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We study from first-principles calculations the ferroelectric structural phase tran-

sition of Pb5Ge3O11 crystal. The calculations of phonons and Born effective charges

of the paraelectric phase allow us to identify a polar instability that is unstable in

both transverse-optic and longitudinal-optic versions, giving rise to an entire branch

of instability along a propagation vector parallel to the mode polarization (the hexag-

onal axe). This is the hint of hyperferroelectricity and the stable head-to-head and

tail-to-tail domain, as recently reported from both experiments and theory. Then,

our analysis of the ferroelectric phase shows that the polarization of Pb5Ge3O11

is uniaxial along the hexagonal axes and with small in-plane components due to a

piezoelectric effect. The symmetry-adapted mode analysis shows that the total ferro-

electric ground state distortion comes mainly from polar distortions of the unstable

polar phonon mode but also from an invariant, cooperative mode that amplifies the

polar distortion. We also build a phenomenological model that highlights how the

coupling between these modes is at play and helps us understand how to reproduce

the second-order phase transition. At last, we also quantify the structural chiral-

ity through the continuous symmetry measure method and trace its origin to the

polar unstable mode itself. By extending our approach to the phonon states we

further clarify why the final ground state distortion is more chiral than the unstable

polar mode responsible for the symmetry lowering. Finally we study the phonon

angular momentum (AM) distribution in both phases and identify trends in the AM

behaviour across the Brillouin zone.
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I. INTRODUCTION

The first synthesis of the compound lead germanate Pb5Ge3O11 (PGO) dates back to 1971 [1,

2]. Subsequent experimental works [3] have established the main features of PGO, among

which the existence of a high-temperature amorphous structure (T> 618 K), an intermediate

temperature hexagonal paraelectric (PE) phase (450 K<T< 618 K) with P 6̄ symmetry and a

low-temperature ferroelectric (FE) phase (T < 450 K) with the trigonal P3 space group. The

presence of a hysteresis loop for the natural optical activity, i.e. gyroelectricity [4, 5], in the

P3 ferroelectric phase, mirroring the one of the detected polar order, was also found in that

early studies [3, 6], implying opposite handedness for the +P and −P state. Additionally,

a sequence of experimental works on PGO have been focusing on the dielectric response,

structural and ferroic properties [3, 7–13], on the piezoelectricity [14], pyroelectricity [15–19]

and the electro-optical properties [20–23]. Measurements of the spontaneous polarisation

as a function of temperature reveal an uniaxial polarization along the hexagonal axis and

the second-order character of the ferroelectric phase transition. The presence of a hysteresis

loop in the natural optical activity measurements can be associated with the gyrotropic

order associated with the P3 space group [24, 25], which can indeed be associated with

optically active polar domains. Furthermore, the linear electrogyration [4] coefficient of

PGO is among the largest ever recorded, with a value γ33 =(3.1 ± 0.3) × 10−11 m/V near

450 K in chromium doped conditions (0.8 %) [25–28]. Another intriguing aspect of PGO

involves its ferroelectric domain walls (DWs). Notably, the material has been observed to

exhibit the phenomenon of topological bifurcation, as discussed in previous research [29, 30].

Additionally, recent experimental findings have identified the presence of antiferroelectric

DWs [31]. These unconventional behaviors in PGO’s domain walls present a compelling

case for further investigation, mainly through theoretical explanations grounded in first-

principles calculations.

While the past five decades have seen considerable experimental work on PGO, theoretical

investigations have been mainly confined to mean-field modeling to fit experimental data,

only three recent exceptions employed density functional theory (DFT) [31–33]. In this

study, we investigate the microscopic mechanisms driving PGO’s phase transitions with

the help of ab initio calculations. The paper is organized as follows. After reporting our

technical details for the calculations and method of analysis and the structural information
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of PGO, we first analyze the paraelectric P 6̄ phase through density functional perturbation

theory (DFPT). The resulting calculations of phonon dispersion curves and Born effective

charges helps us to identify a single unstable polar phonon branch where both the transverse

and longitudinal optical (respectively TO and LO) cases are unstable, emphasizing the

hyperferroelectric [34] character of the polar phase and the soft mode origin of the phase

transition. In the next section, we scrutinize and characterize the ferroelectric P3 phase

with DFT and DFPT. The use of symmetry adapted mode (SAM) decomposition of the

distortions present in the P3 phase helps us to identify the relevant modes at play in the

phase transition. Then, we build a phenomenological model to describe the energy landscape

involving these modes that helps us to understand the role of the spin orbit coupling (SOC)

to reproduce the second order kind of the phase transition. Finally, we extend our analysis

to quantify the chirality of the P3 phase and the associated phonon modes by employing

the continuous symmetry measures technique [35]. This rigorous approach enables us to

pinpoint the origin of chirality within PGO and elucidates the underlying reasons for its

gyroelectric properties. We argue that the chirality of this material is not associated with a

phonon angular momentum, contrarily to what observed in recent works [36, 37]. The further

exploration of the AM shows values close to 1 Ha for some bands in the FE phase and a

trend of the paraelectric and ferroelectrics angular momentum distributions with respect to

the phonon wave vector. Our findings not only shed light on the intrinsic chiral nature of the

P3 phase but also provide a deeper understanding of the gyroelectric behavior exhibited by

PGO, thereby contributing to the broader comprehension of symmetry-breaking phenomena

in ferroelectric materials.

