
c3 =

(
2ζ2ω2

0

3α3
− 2Λ2

∗ −
4ω2

0

3α3

)
ζ2ω2

0 −
α2
3Λ

6
∗

4ζ2ω2
0
.

(4.58)

Phase resonance

For weak damping, Equation (4.56) shows that tanϕ3,a takes very large values at am-
plitude resonance. Amplitude resonance thus occurs near ϕ3,a = π/2, i.e., when there is
phase quadrature between the third harmonic of the displacement and the forcing. The
phase resonance for the 3:1 superharmonic resonance can thus be associated with a phase
lag of ϕ3,p = π/2, in accordance with what was found in Section (4.2.3.3). The averaged
equations of motion (4.50) become:A3,p =

α3Λ3

24ζω0ωp

A3,p =
√

4Ω3

3ᾱ3
− 2Λ2.

(4.59)

If we assume again that Λ ≈ Λ∗, it is possible to derive a closed-form expression for A3,p

and ωp 
A3,p =

α3Λ3
∗

24ζω0ωp

ωp =

√
−c2+
√

c22−4c1c3

2c1

(4.60)

where 
c1 =

1728
α3

c2 = −144
(
2Λ2

∗ +
4ω2

0

3α3

)
c3 = − α2

3Λ
6
∗

4ζ2ω2
0
.

(4.61)
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Stability analysis

Stability analysis is performed by studying the eigenvalues of the Jacobian matrix of the
equations of motion from (4.50)

det(J) =

∣∣∣∣∣ −24ζ̄ω0ω
ᾱ3
− λ 3A3

3 +
(
6Λ2 − 4Ω3

ᾱ3

)
A3

−9A2
3 − 6Λ2 − 4Ω3

ᾱ3
−24ζ̄ω0ω

ᾱ3
A3 − λ.

∣∣∣∣∣ (4.62)

As for primary resonances, the solution is asymptotically stable if all the eigenvalues λ of
the system have a strictly negative real part (see Appendix A). This is not the case when(

3A3
3 +

(
6Λ2 − 4Ω3

ᾱ3

)
A3

)(
9A2

3 + 6Λ2 − 4Ω3

ᾱ3

)
+

576ζ̄2ω2
0ω

2

ᾱ2
3

< 0. (4.63)

The loss of stability happens between fold bifurcations, i.e., when ∂ω
∂A

= 0. This is proven
by adding together the square of the two relations in Equation 4.50, taking the derivative
with respect to A and setting ∂ω

∂A
= 0, which imposes a fold bifurcation. We finally find

that these folds occur when(
3A3

3 +

(
6Λ2 − 4Ω3

ᾱ3

)
A3

)(
9A2

3 + 6Λ2 − 4Ω3

ᾱ3

)
+

576ζ̄2ω2
0ω

2

ᾱ2
3

= 0. (4.64)

Results and discussion

Still assuming Λ ≈ Λ∗, we compute ∆A, ∆ω and ∆ϕ, as in Section 2.2.3.3 and perform a
Taylor series expansion around ε = 0. It yields

∆A = −(63 + 8ω2
0)

768
√
2ω0

ζ2ε2 +O
(
ε3
)
= O

(
ε2
)

∆ω = −11 (2ω2
0 − 9)

1024
√
2ω4

0

Λ3
∗α3ζε

2 +O
(
ε3
)
= O

(
ε2
)

∆ϕ = − 211

256
√
2
ζε+O

(
ε2
)
= O (ε) .

(4.65)

In addition to that, Equation (4.60) shows that the amplitude at resonance is proportional
to α3 and γ but inversely proportional to ωp. We can rewrite the frequency at phase
resonance as

ωp =

√√√√48ζω0 (6α3Λ2
∗ + 4ω2

0) +
√
2304ζ2ω2

0 (6α3Λ∗ + 4ω2
0)

2
+ 1728α2

3Λ
6
∗

3456ζω0

(4.66)

and we see that it is proportional to
√
α3 and γ3/2. Overall, if α3 or γ increases, both

the amplitude and the frequency at resonance increase. This hardening effect due to
the increasing of the forcing is confirmed in Figures 4.1a and 4.1b. In these figures,
the NFRCs calculated from Equation (4.50) and the phase resonance curves constructed
thanks to Equations (4.60) and (4.61) are compared to the numerical solution computed
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with the HBM. Furthermore, the newly-defined concept of a phase resonance for the
3:1 superharmonic resonance is in excellent agreement with the maxima of the third
harmonic of the response, as suggested by Equation (4.65). In the case of a softening
Duffing oscillator (α3 < 0), the phase lag ϕ3,p should be adjusted to 3π

2
in order to have a

positive amplitude A3,p. This phase lag is still consistent with Equation (4.56).

(a) (b)

Figure 4.1: NFRCs (HBM: black; AM: green) and phase resonance curves (HBM: blue; AM:
orange) around the 3:1 resonance of the Duffing oscillator for forcing amplitudes of 0.1 N/kg,
0.15 N/kg and 0.2 N/kg: (a) amplitude and (b) phase lag.

The effect of an increase in α3 is compared to the numerical solution in Figure 4.2.
The discrepancies between the averaged and numerical solutions are due to a too strong
nonlinearity. However, the trend is the same, namely as α3 increases, both the amplitude
and frequency at resonance increases until a fold appears in the NFRC, leading to a loss
of stability as discussed in Section 4.2.4.1.

4.2.4.2 1:3 subharmonic resonance

For l = 1, ν = 3, Equation (4.36) gives{
Ȧ1 = − ε

ω

(
ζ̄ω0ωA1 − 9ᾱ3Λ

8
A2

1 sin 3ϕ1

)
ϕ̇1 = − ε

ωA1

(
3ᾱ3

8

(
3A2

1 + 6Λ2 − 4Ω1

ᾱ3

)
A1 − 9ᾱ3Λ

8
A2

1 cos 3ϕ1

)
.

(4.67)

For steady-state solutions and assuming A1 ̸= 0,{
8ζ̄ω0ω
3ᾱ3

= 3ΛA1 sin 3ϕ1

3A2
1 + 6Λ2 − 4Ω1

ᾱ3
= 3ΛA1 cos 3ϕ1.

(4.68)

Adding the square of both relations of (4.68) together gives a quadratic equation in A2
1

9A4
1 +

(
27Λ2 − 24Ω1

ᾱ3

)
A2

1 +

(
6Λ2 − 4Ω1

ᾱ3

)2

+
64ζ̄2ω2

0ω
2

9ᾱ2
3

= 0 (4.69)
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(a) (b)

Figure 4.2: NFRCs (HBM: black (stable) and grey (unstable); AM: solid green (stable) and
dotted green (unstable)) and phase resonance points (HBM: blue; AM: orange) around the 3:1
resonance of the Duffing oscillator for a forcing amplitude of 0.1 N/kg and α3 = 0.1 N/m3, 0.5
N/m3 and 1 N/m3: (a) amplitude and (b) phase lag.

In order to have A1 real, we must have that 27Λ2 − 24Ω1

ᾱ3
> 0 and

(
27Λ2 − 24Ω1

ᾱ3

)2
−

36

((
6Λ2 − 4Ω1

ᾱ3

)2
+

64ζ̄2ω2
0ω

2

9ᾱ2
3

)
> 0. The first relation evidences that Ω1 and ᾱ3 must

have the same sign. The second relation gives the conditions for the existence of the 1:3
subharmonic resonance, illustrated in Figure 4.3 when ζ = 0.5% and α3 = 0.1 N/m3. The
boundaries of the existence domain are given by

γ =
∥ω2

0 − ω2
b∥√

3ᾱ3

√
432

378

√
Ω1 ±

√
Ω2

1 −
28

9
ζ̄2ω2

0ω
2
b (4.70)

where ωb are the frequencies at the extremities of the isola. We see in Figure 4.3 that
(4.70) admits a minimum forcing under which the 1:3 subharmonic resonance does not
exist. In this case, a forcing of 0.79 N/kg is required for the existence of the resonance.

Amplitude resonance

Amplitude resonance occurs when ∂A1

∂ω
= ∂A1

∂ϕ
= 0:


∂A1

∂ϕ1
= 8ζ̄ω0

9ᾱ3Λ sin 3ϕ1

((
1− 2ω2

ω2
0−ω2

)
∂ω
∂ϕ1
− 3ω

tan 3ϕ1

)
= 0

∂A1

∂ω
= 8ζ̄ω0

9ᾱ3Λ sin 3ϕ1

((
1− 2ω2

ω2
0−ω2

)
− 3ω

tan 3ϕ1

∂ϕ1

∂ω

)
= 0

(4.71)
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Figure 4.3: Domain of existence (blue area) of the 1:3 subharmonic resonance as a function of
the forcing amplitude.

We must have sin 3ϕ1 ̸= 0, i.e., ϕ1 ̸= iπ
3
, where i is an integer. Following the same

procedure as for the previous resonances gives:

∂A1

∂ϕ1

=
8ζ̄ω0

9ᾱ3Λ sin 3ϕ1

(
1− 2ω2

ω2
0−ω2

)
ε9ζ̄ω0 − 3ω

tan 3ϕ1

(
1− ε27ᾱ3Λ2

ω2
0−ω2 + ε 6ζ̄ω0

ω2
0−ω2

1
tan 3ϕ1

)
1− ε27ᾱ3Λ2

ω2
0−ω2 + ε 6ζ̄ω0

ω2
0−ω2

1
tan 3ϕ1

−
(
1− 2ω2

ω2
0−ω2

)(
ε

16ζ2ω2
0

3ᾱ3Λ2 sin2 3ϕ1
+ ε 3ζ̄ω0

ω tan 3ϕ1

) .
(4.72)

The numerator is equal to 0 when:

9εζ̄ω0

(
1− 2ω2

ω2
0 − ω2

)
tan2 3ϕ1 − 3ω

(
1− ε 27ᾱ3Λ

2

ω2
0 − ω2

)
tanϕ1 − ε

18ζ̄ω0ω
2

ω2
0 − ω2

= 0. (4.73)

Solving this equation for tan 3ϕ1 and keeping only the leading term, the phase lag at
amplitude resonance can be approximated with

tan 3ϕ1,a =
ωa

3ζ̄ω0

(
1 + 2ω2

a

ω2
a−ω2

0

) . (4.74)

Since ω is close to 3ω0 for the 1:3 resonance, it follows that

2ω2
a

ω2
a − ω2

0

≃ 9

4
(4.75)

which yields

tan 3ϕ1,a =
4ωa

39ζ̄ω0

. (4.76)

Inserting this relation in Equations (4.68) gives:A1,a =
2ζ̄ω0

9ᾱ3Λ

√
1521ζ̄2ω2

0 + 16ω2
a

γ =
∥ω2

0−ω2
a∥√

6ᾱ3

√
(2Ω1 + 13ζ2ω2

0)
2 ±

√
(2Ω1 + 13ζ̄2ω2

0)
2 − 8

9
ζ̄2ω2

0(1521ζ̄
2ω2

0 + 16ω2
a).

(4.77)
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Unlike the 3 : 1 superharmonic resonance, the static response cannot be assumed to be
constant because the frequency varies much faster for the 1:3 subharmonic resonance (see
Figure 4.4). An explicit expression for the resonance frequency ωa as a function of the
forcing γ cannot thus be derived. We also note that, due to the ± sign, there exist
two frequencies satisfying (4.77), the greatest (lowest) frequency corresponding to the
maximum (minimum) response on the isolated branch. It is thus the greatest frequency
which is in relation with the resonance frequency ωa.

Phase resonance

For weak damping, Equation (4.76) shows that the amplitude resonance occurs near
phase lags equal to π

6
+ iπ

3
where i is an integer. For odd (even) values of i, A1 takes

positive (negative) values. Considering positive amplitudes, the phase resonance for the
1:3 subharmonic resonance can be associated with phase lags equal to π

2
, 7π

6
and 11π

6
, which

is accordance with the results in Section (4.2.3.3). For π
2
, the averaged equations of motion

(4.50) can be transformed intoA1,p =
8ζ̄ω0ωp

9ᾱ3Λ

γ =
∥ω2

0−ω2
p∥√

3ᾱ3

√
Ω1 ±

√
Ω2

1 − 32
9
ζ̄2ω2

0ω
2
p.

(4.78)

The same expressions can be obtained if the two other phase lags are considered instead.
For a softening Duffing oscillator, amplitude resonance still occurs for phase lags ϕp

near π
6
+ iπ

3
except that positive amplitudes occur now when i is even. Thus, the resonant

phase lags are π
6
, 5π

6
and 3π

2
.

Stability analysis

Stability analysis is performed by studying the eigenvalues of the Jacobian matrix of the
equations of motion from (4.68)

det(J) =

∣∣∣∣∣∣
8ζ̄ω0ω
3A2

1ᾱ3
− λ 9A1 +

3
A1

(
6Λ2 − 4Ω1

3ᾱ3

)
−3 + 1

A2
1

(
6Λ2 − 4Ω1

3ᾱ3

)
−8ζ̄ω0ω

A1ᾱ3
− λ.

∣∣∣∣∣∣ (4.79)

As for primary resonances, the solution is asymptotically stable if all the eigenvalues λ of
the system have a strictly negative real part. This is not the case when(

9A1 +
3

A1

(
6Λ2 − 4Ω1

3ᾱ3

))(
3− 1

A2
1

(
6Λ2 − 4Ω1

3ᾱ3

))
− 64ζ̄2ω2

0ω
2

3A3
1ᾱ

2
3

< 0. (4.80)

The loss of stability happens between fold bifurcations, i.e., when ∂ω
∂A

= 0. This is proven
by adding together the square of the two relations in Equation 4.68, taking the derivative
with respect to A and setting ∂ω

∂A
= 0, which imposes a fold bifurcation. We finally find

that these folds occur when(
9A1 +

3

A1

(
6Λ2 − 4Ω1

3ᾱ3

))(
3− 1

A2
1

(
6Λ2 − 4Ω1

3ᾱ3

))
− 64ζ̄2ω2

0ω
2

3A3
1ᾱ

2
3

= 0. (4.81)
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4.2: First-order averaging

Results and discussion

Figure 4.4 compares the NFRCs and the phase resonance curve corresponding to ϕ1 =
π
2
,

constructed thanks to Equations (4.68). As anticipated, phase quadrature is found to
trace out the locus of the maxima of the different isolated responses. This is also the case
for the numerical solution in Figure 4.5.

The fact that phase resonance is located close to the extremities of the isola can be
explained by looking at Equation (4.70) and the second relation of Equation (4.78). If we
rewrite them using the unscaled system parameters, we have

γ =
∥ω2

0−ω2
b∥√

3α3

√
432
378

√
(ω2

l,b − ω2
0)±

√
(ω2

l,b − ω2
0)

2 − 28
9
ζ2ω2

0ω
2
b

γ =
∥ω2

0−ω2
p∥√

3α3

√
(ω2

l,p − ω2
0)±

√
(ω2

l,p − ω2
0)

2 − 32
9
ζ2ω2

0ω
2
p.

(4.82)

Assuming that
√

432
378
≃ 1 and that in practice (ω2

l − ω2
0) ≫ ζ ≪ 1 (even though this

violates the AM hypotheses), we end up withγ ≃
∥ω2

0−ω2
b∥√

3α3

√
(ω2

l − ω2
0)±

√
(ω2

l − ω2
0)

2 −O (ε2)

γ =
∥ω2

0−ω2
p∥√

3α3

√
(ω2

l − ω2
0)±

√
(ω2

l − ω2
0)

2 −O (ε2)
(4.83)

As a result, ωb ≃ ωp, which is confirmed in Figure 4.6.

4.2.4.3 Other resonances

We can try to apply first-order AM to obtain the governing equations of higher-order
resonances such as the 5:1 and 1:5 resonances. This gives{

Ȧ5 = −εζ̄ω0A5

ϕ̇5 = − ε
40ω

(3ᾱ3A
2
5 + 6ᾱ3Λ

2 − 4Ω5)
(4.84)

and {
Ȧ1 = −εζ̄ω0A1

ϕ̇1 = − 5ε
8ω

(3ᾱ3A
2
1 + 6ᾱ3Λ

2 − 4Ω1)
(4.85)

respectively. At steady-state, no information is obtained about the evolution of the phase
lag. The amplitude of the l-th harmonic can be either 0 or

A1,5 =

√
4Ω1,5

3ᾱ3

− 2Λ2 (4.86)

if the first or second relation of Equations (4.84) and (4.85) is considered, respectively.
Higher-order AM is thus necessary to gather information about the phase lag.
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4.2: First-order averaging

(a)

(b)

(c)

(d)

Figure 4.4: NFRCs (solid green: stable; dotted green: unstable) and phase resonance curve
(orange) around the 1:3 resonance of the Duffing oscillator with the AM: (a) 0.8 N, (b) 1.2N, (c)
1.5 N and (d) phase lag.
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(a)

(b)

(c)

(d)

Figure 4.5: NFRCs (black) and phase resonance curve (blue) around the 1:3 resonance of the
Duffing oscillator using the HBM: (a) 0.8 N, (b) 1.2N, (c) 1.5 N and (d) phase lag.
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4.2: First-order averaging

Figure 4.6: Domain of existence (blue area) and phase resonance curve (orange) of the 1:3
subharmonic resonance as a function of the forcing amplitude.

4.2.5 The Helmholtz oscillator

The equation of motion of the weakly nonlinear Helmholtz oscillator is

ẍ(t) + ω2
0x(t) = −ε

(
2ζ̄ω0ẋ(t) + ᾱ2x

2(t)
)
+ γ sinωt (4.87)

The system parameters considered here are ζ = 0.005, ω0 = 1 and α2 = 0.1 N/m2.

4.2.5.1 2:1 superharmonic resonance

According to Equation (4.35), the averaged equations of motion around the 2:1 resonance
are {

ζ̄ω0ωA2 =
1
8
ᾱ2Λ

2 cosϕ2

Ω2A2 =
1
8
ᾱ2Λ

2 sinϕ2

(4.88)

The system acts as a linear oscillator around the 2:1 resonance since the equations of
motion are similar to those obtained for the damped, forced harmonic oscillator in Section
2.2.2. The resonant phase lag is ϕ2 = 0, as demonstrated in Section 4.2.3.3. This is
confirmed in Figure 4.7 where the amplitude resonance is close to ϕ2 = 0. The NFRCs
obtained with the AM are also compared to those obtained with the HBM. Though the
curves match well, those obtained with the HBM present a slight softening behavior that
cannot be obtained with a first-order AM. Still, even with the HBM, ϕ2 = 0 is a good
indicator of the amplitude resonance.

4.2.5.2 1:2 subharmonic resonance

It was shown in Equation (4.40) that first-order AM does not give accurate equations of
motion for a quadratic nonlinearity. This resonance can only be studied numerically. The
dynamics of this resonance is quite complex. At forcing starting from 0N, the 1:2 branch
crosses the 0 rad/s axis and for forcing amplitudes greater than 0.3 N/kg, the branch is
attached to the main branch thanks to bifurcation points but also crosses the 0 rad/s axis.
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(a) (b)

Figure 4.7: NFRCs (HBM: black; AM: green) and phase resonance points (HBM: blue; AM:
orange) around the 2:1 resonance of the Helmholtz oscillator for forcing amplitudes of 0.1 N/kg,
0.15 N/kg and 0.2 N/kg: (a) amplitude and (b) phase lag.

Those dynamics are not studied here. Therefore, the 1:2 resonance branch is only studied
for an intermediate forcing amplitude. The response is an isolated branch for which the
extremities correspond to a minimum and a maximum of amplitude where the phase lag
is ϕ1 = π, in line with the results of Section 4.2.3.3. It is illustrated in Figure 4.8.

(a) (b)

Figure 4.8: NFRC (black) and phase resonance point (blue) using the HBM around the 1:2
resonance of the Helmholtz oscillator for a forcing amplitude of 0.07 N/kg: (a) amplitude and
(b) phase lag.
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4.2.6 The oscillator with a quintic stiffness

The equation of motion of the oscillator with a weak quintic stiffness is

ẍ(t) + ω2
0x(t) = −ε

(
2ζ̄ω0ẋ(t) + ᾱ5x

5(t)
)
+ γ sinωt (4.89)

The system parameters are ζ = 0.005, ω0 = 1 and α5 = 0.1 N/m2.

4.2.6.1 5:1 superharmonic resonance

From Equation (4.34), the averaged equations of motion around the 5:1 resonance are{
160ζ̄ω0ωA5 = −ᾱ5Λ

5 sinϕ5

16Ω5A5 − 10ᾱ5 (1A
5
5 + 6A3

5Λ
2 + 3A5Λ

4) = −ᾱ5Λ
5 cosϕ5

(4.90)

and the resonant phase lag is −π
2
. This resonance is illustrated in Figure 4.9 where it is

compared to the solution obtained with the HBM. Despite a slight amplitude deviation
at high forcing amplitudes, both methods give similar results. First, there is a hardening
effect, and, second, ϕ1 = −π

2
describes well the maximum amplitude.

(a) (b)

Figure 4.9: NFRCs (HBM: black; AM: green) and phase resonance points (HBM: blue; AM:
orange) around the 5:1 resonance of the oscillator with a quintic stiffness for forcing amplitudes
of 0.4 N/kg, 0.5 N/kg and 0.6 N/kg: (a) amplitude and (b) phase lag.

4.2.6.2 1:5 subharmonic resonance

From Equation (4.38), the averaged equations of motion around the 1:5 resonance are{
32ζ̄ω0ω = −25ᾱ5ΛA

3
5 sin 5ϕ1

80Ω1 − 50ᾱ5 (A
5
4 + 6A2

5Λ
2 + 3Λ4) = 25ᾱ5Λcos 5ϕ5.

(4.91)

As for the 1:3 resonance of the Duffing oscillator, the 1:5 resonance starts to appear at a
critical forcing and takes the form of an isolated response. This response is not necessarily
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close to 5ω0, as assumed in Section 4.2.3.3, but this does not alter the resonant phase lag.
Indeed, the response is bounded between two frequencies that correspond to a minimum
and a maximum of amplitude characterized by ϕ1 =

π
2
, as illustrated in Figure 4.10. This

is confirmed by numerical results in Figure 4.11.

(a) (b)

Figure 4.10: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) using the AM around the 1:5 resonance of the oscillator with a quintic stiffness for a
forcing amplitude of 3 N/kg: (a) amplitude and (b) phase lag.

4.3 Higher-order averaging

4.3.1 Weakly nonlinear oscillator with hard excitation

For higher-order AM, a weakly nonlinear oscillator with hard excitation is considered, as
in Section 4.2.1, but now, the nonlinear term also depends on ε

ẍ(t) + ω2
0x(t) = εf̄nl (x(t), ẋ(t), ε) + γ sinωt (4.92)

Eventually, a weakly nonlinear oscillator is obtained

z̈(t) + ω2
0z(t) = εf̄nl(z(t), ż(t), ωt, ε). (4.93)

Again, the response of Equation (4.2) is expressed using a Van der Pol transformation
with a frequency ωl close to a fraction of the natural frequency such that ω2

l −ω2
0 = εpΩl,

with p a positive integer

z(t) = ul(t) cosωlt− vl(t) sinωlt (4.94)

which can be transformed into a system of first-order equations using Equation (4.5){
u̇l(t) = − ε

ωl

(
f̄nl(z(t), ż(t), ωt) + εp−1Ωlz(t)

)
sinωlt

v̇l(t) = − ε
ωl

(
f̄nl(z(t), ż(t), ωt) + εp−1Ωlz(t)

)
cosωlt.

(4.95)
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(a) (b)

Figure 4.11: NFRC (black) and phase resonance points (blue) using the HBM around the
1:5 resonance of the oscillator with a quintic stiffness for a forcing amplitude of 2 N/kg: (a)
amplitude and (b) phase lag.

Higher-order AM can be performed on Equation (4.95) by using the haverage.m Math-
ematica package implemented by Yagasaki [14, 15] and based on the Lie transform algo-
rithm [11].

4.3.2 The Duffing oscillator

To study the secondary resonances of the Duffing oscillator with higher-order AM, Equa-
tion (2.68) is scaled such that ζ = εq ζ̄ and α3 = εᾱ3, with ζ̄, ᾱ3 = O(1) and q an
integer,

ẍ(t) + ω2
0x(t) = −ε

(
2εq−1ζ̄ω0ẋ(t) + ᾱ3x

3(t)
)
+ γ sinωt. (4.96)

Applying the procedure from Section 4.3.1 with p = 1, such that ω2
l − ω2

0 = εΩl, yields

z̈(t) + ω2
0z(t) = −ε

(
ᾱ3(z(t) + Λ sinωt)3 + 2εq−1ζ̄ω0(ż(t) + ωΛcosωt)

)
(4.97)

The system of first-order equations for u̇l and v̇l is{
u̇l = − ε

ωl

(
−2εq−1ζ̄ω0 (ż(t) + ωΛcosωt)− ᾱ3 (z(t) + Λ sinωt)3 + Ωlz(t)

)
sinωlt

v̇l = − ε
ωl

(
−2εq−1ζ̄ω0 (ż(t) + ωΛcosωt)− ᾱ3 (z(t) + Λ sinωt)3 + Ωlz(t)

)
cosωlt.

(4.98)
It is solved using the haverage.m Mathematica package [14, 15]. The value of q in Equation
(4.98) is matched to the order of the AM performed. For each l:ν resonance, the objective
is to obtain information about the resonant phase lags around which amplitude resonance
occurs. In some cases, the actual solution of the system may differ from the averaged
solution. This is because it is not always easy to find the right system parameters such that
the exact and averaged solutions match perfectly, as it was the case for the 1:3 resonance in
Section 4.2.4.2. However, despite these variations, the global behavior remains consistent,
and the conclusions remain valid. For the numerical examples, the system parameters are
ζ = 0.005, ω0 = 1 and α3 = 0.1 N/m2, unless specified otherwise.
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4.3.2.1 Superharmonic resonances

5:1 superharmonic resonance

Second-order AM with q = 2 provides the equations governing the 5:1 resonance{
Ȧ5 =

ε2

2

(
−2ζ̄ω0A5 +

3ᾱ2
3Λ

5

1280ω3 sinϕ5

)
ϕ̇5 = − ε

40ω
(3ᾱ3A

2
5 + 6ᾱ3Λ

2 − 4Ω5) +
ε2

2
R5:1

(4.99)

with

R5:1 =
−1344ᾱ3A5Ω (A2

5 + Λ2) + ᾱ2
3 (714A

5 + 8991A3
5Λ

2 + 5733A5Λ
4 + 525Λ5 cosϕ5)

224000A5ω3

+
448A5 (100ζω

2
0ω

2 + Ω2)

224000A5ω3
.

(4.100)

At steady-state {
ζ̄ω0A5 =

3ᾱ2
3Λ

5

2560ω3 sinϕ5

3ᾱ3A
2
5 + 6ᾱ3Λ

2 − 4Ω5 = O(ε).
(4.101)

To find the resonant phase lag from the first relation of Equation (4.101), the frequency
is assumed to be constant. Therefore, A5 is maximum when sinϕ5 = 1, i.e., when ϕ5 =

π
2
.

This is represented in Figure 4.12.

(a) (b)

Figure 4.12: NFRCs (green) and phase resonance curve (orange) using the AM around the 5:1
resonance of the Duffing oscillator for forcing amplitudes of 0.1 N/kg, 0.15 N/kg and 0.2 N/kg:
(a) amplitude and (b) phase lag.
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7:1 superharmonic resonance

Second-order AM with q = 3 provides the equations governing the 7:1 resonance{
Ȧ7 =

ε3

6

(
−6ζ̄ω0A5 +

27ᾱ3
3Λ

7

358400ω5 sinϕ7

)
ϕ̇7 = − ε

56ω
(3ᾱ3A

2
7 + 6ᾱ3Λ

2 − 4Ω7) +O (ε2) .
(4.102)

At steady-state {
6ζ̄ω0A7 =

27ᾱ3
3Λ

7

358400ω5 sinϕ7

3ᾱ3A
2
7 + 6ᾱ3Λ

2 − 4Ω7 = O (ε) .
(4.103)

To find the resonant phase lag from the first relation of Equation (4.124), the frequency
is assumed to be constant. Therefore, A7 is maximum when sinϕ7 = 1, i.e., when ϕ7 =

π
2
.

This is depicted in Figure 4.13.

(a) (b)

Figure 4.13: NFRCs (green) and phase resonance curves (orange) using the AM around the 7:1
resonance of the Duffing oscillator for forcing amplitudes of 0.1 N/kg, 0.15 N/kg and 0.2 N/kg:
(a) amplitude and (b) phase lag.

Even superharmonic resonance

Second-order AM with q = 2 provides the equations governing the 2:1 resonance{
Ȧ2 =

ε2

2

(
−2ζ̄ω0A2 − 21ᾱ2

3Λ
4A2

640ω3 sin 2ϕ2

)
ϕ̇2 = − ε

16ω
(3ᾱ3A

2
2 + 6ᾱ3Λ

2 − 4Ω2) +O (ε2) .
(4.104)

At steady-state, the first relation of (4.104) gives

ζ̄ω0 = −
21ᾱ2

3Λ
4

640ω3
sin 2ϕ2 (4.105)
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There is no longer a direct relation between the amplitude A2 and phase lag ϕ2. In fact,
solving (4.104) does not give any relevant result. The same problem occurs for higher-
order even superharmonic resonances. The only possibility is to study these resonances
numerically. Figure 4.14 shows the second harmonic amplitude and phase lag around the
2:1 resonance for different forcing amplitudes. Interestingly, for a same amplitude, there
exists two possible phase lags. The two solutions are centered around phase lags of 3π

4
and

−π
4
, respectively. These phase lags can be used as the resonant phase lag to construct the

phase resonance curve of the 2:1 resonance. Figure 4.15 confirms that the two solutions
possess identical maximum values.

(a) (b)

Figure 4.14: NFRCs (black) and phase resonance curves (blue) obtained using the HBM around
the 2:1 resonance of the Duffing oscillator for forcing amplitudes of 1.5 N/kg, 2 N/kg and 3 N/kg:
(a) amplitude and (b) phase lag.

The same reasoning can be applied for the 4:1 resonance and even higher-order reso-
nances. Figure 4.16 shows that the 4:1 resonance also exhibit two solutions, one centered
around a phase lag of 3π

4
and another around a phase lag of −π

4
.

4.3.2.2 Subharmonic resonances

In this section, the focus is on the 1:ν subharmonic resonances. As shown in Section 2.3.2,
a minimum forcing is required for their activation. The goal of this section is twofold: (i)
find the domain of existence as a function of the forcing amplitude and (ii) compute the
resonant phase lags.

First, for q equal to the order of the AM performed, we have at steady state{
g(A1, ω,Λ) = sin(pνϕ1)

3ᾱ3A
2
1 + 6ᾱ3Λ

2 − 4Ω1 = O (ε)
(4.106)

where g(A1, ω,Λ) is a function that is either always positive or always negative. The value
of p is either 1 or 2 if ν is odd or even, respectively. Dropping the O (ε) term gives an
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Figure 4.15: Times series of the second harmonic of the 2:1 resonance for a phase lag of 3π
4 rad

(solid blue line) and -π4 rad (dashed blue line) and compared to the forcing (black).

(a) (b)

Figure 4.16: NFRCs (black) and phase resonance curves (blue) obtained using the HBM around
the 4:1 resonance of the Duffing oscillator for forcing amplitudes of 3 N/kg, 6 N/kg and 9 N/kg:
(a) amplitude and (b) phase lag.
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approximate solution of the amplitude A1

A2
1 ≃

4Ω1

3ᾱ3

− 2Λ2. (4.107)

This relation can be injected in the first relation of the steady-state motion. Because the
sine function is between −1 and 1, the inequality

−1 ≤ g(ω,Λ) ≤ 1. (4.108)

is derived. Since g(ω,Λ) no longer depends on A1 and is either always positive or always
negative, one of the inequalities is always verified. The other inequality is used to compute
the domain of existence of the resonance. If the forcing exceeds a certain threshold,
two frequencies, ωinf and ωsup, define the domain of existence of the 1:ν subharmonic
resonance. Conversely, if the forcing is too low, the inequality is not satisfied, and the
subharmonic resonance does not exist.

Second,
∂A2

1

∂ω
= 8ω

(
1

3ν2εᾱ3

− γ2

(ω2
0 − ω2)3

)
(4.109)

is always positive for hardening Duffing oscillators when ω > ω0, i.e., for all subharmonic
resonances. This means that all subharmonics have their minimum and maximum of
amplitude at the boundaries of their domain of existence, i.e.. when ω = ωinf and
ω = ωsup, respectively. The resonant phase lag is the one that solves either sin(pνϕ1) = 1
or sin(pνϕ1) = −1, depending on the type of resonance; phase resonance is close to the
actual amplitude resonance computed when the O (ε) term is not dropped in Equation
(4.106). This is shown in the following examples.

1:2 subharmonic resonance

Second-order AM with q = 2 provides the equations governing the 1:2 resonance{
Ȧ1 = − ε2

2

(
2ζ̄ω0A1 +

33ᾱ2
3Λ

2A3
1

4ω3 sin 4ϕ1

)
ϕ̇1 = − 5ε

4ω
(3ᾱ3A

2
1 + 6ᾱ3Λ

2 − 4Ω1) +
ε2

2
R1:2

(4.110)

with

R1:2 =−
660ᾱ2

3A
2Λ2 cos(4ϕ1) + 480ᾱ3Ω1 (A

2
1 + Λ2)

80ω3

+
3ᾱ2

3 (85A
4
1 + 144A2Λ2 − 60Λ4) + 160ζω2

0ω
2 + 160Ω2

1

80ω3
.

(4.111)

At steady-state {
2ζ̄ω0 = −33ᾱ2

3Λ
2A2

1

4ω3 sin 4ϕ1

3ᾱ3A
2
1 + 6ᾱ3Λ

2 − 4Ω1 = O(ε).
(4.112)

Dropping the O(ε) leads to {
2ζ̄ω0 = −33ᾱ2

3Λ
2A2

1

4ω3 sin 4ϕ1

A2
1 ≃ 4Ω1

3ᾱ3
− 2Λ2.

(4.113)
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Figure 4.17: Domain of existence (blue area) and phase resonance curve (orange) of the 1:2
subharmonic resonance as a function of the forcing amplitude.

Considering that the sinus function in the first equation of (4.112) is bounded by −1 and
1, an existence condition for A1 is derived

−1 ≤ − 8ζ̄ω0ω
3

33ᾱ2
3Λ

2A2
1

≤ 1. (4.114)

The second inequality is always true. A1 is thus injected in the first inequality

4Ω1

3α
− 2Λ2 − 8ζ̄ω0ω

3

33ᾱ2
3Λ

2
≥ 0. (4.115)

The numerical resolution of Equation (4.115) in Figure 4.17 indicates that, if the forcing
exceeds 2.7 N/kg, ωinf and ωsup define the domain of existence of the 1:2 subharmonic
resonance. If the forcing is below 2.7 N/kg, the 1:2 subharmonic resonance does not
exist. Because Equation (4.109) shows that A1 is increasing monotonically with respect
to frequency since ᾱ3 > 0, A1 is thus maximum (minimum) when ω is equal to ωsup (ωinf ),
and amplitude resonance of Equation (4.113) occurs when ω = ωsup.

The resonant phase lag occurs when

4Ω1

3α
− 2Λ2 − 8ζ̄ω0ω

3

33ᾱ2
3Λ

2
= 0 (4.116)

or, equivalently, when sin 4ϕ1 = −1. This is the case when ϕ1 =
3π
8
+ iπ

2
, where i = 0, 1, 2, 3.

These findings are confirmed in Figure 4.18 where Equation (4.112) is solved for a forcing
amplitude of 4 N/kg.

1:5 subharmonic resonance

Second-order AM with q = 2 provides the equations governing the 1:5 resonance{
Ȧ1 = − ε2

2

(
2ζ̄ω0A1 +

1875ᾱ2
3ΛA

4
1

128ω3 sin 5ϕ1

)
ϕ̇1 = − 5ε

8ω
(3ᾱ3A

2
1 + 6ᾱ3Λ

2 − 4Ω1) +
ε2

2
R1:5

(4.117)
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(a) (b)

Figure 4.18: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 1:2 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 4 N/kg: (a) amplitude and (b) phase lag.

with

R1:5 =

125 (−30ᾱ2
3A

3Λcos(5ϕ1)− 192ᾱ3Ω1 (A
2
1 + Λ2) + 3ᾱ2

3 (34A
4
1 + 66A2

1Λ
2 + 39Λ4) + 64Ω2

1)

256ω3

+
5ζ̄ω2

0

ω
.

(4.118)

At steady-state {
2ζ̄ω0 = −1875ᾱ2

3ΛA
3
1

128ω3 sin 5ϕ1

A2
1 ≃ 4Ω1

3ᾱ3
− 2Λ2.

(4.119)

The existence condition for A1 is

−1 ≤ − 256ζ̄ω0ω
3

1875ᾱ2
3ΛA

3
1

≤ 1. (4.120)

The first inequality is always true. A1 is thus injected in the second inequality

256ζ̄ω0ω
3

1875ᾱ2
3Λ

+

(
4Ω1

3ᾱ3

− 2Λ2

)3/2

≥ 0. (4.121)

Equation (4.121) is solved numerically to find the domain of existence of the 1:5 resonance.
Figure 4.19 evidences that a forcing of 24 N/kg is required to activate the resonance.
Equation (4.109) shows that A1 is increasing monotonically between ωinf and ωsup since
ᾱ3 > 0, A1 is thus maximum (minimum) when ω is equal to ωsup (ωinf ), and amplitude
resonance of Equation (4.119) occurs when ω = ωsup.
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Figure 4.19: Domain of existence (blue area) of the 1:5 subharmonic resonance as a function
of the forcing amplitude.

The resonant phase lag occurs when ω = ωsup

256ζ̄ω0ω
3

1875ᾱ2
3Λ

+

(
4Ω1

3ᾱ3

− 2Λ2

)3/2

= 0 (4.122)

or when sin 5ϕ1 = 1. This is the case when ϕ1 =
π
5
+ 2iπ

5
, where i = 0, 1, 2, 3, 4 and π/2 is

a resonant phase lag. This is illustrated in Figure 4.20.

(a) (b)

Figure 4.20: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 1:5 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 40 N/kg: (a) amplitude and (b) phase lag.
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4.3: Higher-order averaging

1:7 subharmonic resonance

Third-order AM with q = 3 provides the equations governing the 1:7 resonance{
Ȧ1 =

ε3

6

(
−6ζ̄ω0A1 +

1058841ᾱ3
3ΛA

6
1

2048ω5 sin 7ϕ1

)
ϕ̇1 = − 5ε

8ω
(3ᾱ3A

2
1 + 6ᾱ3Λ

2 − 4Ω1) +O (ε2) .
(4.123)

At steady-sate {
6ζ̄ω0 =

1058841ᾱ3
3ΛA

5
1

2048ω5 sin 7ϕ1

A2
1 ≃ 4Ω1

3ᾱ3
− 2Λ2.

(4.124)

The existence condition for A1 is

−1 ≤ 49152ζ̄ω0ω
7

1058841ᾱ3
3ΛA

5
1

≤ 1. (4.125)

The second inequality is always true. A1 is injected in the first inequality

49152ζ̄ω0ω
7

1058841ᾱ3
3Λ

+

(
4Ω1

3ᾱ3

− 2Λ2

)5/2

≥ 0. (4.126)

The resonant phase lag is the one that solves sin 7ϕ1 = −1. This is the case when
ϕ1 = 3π

14
+ iπ

2
, where i = 0, 1, 2, 3, 4, 5, 6. We note that ϕ1 = π

2
is a resonant phase lag.

This is illustrated in Figure 4.21, where ζ = 0.00005.

(a) (b)

Figure 4.21: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 1:7 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 15 N/kg and ζ = 0.00005: (a) amplitude and (b) phase lag.
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4.3: Higher-order averaging

1:4 subharmonic resonance

Fourth-order AM with q = 4 provides the equations governing the 1:4 resonance{
Ȧ1 = − ε4

24

(
24ζ̄ω0A1 +

39960ᾱ4
3Λ

2A7
1

ω7 sin 8ϕ1

)
ϕ̇1 = − 5ε

2ω
(3ᾱ3A

2
1 + 6ᾱ3Λ

2 − 4Ω1) +O (ε2) .
(4.127)

At steady-state, {
24ζ̄ω0 = −39960ᾱ4

3Λ
2A6

1

ω7 sin 8ϕ1

A2
1 ≃ 4Ω1

3ᾱ3
− 2Λ2.

(4.128)

The existence condition for A1 is

−1 ≤ − 24ζ̄ω0ω
7

39960ᾱ4
3Λ

2A6
1

≤ 1. (4.129)

The second inequality is always true. A1 is injected in the first inequality(
4Ω1

3ᾱ3

− 2Λ2

)3

+
24ζ̄ω0ω

7

39960ᾱ4
3Λ

2
≥ 0. (4.130)

The resonant phase lag is the one that solves sin 8ϕ1 = −1. This is the case when
ϕ1 =

3π
16

+ iπ
4
, where i = 0, 1, 2, 3. This is illustrated for ϕ1 =

3π
16

in Figure 4.22.

(a) (b)

Figure 4.22: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 1:4 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 8 N/kg and ζ = 0.00005: (a) amplitude and (b) phase lag.

4.3.2.3 Ultra-subharmonic resonances

The goal of this section is to find the domain of existence of the l:ν resonance and to
compute the resonant phase lags.

75



4.3: Higher-order averaging

First, for q equal to the order of the AM performed, we have at steady state{
g(Al, ω,Λ) = sin(pνϕl)

3ᾱ3A
2
l + 6ᾱ3Λ

2 − 4Ωl = O (ε)
(4.131)

where g(Al, ω,Λ) is a function that is either always positive or always negative. p is either
1 or 2 when both l and ν are odd or not, respectively. Dropping the O (ε) term gives an
approximate solution of the amplitude Al

A2
l ≃

4Ωl

3ᾱ3

− 2Λ2. (4.132)

Following the same procedure as previously, the domain of existence of the resonance can
be computed from the inequality

−1 ≤ g(ω,Λ) ≤ 1. (4.133)

Second,
∂A2

l

∂ω
= 8ω

(
l2

3ν2εᾱ3

− γ2

(ω2
0 − ω2)3

)
(4.134)

is always positive for hardening Duffing oscillators when ω > ω0, i.e., for ultra-subharmonic
resonances with ν > l. As for subharmonics, ultra-subharmonics have their minimum
and maximum of amplitude at the boundaries of their domain of existence, i.e.. when
ω = ωinf and ω = ωsup, respectively. The resonant phase lag is the one that solves either
sin(pνϕl) = 1 or sin(pνϕl) = −1, depending on the resonance. This phase lag is defined as
the phase lag at phase resonance; it is close to the amplitude resonance computed when
the O (ε) term is not dropped in Equation (4.131).