II. TECHNICAL DETAILS

Structural relaxations, energy, and response function calculations have been performed

with the density functional theory (DFT) code ABINIT v9.6.2 [38, 39] and through norm-

conserving pseudopotentials from the PseudoDojo project [40] (v0.4). The generalized gradi-

ent approximation (GGA) with the Perdew-Burke-Ernzerhof functional for solids (PBEsol)

flavour [41] have been used. A 3x3x3 k-point grid and a cutoff of 50 Ha (1360.57 eV) were

employed and found sufficient to converge total energies, structural relaxation (cell param-

eter and atomic positions), as well as phonon frequencies. Density functional perturbation
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theory (DFPT) [42] response functions - in both the PE and FE phases - were used to

obtain the phonon frequencies, the Born effective charges and the permittivity tensor. [42]

The Born effective charges and the dielectric tensor allows us to evaluate the non-analytical

(NA) dipole-dipole long-range part (LR) of the dynamical matrix [42] giving rise to the

longitudinal optical (LO) modes. The phonon dispersion curves were calculated by inter-

polating the interatomic force constants (IFCs) from the unit cell only by splitting the LR

part from the rest (considered the short-range SR). This interpolation from the unit cell

allows us to reduce the computational workload, and it is an acceptable approximation as

the unit cell is already large enough (around 10×10×10 Å3) to give reasonable values for

the SR part over several neighbors. The Berry phase theory [43] was employed to obtain the

polarization of the ferroelectric phase. The latter is also estimated from the Born effective

charges to check whether it is free from spurious quanta [44]. SOC has been included in

all the calculations as it appeared to have a surprisingly strong effect in PGO (see [45]

and [33]). Finally, the group theory analysis of the structural distortions was performed by

means of the AMPLIMODES software [46]. Because of the size of the system (57 atoms),

we will forward the reader to look at the supplemental materials for some extra details and

data (like the Born effective charges, the full phonon dispersion and frequencies, etc) that

would weight the main text down.

III. STRUCTURAL INFORMATION

Lead germanate is a large band-gap insulator that undergoes a structural phase transition at

450 K. It features a high-temperature hexagonal PE P 6̄ phase. In contrast, its low-symmetry

FE P3 phase disrupts the six-fold roto-inversion and the mirror symmetry along the c-axis.

We detail the relaxed structural attributes of the PE and FE phases in the supplementary

materials. The unit cell for both phases comprises 57 atoms, with the PE and FE phases

characterized by 15 and 23 asymmetric Wyckoff positions (WPs), respectively. A schematic

representation of the high-symmetry PE phase is provided in Fig.1. In this structure, lead

atoms occupy two distinct positions: those at 6l and 3k WPs form hexagonal configurations

around a vacuum volume when viewed along the [001] direction. In contrast, the other

lead atoms are aligned along the c-axis within the bulk part of the material. Germanium

atoms, in coordination with surrounding oxygens, form either GeO4 tetrahedra or Ge2O7
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bitetrahedra. The lead atoms serve as bridges between these germanium-oxygen units. A

comparative analysis of the lattice parameters with respect to the employed DFT functional

has been presented in a previous work (see Supplementary Materials of ref. [33]). It is worth

noting that the PBEsol functional plus SOC used in our study slightly overestimates the

a and c lattice parameters by up to 0.38 % and 0.25 % compared to experimental values.

Hence throughout the rest of the manuscript we use the PBEsol plus SOC calculations as a

reference, since they provide the most accurate results compared to other functionals such as

PBE [41] and LDA. In the FE phase, the 3d Wyckoff position is occupied by all the oxygen

and germanium atoms. In contrast, lead atoms are found in the 3d, 1c, and 1b positions.

Interestingly, both P 6̄ and P3 space groups exhibit axial order and a non-zero piezoelectric

tensor [47, 48], less commonly observed in the PE phase of ferroelectric materials.

FIG. 1. (a) [001] top view and (b) [100] side view of the PE unit cell of Pb5Ge3O11. Pb and O

atoms are shown in dark grey and red, respectively. GeO4 polyhedral environments are represented

in purple. Empty channels are evidenced in yellow.

IV. ANALYSIS OF THE PARAELECTRIC PHASE

In this section, we analyze the P 6̄ PE phase of PGO to identify and characterize the phonon

instabilities. After the complete structural relaxation, we calculated the phonon frequencies,

the Born effective charges, and the permittivity at the Γ point through DFPT with and

without including the spin-orbit coupling (SOC). The irreducible representation at Γ is

30A′ ⊕ 27A′′ ⊕ 64E ′ ⊕ 50E ′′, where the A′′ (Γ2) and E ′ (Γ3/Γ5) characters are IR active

with polarization along the z and xy directions respectively and the A′ (Γ1) and E ′′ (Γ4/Γ6)
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FIG. 2. Calculated phonon dispersion curves of the PE reference structure of PGO between the

zone center Γ point and the zone boundary A (0, 0, 1
2) points and for a zoomed frequency range

between 45i to 45 cm−1. The NAC correction has been taken into account along the (0,0,1). Hence,

the unstable branch running from Γ to A corresponds to the LO polar mode at Γ associated to

the unstable TO mode with Γ2 symmetry; The unstable branch from one of the acoustic mode is

an interpolation artefact as the condensation of the related elastic instability never gives a lower

energy phase.

are Raman active only. From our calculated phonons we find at Γ a single unstable TO

phonon mode with a frequency ω0 = 34i cm−1 and of Γ2 representation that is an infra-red

(IR) active mode polarised along the c-axis. If we look at the difference between the TO

and LO frequencies associated with this unstable mode, we realize that they are very close:

34i cm−1 for the TO mode vs 28i cm−1 for the LO mode. We also found that, contrary

to several other structural and electronic properties (see Ref. [33] and the next sections of

the present manuscript), the inclusion of SOC in the calculation does not influence much

this unstable phonon mode frequency: ωTO = 37i cm−1 and ωTO = 31i cm−1. Moreover,

splitting the square frequencies at Γ in a short and long-range contributions [49–51] reveals

the short-range nature of the polar instability with ω2
0;SR = -2235.2 cm−1 and ω2

0;LR = 1022.5

cm−1.