If ω < ω0, i.e., for ultra-subharmonic resonances with l > ν, the derivative can be
either positive, negative or positive then negative depending on the value of ω and γ. The
phase lag at which the maximum of amplitude occurs can no longer be determined easily.
We thus still define the resonant phase lag at the extremities of the isolated branch, i.e..
when ω = ωinf and ω = ωsup.

A non-exhaustive list of ultra-subharmonic resonances is studied hereafter and a sum-
mary is available in Table 4.1.

5:3 ultra-subharmonic resonance

Third-order AM with q = 3 provides the equations governing the 5:3 resonance at steady-
state {

6ζ̄ω0 =
85293A5ᾱ3

3Λ
5

1792000ω5 sin 3ϕ5

3ᾱ3A
2
5 + 6ᾱ3Λ

2 − 4Ω5 = O (ε)
(4.135)

The inequality is √
4Ω5

3ᾱ3

− 2Λ2 − 10752000ζ̄ω0ω
5

85293ᾱ3
3Λ

5
≥ 0. (4.136)

The resonant phase lag is the one that solves sin 3ϕ5 = 1. This holds when ϕ1 =
π
6
+ 2iπ

3
,

where i = 0, 1, 2. The phase lag −π
2

is thus a resonant phase lag. Figure 4.23 shows that
−π

2
no longer corresponds to a maximum of amplitude, since l > ν.
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4.3: Higher-order averaging

(a) (b)

Figure 4.23: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 5:3 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 0.7 N/kg and ζ = 0.0005: (a) amplitude and (b) phase lag.

3:2 ultra-subharmonic resonance

Fourth-order AM with q = 4 provides the equations governing the 3:2 resonance at steady-
state {

24ζ̄ω0 = −1973735A2
3ᾱ

4
3Λ

6

22289904ω7 sin 4ϕ3

3ᾱ3A
2
3 + 6ᾱ3Λ

2 − 4Ω3 = O (ε)
(4.137)

The inequality is
4Ω3

3ᾱ3

− 2Λ2 − 534957696ζ̄ω0ω
7

1973735ᾱ4
3Λ

6
≥ 0. (4.138)

The resonant phase lag is ϕ1 =
3π
8
+ iπ

2
, i = 0, 1. ±π

2
are no longer resonant phase lags.

7:5 ultra-subharmonic resonance

Fifth-order AM with q = 5 provides the equations governing the 7:5 resonance at steady-
state {

120ζ̄ω0 =
93936279296875A4

7ᾱ
5
3Λ

7

545902959788032ω9 sin 5ϕ7

3ᾱ3A
2
5 + 6ᾱ3Λ

2 − 4Ω7 = O (ε)
(4.139)

The inequality is

6550835517456384ζ̄ω0ω
9

93936279296875ᾱ5
3Λ

7
−
(
4Ω7

3ᾱ3

− 2Λ2

)2

≤ 0. (4.140)

The resonant phase lag is ϕ1 = π
10

+ 2iπ
5

, i = 0, 1, 2, 3, 4. π
2

is a resonant phase lag (see
Figure 4.24).
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4.3: Higher-order averaging

(a) (b)

Figure 4.24: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 7:5 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 0.4 N/kg and ζ = 0.0000005: (a) amplitude and (b) phase lag.

3:5 ultra-subharmonic resonance

Third-order AM with q = 3 provides the equations governing the 3:5 resonance at steady-
state {

6ζ̄ω0 =
13296875A3

3ᾱ
3
3Λ

3

165888ω5 sin 5ϕ5

3ᾱ3A
2
3 + 6ᾱ3Λ

2 − 4Ω5 = O (ε)
(4.141)

The inequality is
995328ζ̄ω0ω

5

13296875ᾱ4
3Λ

3
+

(
4Ω5

3ᾱ3

− 2Λ2

)3/2

≥ 0. (4.142)

The resonant phase lag is ϕ1 =
3π
10

+ 2iπ
5

, where i = 0, 1, 2, 3, 4. −π
2

is a resonant phase lag
(see Figure 4.25).

2:3 ultra-subharmonic resonance

Fourth-order AM with q = 4 provides the equations governing the 2:3 resonance at steady-
state {

24ζ̄ω0 = −297257881995A4
3ᾱ

4
3Λ

4

282591232ω7 sin 6ϕ3

3ᾱ3A
2
2 + 6ᾱ3Λ

2 − 4Ω2 = O (ε)
(4.143)

The inequality is (
4Ω2

3ᾱ3

− 2Λ2

)2

− 6782189568ζ̄ω0ω
7

297257881995ᾱ4
3Λ

4
≥ 0. (4.144)

The resonant phase lag is ϕ1 =
π
4
+ iπ

3
, where i = 0, 1, 2, 3, 4, 5. As for the 3:2 resonance,

neither π/2 nor −π/2 is a resonant phase lag (see Figure 4.26).
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4.3: Higher-order averaging

(a) (b)

Figure 4.25: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 3:5 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 2 N/kg and ζ = 0.00005: (a) amplitude and (b) phase lag.

(a) (b)

Figure 4.26: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 2:3 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 1 N/kg and ζ = 0.000005: (a) amplitude and (b) phase lag.
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4.3: Higher-order averaging

5:7 ultra-subharmonic resonance

Fifth-order AM with q = 5 provides the equations governing the 5:7 resonance at steady-
state {

120ζ̄ω0 =
246460041461115881A5

5ᾱ
5
3Λ

5

13631844000000ω9 sin 7ϕ5

3ᾱ3A
2
5 + 6ᾱ3Λ

2 − 4Ω5 = O (ε)
(4.145)

The inequality is (
4Ω5

3ᾱ3

− 2Λ2

)5/2

+
1635821280000000ζ̄ω0ω

9

24646004146111588ᾱ5
3Λ

5
≥ 0. (4.146)

The resonant phase lag is ϕ1 =
3π
14

+ 2iπ
7

, where i = 0, 1, 2, 3, 4, 5, 6. π
2

is a resonant phase
lag (see Figure 4.27).

(a) (b)

Figure 4.27: NFRC (solid green: stable; dotted green: unstable) and phase resonance points
(orange) around the 5:7 resonance of the Duffing oscillator obtained with the AM for a forcing
amplitude of 0.5 N/kg and ζ = 0.0000005: (a) amplitude and (b) phase lag.
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4.4: Conclusion

4.3.3 Resonant phase lags of the Duffing oscillator: a summary

4.3.3.1 Superharmonic resonances

For odd l:1 superharmonic resonances, the resonant phase lag solves either sin(ϕl) = −1
if l mod 4 = 1, i.e., ϕl =

π
2
(3 + 4i), with i an integer, or sin(ϕl) = 1 if l mod 4 = 3, i.e.,

ϕl =
π
2
(1 + 4i). In both cases, ϕl =

π
2

is always a resonant phase lag.
For even l:1 superharmonic resonances, it was not possible to conclude anything an-

alytically. However, the numerical study suggests that the resonant phase lag is always
ϕl =

3π
4
+ iπ. Interestingly, this value solves sin(2ϕl) = −1.

4.3.3.2 Subharmonic resonances

For odd 1:ν subharmonic resonances, the mechanism is similar to odd l:1 superharmonic
resonances. The resonant phase lag solves sin(νϕ1) = −1 if l mod 4 = 1, i.e., ϕ1 =
π
2ν
(3 + 4i), with i an integer, or sin(νϕ1) = 1 if l mod 4 = 3, i.e., ϕ1 = π

2ν
(1 + 4i). In

both cases, ϕ1 =
π
2

is always a resonant phase lag.
For even 1:ν subharmonic resonances, the resonant phase lag solves sin(2νϕl) = −1,

i.e., ϕ1 =
3π
4ν

+ iπ
ν
.

4.3.3.3 Ultra-subharmonic resonances

If both l and ν are odd, then the resonant phase lag solves sin(νϕl) = 1 or sin(νϕl) = −1.
We can have either π

2
or −π

2
as the resonant phase lag.

If either l or ν is even, the resonant phase lag solves sin(2νϕl) = −1, i.e., ϕl =
3π
4ν

+ iπ
ν
.

4.4 Conclusion
In this chapter, the secondary resonances of a harmonically-forced oscillator with poly-
nomial stiffness were studied. First, using first-order AM, the governing equations of the
d:1 and 1:d resonances of an oscillator of order d were obtained. Amplitude resonance of
the resonating harmonic was found to occur around a specific phase lag ϕl, nonnecessarily
equal to π

2
. This resonant phase lag can be used to track the locus of the resonance peaks.

Second, with higher-order AM, more complex l:ν resonances of the Duffing oscillator
were studied. We note that, for some specific ultra-subharmonic resonances, the resonant
phase lag did not correspond to the resonance in amplitude, but it was instead close
enough from the boundaries of the domain of existence of the isolated branch.

Though only oscillators with polynomial stiffness were studied in this chapter, any
type of nonlinear oscillator can be analyzed provided it has a form suitable for first or
higher-order averaging.
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Chapter 5

Phase resonance nonlinear modes of
single-degree-of-freedom systems

This chapter first reviews the existing nonlinear mode definitions, namely the nonlinear
normal mode, invariant manifold, extended periodic motion concept and spectral sub-
manifold definitions. Based on the theoretical findings in Chapters 3 and 4, i.e., the l-th
harmonic of the l:ν resonance reaches a local maximum when its phase lag is close to
the resonant phase lag φl, this chapter introduces the concept of a phase resonance non-
linear mode (PRNM). The key advantage of PRNMs is that they can be (i) applied to
both primary and secondary resonances of nonlinear systems, (ii) effectively calculated
numerically using continuation techniques as detailed in this chapter and (iii) robustly
identified experimentally using PLLs as discussed in Chapter 6. The stability of PRNMs
is also discussed herein.

5.1 Existing nonlinear mode definitions

The main nonlinear mode definitions are briefly reviewed hereafter.

5.1.1 The nonlinear normal mode approach

In linear theory, an undamped normal mode of a damped, forced system is excited when
the external forcing compensates exactly the damping force or, equivalently, when the
displacement is in phase quadrature with the forcing [1, 21].

The concept of a normal mode was extended to nonlinear systems by Rosenberg [6, 79,
80] who defined a nonlinear normal mode (NNM) as a vibration in unison of the underlying
conservative system, implying that all degrees of freedom of the system reach their maxima
and cross zero simultaneously. This definition was later extended to encompass modal
interactions, i.e., when two or more NNMs interact, as a (nonnecessarily synchronous)
periodic motion of the conservative system [3, 26].

Starting from the equations of motion of a nonlinear system with viscous damping

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t)) = fext(t) (5.1)
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5.1: Existing nonlinear mode definitions

where M, C and K are the mass, damping and stiffness matrices, respectively, and
fnl(x(t)) and fext(t) are the vector of nonlinear and external forces, respectively, a NNM
motion is defined as a periodic motion of the undamped, unforced system

Mẍ(t) +Kx(t) + fnl(x(t)) = 0 (5.2)

The forcing required to excite a NNM is

fext(t) = Cẋ(t) (5.3)

which is a multi-point, multi-harmonic forcing for which each harmonic is in phase quadra-
ture with its corresponding harmonic in the response [50].

The concept of a NNM is exemplified on a two-DOF system with a cubic spring
attached to the first DOF {

ẍ1 + (2x1 − x2) + 0.5x31 = 0

ẍ2 + (2x2 − x1) = 0.
(5.4)

The natural frequencies of the linearized system are 1 and
√
3 rad/s; they correspond

to the in-phase and out-of-phase modes, respectively. Figure 5.1a shows the frequency-
energy plot of the in-phase and out-of-phase NNMs. At low amplitudes, or equivalently
at low energy levels, the NNM frequencies correspond to those of the linear system. As
the energy increases, the system hardens leading to an increase in the NNM frequencies.
Specifically, the frequency of the in-phase NNM approaches

√
2 asymptotically whereas

the frequency of the out-of-phase NNM goes to infinity when the energy goes to infinity
[3].

An interesting feature of NNMs is their modal interactions. They occur when the
frequencies of two NNMs are commensurate. In Figure 5.1b, a 3:1 modal interaction
happens around 285J where the frequency of the in-phase NNM is one third of the fre-
quency of the out-of-phase NNM. In this neighborhood, the dynamics of the in-phase
NNM changes qualitatively. At the bifurcation, the first harmonic disappears and only
frequency components proportional to 3ω subsist, as displayed in Figure 5.2. In other
words, the in-phase motion transitions to an out-of-phase motion with a frequency three
times as large, as shown in Figure 5.3.

5.1.2 The invariant manifold approach

Based on the center manifold technique [81], Shaw and Pierre extended the NNM concept
to damped systems. They defined a NNM as a two-dimensional invariant manifold (IM)
in phase space [9, 82, 83]. In linear theory, a normal mode is geometrically represented by
a hyperplane in phase space. In contrast, NNMs take the form of hypersurfaces tangent to
the modal hyperplanes of the linearized system at the equilibrium point. In the absence
of internal resonances, the manifold can be parameterized by a single pair of state-space
variables.

According to [9, 27], starting from the nonlinear autonomous system with n DOFs

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t)) = 0 (5.5)
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5.1: Existing nonlinear mode definitions

(a) (b)

Figure 5.1: Frequency-energy plot of system (5.4): (a) in-phase and out-of-phase NNMs and (b)
close-up of the 3:1 modal interaction where the out-of-phase mode (dashed line) is represented
at one third of its dominant frequency.

(a) (b)

Figure 5.2: Harmonic ratios for the 3:1 modal interaction: (a) x1 and (b) x2.
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5.1: Existing nonlinear mode definitions

Figure 5.3: Time series of the 3:1 modal interaction over the in-phase NNM period T (blue:
in-phase NNM; black: out-of-phase NNM).

the system is recast into a first-order differential system of equations by letting z = [x; ẋ]T

such that
ż =

(
ẋ

−M−1 [Cẋ+Kx+ fnl(x, ẋ]

)
=

(
ẋ

h(z).

)
(5.6)

The pair of state-space variables is a displacement xs and a velocity ẋs. The remaining
variables are related to (xs, ẋs), renamed (us, vs), and are submitted to the constraint
equations

ui = Ui(us, vs)

vi = Vi(us, vs)
(5.7)

with i = 1, . . . , n; i ̸= s. The time derivatives of Equation (5.7), when assuming that the
motion occurs on the IM to remove time dependence in the equations of motion, write

u̇i =
∂Ui(us, vs)

∂us
u̇s +

∂Ui(us, vs)

∂vs
v̇s

v̇i =
∂Vi(us, vs)

∂us
u̇s +

∂Vi(us, vs)

∂vs
v̇s

(5.8)

with v̇j = hj, where hj = hj(us,U(us, vs), vs,V(us, vs)) with j = 1, . . . , n are the compo-
nents of h(z), U = {Ui : i = 1, . . . , n; i ̸= s} and V = {Vi : i = 1, . . . , n; i ̸= s}.

Equation (5.8) rewrites

Vi(us, vs) =
∂Ui(us, vs)

∂us
vs +

∂Ui(us, vs)

∂vs
hs

hi =
∂Vi(us, vs)

∂us
vs +

∂Vi(us, vs)

∂vs
hs

(5.9)

with i = 1, . . . , n; i ̸= s. Equation (5.9) is a set of 2n-2 partial differential equations that
can be solved by expanding each Ui(us, vs) and Vi(us, vs) into power series and substitute
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them into Equation (5.9). By equating the like-power terms, a set of algebraic equations
is derived and can be solved recursively. Once this is achieved, the Ui’s and Vi’s are sub-
stituted into the equations of motion corresponding to xs and ẋs to obtain the equations
of decoupled, SDOF nonlinear oscillators{

u̇s = vs

v̇s = hs(us,U(us, vs), vs,V(us, vs))
(5.10)

where (us, vs) represent the variables on the IM. There exist n such equations at each
equilibrium point, one for each mode, and they contain the nonlinear effects up to the
order taken in the power series expansion of the Ui’s and Vi’s.

The IM technique is exemplified for the system in Equation (5.4) in Figure 5.4 where
x1 and ẋ1 are taken as the pair of state-space variables.

(a) (b)

Figure 5.4: Two-dimensional IMs with the corresponding linear normal modes [3]: (a) in-phase
mode and (b) out-of-phase mode.

5.1.3 Extended periodic motion concept approach

In 2015, Krack introduced a novel nonlinear mode definition, termed extended periodic
motion concept (EPMC), to extend Rosenberg’s definition to systems with damping terms
of the form of Equation (5.5).

According to the EPMC definition, a nonlinear mode is as a family of periodic motions
of an autonomous nonlinear system. If the system is nonconservative, these periodic
motions are enforced by mass-proportional damping/self-excitation [84]. This definition
is consistent with linear modal analysis for symmetric systems with modal damping. In
addition to that, the introduced negative damping term can be directly related to the
modal damping of the system. However, it can introduce artificial modal coupling and
should be avoided around strong modal interactions.

87



5.1: Existing nonlinear mode definitions

Mathematically, we solve

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t))− δMẋ(t) = 0 (5.11)

where the mass-proportional negative damping term ensures that the system is self-
excited. It is related to the modal damping ζ through

ζ =
δ

2ω0

. (5.12)

k1 k2
m1 m2

µNsign(ẋ2)

x1 x2

Figure 5.5: Two-DOF system with dry friction

This definition can be applied to system with nonlinear damping terms. This is ex-
emplified on a two-DOF system with Coulomb friction in Figure 5.5 with m1 = 1 kg,
m2 = 0.02 kg, k1 = 600 N/m and k2 = 40 N/m. The signum function in the Coulomb
friction law, µNsign(ẋ2), is sometimes approximated using the hyperbolic tangent func-
tion: µN tanh( ẋ2

ϵ
) where ϵ is a small parameter. The lower ϵ, the better the approxima-

tion. Here, the friction coefficient is µ = 0.2, the normal force is N = 10N and ϵ = 0.01.
Damping proportional to the mass and stiffness matrices is introduced in the system,
C = 0.0315M + 2.8775 × 10−5K, so that the two vibration modes of the linear system
have a damping ratio of 0.1%.

The results are presented in Figure 5.6 where the NFRCs of the system are computed
with harmonic forcing on the first DOF. The EPMC curve captures well the resonance
behavior of the system and particularly the two limit cases. The first limit case is at low
amplitudes for which the second DOF is fully stuck, and the system acts a SDOF system
whose natural frequency is

ω0,stuck =

√
k1 + k2
m1

= 25.30 rad/s. (5.13)

The second limit case is at high amplitude where the second DOF is almost freely slipping.
The system thus converges to the underlying linear system, and the natural frequency is

ω0,slip = 24.16 rad/s. (5.14)

The modal damping ratio computed using Equation (5.12) is shown in Figure 5.6b. At
high amplitudes, the damping ratio converges toward 0.1%, i.e., the damping ratio of the
underlying linear system. At low amplitudes, the damping ratio is governed by the viscous
damper attached to the first DOF and the small contribution of the approximation of the
dry friction function. The maximum damping ratio is reached for intermediate amplitudes,
where partial slip occurs, in accordance with what is traditionally observed [85–88].
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(a) (b)

Figure 5.6: NFRCs (black) and EPMC curve (yellow) of the two-DOF system with dry friction
for forcing amplitudes of 0.05 N, 1 N, 3.5 N and 4 N: (a) NFRCs and EPMC curve and (b) modal
damping ratio.

5.1.4 The spectral submanifold approach

In the conservative case, the IM approach proposed by Shaw and Pierre [9] is a surface
composed with periodic NNM motions. In the non-conservative case, however, such peri-
odic motions are rare or isolated in phase space. IMs are also non-unique, even in linear
systems [89–91]. In fact, the computed IM depends on the choice of basis functions, do-
main boundaries or cost functions used. This non-uniqueness is often ignored in the study
of MDOF systems [27].

These issues were addressed by Haller and Ponsioen in [10], where they propose a uni-
fied mathematical approach to tackle dissipative systems. Their NNM is defined as a near-
equilibrium quasiperiodic motion in a dissipative, nonlinear system. The non-uniqueness
of the IM is addressed by defining a spectral submanifold (SSM) as the smoothest member
of an IM family tangent to a modal subbundle along an NNM.

Mathematically, considering a nonlinear system of the form

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t)) = εfext(x(t), ˙x(t), ω1t, . . . , ωs) (5.15)

with 0 ≤ ε ≪ 1, fnl(x(t), ẋ(t)) = O (|x|2, |x||ẋ|, |ẋ|2) and fext(x(t), ˙x(t), ω1t, . . . , ωs) the
external forcing with the frequency vector ω = [ω1, . . . , ωs], with s ≥ 0. If s = 0, then the
system is autonomous, if s = 1, the system is harmonically forced and if s > 1, the external
forcing is quasiperiodic if at least two of the frequencies are rationally incommensurate.
By setting z = [x(t); ẋ(t)]T , Equation (5.15) can be rewritten in a first-order form

ż =

(
0 In

−M−1K −M−1C

)
z+

(
0

−M−1fnl(z)

)
+ ε

(
0

M−1fext(z, ω1t, . . . , ωs)

)
(5.16)

where In is the identity matrix of size n. From Equation (5.16) Haller and Ponsioen
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defined an NNM as the closure of a multi-frequency solution

x(t) =
∞∑

m=1

xme
i⟨m,ω⟩t (5.17)

where m is a multi-index of s nonnegative integers, xm are the complex Fourier amplitudes
of the real solution x(t) with respect to the frequencies in the vector ω = [ω1, . . . , ωs].
Depending on the value of s, different NNMs can be defined

1. the trivial NNM when s = 0, namely a fixed point;

2. the periodic NNM when either s = 1 or s > 1 with the elements of ω rationally
commensurate, namely a periodic orbit;

3. the quasiperiodic NNM when s > 1 with elements of ω rationally incommensurate,
namely a f -dimensional invariant torus.

Finally, a SSM of a NNM N is defined as an IM W (N ) of Equation (5.16) such that

i. W (N ) is a subbundle of the normal bundle NN of N , satisfying dimW (N ) =
dimE + dimN for some spectral subspace E of the operator(

0 In
−M−1K −M−1C

)
(5.18)

ii. The fibers of the bundle W (N ) perturb smoothly from the spectral subspace E of
the linearized system

ż =

(
0 In

−M−1K −M−1C

)
z (5.19)

under the addition of the nonlinear and O(ε) terms in Equation (5.16);

iii. W (N ) has strictly more continuous derivatives alongN than any other IM satisfying
(i) and (ii).

Again, depending on the value of s, different SSMs can be defined

1. the autonomous SSM when s = 0, namely nonlinear continuations of SSMs;

2. the periodic SSM when either s = 1 or s > 1 with the elements of ω rationally
commensurate, namely a three-dimensional IM tangent to a spectral subbundle
along a hyperbolic periodic orbit;

3. the quasiperiodic SSM when s > 1 with elements of ω rationally incommensurate,
namely an IM tangent to a spectral subbundle of a hyperbolic invariant torus.

These NNMs and SSMs are well illustrated in [10].
The spectral submanifold approach has proven efficient for systems with internal res-

onances [92, 93], reduced-order models with computational efficiency [94] and detection
of isolated responses [95].
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5.1.5 Other definitions

The aforementioned nonlinear mode definitions are not exhaustive. For instance, Laxalde
et al. proposed the damped motion concept based on a pseudo-periodic motion [85]. In
[96], Grenat et al. proposed an energy resonance nonlinear mode.

5.2 Goal: defining a nonlinear mode that...

5.2.1 ... is a point on the NFRC

The nonlinear modes defined in Section 5.1 all require an unpractical multi-point, multi-
harmonic forcing to be identified experimentally. For instance, considering a nonlinear
mode xnnm(t), the forcing fext(t) needed to excite it is [50]

fext(t) = Cxnnm(t) (5.20)

in the case of a nonlinear mode computed using Rosenberg’s definition or

fext(t) = δMẋnnm(t) (5.21)

in the case of a nonlinear mode computed using the EPMC definition [84]. However,
during modal testing, structures are usually excited using a mono-point, mono-harmonic
forcing f sinωt applied to the r-th DOF xr(t).

To reconcile the two situations, the energy balance (EB) criterion [1] was extended
to nonlinear systems in [97, 98] to determine the amplitude f of the mono-point, mono-
harmonic forcing required to approximately excite xnnm(t). EB states that the energy
dissipated by the system in steady-state conditions Eout must always be compensated by
the input energy Ein, i.e., Eout = Ein.

To derive EB, each term in the equations of motion is premultiplied by ẋT
nnm(t) and

integrated over the period T. Because the inertia and stiffness terms are conservative, we
have

Eout =

∫ T

0

ẋT
nnm(t)fnc (ẋnnm(t)) dt, Ein =

∫ T

0

ẋT
nnm(t)fext (t) dt. (5.22)

where fnc (ẋnnm(t)) represent the nonconservative forces. The energy injected into the
system is

Ein =

∫ T

0

ẋTr,nnm(t)f sinωt dt (5.23)

where xr is the displacement of the forced DOF. Therefore, the forcing amplitude f is

f =

∫ T

0
ẋT
nnm(t)fnc (ẋnnm(t)) dt∫ T

0
ẋTr,nnm(t) sinωt dt

. (5.24)

For illustration, EB is first applied to a Duffing oscillator

ẍ(t) + 0.01ẋ(t) + x(t) + 0.1x3(t) = f sinωt (5.25)
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Figure 5.7 shows that EB provides results in excellent accordance with the NFRCs. This
can be explained by the fact that the NNM motions are almost purely mono-harmonic,
see Figure 5.7d. Hence, the exact forcing required to excite NNM motions is also almost
purely mono-harmonic.

(a) (b)

(c) (d)

Figure 5.7: EB applied to a Duffing oscillator for f =0.0005 N, 0.0015 N and 0.003 N: (a)
NFRCs (black) and NNM backbone (green), (b) amplitude-forcing curve, (c) forcing-frequency
curve and (d) harmonic ratios of the NNM for a forcing of 0.003 N. The green dots correspond
to the NNM points associated with f =0.0005 N, 0.0015 N and 0.003 N.

A two-DOF system with a cubic spring attached to the first mass is now considered

ẍ1 + 0.02ẋ1 − 0.01ẋ2 + 2x1 − x2 + x31 = f sinωt (5.26)
ẍ2 + 0.11ẋ2 − 0.01ẋ1 + 2x2 − x1 = 0 (5.27)

The natural frequencies of the underlying linear system are 1 and
√
3 rad/s. Figure 5.8a

depicts the NFRCs in the vicinity of the first mode together with the nonlinear mode
solutions obtained with the NNM and EPMC definitions. The loci of amplitude and
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phase resonance (ϕ1 = π
2

for x1) points are superposed. At relatively low forcing, the
agreement between the NNM, EPMC, amplitude and phase resonance curves is excellent.
However, for higher forcing, the NNM and EPMC curves deviate away from amplitude
and phase resonances. In the presence of modal interactions, the discrepancy can even
be more important [99]. Considering now the highest forcing level, f = 1.5 N, in Figure
5.8b, EB is exploited to calculate the NNM motion and frequency corresponding to this
specific forcing amplitude. The result of EB evidences that the solutions obtained with
the NNM and EPMC definitions do not lie on the NFRC, which represents an important
limitation of these nonlinear mode definitions.

(a) (b)

Figure 5.8: NFRCs (black), NNM (green), EPMC (red), amplitude resonance (orange) and
phase quadrature points (blue) of the 2DOF system: (a) f = 0.161, 0.8, 1.5 N and (b) close-up
around the first primary resonance, f = 1.5 N.

5.2.2 ... can characterize secondary resonances

Besides the primary resonance of the first mode, Figure 5.8a evidences the existence of a
3 : 1 superharmonic resonance of the second mode of the system. This resonance cannot
be characterized using the classical nonlinear mode definitions, which represents another
limitation of these definitions. We, however, note that the SSMs defined by Haller and
co-workers do not suffer from this difficulty, at least for subharmonic resonances.

The concept of a resonant phase lag discussed in Chapters 3 and 4 has the potential to
address this limitation. For instance, the phase resonance curve of the 3:1 superharmonic
resonance calculated for a phase lag between the third harmonic of the displacement and
the forcing equal to π/2 is displayed in Figure 5.8. It offers an excellent characterization
of this secondary resonance.

5.2.3 ... can account for nonlinear nonconservative forces

To be as general as possible, nonlinear modes must be able to account for nonlinear
nonconservative forces. This is already the case for the IM, EPMC and SSM approaches
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but not for the NNM approach.

5.3 Phase resonance nonlinear modes
Based on the requirements of the previous section and on the developments in Chapters
3 and 4, a resonant phase lag approach seems to be an effective strategy for defining a
nonlinear mode, thus termed a phase resonance nonlinear mode (PRNM):

• PRNMs are defined for systems forced with a mono-point, mono-harmonic forcing;
a PRNM is thus guaranteed to be an actual solution of the NFRC.

• Any secondary resonance can be characterized using PRNMs provided that the
corresponding resonant phase lag is known, either analytically or numerically.

• Systems with nonlinear nonconservative forces can be handled without any difficulty.

• A robust experimental identification of PRNMs can be achieved using PLLs.

In the remainder of this section, two constructive methods for computing PRNMs,
namely the velocity feedback approach and the resonant phase lag approach, are proposed.

5.3.1 The velocity feedback approach

5.3.1.1 Theoretical framework

We start from the harmonically-forced linear oscillator

mẍ(t) + cẋ(t) + kx(t) = f sinωt. (5.28)

To drive this system into resonance requires careful tuning of the excitation frequency ω.
A more efficient strategy to operate the system into one of its normal modes is to apply
direct velocity feedback [100]

mẍ(t) + cẋ(t) + kx(t)− µẋ(t) = 0 (5.29)

where the feedback term µẋ(t) plays the role of virtual harmonic forcing. Because this
virtual forcing and the velocity are collinear, phase quadrature with the displacement
x(t), and, hence, phase resonance, is naturally enforced when µ = c. This strategy was
also used for driving nonlinear systems into primary resonances [84, 101].

We leverage the results in Chapters 3 and 4 to generalize the concept of a velocity
feedback for the different families of resonance of a nonlinear system. Taking the Duffing
oscillator as an illustrative example, we obtain

• For the primary resonance,

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t)− µẋ1,T (t) = 0 (5.30)

where, unlike [84, 101], the velocity feedback ẋ1,T contains only the first harmonic
of the velocity. The subscript T indicates that the feedback is a T -periodic signal.
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• For l : ν secondary resonances with phase quadrature points,

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t)− µẋl,T (t) = 0 (5.31)

where the velocity feedback is the l-th harmonic of the velocity transformed into a
T -periodic signal.

• For l : ν secondary resonances without quadrature points,

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t)− µẋl,T (t− α) = 0. (5.32)

In this case, the feedback is delayed by α = 1
ωl

(
π
2
− φl

)
where φl is the targeted

resonant phase lag.

Considering the l-th harmonic of the displacement

xl(t) = Al sin (ωlt− ϕl) (5.33)

the velocity feedback µẋl,T (t) can be obtained after transforming ẋl(t) into a T -periodic
signal

µẋl,T (t) = µωlAl cos (ωt− ϕl). (5.34)

Equation (5.34) proves that the velocity feedback and the k-th harmonic of the displace-
ment are in quadrature, as sought.

Considering now the general case, i.e., when the velocity feedback is

µẋl,T (t− α) = µωlAl cos (ω (t− α)− ϕl) (5.35)

evidences that the periodic solutions of Equations (2.67) and (5.32) are identical since the
velocity feedback is equivalent to classical harmonic forcing of frequency ω.

For illustration, the 1:2 subharmonic resonance (l = 1, ν = 2) is taken as an example.
Figure 5.9 shows the three steps to calculate the velocity feedback ẋ1,T (t − α) in Figure
5.9d from the original velocity ẋ(t) in Figure 5.9a. The first step filters out all but the first
harmonic of the velocity to obtain ẋ1,T1(t) in Figure 5.9b. This signal has a period T1 = 2T
and is thus transformed during the second step into the T -periodic signal ẋ1,T (t) shown
in Figure 5.9c. The third step shifts the resulting signal by the delay α = π/8ωk = π/4ω
to obtain the final feedback in Figure 5.9d.

Generalizing this philosophy to systems with n DOFs subjected to harmonic forcing
at the r-th DOF

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t)) = f sinωt (5.36)

we define the PRNMs of the l : ν resonance of the system from Equation (5.36) as

the periodic responses obtained by replacing the harmonic forcing by a T -periodic
velocity feedback comprising the l-th harmonic. The feedback is to be delayed by

α = 1
ωl

(
π
2
− φl

)
where φl is the targeted resonant phase lag
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(a) (b)

(c) (d)

Figure 5.9: Calculation of the velocity feedback: (a) original velocity, (b) after step 1 (filtering),
(c) after step 2 (T -periodic) and (d) after step 3 (delay).

5.3.1.2 Computational framework

Mathematically, we solve

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t))− µẋr,l,T (t− α) = 0, (5.37)

where the feedback vector ẋr,l,T (t−α) has only one non-zero entry at the r-th DOF, and,
without loss of generality, we assume that the feedback gain µ is strictly positive. Because
the velocity feedback is a mono-harmonic component of period T = 2π/ω, the periodic
orbits of (5.37) are actual periodic orbits of (5.36), i.e., those with the assigned phase lag.
Equation (5.37) should thus be interpreted as an effective reformulation of (5.36) which
targets the calculation of the locus of nonlinear phase resonance of the NFRCs.

We now aim to develop an efficient computational framework to obtain accurate nu-
merical approximations of the PRNMs and their oscillations frequencies. In this context,
the HBM is a particularly appropriate method because it naturally separates the responses
into different harmonics and requires no interpolation to render the signal T -periodic. The
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displacement and nonlinear force vectors are thus approximated by truncated Fourier se-
ries:

x(t) =
cx0√
2
+

Nh∑
l=1

(sxl sinωlt+ cxl cosωkt) (5.38)

fnl(t) =
cf0√
2
+

Nh∑
l=1

(
sfl sinωkt+ cfl cosωkt

)
(5.39)

or, in a more compact form,
x(t) = (Q(t)⊗ In)X (5.40)

fnl(t) = (Q(t)⊗ In)Fnl (5.41)

where Q(t) =
[
1/
√
(2) sinω1t cosω1t . . . sinωNh

t cosωNh
t
]
, ⊗ stands for the Kronecker

tensor product and X and Fnl are the vectors containing the Fourier coefficients of the
displacement and nonlinear forces, respectively. Similarly, the velocity feedback can be
written using the Fourier coefficients of the displacement as:

µẋr,l,T (t− α) = µ(Q(t)⊗ In) (RαTTTf∇(ω)⊗ Ir)X (5.42)

where

• (∇(ω)⊗ Ir)X contains only the Fourier coefficients of the velocity measured at the
r-th DOF. Ir is a (n × n) a null matrix except for the r-th diagonal term which
is equal to 1. The operator ∇(ω) = diag(0,∇1, ...,∇l, ...,∇Nh

) is a differential
operator coming from the time derivative of Q(t)with

∇l =

[
0 −ωl

ωl 0

]
(5.43)

• Tf is a (2Nh + 1) × (2Nh + 1) null matrix except for the two diagonal elements
corresponding to the l-th harmonic which are equal to 1. Tf thus filters out all
harmonic components different from l, as schematized in the time domain in Figure
5.9b.

• TT is a (2Nh + 1) × (2Nh + 1) null matrix except for the elements whose rows
and columns correspond to the Fourier coefficients of ω and ωl, respectively. Those
elements are equal to 1. TT transforms the velocity into a T -periodic signal, see
Figure 5.9c.

• Rα = diag(0,0, ...,Rν , ...,0) is a rotation matrix which shifts the harmonic compo-
nent by an angle ν

l
αωl = αω, as in Figure 5.9d, where

Rν =

(
cosαω sinαω
− sinαω cosαω

)
. (5.44)

When the targeted phase lag φl is π
2
, then α = 0, which means that the rotation

matrix Rν is the identity matrix. For the other resonances, α = 1
ωl

(
π
2
− φl

)
.
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By inserting Equations (5.40), (5.41) and (5.42) into Equation (5.37) and removing
the time dependency with a Galerkin procedure, the PRNMs can be obtained by solving
the system:

A(ω)X+ Fnl(X)− µ (RαTTTf∇(ω)⊗ Ir)X = 0 (5.45)

where A(ω) = ∇2(ω)⊗M+∇(ω)⊗C+ I2Nh+1 ⊗K is the dynamic stiffness matrix.
Equation (5.45) provides 2Nh +1 equations for 2Nh +2 unknowns, namely the vector

X and the gain µ. An additional equation is therefore required to close the system. This
equation, termed phase condition, sets the sine coefficient of the k-th harmonic component
to 0. Eventually, a resonance can be characterized at different amplitudes by taking the
frequency ω as a continuation parameter. The PRNMs and the corresponding resonance
frequencies are obtained through vector X and ω, respectively. To retrieve the phase lag ϕl

defined in Equation (2.60), the relation ϕl = atan2(−cxl , sxl )−ωlα−ωl

ω

(
atan2(−cxl , sxl )− π

2

)
must be considered.

5.3.1.3 Stability

We suppose that the PRNM with the velocity feedback approach from Equation (5.37),
which admits a periodic solution x∗(t), is perturbed with a periodic solution s(t) modu-
lated by an exponential decay

p(t) = x∗(t) + eσ̄ts(t). (5.46)

The nonlinear forces are linearized around x∗(t), it yields

Mẍ∗ +Cẋ∗ +Kx∗ + fnl(x
∗, ẋ∗)− µẋ∗

r,l,T +

(
σ̄2Ms+ σ̄ (2Mṡ+Cs) +Ms̈+Cṡ+Ks

+
∂fnl
∂x

s+
∂fnl
∂ẋ

(σ̄s+ ṡ)− µ (σ̄sr,l,T + ṡr,l,T )

)
eσ̄t = 0

(5.47)

Since x∗(t) is a solution of Equation (5.37), it remains

σ̄2Ms+ σ̄

(
2Mṡ+Cs+

∂fnl
∂ẋ

s− µsr,l,T
)
+Ms̈+Cṡ+Ks+

∂fnl
∂x

s+
∂fnl
∂ẋ

ṡr,l,T − µṡr,l,T

= 0.

(5.48)

Using the HBM formalism such that x∗(t) = (Q(t)⊗In)X
∗ and s(t) = (Q(t)⊗In)S where

X∗ and S contain the Fourier coefficients of x∗ and s, respectively, we obtain(
∆V F,2σ̄

2 +∆V F,1σ̄ +∆V F,0

)
eσ̄tS = 0 (5.49)
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with

∆V F,2 = I2Nh+1 ⊗M

∆V F,1 = 2∇(ω)M⊗+I2Nh+1 ⊗C+ (Q(t)⊗ In)
†∂fnl
∂ẋ

∣∣∣
ẋ=ẋ∗

(Q(t)⊗ In)− µ (RαTTTf ⊗ Ir)

∆V F,0 = A(ω) +
∂Fnl

∂X

∣∣∣
X=X∗

− µ (RαTTTf∇(ω)⊗ Ir)
(5.50)

where the exponent † stands for the pseudo-inverse matrix. The σ̄σσ Hill’s coefficients are
thus the ones that solve the quadratic eigenvalue problem(

∆V F,2σ̄
2 +∆V F,1σ̄ +∆V F,0

)
S = 0. (5.51)

Equation (5.51) can be recast into a classical linear eigenvalue problem [29] and the Hill’s
coefficients are the eigenvalues of the matrix

BV F =

[
−∆−1

V F,2∆V F,1 −∆−1
V F,2∆V F,0

In(2Nh+1) 0n(2Nh+1)

]
. (5.52)

Only the 2n with the smallest imaginary part in modulus approximate the σ̄σσ Floquet ex-
ponents [102]. The mechanical system is unstable if at least one of the Floquet exponents
has a positive real part, otherwise, it is asymptotically stable.

5.3.1.4 Illustration on a two-degree-of-freedom system

The velocity feedback approach is now applied to a two-DOF system whose equations of
motion are {

ẍ1 + 0.02ẋ1 − 0.01ẋ2 + 6x1 − 5x2 + x31 = f sinωt

ẍ2 − 0.01ẋ1 + 0.02ẋ2 − 5x1 + 6x2 = 0.
(5.53)

This is illustrated in Figure 5.10. The PRNM curve of the first mode of vibration accu-
rately models the hardening effect of the cubic nonlinearity and passes well through the
resonant points. However, for the second mode of vibration, though it also passes well
through the resonant point, the PRNM curve is totally unstable while the NFRC, which is
still in the linear regime, is stable. The velocity feedback can thus destabilize the system
and give different stability results compared to the NFRC.

This can be explained even in the linear regime of Equation (5.53). For a general
unforced linear system of the form

Mẍ(t) +Cẋ(t) +Kx(t) = 0 (5.54)

the free response is a contribution of the damped modes of the system such that

x(t) =
2n∑
i=1

wizie
υit (5.55)

where wi, zi and υi are the modal amplitude, eigenmode and eigenfrequency of the i-
th damped mode of Equation (5.54) [1]. The eigenmodes and eigenfrequencies come in
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Figure 5.10: NFRC (black) and PRNM curve obtained with the velocity feedback approach
(blue) of the system from Equation (5.53) for a forcing amplitude of 0.01 N.

complex conjugate pairs and the modal amplitudes depend on the initial conditions. The
pairs of eigenfrequencies υi are computed as

υi = −βi ± iωi (5.56)

where

βi =
ci
2mi

ωi =

√
ki
mi

−
(

ci
2mi

)2 (5.57)

with mi, ci and ki the modal mass, damping and stiffness terms such that

mi = z‡iMzi (5.58)

ci = z‡iCzi (5.59)

ki = z‡iKzi (5.60)

and z‡i the complex conjugate of zi. In this case, each βi is positive such that the real
part of each λi is negative and the motion is decaying. This is expected since there is no
external forcing. In the presence of a velocity feedback, the equations of motion become

Mẍ(t) + (C− Irµ) ẋ(t) +Kx(t) = 0, (5.61)

and the complex eigenmodes and eigenfrequencies vary with the gain µ. Specifically, the
damped modal damping values are now computed as

ci = z†i (C− Irµ) zi. (5.62)

The i-th mode of vibration is excited when ci = 0 and cj,j ̸=i ̸= 0. Furthermore, the
stability of the system is affected by cj,j ̸=i. If all cj,j ̸=i > 0 then the system is stable since
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5.3: Phase resonance nonlinear modes

all the modes, except the i-th mode, are decaying. However if at least one cj,j ̸=i < 0, then
the contribution of this mode grows exponentially with time. This is what happens for
the system from Equation (5.53) in the linear regime. When c1 = 0, then c2 > 0 and the
system is stable for the first mode. For the second mode, when c2 = 0, then c1 < 0 and
the system is unstable. This is illustrated in Figure 5.11.

Figure 5.11: Evolution of c1 (solid blue) and c2 (dashed blue) as a function of the gain µ. The
points where c1 = 0 and c2 = 0 are shown with red and green dots, respectively.