Given that the unstable mode is polarized along the c-axis, we aim to investigate the com-

plete optical branch extending from the unstable Γ point to the A point, which has coordi-
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nates (0, 0, 1
2
). To facilitate this, we leverage the large size of the unit cell - approximately

10 Å3 box - to interpolate the phonon dispersion solely based on dipole-dipole interactions

at finite q-values. The outcome of this interpolation between the Γ and A points is depicted

in Fig.2, where we have zoomed to the low-frequency part of the spectrum for clarity. The

presence of a soft acoustic mode in our observations can be ascribed to the constraints of

the simplified interpolation model utilized in our analysis. Our computational results un-

cover a comprehensive unstable phonon branch spanning the Γ to A points of the Brillouin

zone, characterized by minimal dispersion. This suggests that the model, while effective in

a general sense, may not fully capture the complexities of the phonon interactions within

the material, indicating the need for a more nuanced approach to accurately represent the

dynamic behavior of the phonons across the entire band.

To verify that this is not a spurious effect of the interpolation, we have calculated the

phonons from DFPT at the A point and found a tiny deviation with respect to the purely

interpolated value (17.1i cm−1 from DFPT vs 16.8i cm−1 from dipole-dipole interpolation).

Thus, it is clearly the LO mode that connects the related unstable dispersion branch along

the Γ-A line. In agreement with the calculations done in Ref. [31], our results concerning

the soft mode point out that PGO behaves like a hyperferroelectric, that is a ferroelectric

crystal whose polar instability has a LO character and can therefore support a polarization

in D = 0 condition of the displacment field [34, 52]. To further probe the hyperferroelectric

character of Pb5Ge3O11 we have computed the Born effective charges (see all the tensors

in SM [45]). Even if few of them are anomalous (e.g. the zz BEC component of Pb

at WP 1i and 1e of around +4e and at 1c close to +5e), the overall mean square value√∑
jk(Z

α
jk)

2/57 ≃ (2.7, 2.7, 2.8)e is quite nominal. Hence, unlike common ferroelectric

materials, PGO does not present an overall anomalously large charge transfer due to covalent

bonds [34]. We further show in the Supplementary Materials file [45] that the spin-orbit

coupling weakly affects the Born effective charges, with a few percent increase being SOC

originated.

Our calculations, hence, confirms that PGO is a hyperferroelectric with a uniaxial polariza-

tion and with a proper order parameter as described by the soft mode theory [53] and as

observed experimentally [54–57].
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V. ANALYSIS OF THE FERROELECTRIC PHASE

Given that the soft mode aligns with the symmetry of the (FE) phase, it is reasonable to clas-

sify the phase transition of PGO as a proper ferroelectric transition. We begin our analysis

of the polar state with the SOC off. Starting with the PE structure as a reference, we induce

a symmetry-breaking by displacing ions along directions dictated by the unstable phonon

eigenvector and with various amplitudes. We observe a double-well energy landscape, with

energy minima corresponding to a gain of 9.0 meV/f.u.. At these minima, we calculate the

spontaneous polarization Ps and find a magnitude of 2.8 µC/cm2 along the c axis. This

value is notably smaller than the experimentally reported 5.0 µC/cm2 [3] when extrapolated

to 0 K. To reconcile this discrepancy, we first conduct a structural relaxation with fixed

cell parameters and then recalculate the energy gain and polarization. The revised values

are 61 meV/f.u. and 5.3 µC/cm2, respectively. Consistently with the phonon instability,

we detect no in-plane components of Ps. A second structural optimization - in which the

relaxation of the lattice parameters with respect to the paraelectric phase is allowed - finally

gives an energy gain of 68 meV/f.u. and Ps of 5.9 µC/cm2 along the z direction which

extrapolates correctly the experimental value. Unlike the previous cases, a small in-plane

polarisation Pxy
s = (-0.07,0.05) µC/cm2 is now observed in the fully relaxed case, which

is associated with the piezoelectric nature of the high symmetry reference structure. The

Berry phase computed values of the polarisation are consistent with those found from the

atomic displacements and the Born effective charges. As we remind that the spin-orbit has

been deactivated during the calculations of the aforementioned quantities, from a previous

work [33] we also know that the SOC renormalises the ferroelectric barrier up to ∼ 30 %

of its value. In fact, the SOC increases the unrelaxed soft mode energy up to 13 meV, the

ion-only relaxed energy up to 80 meV and the fully relaxed FE ground state energy up to

89 meV. It is therefore comes natural to understand how Ps is affected by the spin-orbit

interaction as well. The calculation of the polarization with the SOC included gives Ps =

(-0.04, 0.02, 5.5) µC/cm2. Given that the energies are much affected by the SOC, having a

relatively SOC independent polarisation means that much of the SOC contribution affects

the non-harmonic part of the energy, a fact that is also supported by the energy of the

unrelaxed soft modes computed either with or without spin-orbital contribution.

The fully relaxed ferroelectric cell parameters are a = b = 10.257 Å and c = 10.689 Å align
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well with experimental findings, as detailed in the supplementary materials [45]. To check

whether a further symmetry lowering might occur, we recalculated the phonon frequencies

at the Γ point and found no unstable mode, confirming the stability and ground state of our

relaxed P3 phase.

Hence, we can summarise our DFT calculations as follows. Internal ion relaxation is clearly of

paramount importance in reaching both the minimum energy configuration and reproducing

the experimental polarisation, while strain optimization has a secondary importance (the

additional gain of energy when including the strain is much smaller than the gain of energy

given by the internal atom relaxation alone). The role of the internal forces can be somehow

expected, given the presence of both a large number of atoms (57) in the unit cell with a

low symmetry site, and of Pb2+ cations that have 6s-6p lone pairs, which are known to lead

to a strong relaxation effect in ferroelectric perovskite compounds like PbTiO3 [58].

To further understand the PE-FE ground state distortions |δ⟩ we perform a symmetry

adapted mode (SAM) analysis. We find that the distortion is characterized by two SAMs.

The main one (1.47 Å) is associated with a P3 isotropy subgroup and a Γ2 irreducible

representation (IR) (namely the same as the unstable polar mode). The second SAM (0.35

Å) is instead a mode with P 6̄ space group and Γ1 representation. This confirms that it is

the Γ2 SAM that breaks the PE symmetry and favors a polar state, while the presence of Γ1

deformations means that the degrees of freedom already present in the P 6̄ phase (i.e. the

atoms with WP that are not at high symmetry positions) change to accommodate the polar

deformation.