A similar stability analysis can be found in [20]. In the nonlinear regime, the mecha-
nism is similar but we need to rely on the Floquet exponents to compute the stability.

5.3.2 The resonant phase lag approach

5.3.2.1 Theoretical framework

We start from a harmonically-forced nonlinear oscillator

mẍ(t) + cẋ(t) + kx(t) + fnl(x(t), ẋ(t)) = f sinωt. (5.63)

Since the solution is periodic, x(t) can be decomposed into a Fourier series. Considering
the l-th harmonic of the displacement

xl(t) = Al sin (ωlt− ϕl) (5.64)

phase resonance is achieved through precise tuning ω such that ϕl = atan2(−cl, sl) = φl.
Once this done, the phase lag is locked and a continuation procedure is applied. With
this approach, we define the PRNMs of the l : ν resonance of the system from Equation
(5.36) as

the periodic responses obtained when the l-th harmonic of the response at the
harmonically forced location is excited at its resonant phase lag φl.
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5.3: Phase resonance nonlinear modes

5.3.2.2 Computational framework

Mathematically, we solve:

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t))− fr sinωt = 0 (5.65)

where the vector f has only one non-zero entry of strictly positive amplitude f at the r-th
DOF. Using the HBM formalism as for the velocity feedback approach, Equation (5.65)
provides 2Nh + 1 equations for 2Nh + 2 unknowns, namely the vector X and the forcing
amplitude f . The phase condition added to close the system sets the phase lag of the l-th
harmonic to the desired resonant phase lag φl

atan2(−cl, sl) = φl. (5.66)

5.3.2.3 Stability

We suppose that the PRNM with the resonant phase lag approach from Equation (5.65),
which admits also a periodic solution x∗(t), is perturbed with a periodic solution s(t)
modulated by an exponential decay

p(t) = x∗(t) + eσ̄ts(t) (5.67)

and we apply the same methodology as in the velocity feedback approach. The σ̄̄σ̄σ Hill’s
coefficients are thus the ones that solve the quadratic eigenvalue problem(

∆PL,2σ̄
2 +∆PL,1σ̄ +∆PL,0

)
S = 0 (5.68)

with

∆PL,2 = I2Nh+1 ⊗M

∆PL,1 = 2∇(ω)M⊗+I2Nh+1 ⊗C+ (Q(t)⊗ In)
†∂fnl
∂ẋ

∣∣∣
ẋ=ẋ∗

(Q(t)⊗ In)

∆PL,0 = A(ω) +
∂Fnl

∂X

∣∣∣
X=X∗

.

(5.69)

Again, Equation (5.68) can be recast into a classical linear eigenvalue problem [29] and
the Hill’s coefficients are the eigenvalues of the matrix

BPL =

[
−∆−1

PL,2∆PL,1 −∆−1
PL,2∆PL,0

In(2Nh+1) 0n(2Nh+1)

]
. (5.70)

Since the equations that describe the stability of the PRNM with the resonant phase lag
approach are the same as the ones when computing the NFRC with the HBM [29], the
stability is the same. Therefore, if the NFRC is stable at the targeted phase resonance,
then the PRNM with the resonant phase lag approach is also stable, and conversely.
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5.4: Illustration on different types of nonlinear oscillators

5.3.2.4 Illustration on a two-degree-of-freedom system

The PRNM with the resonant phase lag approach is also applied to the system from
Equation (5.53) in Figure 5.12. The PRNM curves of the first and second modes of
vibration accurately model the hardening effect of the cubic nonlinearity and pass well
through the resonant points. Contrary to the velocity feedback approach, the stability of
the PRNM curves is the same as the NFRC since their stability equations are the same,
as described in Section 5.3.2.3. For this reason, the resonant phase lag approach is used
throughout the rest of this chapter.

Figure 5.12: NFRC (black: stable; grey: unstable) and PRNM curve obtained with the resonant
phase lag approach (blue) of the system from Equation (5.53) for a forcing amplitude of 0.01 N.

5.4 Illustration on different types of nonlinear oscilla-
tors

5.4.1 The Duffing oscillator

The first system studied is the Duffing oscillator

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + α3x

3(t) = γ sinωt. (5.71)

The system parameters are ζ = 0.5%, ω0 = 1 rad/s and α3 = 1 N/(kg.m3). The different
resonances are calculated using 8×ν harmonics where the value of ν depends on the type
of resonance studied. The primary resonance as well as the most dominant secondary
resonances and their corresponding PRNM curves are shown in Figure 5.14 for a forcing
of γ =1 N/kg. These resonances as well as the other ultra-subharmonic resonances are
studied in detail hereafter.

5.4.1.1 Primary resonance

Figure 5.15 illustrates the primary resonance and its corresponding PRNM curve calcu-
lated for a resonant phase lag equal to π/2. Since each PRNM is defined for a specific
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Figure 5.13

Figure 5.14: NFRC (black: stable; grey: unstable) and the PRNM curves (solid blue: stable;
dotted blue: unstable) of the Duffing oscillator for γ =1 N/kg.

forcing amplitude, the amplitude and frequency evolution with respect to the forcing am-
plitude in Figures 5.15c and 5.15d can calculated in a straightforward manner. This is
contrast with the NNMs for which EB must be applied to represent (approximately) these
relations.

5.4.1.2 Superharmonic resonances

The resonant phase lag for odd superharmonic resonances is π/2. The NFRCs and PRNM
curves for the 3:1, 5:1 and 7:1 resonances are presented in Figure 5.16. If additional
harmonics were considered in the response computation, higher-order odd superharmonic
resonances could also be calculated.

For the 2:1 and 4:1 resonances, Section 4.3.3.1 evidenced that two solutions that
perfectly superimpose in absolute value exist and that their phase lag evolves around 3π

4

and −π
4
, respectively. As depicted in Figure 5.17, these phase lags can also be utilized for

obtaining the PRNM curves of higher-order even superharmonic resonances.

5.4.1.3 Subharmonic resonances

Section 4.3.3.2 highlighted that the resonant phase lag is either π
2

or 3π
4

, depending on
whether ν is odd or even, respectively. The PRNM curves are plotted in Figures 5.18 and
5.19 for the 1:3 and 1:2 resonances, respectively.
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5.4: Illustration on different types of nonlinear oscillators

(a) (b)

(c) (d)

Figure 5.15: NFRCs (black: stable; grey: unstable) and PRNM curve (blue) of the primary
resonance of the Duffing oscillator for γ=0.001 N/kg, 0.005 N/kg, 0.01 N/kg: (a) amplitude, (b)
phase lag, (c) amplitude-forcing curve and (d) forcing-frequency curve.
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(a) (b)

Figure 5.16: NFRCs (black: stable; grey: unstable) and PRNM curves (solid blue: stable;
dotted blue: unstable) of the 3:1, 5:1 and 7:1 superharmonic resonances for γ=0.01 N/kg, 0.25
N/kg, 1 N/kg and 3 N/kg: (a) amplitude and (b) phase lag of the 3rd harmonic component of the
3:1 resonance (computed with only 3 harmonics and without the stability for better readability).

(a) (b)

Figure 5.17: NFRCs (black: stable; grey: unstable) and PRNM curves (solid blue: stable;
dotted blue: unstable) of the 2:1, 4:1, 6:1 and 8:1 superharmonic resonances for γ=0.04 N/kg, 1
N/kg, 3 N/kg and 5 N/kg: (a) amplitude and (b) phase lag of the 2nd harmonic component of
the 2:1 resonance.
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(a) (b)

Figure 5.18: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the 1:3 subharmonic resonance for γ =0.25 N/kg, 0.6 N/kg and 1
N/kg: (a) amplitude and (b) phase lag of the 1st harmonic component.

(a) (b)

Figure 5.19: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the 1:2 subharmonic resonance for γ =1 N/kg, 2 N/kg and 3 N/kg: (a)
amplitude and (b) phase lag of the 1st harmonic component.
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5.4.1.4 Ultra-subharmonic resonances

Section 4.3.3.3 demonstrated that ultra-subharmonic resonances of order l:ν exhibit sim-
ilar behavior to superharmonic and subharmonic resonances. If both l and ν are odd, the
resonant phase lag is either π

2
or −π

2
, depending on the cases. If either l or ν is even, the

resonant phase lag is always 3π
4ν

. The PRNM curves are represented in Figures 5.20, 5.21,
5.22 and 5.23 for the 3:2, 3:5, 2:3 and 5:3 resonances, respectively.

(a) (b)

Figure 5.20: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the 3:2 subharmonic resonance for γ =3 N/kg, 5 N/kg and 8 N/kg: (a)
amplitude and (b) phase lag of the 3rd harmonic component.

5.4.2 The Helmholtz-Duffing oscillator

The second system studied is the Helmhotz-Duffing oscillator

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + α2x

2(t) + α3x
3(t) = γ sinωt. (5.72)

with ζ = 0.5%, ω0 = 1 rad/s, α2 = 1.2 N/(kg.m2) and α3 = 1 N/(kg.m3). Only the most
prominent secondary resonances are studied; they are calculated using 8× ν harmonics.

Figure 5.24 displays the NFRC of this oscillator as well as the corresponding PRNM
curves. The choice of the resonant phase lag is explained hereafter.

5.4.2.1 Primary resonance

Chapter 3 demonstrated that a phase lag of π
2

can be used to characterize any oscillator
with polynomial stiffness, which is the case here. The PRNM curve in Figure 5.24 effec-
tively characterizes the softening effect resulting from the quadratic nonlinearity at low
forcing amplitudes as well as the hardening effect arising from the cubic nonlinearity at
higher forcing amplitudes.
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(a) (b)

Figure 5.21: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the 3:5 subharmonic resonance for γ =3 N/kg, 5 N/kg and 8 N/kg: (a)
amplitude and (b) phase lag of the 3rd harmonic component.

(a) (b)

Figure 5.22: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the 2:3 subharmonic resonance for γ =3 N/kg, 5 N/kg and 8 N/kg: (a)
amplitude and (b) phase lag of the 2nd harmonic component.
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(a) (b)

Figure 5.23: NFRCs (black) and PRNM curve (solid blue: stable; dotted blue: unstable) of
the 5:3 subharmonic resonance for γ =2 N/kg, 3 N/kg and 4 N/kg: (a) amplitude and (b) phase
lag of the 5th harmonic component.

5:1

4:1

3:1

2:1
3:2

1:1

1:2

1:3

Figure 5.24: NFRC (black: stable; grey: unstable) and the PRNM curves (solid blue: stable;
dotted blue: unstable) of the Helmholtz-Duffing oscillator for γ =0.2 N/kg.
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5.4.2.2 Secondary resonances

To obtain the resonant phase lag of secondary resonances, the AM procedure in Section
4.3.1 applied to Equation (5.72) gives

z̈(t) + ω2
0z(t) =− ε

(
ᾱ2(z(t) + κ sinωt)2

+εᾱ3(z(t) + κ sinωt)3 + 2εq−1ζ̄ω0(ż(t) + ωκ cosωt)
) (5.73)

with ω2
l − ω2

0 = εqΩ. In general, the AM leads to a system of equations of the form{
Ȧl = f1(Al, ϕl, ω)

ϕ̇l = f2(Al, ϕl, ω).
(5.74)

Assuming steady-state conditions and that ω ≃ νω0

l
is constant yields{

f1(Al, ϕl) = 0

f2(Al, ϕl) = 0.
(5.75)

Therefore, a direct relationship between Al and ϕl is obtained, and the resonant phase lag
can be found using only one of the two equations. The focus is on f1(Al, ϕl) = 0 herein.

2:1 resonance

First-order AM with q = 1 gives

A2ζω0 =
a2κ

2

8ω
cosϕ2. (5.76)

A2 is maximum when ϕ2 = 0 is considered as the resonant phase lag.

3:1 resonance

Second-order AM with q = 2 gives

2A3ζω0 =
κ3(5a3ω

2 − 2a22)

60ω3
sinϕ3. (5.77)

In this case, two possible phase lags exist, depending on the sign of 5a3ω2 − 2a22. If it
is positive, the resonant phase lag is π

2
; otherwise, the phase lag is −π

2
. The latter case

applies to our example.

4:1 resonance

Third-order AM with q = 3 gives

6A4ζω0 =
5a2κ

4(108a3ω
2 − 11a22)

10752ω5
cosϕ4. (5.78)

Again, there are two possibilities depending on the sign of 108a3ω2 − 11a22. The resonant
phase lag is 0 (π) if it is positive (negative). The latter case applies to our example.
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5:1 resonance

Averaging with q = 4 yields

24A5ζω0 =
κ5(236a42 − 5724a22a3ω

2 + 11907a23ω
4)

423360ω7
sinϕ5. (5.79)

If 236a42 − 5724a22a3ω
2 + 11907a23ω

4 is positive (negative), then the resonant phase lag is
π
2

(−π
2
). The former case applies to our example.

1:3 resonance

Averaging with q = 2 yields

2A1ζω0 =
9A2κ(6a22 + a3ω

2)

4ω3
sin 3ϕ1. (5.80)

In this case, since we consider positive stiffness coefficients, the resonant phase lag can be
chosen among π

2
, 7π

6
and 11π

6
as for the Duffing oscillator.

1:2 resonance

As for the Duffing oscillator in Section 4.3.2.1, AM does not provide relevant equations for
the 1:2 resonance. A numerical analysis revealed that the phase lags 0 and π accurately
approximate the maximum of amplitude of the first harmonic component of the solution.
Both solutions have the same maximum amplitude in absolute value, and either of them
can be chosen as the resonant phase lag.

3:2 resonance

The same observation as for the 1:2 resonance holds. A numerical study indicates that
either 0 and π can be chosen as the resonant phase lags.
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5.4.3 An oscillator with piecewise linear stiffness

The governing equation of motion is

mẍ(t) + cẋ(t) + fs(x(t)) = f sinωt (5.81)

with m = 1 kg, c = 0.1 kg/s. The stiffness function illustrated in Figure 5.25 is

fs(x(t)) =

sign(x(t))(kap1 + kp1(ap2 − ap1) + kp2(x(t)− ap2), x ≥ ap2 +∆a

p2+(x(t)), ap2 −∆a < x < ap2 +∆a

sign(x(t))(kap1 + kp1(x(t)− ap1)), ap1 +∆a ≤ x < ap2 −∆a

p1+(x(t)), ap1 −∆a < x < ap1 +∆a

kx(t), −(ap1 −∆a) ≤ x ≤ ap1 −∆a

p1−(x(t)), −(ap1 +∆a) < x < −(ap1 −∆a)

sign(x(t))(kap1 + kp1(x(t)− ap1)), −(ap2 −∆a) ≤ x ≤ −(ap1 +∆a)

p2−(x(t)), −(ap2 +∆a) < x < −(ap2 −∆a)

sign(x(t))(kap1 + kp1(ap2 − ap1) + kp2(x(t)− ap2), x ≤ −(ap2 +∆a)

(5.82)

where ap1 and ap2 are the clearances, kp1 and kp2 are stiffness values and p1± and p2± are
regularization functions that ensure the continuity of the first derivative of the stiffness
function. p1± and p2± have a size of 2∆a and are Hermite polynomials functions such that

pi±(tp) =h00(tp)pi,k + h10(tp)(xi,k+1 − xi,k)k′i,k
+ h01(tp)pi,k+1 + h11(tp)(xi,k+1 − xi,k)k′i,k+1

(5.83)

where i = 1 or 2, pi,k and pi,k+1 are the values of the restoring force at points xi,k =
sign(x)(ai −∆a) and xi,k+1 = sign(x)(ai +∆a), respectively. Furthermore, k′i,k and k′i,k+1

are the values of the restoring force derivative at points xi,k and xi,k+1. tp(x) = x−xk

xk+1−xk
is

the local scaled abscissa and the hij(tp) coefficients of the Hermite polynomials are defined
as 

h00(tp) = 2t3p − 3t2p + 1

h10(tp) = t3p − 2t2p + tp

h01(tp) = −2t3p + 3t2p
h11(tp) = t3p − t2p

(5.84)

as described in [103]. The values are: ap1 = 0.1m, ap1 = 0.3m, ∆a = 0.01m, k = 10N/m,
kp1 = −5N/m and kp2 = 15N/m.

The NFRC of Equation (5.81) and the corresponding PRNM curve are displayed in
Figure 5.26a for f =0.035N. In this case, the response amplitude is greater than 0.1m. The
restoring force thus starts to decrease, resulting in a decrease of the resonance frequency.
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Figure 5.25: Evolution of the restoring force fs(x(t)) as a function of the displacement.

The response amplitude as a function of the forcing amplitude is shown in Figure
5.26b. Interestingly, due to the softening-hardening nature of the restoring force, there is
a regime, between 0.0353N and 0.4253N, during which there exist three resonance points.
This signals the presence of an isolated branch that would be missed when computing
only the NFRC. The birth and merging mechanisms are illustrated in Figure 5.27. For
f =0.0356N in Figure 5.27a, the (small) isola is characterized by two resonance points
located on the PRNM curve. Then, the isola grows toward the resonance peak of the main
branch in Figures 5.27b and 5.27c. Finally, for f =0.0454N in Figure 5.27d, it merges
with the main branch close to the resonance points, and a single resonance point remains.

(a) (b)

Figure 5.26: Primary resonance of the oscillator with piecewise linear stiffness. (a) NFRC
(black: stable; grey: unstable) and PRNM curve (blue) for f =0.035 N; (b) forcing-amplitude
plot.
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5.4: Illustration on different types of nonlinear oscillators

(a) (b)

(c) (d)

Figure 5.27: NFRCs (black: stable; grey: unstable) and PRNM curve (solid blue: stable;
dotted blue: unstable) of the primary resonance of the oscillator with piece-wise linear stiffness
for a forcing amplitude of: (b) 0.0356 N, (c) 0.4 N, (c) 0.425 N and (d) 0.4254 N (the red dots
correspond to the phase resonance points).
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Figure 5.28: NFRC (black) and PRNM curve (blue) of the two-DOF system with Coulomb
friction.

5.4.4 An oscillator with Coulomb friction

The PRNM definition can also tackle nonconservative nonlinearities. For illustration,
the system described in Section (5.1.3) is analyzed. The PRNM curve in Figure 5.28
accurately predicts the resonance frequency in the stick, stick-slip and slip regions. These
results are consistent with those obtained in Section (5.1.3) using EPMC. However, it
is important to note that the PRNM points represent actual solutions of the system,
contrary to the EPMC curve which represents the solutions of the system forced with a
mass-proportional self-excitation.

5.5 Conclusion
In this chapter, the concept of a PRNM was introduced for the first time. The theory
behind PRNMs relies on the condition for nonlinear phase resonance through the so-
called resonant phase lag φl calculated between the l-th harmonic of the l:ν resonance
and the forcing. Two computational methods based on a velocity feedback and on the
resonant phase lag were developed to compute PRNMs numerically. They result in the
same resonance curves but the stability information provided by the velocity feedback
approach is different from the actual stability.

Unlike most existing definitions, PRNMs are actual solutions of the NFRC and can
be used to characterize secondary resonances. Another distinct advantage of PRNMs is
that amplitude-forcing curves are a direct outcome of PRNMs. These curves can be very
useful, e.g., for the detection of isolated branches. Finally, PRNMs can be easily identified
experimentally using PLLs, as discussed in the next chapter.
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Chapter 6

Phase resonance nonlinear modes of
multi-degree-of-freedom systems

6.1 Introduction
The primary and secondary resonances of SDOF systems can be characterized by a well-
defined phase lag for the harmonic in resonance, as established in Chapters 3 and 4.
This resonant phase lag was used in Chapter 5 to compute the PRNM curves of simple
nonlinear systems. However, two important aspects of PRNMs remain to be discussed in
this chapter.

First, this chapter evidences that the resonant phase lags found analytically for SDOF
systems cannot always be extended to the MDOF case. Indeed, the potential interactions
between primary and secondary resonances have a direct influence on the evolution of the
phase lag of the studied harmonics. As it will be shown, rather than directly applying
ϕl = φl around the l:ν resonance, a phase lag ϕ′

l that is a combination of carefully selected
harmonics should be considered to remove the influence of the other harmonics.

Second, the PRNM definition is applied to two experimental setups, namely a can-
tilever beam with an artificial cubic stiffness that presents a 5:1 modal interaction and a
clamped-clamped beam featuring geometrical nonlinearity.

6.2 A motivating example
To illustrate that the resonant phase lags of SDOF oscillators cannot always be used for
MDOF systems, the system{

ẍ1 + 0.02ẋ1 − 0.01ẋ2 + 6x1 − 5x2 + x31 = f sinωt

ẍ2 − 0.01ẋ1 + 0.02ẋ2 − 5x1 + 6x2 = 0
(6.1)

is considered. The natural frequencies of the underlying linear system are 1 are
√
11

rad/s.
The amplitude A1 and phase lag ϕ1 of the fundamental harmonic of x1 are shown in

Figure 6.1. In addition to the two primary resonances, an antiresonance is seen for a pul-
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6.3: Phase lag of higher-order harmonics around lower-order harmonics

(a) (b)

Figure 6.1: NFRC of the fundamental harmonic of x1 for f =0.01 N. (a) Amplitude A1 and
(b) phase lag ϕ1. The red dots correspond to the phase quadrature points. Black: stable; grey:
unstable.

sation of 2.45 rad/s. Figure 6.2 represents the amplitude A3 and phase lag ϕ3 of the third
harmonic of x1. Two 3:1 superharmonic resonances occur around 1/3 and

√
11/3=1.10

rad/s. The 3:1 resonance of the first mode resonates at π/2, as it was the case for a
Duffing oscillator. Around 0.82 rad/s, the phase lag is again π/2. This corresponds to the
antiresonance of the third harmonic since there is a minimum of amplitude in the NFRC
at this frequency, located at one third of the antiresonance of the first harmonic. The
linear concept of an antiresonance has thus a nonlinear counterpart for non-fundamental
harmonics. Then, the amplitude of the third harmonic reaches a maximum at the pri-
mary resonance for a phase lag of 3π/2. This value is not further discussed because the
phase lag of higher-order harmonics in the vicinity of the primary resonance was never
discussed so far in this manuscript. Finally, for the second 3:1 resonance, the resonant
phase lag is 3π/2, which departs from the theoretical expectations, i.e., π/2. This shift of
π radians seems to be influenced by the presence of the primary resonance around which
the third harmonic also resonates. The question is thus how to get rid of the influence of
the primary resonance on higher-order harmonics such that the resonant phase lags found
in Chapter 4 can still be used. This is the objective of the next section.