A graphic representation of the two relevant SAMs is given in Fig. 3. In particular, the

invariant mode is clearly constituted by atomic in-plane distortions, while the polar mode

contains out-of-plane displacements as well. To have more details about which phonon

modes contribute to the total ground state distortion, we did a projection of the ferroelectric

distortion ⟨δ| into the phonon eigenvectors |ξi⟩ obtained in the PE phase. This projection

reveals that despite the strong relaxation, the overlap coefficient ⟨δ|M |ξsoft⟩ of the soft mode

is about 0.90. As the normalization is ⟨ξi|M |ξi⟩ = 1.00, it means that all the other modes

give a total overlap of about 0.44. Hence, the final ferroelectric distortion is close to the

unstable polar mode eigendisplacement but other higher frequency mode eigendisplacements

contribute too. If we now decompose |δ⟩ into atomic type, we find that O and Pb atoms

are those that contribute the most to the polarization. This result strengthens a rigid unit
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FIG. 3. (a)-(c) top and side views for Γ1 symmetry adapted modes (SAMs), and (b)-(d) for Γ2

SAMs as calculated with AMPLIMODE software from our relaxed P 6̄ and P3 phases. The arrow

lengths are proportionals to the magnitude of the distortions.

picture of the phase transition, with |δ⟩ described by the motion of Ge-O tetrahedra [59].

With the goal of probing the energy landscape (taking again the PE structure as reference),

we extract configurations corresponding to either the total |δ⟩ deformation and its Γ1 and

Γ2 SAMs projections, linearly interpolating between the high and low symmetry structures.

Then, we performed DFT calculations as a function of the mode amplitudes. To understand

the numerical results we build a simple phenomenological internal energy model with the

Γ1 and Γ2 SAM mode distortions as order parameters of the system. Taking into account

the symmetry of these two order parameters, we find (see [45] for a thorough analysis of

the fit) that the ab initio energy-configuration dataset is well represented by the following

expression:
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U(Q1, Q2) =
α1

2
Q2

1 +
α2

2
Q2

2 +
β2

4
Q4

2 + aQ1Q
2
2 + Vhigh(Q1, Q2) (1)

where Q1 and Q2 are the amplitudes of the Γ1 and Γ2 distortions respectively and where

Vhigh contains higher order terms of the expansion (see Supplemental Material [45]). Since

Γ1 is invariant under all the symmetry operations of the PE reference, it can appear in all

orders (except in the first order, since the forces in the PE reference are zero). After fitting

the model onto our DFT calculations, we can observe the energy wells and landscape in

Fig. 4. We can see that, as expected, the Γ1 SAM alone gives a single well around the

PE reference (yellow curve) and the Γ2 mode alone gives a double well shape (green curve).

When both Γ1 and Γ2 are coupled together we can observe a strong increase of the double well

energy and distortions amplitude (red curve). This confirms that, in PGO, the number of

internal degrees of freedom strongly enhances the development of the polar distortion into

the structure, as anticipated by our previous relaxation procedure. This enhancement is

mainly due to the attractive aQ1Q
2
2 coupling term, which strongly renormalizes and reduces

the value of the anharmonic parameter β2. Nevertheless, our calculations also show that the

reduction is not strong enough to affect the sign of the quartic Q4
2 coefficient, which means

that the phase transition remains of the second order kind, as experimentally observed. The

inclusion of higher order terms (Q3
1, Q

6
2, Q

2
1Q

2
2, Q1Q

4
2, etc.) can improve the fitting for bigger

values of the SAMs amplitudes, but this has a quite marginal importance near the energy

minimum. The strong renormalisation of the ferroelectric barrier induced by the spin-orbit

interaction has been anticipated by us in a previous work [33]. To highlight this effect, we

show in Fig. 5 the difference in the energy wells when condensing the soft mode and the

different amplitude of the fully relaxed distortion with and without SOC. We can clearly see

the relevance of the SOC on the polar distortion energy landscape where it is mostly within

the large atomic displacements that the SOC is at play, and, hence, into the anharmonic

part as abserved from the phonon frequencies calculations from DFPT, which were slightly

affected but the SOC.

Although we did not probe the Berry phase as a function of the symmetry adapted mode am-

plitudes, we can safely assume a linear relation Q2 ∼ P, which is justified since ∆Efull/P
2
full ∼

∆Esoft/P
2
soft ∼ 3.4 meVcm4µC−2, with ∆Efull (∆Esoft) and Pfull (Psoft) being the energy and

polarisation of the full (soft mode minimum) deformation.
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FIG. 4. Energy landscape of PGO as a function of the amplitude of the SAM Γ1 and Γ2. Symbols

are DFT calculations while the plain lines correspond to fitted model Eq.1. SOC is included the

PE and FE structures have been fully relaxed.

FIG. 5. Energy change versus amplitude of the polar unstable mode eigendisplacements and of the

relaxed ferroelectric distortion (both at fixed cell parameter of the PE phase) with and without

SOC. The zero energy reference corresponds to the PE P 6̄ phase

Finally, we stress that although the Berry phase was calculated in E = 0 conditions, the

detection of an unstable LO mode prompts the question about what P(D = 0) may be. This

calculation from first principles is prohibitively costly in the state of the art of DFT codes

implementation, however, if we assume that the electrostatics affects only the quadratic part

of the electric enthalpy, we can estimate P(D = 0) ≈ P(E = 0)ωLO

ωTO
∼ 4.0 µC·cm−2, which is

a remarkably small reduction in comparison with other hyperferroelectric materials such as

LiBO3 (with B = V, Nb, Ta and Os) [60]. Naturally, a further decrease may be expected if

non-harmonic effects are taken into account. Given that the previous linear relation actually
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fails even in the simpler cases of ABC hyperferroelectrics [34], we can consider the given

number as an upper bound. Equivalently, the D = 0 correction to the free energy brings

an additional positive term proportional to P2, and it can be observed that the ferroelectric

instability is not suppressed as a result of the large dielectric constant of PGO. All of this is

in agreement with recent results of ref. [31]. Moreover, our calculations show that the effect

of the SOC on the energy landscape mainly affects the anharmonic terms via ion relaxation,

despite not changing the qualitative picture.

It may come to attention that recent experimental and theoretical results (obtained

through piezo-response force microscopy (PFM) and phase-field modeling) and highlighted

in Refs. [29, 30] have shown the presence of charged head-to-head/tail-to-tail (HH/TT)

domain walls in PGO. It has been argued that charged DWs should not form as they would

be difficult to screen: this point of view has been justified on the ground that the electronic

band-gap of ∼ 3 eV is too wide to support a total screening of the depolarization field.

Moreover - while the presence of some n- or p- type doping can be expected from, e.g.,

vacancies in the system - both the VBM and CBM states of PGO have been found to be

localized in a recent theoretical work [33]. This electronic localization should make the

screening of Pz at the domain wall by free charges coming from dopants even more difficult

on top of the large band gap. It is thus clear that the screening originates by a different

mechanism.

Following this idea, more recent PFM measurements have been explained in terms of a

complex topological pattern consisting of bifurcated domains, so that the interface bound

charge is practically zero - namely ρ = ρz + ρxy ∼ 0 with ρz = −∂Pz/∂z and ρxy =

−∂Px/∂x − ∂Py/∂y - which would make P divergenceless. In other words, if the variation

of the polarisation along z generates a ρz charge density, this would be readily compensated

by the in-plane variations of Px and Py. However, a non-zero hyperferroelectric polarisation

in open boundary conditions may be associated with a gap-closing - as also obtained for

ABC hexagonal compounds such as LiNbO3 [61] and well-described by the simple relation

Egap(L) = Egap(0) − 2eLP (D = 0)/ϵ (ϵ being the dielectric constant in the material, L

the domain size and Egap(0) the bulk gap) - thus providing for a complete screening of the

depolarization field. Clearly, this is not the observed mechanism in PGO, nevertheless pop-

ulating the conduction bands may still have a strong impact on the DWs physics. For one

thing, the ferroelectric barrier is enhanced under n-doping conditions [33]. Secondly, the
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population of the localized CBM cavity states [33] via photo-excitation or electron injection

may produce an additional increase of ∂Pz/∂z assuming the ∇ ·P = 0 relation to be topo-

logically protected. This condition may correspond to the realization of the antiferroelectric

DWs observed under electron beams [31], despite the latter being energetically unfavorable

with respect to a sharp domain wall.

VI. CHIRALITY MEASURE AND PHONON ANGULAR MOMENTUM

The phenomenon of gyrotropic switching in PGO has been attributed to the presence of

both Ge2O7 and GeO4 units within the same unit cell, a rare occurrence in crystals. Neu-

tron diffraction [62] and high-resolution transmission electron microscopy [63] experiments

support the idea that the polarisation arises as a consequence of the twist of Ge2O7 quasi-

rigid units and polar motion of Pb2+ cations. As the latter form a bridge between the

bi-tetrahedra and the GeO4 units - via Pb-O bonds - the polar instability generates a ro-

tation of the germanate tetrahedra, which in turn plays a fundamental role in determining

the structural chirality.

A compelling theoretical inquiry centers on how individual phonon modes within the in-

frared (IR) spectrum, associated with the P3 isotropy group, contribute to the chirality

and gyrotropic switching behavior of PGO. To offer a clearer understanding of this behav-

ior, an appropriate metric for chirality must first be established. We stress that, contrarily

to what is stated in ref. [31], the Γ1 mode cannot be chiral since it is an invariant of a

space group which contains a mirror operation. Rather and as already mentioned we can

attribute an axial symmetry to that mode which survives the phase transition. Given that

the low-symmetry phase is polar and chiral at the same time while the high-symmetry

reference phase is paraelectric and achiral, the spontaneous polarization may be a fitting

metric or order parameter in this case. Therefore one may eventually use the mode effective

charges [42, 64] as a means to probe the chirality of each phonon mode.

Nevertheless, to quantify chirality we adopt a more geometric approach and thus employ the

definition of continuous chirality measure (CCM) proposed by Zabrodosky and Avnir [35],

of which we give a short description as follows. The starting point is a chiral distribution Q

of N atoms {qi}. We define the following quantity:
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χQ(G) = 100× min
G∈Sn

[∑
i |q⃗i − p⃗i|2|∑
i |q⃗i − q⃗0|2|

]
, (2)

where q⃗0 is the geometric center of the reference Q-structure and p⃗i are the unknown coor-

dinates of a distribution P of N points with symmetry operations given by the achiral point

group G (among the improper rotations Sn) of choice. The P-distribution can be obtained

by applying the operations of G to the Q-structure, as described in ref. [35]. The structural

chirality is thus calculated by searching for the closest (distance-wise) non-chiral distribution

of points Pmin which preserves the connectivity of Q and is compatible with the symmetry

operations of G. Clearly, χ(Q) = 0 if Q is achiral. On the other hand, χ(Q) = 100 can be

shown to be the maximum possible distance with respect to the non-chiral reference struc-

ture, which corresponds to the - unrealistic - case of all points of P converging to q⃗0. It is

thus realized that the CCM is conceived to quantify the geometrical chirality of a molecule

without the foreknowledge of an eventual achiral phase (reachable without breaking inter-

atomic bonds). Naturally this is not the case of PGO: if we condense a Γ2 mode on the

paraelectric equilibrium phase while keeping the amplitude of the deformation small, the

achiral reference must be the original P6̄ structure, meaning that we can simply write:

χ(Γ2) = 100×
∑

j |δ
|ek⟩
j |2∑

i(xi;FE − xC.o.M.;FE)2
≈ 100×

∑
j |δ

|ek⟩
j |2∑

i(xi;PE − xC.o.M.;PE)2
, (3)

where we assume δ
|ek⟩
j to be the Cartesian deformation of the m-atom induced by the conden-

sation of the k-th polar eigendisplacement. Clearly, the previous expression can be employed

for phonon modes and SAMs as well, provided that they belong to the representation with

P3 isotropy space group. We have thus calculated χ for PGO in several relaxation condi-

tions, with the results reported in tabs. I.