6.3 Phase lag of higher-order harmonics around lower-
order harmonics

6.3.1 A phase lag oriented perturbation technique

The phase lag oriented perturbation technique (PLOPT), based on the HBM and de-
veloped in [104], focuses on the phase lag evolution of the harmonics of zero, first and
second orders. It deliberately omits any resonance frequency corrections; it thus ignores
the softening or hardening character of the system. A weakly nonlinear oscillator of the
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(a)

(b)

Figure 6.2: NFRC of the third harmonic of x1 for f =0.01 N. (a) Amplitude A3 and (b) phase
lag ϕ3. The red dots correspond to the phase quadrature points. Black: stable; grey: unstable.
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form is assumed

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) + εfnl (x(t), ẋ(t)) = γ sinωt (6.2)

with 0 < ε≪ 1. The response of a nonlinear oscillator can be decomposed into a Fourier
series

x(t) = A0 +

NH∑
i=1

Ai sin (iωt− ϕi). (6.3)

As for the MMS in Section 2.3.1.3, the solution has an asymptotic expansion such that

x(t) = y0(t) + εy1(t) + ε2y2(t) +O
(
ε3
)

(6.4)

where each yi can be decomposed into Fourier series. The nonlinear force is also expanded
using a Taylor series expansion

fnl (x, ẋ) = fnl (y0, ẏ0) + ε

(
∂fnl
∂x

(y0, ẏ0) y1 +
∂fnl
∂ẋ

(y0, ẏ0) ẏ1

)
+O

(
ε2
)

= fnl (y0, ẏ0) + εf ′
nl (y0, ẏ0, y1, ẏ1) +O

(
ε2
) (6.5)

where the time dependence was dropped for conciseness. Inserting Equations (6.4) and
(6.5) into (6.2) and equating the like-powers of ε lead to the following system of equations

ÿ0 + 2ζω0ẏ0 + ω2
0y0 = γ sinωt

ÿ1 + 2ζω0ẏ1 + ω2
0y1 = −fnl (y0, ẏ0)

ÿ2 + 2ζω0ẏ2 + ω2
0y2 = −f ′

nl (y0, ẏ0, y1, ẏ1)

(6.6)

where each equation can be solved based on the lower-order solutions.

6.3.1.1 Zero-th order solution

The first relation in Equation (6.6) is the equation of a simple damped, forced linear os-
cillator for which the response is y0 = A0,1 sin (ωt− ϕ0,1) where A0,1 and ϕ0,1 are governed
by {

A0,1 =
γ√

4ζ2ω2
0ω

2+(ω2
0−ω2)2

ϕ0,1 = atan2 (2ζω0ω, ω
2
0 − ω2) .

(6.7)

6.3.1.2 First-order solution

The first-order solution y1 is the response of a linear oscillator excited by −fnl (y0, ẏ0). It
is expressed using a Fourier series

y1 = y1,0 +

NH∑
l=1

y1,l = A1,0 +

NH∑
l=1

A1,l sin (lωt− ϕ1,l). (6.8)
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The excitation, which depends on y0 and ẏ0, is also decomposed into a Fourier series

fnl (y0, ẏ0) = fnl (A0,1 sinωt− ϕ0,1, A0,1ω cosωt− ϕ0,1)

= cf0 (A0,1) +

NH∑
i=l

(
cfl (A0,1) cos (l (ωt− ϕ0,1)) + sfl (A0,1) sin (l (ωt− ϕ0,1))

)
.

(6.9)

It is then projected onto the (sin (lωt− ϕ1,l), cos (lωt− ϕ1,l)) basis such that

fnl (y0, ẏ0) = Cf
0 (A0,1) +

NH∑
l=1

(
Cf

l (A0,1) cos (lωt− ϕ0,1) + Sf
l (A0,1) sin (lωt− ϕ0,1)

)
(6.10)

where

Cf
0 (A0,1) =

2

T

∫ T

0

fnl (y0, ẏ0) dt (6.11)

Cf
l (A0,1) =

2

T

∫ T

0

fnl (y0, ẏ0) cos (lωt− ϕ1,l) dt = cfl (A0,1) cosϕ
′
l + sfl (A0,1) sinϕ

′
l (6.12)

Sf
l (A0,1) =

2

T

∫ T

0

fnl (y0, ẏ0) sin (lωt− ϕ1,l) dt = sfl (A0,1) cosϕ
′
l − c

f
l (A0,1) sinϕ

′
l (6.13)

with ϕ′
l = ϕ1,l − lϕ0,1. Substituting the Fourier series of y1 and fnl (y0, ẏ0) into the second

relation of Equation (6.6) and equating the coefficients of each harmonic sin (lωt− ϕ1,l)
and cos (lωt− ϕ1,l) to 0, a system of two equations for each harmonic l is obtained{

2lζω0ωA1,l + cfl (A0,1) cosϕ
′
l + sfl (A0,1) sinϕ

′
l = 0

ΩlA1,l − sfl (A0,1) cosϕ
′
l + cfl (A0,1) sinϕ

′
l = 0

(6.14)

with Ωl = ω2
l − ω2

0. The system is easily solved for each A1,l and ϕ′
l with l > 0A1,l = − 1

2lζω0ω

(
sfl (A0,1) sinϕ

′
l + cfl (A0,1) cosϕ

′
l

)
ϕ′
l = atan2

(
−2lζω0ωs

f
l (A0,1)− cfl (A0,1) Ωl, s

f
l (A0,1) Ωl − 2lζω0ωc

f
l (A0,1)

)
.

(6.15)

Usually, Cf
0 (A0,1) = cf0 (A0,1) = 0.

6.3.1.3 Second-order solution

The second-order solution y2 from the third relation of (6.6) is the response of a linear
oscillator excited by −f ′

nl (y0, ẏ0, y1, ẏ1). It is expressed using a Fourier series

y2 = y2,0 +

NH∑
l2=1

y2,l2 = A2,0 +

NH∑
l2=1

A2,l2 sin (l2ωt− ϕ2,l2) (6.16)
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and f ′
nl (y0, ẋ0, y1, ẏ1) can be decomposed into

f ′
nl (y0, ẏ0, y1, ẏ1) =

∂fnl
∂x

(y0, ẏ0) y1 +
∂fnl
∂ẋ

(y0, ẏ0) ẏ1

=

NH∑
l=1

(
∂fnl
∂x

(y0, ẏ0) y1,l +
∂fnl
∂ẋ

(y0, ẏ0) ẏ1,l

)

=

NH∑
l=1

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l)

(6.17)

where each f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) can be decomposed into a Fourier series such that

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) = c

f ′
l

0 (A0,1, A1,l)

+

NH∑
l2=1

(
c
f ′
l

l2
(A0,1, A1,l) cos (l2ωt− ϕ1,l − (l2 − l)ϕ0,1)

+s
f ′
l

l2
(A0,1, A1,l) sin (l2ωt− ϕ1,l − (l2 − l)ϕ0,1)

)
.

(6.18)

Then, each f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) is projected onto the same sine and cosine basis as y2 in

Equation (6.16), i.e. the (sin (l2ωt− ϕ2,l2), cos (l2ωt− ϕ2,l2)) basis, such that

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) = C

f ′
l

0 (A0,1, A1,l)

+

NH∑
l2=1

(
C

f ′
l

l2
(A0,1, A1,l) cos (l2ωt− ϕ2,l2)

+S
f ′
l

l2
(A0,1, A1,l) sin (l2ωt− ϕ2,l2)

) (6.19)

where

C
f ′
l

0 (A0,1, A1,l) =
2

T

∫ T

0

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) dt (6.20)

C
f ′
l

l2
(A0,1, A1,l) =

2

T

∫ T

0

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) cos (l2ωt− ϕ2,l2) dt

=c
f ′
l

l2
(A0,1, A1,l) cosϕ

′
l,l2

+ s
f ′
l

l2
(A0,1, A1,l) sinϕ

′
l,l2

(6.21)

S
f ′
l

l2
(A0,1, A1,l) =

2

T

∫ T

0

f ′
nl,l (y0, ẏ0, y1,l, ẏ1,l) sin (l2ωt− ϕ2,l2) dt

=c
f ′
l

l2
(A0,1, A1,l) sinϕ

′
l,l2

+ s
f ′
l

l2
(A0,1, A1,l) cosϕ

′
l,l2

(6.22)

with ϕ′
l,l2

= ϕ2,l2−ϕ1,l−(l2−l)ϕ0,1. Substituting the Fourier series of y2 and f ′
nl (y0, ẏ0, y1, ẏ1)

into the third relation of Equation (6.6) and equating the coefficient of each harmonic to
0 yields 

2l2ζω0ωA2,l2 +
NH∑
l=1

(
c
f ′
l

l2
cosϕ′

l,l2
+ sf

′

l2
sinϕ′

l,l2

)
= 0

Ωl2A2,l2 −
NH∑
l=1

(
c
f ′
l

l2
sinϕ′

l,l2
+ s

f ′
l

l2
cosϕ′

l,l2

)
= 0

(6.23)
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with Ωl2 = ω2
l2
− ω2

0. This system is not trivial since there can be many ϕl,l2 . However, if
the l2-th harmonic is only generated by only one harmonic l from y1, then the system is
similar to Equation (6.14) and takes the form{

2l2ζω0ωA2,l2 + c
f ′
l

l2
cosϕ′

l,l2
+ sf

′

l2
sinϕ′

l,l2
= 0

Ωl2A2,l2 − c
f ′
l

l2
sinϕ′

l,l2
− sf

′
l

l2
cosϕ′

l,l2
= 0

(6.24)

It can be solved for each A2,l2 and ϕ′
l,l2

with l2 > 0A2,l2 = − 1
2l2ζω0ω

(
s
f ′
l

l2
sinϕ′

l,l2
+ c

f ′
l

l2
cosϕ′

l,l2

)
ϕ′
l,l2

= atan2
(
−2l2ζω0ωs

f ′
l

l2
(A0,1)− c

f ′
l

l2
(A0,1) Ωl2 , s

f ′
l

l2
Ωl2 + 2l2ζω0ωc

f ′
l

l2

)
.

(6.25)

Usually, Cf ′
l

0 = c
f ′
l

0 = 0. The more general case where the l2-th harmonic is generated by
multiple harmonics l from y1 is more complex and beyond the scope of this study.

6.3.2 Application to a weakly nonlinear Duffing oscillator

We consider the weakly nonlinear oscillator

ẍ+ 2ζω0ẋ+ ω2
0x+ εx3 = γ sinωt (6.26)

with ζ = 0.01, ω0 = 1 rad/s, γ = 0.003 N/kg and ε = 0.1.

6.3.2.1 Zero-th order response

The response at the zero-th order is y0 = A0,1 sin (ωt− ϕ0,1) where A0,1 and ϕ0,1 are
governed by Equation (6.7). Since the higher-order contributions of frequency ω are at
least one order lower than y0, we assume that A1 ≃ A0,1 and ϕ1 ≃ ϕ0,1 such that the first
harmonic component of the response from Equation (6.3) is≃ A1 sin (ωt− ϕ1). Amplitude
resonance of A1 occurs close to ω0 as developed in Section 2.2.3 and shown in Figure 6.3.

6.3.2.2 First-order response

The nonlinear term is

fnl(y0, ẏ0) =
3

4
A3

0,1 sin (ωt− ϕ0,1)−
1

4
A3

0,1 sin (3 (ωt− ϕ0,1))

=sf1 sin (ωt− ϕ0,1) + sf3 sin (3 (ωt− ϕ0,1))
(6.27)

where sf1 = 3
4
A3

0,1 and sf3 = −1
4
A3

0,1. Using Equations (6.10) and (6.13), fnl(y0, ẏ0) can be
rewritten as

fnl(y0, ẏ0) =s
f
1

(
sinϕ′

1,1 cos (ωt− ϕ1,1) + cosϕ′
1,1 sin (ωt− ϕ1,1)

)
+ sf3

(
sinϕ′

1,3 cos (3ωt− ϕ1,3) + cosϕ′
1,3 sin (3ωt− ϕ1,3)

) (6.28)
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(a) (b)

Figure 6.3: NFRC of the first harmonic of the Duffing oscillator using PLOPT. (a) Amplitude
A0,1 and (b) phase lag ϕ0,1.

where ϕ′
1,1 = ϕ1,1 − ϕ0,1 and ϕ′

1,3 = ϕ1,3 − 3ϕ0,1. This signal generates two harmonic
responses, i.e. y1,1 = A1,1 sin (ωt− ϕ1,1) and y1,3 = A1,3 sin (3ωt− ϕ1,3) where (A1,1, ϕ1,1)
and (A1,3, ϕ1,3) can be solved using Equation (6.14). Here, y1,1 only adds a small correction
to the first harmonic from Equation (6.3) and is not of interest here. However, y1,3 is a
newly generated third harmonic component. According to the first relation of Equation
(6.14), since cf3 = 0, A1,3 can undergo a maximum of amplitude if either sf3 reaches a
maximum, which is the case when A0,1 reaches a maximum, or when ϕ′

1,3 = π
2
, when

Ω3 = 0, i.e., at the 3:1 resonance when ω = ω0

3
.

This is illustrated in Figure 6.4 where ϕ′
3 increases by π at the 3:1 resonance. ϕ1,3

increases by π at the 3:1 resonance and by 3π at the primary resonance. This latter
increase is easily explained since ϕ1,3 = ϕ′

3 + 3ϕ0,1, and, after the 1:1 resonance, both ϕ′
3

and ϕ0,1 are equal to π.
Finally, as for the first harmonic, other contributions to the third harmonic will be

produced by higher-order responses and will be neglected. We can assume that A3 ≃
εA1,3 and ϕ3 ≃ ϕ1,3 such that the third harmonic component of the response in (6.3) is
A3 sin (3ωt− ϕ3).

6.3.2.3 Second-order response

Since the first-order response produces two harmonic responses, namely y1,1 and y1,3, it
follows that

f ′
nl (y0, ẏ0, y1, ẏ1) = f ′

nl,1 (y0, ẏ0, y1,1, ẏ1,1) + f ′
nl,3 (y0, ẏ0, y1,3, ẏ1,3) (6.29)

where

f ′
nl,1 =

3

4
A2

0,1A1,1 (2 sin (ωt− ϕ1,1) + sin (ωt+ ϕ1,1 − 2ϕ0,1)− sin (3ωt− 2ϕ0,1 − ϕ1,1))

(6.30)
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(a)

(b)

(c)

Figure 6.4: NFRC of the third harmonic of the Duffing oscillator using PLOPT. (a) Amplitude
A1,3, (b) phase lag ϕ′

3 and (c) phase lag ϕ1,3.
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and

f ′
nl,3 =

3

4
A2

0,1A1,3 (sin (ωt− ϕ1,3 + 2ϕ0,1) + 2 sin (3ωt− ϕ1,3)− sin (5ωt− ϕ1,3 − 2ϕ0,1)) .

(6.31)
According to Equations (6.19), (6.22) and (6.25), f ′

nl,1 produces only first and third har-
monic components for y2 whereas f ′

nl,3 produces first, third and fifth harmonic components.
The second-order contributions for the first and third harmonics are neglected here. How-
ever, the fifth harmonic component is a newly-generated harmonic. We can rewrite f ′

nl,3

as

f ′
nl,3 = s

f ′
3

1

(
sinϕ′

3,1 cos (ωt− ϕ2,1) + cosϕ′
3,1 sin (ωt− ϕ2,1)

)
+ s

f ′
3

3

(
sinϕ′

3,3 cos (3ωt− ϕ2,3) + cosϕ′
3,3 sin (3ωt− ϕ2,3)

)
+ s

f ′
3

5

(
sinϕ′

3,5 cos (5ωt− ϕ2,5) + cosϕ′
3,5 sin (5ωt− ϕ2,5)

) (6.32)

where sf
′
3

1 = 3
4
A2

0,1A1,3, s
f ′
3

3 = 3
2
A2

0,1A1,3, s
f ′
3

5 = −3
4
A2

0,1A1,3, ϕ′
3,1 = and ϕ′

3,l2
= ϕ2,l2 − ϕ1,3 −

(l2 − 3)ϕ0,1. The fifth harmonic solution is

y2,5 = A2,5 sin (5ωt− ϕ2,5) (6.33)

where A2,5 and ϕ2,5 are found using Equation (6.25). Since cf
′

5 = 0, there are 3 possible
amplitude resonances for A2,5, namely when either A0,1 or A1,3 reaches a maximum, i.e.,
at the 1:1 and 3:1 resonances, or when ϕ′

3,5 =
π
2
. The latter resonance occurs when Ω5 = 0,

i.e., when ω = ω0

5
at the 5:1 resonance.

This is illustrated in Figure 6.5 where ϕ′
3,5 increases by π at the 5:1 resonance. ϕ2,5

increases by π at the 5:1 resonance, by π at the 3:1 resonance and by 5π at the primary
resonance. These two latter increases can be explained considering that ϕ2,5 = ϕ′

3,5+ϕ1,3+
2ϕ0,1. Indeed, after the 3 : 1 resonance, ϕ0,1 = 0 and ϕ′

3,5 = ϕ1,3 = π so that ϕ2,5 = 2π.
After the primary resonance, ϕ′

3,5 = ϕ0,1 = π and ϕ1,3 = 4π, therefore ϕ2,5 = 7π.
Finally, we can assume that A5 ≃ ε2A2,5 and ϕ5 ≃ ϕ2,5 such that the fifth harmonic

component of the response (6.3) is A5 sin (5ωt− ϕ5).

6.3.2.4 Summary

The results in this section demonstrate that, unlike the phase lag ϕ3 for the second
3:1 superharmonic resonance in our motivating example, the newly-defined phase lags
ϕ′
3 = ϕ3 − 3ϕ1 and ϕ′

3,5 = ϕ5 − ϕ3 − 2ϕ1 do not seem to suffer from the influence of the
primary resonance. From now on, ϕ′

3,5 is denoted ϕ′
5. This means that ϕ′

3 =
π
2

or ϕ′
5 =

π
2

can be used as the resonant phase lags for the 3:1 and 5:1 superharmonic resonances for
Duffing-like MDOF systems.

6.3.3 Numerical study of a Duffing oscillator with strong nonlin-
earity

To validate the previous theoretical findings, we choose the Duffing oscillator

ẍ+ 2ζω0ẋ+ ω2
0x+ x3 = γ sinωt (6.34)
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6.3: Phase lag of higher-order harmonics around lower-order harmonics

(a)

(b)

(c)

Figure 6.5: NFRC of the fifth harmonic of the Duffing oscillator using PLOPT. (a) Amplitude
A2,5, (b) phase lag ϕ′

3,5 and (c) phase lag ϕ2,5.
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with ζ = 0.005, ω0 = 1 rad/s and γ = 0.01 N/kg.

6.3.3.1 Zero-th order response: the primary resonance

As expected, the NFRC of the first harmonic in Figure 6.6 only resonates around the
primary resonance. The hardening behavior is clearly visible.

(a) (b)

Figure 6.6: NFRC of the first harmonic of the Duffing oscillator. (a) Amplitude A1 and (b)
phase lag ϕ1. The red dots correspond to the phase quadrature points.

6.3.3.2 First-order response: the 3:1 superharmonic resonance

The NFRC of the third harmonic is shown in Figure 6.7. Around the 3:1 resonance, both
ϕ3 and ϕ′

3 increases by π and resonates at π
2
. Around the primary resonance, despite the

hardening behavior, ϕ′
3 remains around π. Differently, ϕ3 increases by 3π with the exact

same shape as ϕ1, but with a phase envelope three times greater.

6.3.3.3 Second-order response: the 5:1 superharmonic resonance

The NFRC of the fifth harmonic is presented in Figure 6.8. There are now three amplitude
resonances for the fifth harmonic, namely at the 5:1, 3:1 and 1:1 resonances. Around the
5:1 resonance, both ϕ5 and ϕ′

5 increases from 0 to π with π
2

as the resonant phase lag.
Then, ϕ′

5 remains at π. On the contrary, ϕ5 increases by π around the 3:1 resonance and
by 5π around the primary resonance.

6.4 PRNMs of two-degree-of-freedom Duffing oscilla-
tors with a modal interaction

The case of modal interactions is discussed herein. A modal interaction is an energy
transfer between two modes of vibration. It occurs when the frequency of a nonlinear
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(a)

(b)

(c)

Figure 6.7: NFRC of the third harmonic of the Duffing oscillator. (a) Amplitude A3, (b) phase
lag ϕ′

3 and (c) phase lag ϕ3. The red dots correspond to the phase quadrature points.
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(a)

(b)

(c)

Figure 6.8: NFRC of the fifth harmonic of the Duffing oscillator. (a) Amplitude A5, (b) phase
lag ϕ′

5 and (c) phase lag ϕ5. The red dots correspond to the phase quadrature points.
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primary resonance becomes a fraction of the resonance frequency of a higher-order mode,
i.e., when it lies in the superharmonic region of a higher-order mode [3].