We can see that the ionic relaxation boosts χ even further in comparison with the sole

displacements obtained by freezing-in the unstable phonon eigenmode. In fact, we obtain

that the ion and the fully relaxed ferroelectric ground state are five times more chiral than

the unrelaxed condensation of the unstable polar mode (at its minimum energy). This

suggests that the coupling between the polar soft mode and other modes favors a chiral

distribution of atoms in the unit cell. It is thus natural that we look at the value of χ for

all the phonon modes at the Γ point.

The result is highlighted in Fig. 6 where we show the mode chirality versus phonon fre-
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PE FE(unstable) FE (I) FE (I+V)

χ(Γ2) 0.0 0.03 0.1397 0.155

χ(Q) 0.0 / 0.548 0.592

∆E (meV) 0.0 -21.3 -117.9 -136.0

TABLE I. Chirality measure for the P 6̄ (PE) and P3 structures. FE (unstable) correspond to the

freezing of displacements from the unstable phonon mode, I (I+V) correspond to an ion (fully)

relaxed low-symmetry configuration. χ(Q) and ∆E have been computed with the spin-orbit inter-

action on.

FIG. 6. Phonon mode chirality (as calculated from CCM method) as a function of the frequency

(the dashed line is a guide to the eye and is at the amplitude of the unstable mode value). The

soft mode value is taken as a normalization reference. Only the polar modes with Γ2 character are

considered (modes polarized along the z direction).

quency as calculated with CCM on the eigendisplacement vectors. We can see that several

high-frequency modes have a mode chirality that is larger than the one of the unstable

mode driving the phase transition (χ > χunstable Γ2) while low-frequency modes have the

tendency to have a smaller value. Hence, even if the unstable polar mode gives by far the

largest overlap projection (⟨δ|M |ξ⟩soft ∼ 0.9) onto the full distortion, the small extra polar

modes coefficients that are at play to completely characterize the polar deformation are also

necessary to explain the large chirality measure of the ground state. These strongly chiral

modes are mostly associated with oxygen atom vibrations as their lower mass makes them

contributing the most to high frequency vibrations. Additionally, with the expression Eq.1,
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we can conclude that the equilibrium structural chirality of the ferroelectric phase of PGO

is the outcome of the interaction between polar and invariant SAMs, rather than internal

Γ2 bi-linear couplings.

The high-frequency strongly chiral modes only weakly affect the behavior of the phase tran-

sition, however, it could be advisable to design non-equilibrium strategies to couple those

states to the polar distortion, since it would guarantee a significant level of control on the

already remarkable gyrotropic properties of PGO, with the possibility of realizing a ferrochi-

ral memory device. Recent theoretical works have devised a mechanism based of infrared

pumping to obtain fast polarisation reversal in ferro-distorted perovskites [65]. A subse-

quent experimental verification [66] on the rhombohedral phase of LiNbO3 has found only a

partial (without reaching the reversed equilibrium value) and temporary switching, with the

effect of the reversal being canceled after a transient. The reasons behind the incomplete-

ness (only ∼ 40 %) if the switching has been attributed to spatial inhomogeneities, while

its cancellation - with a return to the original state after some time after the initial pump -

has been explained in terms of coupling with other modes, not considered in ref. [65], and

in terms of missed relaxation along the unstable phonons orthogonal to the c axis, given

the cubic nature of the high-temperature phase of the material under consideration. Chen

et al. [67] have found that it is possible to achieve a full reversal in a rhombohedral phase

co-occurring with an in-plane rotation, but that seems to require a fine-tuning of the ampli-

tude of the pulse. Thus, they have proposed the realization of a complete and permanent

switching through a squeezing mechanism, with the high and low symmetry phases being

tetragonal and orthorhombic respectively. Assuming an initial Pz ̸= 0, a laser pulse along

the z direction is used to cancel the out-of-plane polarisation and to create in-plane polar

distortions (fig. 2 of ref. [67]). After that, three pulses (equally separated by a time lag)

are applied along the a, b, and finally c crystal axes. The final outcome is the full and

permanent reversal of Px and Py, while Pz remains zero (fig. 3 of ref. [67]). It thus appears

that the xy-rotational component is a fundamental prerequisite to achieving fast polarisation

switching in a controllable fashion in ferroelectric perovskites. On the other hand, PGO is

an uniaxial crystal, and the in-plane rotation of P is energetically unfavoured. It is, hence,

possible, that a fast switching mechanism as envisioned in Ref. [65] could be more easily

realized in this system.

Given the recent surge of interest concerning structural chirality in crystals [68], we provide
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a comparison between the kind of chirality as found in PGO and that for instance, related to

zone boundary modes as observed in several 2D and 3D systems [36, 37, 69] with the C3 sym-

metry. The present literature on the topic thus far has been focused on circularly polarised

phonon modes, which can in fact be triggered by photons with the same polarisation [37]

and produce an orbital magnetic moment as a result of their circular motion [70]. Since the

three-fold symmetry is associated with a pseudo-angular momentum (PAM) [69], selection

rules ensue from its conservation. While in two dimensions the valley chirality coincides

with a local circular rotation (defined per sublattice), in 3D such rotation is combined with

a propagation along an axis perpendicular to the rotational plane. We further point out that

3D chiral phonons have been defined and observed in enantiomorphic crystals [36], where

the direction of the circulation defines the space group and therefore a handedness [68].

Instead, at Γ the modes are static and the system has the symmetry of the point group.

This means that the circular polarisation of the phonons averages to zero for each mode

and that a handedness cannot be defined as in the previously mentioned cases. Also, no

angular momentum (AM) [71] should be expected at zone center as a consequence of the

time-reversal symmetry alone, which is confirmed for each phonon branch by our numeri-

cal calculations [45]. Due to the high number of bands we find more practical to analyse

the distribution of the AM - the angular momentum density of states - along the in-plane

Γ →K (1/3,1/3,0) and out-of-plane Γ →A (0,0,1/2) Brillouin zone directions as shown in

fig. 7, while reporting the full band-by-band computations in the supplementary file [45]. In

particular, it is clear how higher values of the AM are reached in the ferroelectric phase and

in particular along the c direction. Moreover, values close to 1 Ha are also more frequently

reached in the out-of-plane case. A closer inspection of the band decomposition of the angu-

lar momentum [45] also highlights the near zone boundary (centre) character of the in-plane

(out-of-plane) FE distribution, with the PE bands behaving in a complementary way.

Therefore and to conclude this section, the chirality of PGO herein reported has no AM and

is thus a property of the point group itself (which polar representation is axial and thus chiral

as well) and is not associated with a specific handedness. As such it can be triggered by a

linearly polarised electric field and its tuning matches that of the spontaneous polarisation.
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FIG. 7. Distribution (log-scale) of the phonon angular momentum along the Γ →K and Γ →A

directions.

VII. SUMMARY AND CONCLUSIONS

We have conducted first-principles calculations to investigate various properties and the

phase transition from paraelectric to ferroelectric states in the compound Pb5Ge3O11 (PGO).

Our findings illuminate the microscopic mechanisms underlying the polar deformation, pin-

pointing a polar mode as the primary source of instability. By calculating the Born effective

charges, we establish no significant anomalous charge transfer, suggesting that geometric

effects or lone pairs are more decisive factors. Our data corroborate the classification of

PGO as a hyperferroelectric compound [31]. This conclusion is evidenced by the persistence

of the instability even under the D = 0 condition (i.e., after accounting for LO-TO splitting)

and its short-range origin, as opposed to the long-range interactions typical of more conven-

tional ferroelectrics. This observation implies that domains polarized along the c-axis would

remain stable despite variations in boundary conditions, ranging from periodic boundary

conditions (E = 0) to open boundary conditions (D = 0). Furthermore, we demonstrate

that the phonon branch associated with the soft mode remains unstable up to the zone

boundary.

Exploring the energy landscape reveals the central role of an invariant Γ1 and a polar Γ2

modes: their non-linear coupling bolsters the magnitude of the polarisation along the z-axis

and deepens the energy barrier between opposite domains. We hypothesize that this effect -

remarkable despite the relatively small magnitude of the invariant distortion - may be asso-
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ciated with the presence of lone pairs of Pb atoms. The computed spontaneous polarisation

- either with the Berry phase approach or the Born effective charges - is consistent with the

value found in experiments. Also, we correctly reproduce the second-order character of the

phase transition.

We further discuss the behavior of domain walls based on recent results that appeared in the

literature [29, 30]. Having an uni-axial P (parallel to the z-axis) means that domains can

meet in a charged head-to-head/tail-to-tail configuration, thus with a sizable depolarisation

field: normally, the fulfillment of such requirement would remove or strongly reduce the

polar instability [72, 73], if the DW bound charge stemming from ∂P/∂z cannot be properly

screened. However, this does not seem to be the case for PGO since experiments do detect

the formation of domains below the critical temperature [29–31]. Therefore, we are left with

the question of how charge neutrality can be ensured and the depolarisation field screened.

A recent theoretical development suggests the formation of an in-plane polarisation, which

would neutralize the bound charge associated with P3 polar phase at the interface without

needing a free carrier (n-p) distribution. The resulting ∇ · P = 0 condition has a topolog-

ical character and is associated with domain bifurcation, observed via piezoresponse force

microscopy. We further conjecture that the topological index associated with the charge

neutrality and the recently discovered conduction cavity states [33] in PGO may be used to

control the domain walls through the screening effect.

The spontaneous polarisation of PGO also comes with a gyrotropic order, primarily asso-

ciated with the tilting of the GeO4 units concerning the high symmetry configuration. We

have evaluated the chirality from CCM for the Γ2 phonon modes and the relaxed distortions.

It is found that structural optimization can increase chirality as a result of the interaction

between the soft polar mode and the invariant modes. Furthermore, the calculation of the

CCM associated with Γ2 polar phonons shows the presence of high frequency modes with a

chirality χ value twice as high as the value associated with the unstable eigenstate. We argue

that developing interaction with such modes (e.g. with ultrafast laser excitations [74]) could

produce novel effects in the realm of polarisation switching, with a potential increased level

of control on the gyrotropic properties of this material and with the possibility of creating

storage devices based on geometric chirality. It would also be interesting to compute from

first-principles [75] the optical activity associated with the phonon modes and the polar

distortions to have a clearer idea of the link between chirality (as calculated through CCM)
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and the optical activity in PGO. We also highlight that the angular momentum of the polar

and chiral Γ2 phonons is strictly zero, in contrast with previously reported chiral phonons

that are away from zone center with non-zero angular momentum.

Hence, PGO is a versatile materials with numerous properties of high interest for multifunc-

tional applications embedded into a single bulk material, yet not fully explored or exploited.
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VIII. SUPPLEMENTARY MATERIAL

A. Phonons, irreducible representation, permittivity and Born effective charges in

the PE phase

We report the irreducible representation of the P6̄ phase in tab. II and the complete phonon

spectrum in fig. 8. The phonons have been calculated with the dipole model along with

DFPT at zone centre. The bands appear nearly flat as a result of the small size of the

Brillouin zone of PGO. While no phonon angular is present at zone centre because of the

time-reversal symmetry, it is possible to get a finite AM at finite q. In figs. 9 and 10 we

report the angular momentum along the Γ →K and Γ →A directions respectively for each

phonon mode and for both the P6̄ and P3 phases. Considering the in-plane direction, the

PE angular momentum tends to be non-negligible only near the zone boundary, while the

FE bands possess a non-zero AM much closer to zone centre. This situation is reversed along

the c direction, which shows large FE-momenta closer to the A point and a predominance

of the paralectric bands when approaching the Γ point.