6.4.1 System with a 3:1 modal interaction

The system (6.1) is reconsidered in this section. Figure 6.9 displays the NFRC of the third
harmonic of x1 for 0.01N and is to be compared with Figure 6.2. We observe that ϕ′

3 is
in quadrature three times, namely at the 3:1 superharmonic resonances of the first and
second modes and at the antiresonance of the third harmonic. Thus, the influence of the
primary resonance on the phase lag of the third harmonic has been completely removed.

(a) (b)

Figure 6.9: NFRC of the third harmonic of x1 of system (6.1) for f =0.01 N. (a) Amplitude
A3 and (b) phase lag ϕ′

3. The red dots correspond to ϕ′
3 =

π
2 . Black: stable; grey: unstable.

The NFRC of x1 is represented in Figure 6.10 for two different forcing amplitudes.
At 0.05N, an isolated branch created by a 3:1 interaction between the two modes can be
observed. At 0.14N, the isola has merged with the peak corresponding to the primary
resonance of the first mode. The 1:1 PRNM curve of the first mode (corresponding
to ϕ1 = π/2) represented as a function of the forcing frequency and forcing amplitude
in Figures 6.10 and 6.11a, respectively, can provide more insight into these dynamics.
Specifically, because two points of the 1:1 PRNM curve belong to the isola, its birth can
be predicted accurately. Figure 6.11a indeed indicates that 2 new quadrature points exist
when f = 0.0373N; the isola is thus created at this forcing amplitude. On the contrary,
the merging of the isola with the main branch does not happen at a phase quadrature
point. This is why the elimination of the two phase quadrature points around f =0.17N in
Figure 6.11a is only an approximation of the forcing amplitude at which merging occurs.
Tracking the fold bifurcations of the NFRC as in [29] represents a more accurate strategy
for this purpose.

Looking now at the 3:1 PRNM curve of the second mode (corresponding to ϕ′
3 = π/2)

in Figure 6.10, the modal interaction is seen to occur in the vicinity of the intersection of
the 1:1 PRNM curve of the first mode with the 3:1 PRNM curve of the second mode, as
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(a) (b)

Figure 6.10: NFRC of x1. (a) f =0.05 N and (b) f =0.14 N. The 1:1 and 3:1 PRNM curves
are represented in orange and blue, respectively. The red dots and blue crosses correspond to
quadrature points of ϕ1 and ϕ′

3, respectively. Black: stable; grey: unstable.

expected. Besides, in Figure 6.11b, two new points are created on the 3:1 PRNM curve
when f = 0.121N. The point with the greatest amplitude is located on the left branch
of the resonance peak whereas the two other points, located very close from each other,
are on the right branch (see Figure 6.12a). As the forcing amplitude increases, the two
latter points finally merge around f = 0.146N to create an inner isolated branch in Figure
6.12b. To the best of our knowledge, it is the first time that an inner isola due to a
superharmonic resonance can be revealed through the calculation of nonlinear modes.

(a) (b)

Figure 6.11: Evolution of the PRNM amplitude of x1 as a function of the forcing amplitude.
(a) 1:1 PRNM curve and (b) 3:1 PRNM curve. The red dots correspond to a forcing amplitude
of 0.14 N.

Figure 6.13a compares the 1:1 PRNM curve in Figure 6.11a to the curve obtained
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(a) (b)

Figure 6.12: NFRC of x1 and 3:1 PRNM curve (blue) for (a) f =0.145 N and (b) f =0.1465
N. The red dots correspond to quadrature points. Black: stable; grey: unstable.

when combining the NNM and EB principles, which is the usual strategy for computing
amplitude-forcing curves [97, 105, 106]. Both methods give very similar results away from
the modal interaction. However, the forcing obtained with the NNM and EB tends to
infinity close to the modal interaction. As seen in Figure 6.13b, the harmonic content
in this neighborhood is mostly a single harmonic of frequency 3ω, in contrast with the
frequency content of the forcing which is a single harmonic of frequency ω. According to
EB, a forcing with infinite amplitude is thus required to excite the corresponding nonlinear
mode, as discussed in Section 5.1.1. This illustrates one important deficiency of EB. We
note that energy balancing across multiple harmonics was proposed in [107].

(a) (b)

Figure 6.13: (a) 1:1 PRNM curve (blue) and the NNM/EB curve (green) and (b) harmonic
ratio at the modal interaction point of the NNM.

135



6.4: PRNMs of two-degree-of-freedom Duffing oscillators with a modal
interaction

6.4.2 System with a 5:1 modal interaction

The system considered in this section is{
5ẍ1 + 0.1ẋ1 − 0.05ẋ2 + 160x1 − 150x2 + x31 = f sinωt

5ẍ2 − 0.05ẋ1 + 0.4ẋ2 − 150x1 + 160x2 = 0.
(6.35)

The natural frequencies of the underlying linear system are
√
2 are

√
62 rad/s. The

antiresonance frequency is 5.657 rad/s. The NFRC of the total response as well as the
phase lag of the first harmonic at low forcing, f = 0.4N , are depicted in Figure 6.14.

(a) (b)

Figure 6.14: NFRC of the system (6.35) for f =0.4 N. (a) Amplitude of x1 and (b) phase lag
ϕ1 of x1. The red dots correspond to the phase quadrature points. Black: stable; grey: unstable.

The third harmonic is studied using the newly-defined phase lag ϕ′
3. As shown in

Figure 6.15, the 3:1 superharmonic resonances occur at
√
2/3 rad/s and

√
62/3 rad/s.

The antiresonance frequency of the third harmonic is 1.885 rad/s. An interesting result
in Figure 6.16 is that, for f = 1N, the primary resonance peak passes through the an-
tiresonance of the third harmonic due to the hardening nonlinearity, resulting in a drop in
amplitude for this harmonic. However, this loss of amplitude does not impact the overall
amplitude of x1 since the contribution of the third harmonic is negligible.

The fifth harmonic is first investigated using the phase lag ϕ5, and not ϕ′
5, for f = 0.4N

in Figure 6.17. Its behavior is more complex than the third harmonic since the fifth
harmonic resonates at the 5:1, 3:1 and 1:1 resonances. For this forcing, all resonances are
well-separated, and their effect on ϕ5 can be easily interpreted:

• Point 1 is the 5:1 superharmonic resonance of the first mode. The phase lag increases
from 0 to π, and the resonant phase lag is π

2
;

• Point 2 is the 3:1 superharmonic resonance of the first mode. The fifth harmonic
resonates there, as explained in Section 6.3. The phase lag increases from π to 2π,
and the resonant phase lag is 3π

2
;
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(a) (b)

Figure 6.15: NFRC of the third harmonic of x1 for f =0.4 N. (a) Amplitude A3 and (b) phase
lag ϕ′

3. The red dots correspond to the phase quadrature points. Black: stable; grey: unstable.

(a) (b)

Figure 6.16: NFRC of the third harmonic of x1 for f =1 N. (a) Amplitude A3 and (b) phase
lag ϕ′

3. The red dots correspond to the phase quadrature points. Black: stable; grey: unstable.
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• Point 3 is the antiresonance of the fifth harmonic. It is located at a frequency of
5.6573/5 ≃ 1.131 rad/s. The phase lag drops from 2π to π;

• Point 4 is the primary resonance. As explained in Section 6.3, ϕ5 has a phase
envelope five times greater than ϕ1. The phase lag thus increases from π to 6π with
a resonant phase lag at 7π

2
;

• Point 5 is the 5:1 resonance of the second mode. The phase lag increases from 6π
to 7π, and the resonant phase lag is 13π

2
;

• Point 6 is the antiresonance of the third harmonic where the fifth harmonic also
shows an antiresonance. It is located at a frequency of 5.6573/3 ≃ 1.885 rad/s. The
phase lag drops from 7π to 6π;

• Point 7 is the 3:1 resonance of the second mode. The fifth harmonic also resonates
there. The phase lag increases from 6π to 7π, and the resonant phase lag is 13π

2
.

1 2

3

4

6

7

5

(a)

1

2 3

4

5 6 7

(b)

Figure 6.17: NFRC of the fifth harmonic of x1 for f =0.4 N. (a) Amplitude A5 and (b) phase
lag ϕ5. The red dots correspond to the phase quadrature points. Black: stable; grey: unstable.

For f = 0.8N in Figure 6.18, due to the hardening nonlinearity, the primary resonance
crosses the 5:1 resonance of the second mode. Two new resonance points labeled points
8 and 9 appear. These points are characterized by an increase of π rad on the phase lag
curve. However, the value of the resonant phase lags for these points is not fixed and
depends where they appear on the primary resonance branch. These resonance points
also shift the phase lag of point 4 by π.

As discussed in Section 6.2, it is necessary to remove the influence of the lower-order
harmonic resonances by using ϕ′

5 = ϕ5 − ϕ3 − 2ϕ1 . Figure 6.19 shows that only the two
5:1 superharmonic resonances and the antiresonance of the fifth harmonic resonate in this
case.

Finally, Figure 6.20 plots the NFRC and different PRNM curves for f = 0.8N. We
see that the PRNM curve of the 5:1 resonance of the second mode crosses the 1:1 PRNM
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Figure 6.18: NFRC of the fifth harmonic of x1 for f=0.8 N. (a) Amplitude A5 of x1 and (b)
phase lag ϕ5 of x1. The red dots correspond to the phase quadrature points. Black: stable; grey:
unstable.
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Figure 6.19: NFRC for f =0.8 N. (a) Amplitude A5 of x1 and (b) phase lag ϕ′
5 of x1. The red

dots correspond to the phase quadrature points. Black: stable; grey: unstable.
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curve of the first mode, revealing the presence of a modal interaction. However, contrary
to system (6.1), the interaction is not sufficiently strong here to create an isolated branch.
Only a small bump can be seen on the primary resonance peak.

Figure 6.20: NFRC (black) for f =0.8N with the PRNM curves (blue) of the 1:1, 3:1 and 5:1
resonances of the first mode, and the 5:1 resonance of the second mode.

6.5 Experimental demonstration using a nonlinear can-
tilever beam

The concept of a PRNM is exploited for the dynamical characterization of two real struc-
tures, namely a cantilever beam with an artificial cubic nonlinearity in this section and
a clamped-clamped beam featuring a geometrical nonlinearity in the next section. The
experiments for these systems were conducted by G. Abeloos [104] and T. Zhou [108, 109],
respectively.

6.5.1 Phase-locked loop testing

PLL is a key-enabling technology for the PRNM framework. Indeed, the goal of the PLL,
schematized in Figure 6.21, is to enforce a specific phase lag, in our case the resonant
phase lag φl. This method was successfully used for the identifying the backbone curves
of primary resonances in [16–19, 61, 110].

The methodology is as follows. An electrodynamic shaker converts a voltage signal into
a forcing fext(t) that is applied to the nonlinear structure. To this end, the user defines
a voltage amplitude fvol which is converted into a forcing amplitude f . The time-varying
forcing fext(t) applied to the structure is

fext(t) = f sin

(∫ t

0

ωins(τ) dτ

)
(6.36)

140



6.5: Experimental demonstration using a nonlinear cantilever beam

where ωins(t) is the time-varying instantaneous frequency and is governed by a PID (pro-
portional, integral and differential) control law such that

ωins(t) =
νω0

l
+ gp(φl − ϕl(t)) + gi

∫ t

0

(φl − ϕl(τ)) dτ − gd
dϕl

dt
(t) (6.37)

where gp, gp and gi are user-defined gains. In this thesis, the phase lag of the l-th harmonic
is compared to the resonant phase lag φl. To compute the phase lag, a phase detector
is required. Usually, synchronous demodulation based on low-pass filters is used [16, 18,
19, 111, 112]. However, the adaptive filtering method introduced in [113] and successfully
applied in [114] is considered instead. The idea behind adaptive filtering is to reconstruct
the output signal x(t) at each time step by performing a linear combination of a basis
q(t) such that

wT (t)q(t) ≃ x(t). (6.38)

Here, the basis q(t) is composed of harmonic signals

q(t) =



1√
2

sinωinstt
cosωinstt
sin 2ωinstt
cos 2ωinstt

...
sinNHωinstt
cosNHωinstt


(6.39)

where w is a vector composed of unknown weights that have to be determined. A simple
algorithm to compute w is the least mean squares algorithm [115]. At each time step i,
a mean square error is calculated

e(ti) = x(ti)−wT (ti)q(ti). (6.40)

The weights are then updated using

w(ti+1) = w(ti) + rssq(ti)e(ti) (6.41)

where rss is a step size to be defined by the user. Once the error is close to 0, the weights
w correspond to the Fourier coefficients from which the phase lag can be computed.

6.5.2 Experimental setup

The experimental setup displayed in Figure 6.22 is composed of a 100cm × 0.6cm × 2cm
cantilever beam made of steel. To ensure that the beam’s dynamics remains as linear as
possible, both the beam and its clamping were manufactured from a single block. The
base was securely fastened to the vibration table using four bolts.

The beam was excited by an electromagnetic shaker (TIRA TV 51075), 30cm away
from the base, with a stinger and an impedance head (DYTRAN 5860B) glued to the
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Phase detector

PID Shaker Structure
ϕl

φl

νω0
l

ωinst fext

x

fvol

Figure 6.21: Scheme of the Phase-Locked Loop experiment.

Mode Resonance
frequency [Hz]

Antiresonance
frequency [Hz]

1 6.2 8.7
2 31.8 55.5
3 78.3 147.4
4 170.9 198.1
5 254.6 297
6 303.5

Table 6.1: Resonance and antiresonance frequencies of the linear cantilever beam.

surface. The displacement was measured by a laser vibrometer where the forcing was
applied. A cubic nonlinearity fnl(x(t), ẋ(t)) = 3× 1011x3(t) was introduced artificially in
the system using the real-time controller dSPACE MicroLabBox and was applied through
the shaker. The force applied by the shaker was thus fshaker(t) = f(t)− fnl(x(t), ẋ(t)).

To compare the beam’s dynamics numerically and experimentally, a linear reduced-
order model of the beam with 6 DOFs was developed. The positions of the external forcing
and the nonlinearity are on the second DOF, which also corresponds to the position of
the laser vibrometer. The experimental and numerical linear FRFs at 0.3N are shown in
Figure 6.23 and are found to agree well. The resonance and antiresonance frequencies are
listed in Table 6.23.

6.5.3 Numerical results

Primary resonances

The NFRC of the first harmonic for a forcing of 0.08N is shown in Figure 6.24. As
expected, each point in phase quadrature corresponds to either a resonance or an antires-
onance. The effect of the nonlinearity is mainly seen on the two first resonances where
the hardening behavior leads to unstable solutions between the fold bifurcations. The
resonance and antiresonance frequencies for this configuration are given in Table 6.2.
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(a)

(b)

Figure 6.22: Cantilever beam setup: (1) Fixed base, (2) cantilever beam, (3) impedance head,
(4) stinger, (5) shaker’s casing, (6) shaker’s magnetic core, (7) shaker’s electrical coils, (8) shaker’s
membrane, (9) laser vibrometer.
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Figure 6.23: NFRC (black: experimental; blue: numerical) of the cantilever beam for a forcing
of 0.3 N.

Mode Resonance
frequency [Hz]

Antiresonance
frequency [Hz]

1 6.6 8.7
2 33.8 55.5
3 78.5 147.2
4 170.9 198.1
5 254.6 297
6 303

Table 6.2: Resonances and antiresonances of the first harmonic of the cantilever beam (0.08N).
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(a)

(b)

Figure 6.24: NFRC of the first harmonic of the second DOF of the cantilever beam (0.08N).(a)
Amplitude A1 and (b) phase lag ϕ1. The red dots correspond to the phase quadrature points.
Black: stable; grey: unstable.
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Mode Resonance
frequency [Hz]

Antiresonance
frequency [Hz]

1 2.1 2.9
2 10.6 18.5
3 26.1 49.1
4 57 66
5 84.9 99
6 101

Table 6.3: Resonances and antiresonances of the third harmonic of the cantilever beam (0.08N).

3:1 superharmonic resonances

The NFRC of the third harmonic is presented in Figure 6.25. The frequency goes up to 105
Hz to encompass the 3:1 superharmonic resonance of the last primary resonance around
100 Hz. The NFRC comprises many local maxima et minima that correspond to either
3:1 or 1:1 resonances and antiresonances. Figure 6.25c showing the evolution of ϕ3 can be
used to distinguish between them. When the phase lag increases or drops by π, then it is
a 3:1 resonance or antiresonance, respectively. When the phase lag increases or drops by
3π, then it is a 1:1 resonance or antiresonance, respectively. At this forcing level, all the
1:1 and 3:1 resonances are well-separated. For higher forcing amplitudes, however, modal
interactions can appear, which complicates the interpretation, as discussed in Section 6.4.

If ϕ′
3 instead of ϕ3 is considered, then only the 3:1 resonances and antiresonances

are revealed, as shown in Figure 6.25b. The frequencies at which these resonances and
antiresonances occur is approximately one third of the frequencies of the nonlinear system
from Table 6.1. Therefore, it is expected that the evolution of ϕ′

3 resembles that of ϕ1 in
Figure 6.24b but with frequencies divided by three. The corresponding frequencies are
reported in Table 6.3.

5:1 superharmonic resonances

A similar analysis for the fifth harmonic can be made from Figure 6.26. In this case, the
evolution of ϕ5 in Figure 6.26c becomes hardly interpretable. Therefore, ϕ′

5 is used to
detect the 5:1 resonances and antiresonances. As for ϕ′

3, its evolution resembles that of
ϕ1 in Figure 6.24b but with frequencies divided by five. The corresponding resonance and
antiresonance frequencies are reported in Table 6.4.

At higher forcing amplitudes, a modal interaction is about to happen between the 5:1
superharmonic resonance of the fourth mode and the second mode around 34 Hz. This
is evidenced in Figure 6.27a where the PRNM curves of the 1:1 and 5:1 resonances are
superposed to the NFRC at 0.3N. The two PRNM curves cross each other around an
amplitude of 1.7×10−4m giving rise to a small bump on the main resonance branch. The
mechanism is similar to what was described in Section 6.4.2. In addition, the PRNM
curves for the 3:1 superharmonic resonance of the third vibration mode obtained using
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(a)

(b)

(c)

Figure 6.25: NFRC of the third harmonic of the second DOF of the cantilever beam (0.08N).
(a) Amplitude A3, (b) phase lag ϕ′

3 and (c) phase lag ϕ3. The red dots correspond to the phase
resonance points. Black: stable; grey: unstable.
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(a)

(b)

(c)

Figure 6.26: NFRC of the fifth harmonic of the second DOF of the cantilever beam (0.08N).
(a) Amplitude A5, (b) phase lag ϕ′

5 and (c) phase lag ϕ5. The red dots correspond to the phase
resonance points. Black: stable; grey: unstable.
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Mode Resonance
frequency [Hz]

Antiresonance
frequency [Hz]

1 1.2 1.8
2 6.4 11.1
3 10.6 29.5
4 34.2 39.6
5 51 59.4
6 60.1

Table 6.4: Resonances and antiresonances of the fifth harmonic of the cantilever beam (0.08N).

either ϕ3 =
π
2

or ϕ′
3 =

π
2

are compared. The two curves are almost identical owing to the
fact that this resonance is sufficiently far away from other primary resonances. Close-ups
of the phase lag of each harmonic are also shown in Figures 6.27b-d confirming that each
harmonic passes through π

2
at resonance, and even three times for the fifth harmonic due

to the modal interaction.

6.5.4 Experimental results

Figure 6.28 presents the experimental results around the second mode at 1N. This forcing
level was chosen, because it gives similar response amplitudes as in the numerical case at
0.3N. This discrepancy is to be attributed to higher damping in the experimental beam.

Overall, we obtained an excellent agreement between Figures 6.27 and 6.28. As in
the numerical case, when the 5:1 PRNM curve constructed using ϕ′

5 crosses the NFRC
in Figure 6.28a, a small bump is present, revealing a 5:1 superharmonic resonance on the
main resonance peak. In addition, the 3:1 PRNM curves built using ϕ3 =

π
2

and ϕ′
3 =

π
2

resemble each other, as in Figure 6.27a. The experimental phase lags in Figures 6.28b-d
also agree well with the numerical phase lags. Specifically, the experimental ϕ′

3 and ϕ′
5

undergo a shift of π, indicating the presence of 3:1 and 5:1 superharmonic resonances,
respectively. We just underline that ϕ′

5 is shifted approximately by −π
4

with respect to
the numerical phase lag, which might indicate that the cubic nonlinearity is not the only
nonlinearity in the system.

Close-ups of the 3:1 and 5:1 superharmonic resonances are displayed in Figure 6.29. If
the topology of the NFRC around the 5:1 resonance remains fairly simple, a loop appears
for the 3:1 resonance. Such a dynamical behavior is consistent with what was observed
for the Duffing oscillator in Figure 5.16a. We see that the PRNM curves built using
ϕ3 = ϕ′

3 =
π
2

tend to move away from each other when the forcing amplitude is increased.
This can be explained by the hardening nonlinearity which brings the 3:1 resonance closer
to zone of influence of the 1:1 resonance.
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3:1
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5:1

mode 4
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(a) (b)

(c) (d)

Figure 6.27: (a) NFRC (black) and PRNM curves of the 1:1, 3:1 and 5:1 resonances (blue:
ϕ1 = ϕ′

3 = ϕ′
5 =

π
2 ; green: ϕ3 =

π
2 ) of the numerical beam model around the second mode (0.3N),

(b) ϕ1, (c) ϕ′
3 and (d) ϕ′

5.
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Figure 6.28: (a) NFRC (black) and PRNM curves of the 1:1, 3:1 and 5:1 resonances (blue:
ϕ1 = ϕ′

3 = ϕ′
5 =

π
2 ; green: ϕ3 =

π
2 ) of the experimental beam around the second mode (1N), (b)

ϕ1, (c) ϕ′
3 and (d) ϕ′

5.
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(a) (b)

Figure 6.29: NFRC (black) and PRNM curves (blue: ϕ′
3 = ϕ′

5 = π
2 ; green: ϕ3 = π

2 ) of the
experimental beam. (a) 3:1 resonance between 1 and 4N and (b) 5:1 resonance between 0.5 and
2N.

6.6 Experimental demonstration using a clamped-clamped
beam

6.6.1 Experimental setup

The test sample, photographed in Figure 6.30, is a 100cm×2cm×0.2cm aluminium beam
clamped at both ends to aluminium mounting blocks bolted to a support frame fixed on
the vibration table. The beam motion was prescribed by a sliding groove of cross section
20mm×0.2mm made in the block. During the installation, it was ensured that the initial
tension or compression forces along the beam are weak so that there is no important
prestress.

The forcing was applied by the same electromagnetic shaker as for the cantilever beam.
The shaker was fed by a power amplifier (TIRA BAA 120) working in current mode. It
was connected to the beam through a flexible stinger and an impedance head (DYTRAN
5860B). To minimize shaker-structure interaction, the shaker was placed at 3cm from one
clamped boundary. The beam response was measured using an accelerometer (DYTRAN
3035G) placed at 12cm from one clamped boundary to ensure good signal-to-noise ratio.
The signal was then amplified using a signal conditioner (PCB PIEZOTRONICS 482C).

To measure the NFRC and PRNM curves, a PLL control loop with adaptive filter-
ing was applied thanks to the real-time controller dSpace MicroLabBox. The relations
between the signals and the hardware were established using the Real Time Interface
whereas the overall control scheme was implemented within Matlab/Simulink.

The 1:1, 2:1, 3:1 and 1:2 resonances of the first beam mode are studied in this section.
The configuration of the setup for the 1:1 and 1:2 resonances is such that the distance
between the two mounting blocks is 67.8cm while it is 75.4cm for the 2:1 and 3:1 resonances
because their amplitude was too low on the former configuration.
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6.6: Experimental demonstration using a clamped-clamped beam

Figure 6.30: Clamped-clamped beam setup.

6.6.2 Experimental results

Primary resonance

The primary resonance of the first beam mode is displayed in Figure 6.31. The NFRC
was obtained by sweeping the phase from 0 to π using the PLL controller. The PRNM
curve identified by locking the phase at a value of π/2 is found to trace out accurately the
locus of the resonance points. A hardening effect due to the geometrical nonlinearity of
the clamped-clamped beam is clearly visible; a slight softening effect can also be noticed.

2:1 superharmonic resonance

During the experiments, the NFRC in Figure 6.32a was found to be in the direct contin-
uation of the main branch. It did not bifurcate from the main branch as in Figure 5.17
for the Duffing oscillator. This behavior indicates a Duffing-Helmholtz-like behavior for
which the resonant phase lag of the 2:1 resonance is ϕ2 = 0 (see Section 4.2.3.3). This
phase lag was adopted in the PLL controller, and the outcome is shown in Figure 6.32b.
The resulting PRNMs are located in the close vicinity of the resonance peak (but not
exactly on it).
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(a) (b)

Figure 6.31: NFRC (black) and PRNM curve (blue) of the primary resonance of the first mode
of the clamped-clamped beam for 0.2N, 0.4N, 0.5N and 0.6N. (a) Response amplitude vs. forcing
frequency and (b) phase lag vs. forcing frequency.

(a) (b)

Figure 6.32: NFRC (black) and PRNM curve (blue) of the 2:1 resonance for 4N, 4.5N and 5N.
(a) Response amplitude vs. forcing frequency and (b) phase lag vs. forcing frequency.
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1:2 subharmonic resonance

The next resonance is the 1:2 resonance displayed in Figure 6.33. Starting from the main
branch, an impact hammer was used to jump to these resonances that appear as isolated
branches. The phase lag seems to oscillate around 0, as for the 2:1 resonance. The PRNM
curves were therefore identified using ϕ1 = 0. The experiments also evidenced that the
same solution but with a resonant phase lag equal to π can be measured. The PLL
strategy did not allow to compute the whole branches and we cannot assure whether the
branches eventually connect to the main branch or not, as it is the case for a Helmholtz-
Duffing oscillator, as discussed in Section 5.4.2. The resonant phase lag, though, is in
agreement with this type of oscillator.

(a) (b)

Figure 6.33: NFRC (black) and PRNM curve (blue) of the 1:2 resonance for 2.5N, 2.6N and
2.7N. (a) Response amplitude vs. forcing frequency and (b) phase lag vs. forcing frequency.

3:1 superharmonic resonance

Finally, the 3:1 superharmonic resonance is plotted in Figure 6.34. It appears in the direct
continuation of the main branch and features a hardening behavior. The PRNMs were
identified using the resonant phase lag ϕ3 =

π
2
. These results are in agreement with those

in Section 5.4.2.

6.7 Conclusion

Two main challenges were tackled in this chapter, namely (i) to apply the proposed PRNM
framework to MDOF systems and (ii) to validate the PRNM definition experimentally.

In the case of MDOF systems, the primary and secondary resonances of different modes
can interact. This influences directly the phase lag of each harmonic and particularly
the value of the resonant phase lag. To address this issue, the perturbation technique
presented in [104] allowed us to define new phase lags that are linear combination of
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(a) (b)

Figure 6.34: NFRC (black) and PRNM curve (blue) of the 3:1 resonance for 3.5N, 4N and
4.5N. (a) Response amplitude vs. forcing frequency and (b) phase lag vs. forcing frequency.

carefully selected harmonics. These phase lags do no longer suffer from the influence of
other resonances such that they can be used to construct the PRNM curves of MDOF
systems. This was illustrated using two-DOF systems featuring 3:1 and 5:1 superharmonic
resonances. Interestingly, based on the analysis of PRNM curves, we were also able to
detect outer and inner isolated branches generated by 3:1 resonance phenomena.

Second, two experimental setups were considered to demonstrate the effectiveness of
the PRNM framework in practice. The first setup was a cantilever beam with an artificial
cubic nonlinearity. The beam featured an interesting 5:1 modal interaction which was
successfully identified experimentally thanks to the PRNMs with the newly-defined phase
lags and accurately reproduced numerically using a nonlinear reduced-order model. The
second setup was a clamped-clamped beam exhibiting geometrically nonlinear behavior.
Several secondary resonances of the first beam mode were characterized with the PRNMs
curves with well-selected resonant phase lags. This study revealed that the clamped-
clamped beam behaves as a Helmholtz-Duffing oscillator.

156



Chapter 7

Conclusions

7.1 Outcomes of the thesis

Linear and nonlinear systems possess fundamentally different dynamical features. Frequency-
amplitude-dependent properties, multi-harmonic responses leading to, e.g., secondary res-
onances and modal interactions, and isolated responses are among the challenges that were
tackled in this thesis. The very rich and complex dynamics of the harmonically-forced
Duffing oscillator was evidenced in Chapter 2 where this seemingly simple nonlinear sys-
tem was found to possess a countable infinity of superharmonic and subharmonic reso-
nances l:ν. Focusing our attention on monopoint and mono-harmonic forcing, the two
research questions addressed in this thesis were :

(i) How to define the l:ν resonance of a nonlinear system where l and ν are arbitrary
integers?

(ii) How to characterize primary and secondary resonances analytically, numerically and
experimentally?

Regarding the first question, Chapter 2 evidenced that, for each l : ν resonance, the
predominance of the l-th harmonic increases when the amplitude of harmonic forcing
increases. Therefore, one of the main thrusts of the thesis was to study analytically how
this specific harmonic behaves.

To this end, first-order averaging was exploited in Chapter 3 to derive the dynamics
of the fundamental harmonic of the response around the primary resonance for oscillators
with polynomial stiffness. When studying the amplitude-phase lag relationship, it was
found that phase resonance as defined in linear systems, i.e., when the forcing counter-
balances exactly the damping term, can be extended to nonlinear oscillators. Specifically,
nonlinear phase resonance for a primary resonance occurs when the phase lag of the fun-
damental harmonic, i.e., the resonant phase lag, is π

2
. Phase resonance thus happens in

the immediate vicinity of amplitude resonance for weak to moderate damping.
In Chapter 4, the resonant phase lags of the d:1 and 1:d resonances of an oscillator

with polynomial stiffness of order d were derived using first-order averaging,. It was shown
that amplitude resonance of the d-th (1st) harmonic for superharmonic (subharmonic)
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resonances occurs for phase lags which are not necessarily equal to π
2
. Using higher-order

averaging, the resonant phase lags of the l:ν resonances of the Duffing oscillator were
also found to differ from π

2
when either l or ν is even. For some specific subharmonic

resonances, the resonant phase lag did not characterize amplitude resonance but rather
the boundaries of the existence domain of the isolated response. In summary, in this
thesis, a l:ν resonance is defined as the point of the nonlinear frequency response curve
(NFRC) where the phase lag of the l-th harmonic equals the corresponding resonant phase
lag.

An answer to the second question was provided in Chapter 5 based on the outcomes of
Chapters 3 and 4. The concept of a phase resonance nonlinear mode (PRNM) which (i)
is an actual solution of the NFRC paving the way for a rigorous link between numerical
and experimental modal analysis results, (ii) can characterize superharmonic, subhar-
monic and ultra-subharmonic resonances and (iii) can include nonlinear nonconservative
forces was proposed. The PRNMs rely on the resonant phase lags calculated in previous
chapters. Another distinct advantage of a PRNM is that it is directly associated with a
specific forcing amplitude. Thus, the response amplitude-forcing amplitude curve can be
calculated in a straightforward manner and, in turn, be used to detect outer (or even inner
!) isolated responses. Finally, two computational methods based on a velocity feedback
and on the resonant phase lag were developed for the numerical calculation of the PRNMs
in this chapter.

The last endeavor of the thesis was to identify PRNM curves experimentally. A key
enabling technology that was used for this purpose is phase-locked loops. However, in
practice, primary and secondary resonances of different modes can interact, influencing the
values of the resonant phase lags. To resolve this issue, a specific perturbation technique
evidenced that, for l:1 superharmonic resonances, a new phase lag can be defined based
on the studied harmonic and the lower-order harmonics. Based on these developments,
the PRNM curves of two different experimental beams were successfully identified.

7.2 Perspectives

There remain several unanswered questions that need to be addressed in the future to
assess the viability of the present work.

First, the nonlinear oscillator that served as a motivating example throughout the
thesis is the Duffing oscillator. Though it covers many aspects of nonlinear oscillations,
it is necessary to consider other systems with more complex nonlinearities. This was
partially addressed in Chapters 3 and 4 by studying analytically oscillators with poly-
nomial stiffness, and in Chapter 5 by studying numerically oscillators with piece-wise
linear/polynomial stiffness and Coulomb friction. However, other important nonlineari-
ties such as damping nonlinearities described by Bouc-Wen or Iwan models deserve our
full consideration.

Besides more complex nonlinearities, more complex structures, e.g., with a higher
dimensionality, should be considered in the future. A first step in this direction was
recently achieved by T. Zhou, postdoctoral researcher at the University of Liège. The
NFRCs of the third vibration mode (torsional mode of the wing) of a F-16 aircraft obtained
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using classical sine sweeps are displayed in Figure 7.1. Also superposed in this figure is
the PRNM curve identified using PLLs which is found to trace out nicely the locus of
maximum amplitudes of this resonance. We note that the resonant phase lag is 1 rad/s
and not π

2
rad/s. This discrepancy is attributed to the presence of an antiresonance in the

immediate vicinity of the third mode. A 3:1 superharmonic resonance was also identified
at one third of the frequency of the third vibration mode in Figure 7.2. Despite the low
amplitude of the response and the noise present during the measurements, the phase lag of
the third harmonic evidences a shift of approximately π radians around the resonance and
is in quadrature with the forcing when the amplitude of the 3:1 superharmonic resonance
is maximum.

(a) (b)

Figure 7.1: NFRCs (black) and PRNM curve (blue) of the primary resonance of the third mode
of a F-16 aircraft for increasing forcing amplitudes: (a) amplitude and (b) phase lag ϕ1. The red
crosses and circles correspond to a phase lag of 1 and π

2 , respectively.

Two important assumptions considered in this manuscript are well-separated primary
resonances and light damping (with damping ratios of the order of 1% or less). Further
investigations should therefore be made to determine whether the concept of a PRNM is
still relevant when either one or the other assumption is no longer valid.

Other topics of interest are the extension of the single-nonlinear-mode modal synthe-
sis procedure proposed in [112, 116] to secondary resonances and the generaliza tion of
the PLOPT perturbation technique to even superharmonic resonances and subharmonic
resonances.
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(a) (b)

Figure 7.2: NFRC of the 3:1 resonance of the third mode of a F-16 aircraft: (a) amplitude and
(b) phase lag ϕ3. The red cross corresponds to a phase lag of π

2 .
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Appendix A

Stability analysis

A.1 Floquet theory
The stability of the solutions is studied using Floquet theory [25, 117]. We consider a set
of n first-order differential equations

ẋ(t) = g(x(t)) (A.1)

which admits a T -periodic solution x0(t). It can be linearized into time-dependent differ-
ential equations

ẋ(t) ≃ g(x0(t)) + J(t)(x(t)− x0(t)) (A.2)

where J(t) = ∂f
∂x

∣∣
x=x0(t)

has the same period as x0(t), such that J(t+ T ) = J(t). A small
perturbation s(t) is added so that we have x = x0(t) + s(t). The equation governing the
evolution of the perturbation can be rewritten as

ṡ(t) = J(t)s(t). (A.3)

If s(t) tends to 0 as time goes to infinity, then the solution is said to be stable; otherwise,
it is unstable. To verify this, we consider the fundamental matrix Ψ(t)

Ψ(t) = [ψ1(t), . . . , ψi(t), . . . , ψn(t)] (A.4)

such that it verifies
Ψ̇(t) = J(t)Ψ(t) (A.5)

where ψi(t) is a column-vector solution of Equation (A.3) and where all the ψi(t) are
linearly independent solutions. If Ψ(t+ T ) is plugged into Equation (A.3),

Ψ̇(t+ T ) = J(t+ T )Ψ(t+ T ) = J(t)Ψ(t+ T ) (A.6)

Ψ(t+T ) is also a solution that verifies (A.5). Since there exists only n linearly independent
solutions, it must be that Φ(t+ T ) is a linear combination of Ψ(t) such that

Ψ(t+ T ) = Ψ(t)M←→M = Ψ−1(t)Ψ(t+ T ) (A.7)
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where M is the monodromy matrix. Setting t = 0, we have M = Ψ−1(0)Ψ(T ). In
particular, if Ψ(0) is the identity matrix I, then

M = Ψ(T ) (A.8)

can be obtained by integrating Equation (A.5) with the identity matrix as initial con-
ditions. Noting that M is a constant matrix, we can define its constant matrices of
eigenvectors L and eigenvalues λλλ = diag [λ1, . . . , λn], where λi is called a Floquet multi-
plier. Furthermore, through a change of variables, matrix V(t) is defined as

V(t) = Ψ(t)L (A.9)

where L(t) is thus a solution of Equation (A.3). We can write

Ψ(t+ T ) = Ψ(t)M⇔ V(t+ T )L−1 = V(t)L−1M
⇔ V(t+ T ) = V(t)L−1ML
⇔ V(t+ T ) = V(t)λλλ.

(A.10)

After a period T , the evolution of V(t) is driven by the Floquet multipliers. In particular,

V(t+ T ) = V(t)λλλ
V(t+ 2T ) = V(t+ T )λλλ = V(t)λλλ2

...
V(t+NT ) = V(t)λλλN .

(A.11)

Since λλλ is a diagonal matrix, we have λλλN = diag
[
λN1 , . . . , λ

N
n

]
. If at least one of the

Floquet multipliers tends to infinity whenN tends to infinity, then the solution is unstable;
otherwise, it is stable. Mathematically,{

if ∀i ∈ [1, n] |λi| ≤ 1 then the solution is stable
if for any i |λi| > 1 then the solution is unstable

(A.12)

Another way of computing the stability of a solution is to look at the Floquet expo-
nents. To do so, Ψ(t) is written in the Floquet normal form

Ψ(t) = P(t)etB (A.13)

where P(t) is a T -periodic matrix and B is complex matrix. Therefore,

Ψ(t+ T ) = P(t+ T )e(t+T )B

= P(t)etBeTB

= Ψ(t)eTB

(A.14)

and
eTB = Ψ−1(t)Ψ(t+ T ) =M. (A.15)
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ℑ 𝜎𝑖 ℑ 𝜆𝑖

ℜ 𝜎𝑖 ℜ 𝜆𝑖

Figure A.1: Graphical representation of the stability regions (blue) using the Floquet exponents
(left) and multipliers (right).

Stability can be studied by looking at the eigenvalues of eTB. If σσσ = diag [σ1, . . . , σn]
contains the n eigenvalues σi of B, called the Floquet exponents, then diag

[
eTσ1 , . . . , eσn

]
contains the eigenvalues of eTB. Since eTB = Ψ−1(t)Ψ(t+T ) =M, then the eigenvalues of
M are the eigenvalues of eTB. The relation between the Floquet multipliers and exponents
is

λi = eTσi . (A.16)

Therefore, for stability, the real part of the eigenvalues of B must be negative. Figure A.1
presents the graphical difference between the Floquet multipliers and exponents.

A.2 Stability of fixed points
A case of practical interest is when g(x0) = 0. In this case, the linearization becomes

ẋ(t) ≃ J(x(t)− x0) (A.17)

where J = ∂f
∂x

∣∣
x=x0

. Considering a small perturbation such that x(t) = x0+s(t), Equation
(A.17) can be written as a time-invariant differential equation

ṡ(t) ≃ Js(t). (A.18)

The fundamental matrix can be directly found in the Floquet normal form:

Ψ(t) = PeJt (A.19)

where P is a constant matrix. The stability of the fixed point can be studied by checking
the norm of the eigenvalues of eJT or, similarly, the real part of the eigenvalues of J.
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Appendix B

Trigonometric and binomial identities

B.1 Trigonometric integral
The goal of this section is to prove that∫ 2π

0

cosa θ sinb θ dθ =
1

2
[(−1)a + 1]

[
(−1)b + 1

] Γ (a
2
+ 1

2

)
Γ
(
b
2
+ 1

2

)
Γ
(
a
2
+ b

2
+ 1
) . (B.1)

To do so, the change of variable θ → θ + π is operated on the left hand side of (B.1),
leaving

(−1)a+b

∫ π

−π

cosa θ sinb θ dθ. (B.2)

Since ∫ θ1

−θ1

g(θ) dθ =

{
0 if g(θ) is an odd function
2
∫ θ1
0
g(θ) dθ if g(θ) is an even function

(B.3)

Equation (B.1) becomes

(−1)a+b
[
(−1)b + 1

] ∫ π

0

cosa θ sinb θ dθ. (B.4)

The change of variable θ → θ + π
2

is applied, yielding

(−1)a+b
[
(−1)b + 1

]
(−1)a

∫ π
2

−π
2

sina θ cosb θ dθ. (B.5)

Thanks to (B.3), (B.5) becomes

(−1)a+b
[
(−1)b + 1

]
(−1)a [(−1)a + 1]

∫ π
2

0

sina θ cosb θ dθ (B.6)

or, simply [
(−1)b + 1

]
[(−1)a + 1]

∫ π
2

0

sina θ cosb θ dθ. (B.7)
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A last change of variable is operated: sin2 θ → t and Equation (B.7) is rewritten as

1

2

[
(−1)b + 1

]
[(−1)a + 1]

∫ 1

0

t
a+1
2

−1(1− t)
b+1
2

−1 dt (B.8)

where the integral is the Euler integral of first kind [30]

B(z1, z2) =

∫ 1

0

tz1(1− t)z2−1 dt =
Γ (z1) Γ (z2)

Γ (z1 + z2)
. (B.9)

If z1 = a+1
2

and z2 = b+1
2

, then Equation (B.8) is rewritten as the right hand side of (B.1).

B.2 Binomial identity

The goal of this section is to prove that

(
2a

2b

)
=

(
a

b

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

)
Γ
(
a− b+ 1

2

)√π. (B.10)

First, a binomial coefficient is linked to the Gamma function [30]

(
a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
. (B.11)

Using the change of variable

z1 = a+
1

2

z2 = b+
1

2

z3 = a− b+ 1

2

(B.12)

and the duplication formula [30]

Γ(2z) =
Γ(z)Γ

(
z + 1

2

)
21−2z

√
π

(B.13)
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(B.11) is rewritten as(
2a

2b

)
=

Γ(2a+ 1)

Γ(2b+ 1)Γ(2a− 2b+ 1)

=
Γ(2z1)

Γ(2z2)Γ(2z3)

=
Γ(z1)Γ

(
z1 +

1
2

)
21−2z1

√
π

21−2z2
√
π

Γ(z2)Γ
(
z2 +

1
2

) 21−2z3
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π

Γ(z3)Γ
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z3 +

1
2

)
=

Γ
(
z1 +

1
2
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1
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(B.14)
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