Among the 171 phonon modes we use the Γ2 representation to detect the chiral ones and

measure their CCM in the main text. Tab. VIIIA and IV instead show the ϵ∞ tensor and

the Born effective charges (BECs). While the dielectric tensor is not much affected by the

SOC, it presents a relatively large and anisotropic value along z.Likewise, the Born effective

charges are also not much affected by the spin-orbit interaction and they keep close to their

nominal values as explained in the main text. The large value of ϵ∞zz and the small BECs are

responsible for the hyperferroelectric character of PGO, i.e. for preserving the ferroelectric

instability in D = 0 conditions.
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E 3+ 3− m −6+ −6− function

A′ Γ1 1 1 1 1 1 1 x2 + y2, z2, Jz

A′′ Γ2 1 1 1 -1 -1 -1 z

E′ Γ3 1 w w2 1 w w2 (x, y) (x2 − y2, xy)

Γ5 1 w2 w 1 w2 w

E′′ Γ4 1 w w2 -1 −w −w2 (xy, yz) (Jx, Jy)

Γ6 1 w2 w -1 −w2 −w

TABLE II. Character table of the PE space group of PGO.

FIG. 8. Full phonon spectrum obtained via interpolating a long-range dipole model with DFPT

calculations at the Γ point.

FIG. 9. Calculated phonon angular momentum between the zone center Γ point and the zone

boundary K (1/3, 1/3, 0) point.
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FIG. 10. Calculated phonon angular momentum between the zone center Γ point and the zone

boundary A (0,0,1/2) point.

Exc ε∞xx ε∞zz εxx εzz

LDA (wo SOC)

PBE (wo SOC)

PBE (w SOC)

PBEsol (wo SOC) 4.7 4.9 21.0 NA

PBEsol (w SOC) 4.9 5.1 21.9 NA

Exp.

TABLE III. Electronic and total permittivity tensor of the PE phase of PGO for different exchange-

correlation functionals and with and without SOC. The total permittivity tensor cannot be cal-

culated along the z direction as an unstable polar mode is present with an imaginary frequency

(noted NA).

B. Energies and Landau model

The amplitudes of the Γ1 and Γ2 symmetry adapted modes are shown in tab. VIII B, while

the relevant ground state energies are reported in tab. VIII B.

The analytical model used in the main text to fit the DFT energies as a function of the

invariant and polar distortions amplitudes (Q1 and Q2 respectively) is also reported here:

U(Q1, Q2) =
α1

2
Q2

1 +
α2

2
Q2

2 +
β2

4
Q4

2 + aQ1Q
2
2 + Vhigh(Q1, Q2) (4)

with
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Atom site sym. wo SOC w SOC

Pb1 3k


2.27 0.20 0.00

0.36 3.95 0.00

0.00 0.00 3.42



2.30 0.24 0.00

0.42 4.00 0.00

0.00 0.00 3.43



Pb2 6l


3.60 0.66 0.24

0.74 2.38 0.13

0.09 0.13 2.66



3.63 0.65 0.24

0.75 2.36 0.16

0.11 0.16 2.65



Pb3 1e


3.09 0.19 0.00

−0.19 3.09 0.00

0.00 0.00 3.91




3.12 0.22 0.00

−0.22 3.12 0.00

0.00 0.00 4.08



Pb4 2i


2.68 0.04 0.00

−0.04 2.68 0.00

0.00 0.00 4.10




2.68 0.05 0.00

−0.05 2.68 0.00

0.00 0.00 4.17



Pb5 1c


2.27 0.03 0.00

−0.03 2.27 0.00

0.00 0.00 4.75




2.26 0.03 0.00

−0.03 2.26 0.00

0.00 0.00 4.95



Pb6 2h


3.09 0.14 0.00

−0.14 3.09 0.00

0.00 0.00 3.78




3.12 0.15 0.00

−0.15 3.12 0.00

0.00 0.00 3.82



Ge1 6l


2.88 0.28 0.01

0.34 4.01 −0.07

−0.48 0.18 3.14




2.88 0.29 0.01

0.33 4.11 −0.03

−0.51 0.21 3.16



Ge2 3k


3.88 0.22 0.00

0.09 3.06 0.00

0.00 0.00 3.09



3.92 0.24 0.00

0.08 3.08 0.00

0.00 0.00 3.11


TABLE IV. Calculated Born effective charge tensors (unit of the charge of one electron) of

nonequivalent Pb and Ge atoms of the PE reference of PGO.
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Exc Γ1 Γ2

LDA (wo SOC)

PBE (wo SOC)

PBE (w SOC) 0.37 1.47

PBEsol (wo SOC) 0.29 1.40

PBEsol (w SOC) 0.32 1.47

TABLE V. SAMs amplitudes (Å) as obtained for different functionals and with/without SOC.

Exc ∆E (no relax) ∆E (w/o strain) ∆E (full)

LDA (wo SOC) 4 29 34

PBE (wo SOC) 14 98 105

PBE (w SOC) 21 118 136

PBEsol (wo SOC) 9 61 68

PBEsol (w SOC) 13 80 89

TABLE VI. Gain of energy ∆E (meV/f.u.) between the PE and the FE phase of PGO for different

exchange-correlation functionals and with/without spin-orbit coupling. The ”full” label indicates

the relaxation of both cell parameters and atomic positions, the w/o strain case means relaxation

of the atomic positions with PE fixed cell parameters, and the ”no relax” case represents the

condensation of the unstable mode alone without relaxation (with the energy difference taken at

the maximum gain, i.e., the depth of the double well). We can see that energy gain is small for

LDA, large for PBE and intermediate for PBEsol functionals, as usually found in ferroelectric

crystals. Also, it can be noticed that SOC enhances energy gain in all computed cases.

Vhigh(Q1, Q2) =
β1

3
Q3

1 +
γ2
6
Q6

2 + bQ2
1Q

2
2 + cQ1Q

4
2. (5)

The usual mean field approximation α′ = α′
0(T − Tc) (α′

0 > 0) is assumed. Q1 and Q2

are scaled by the amplitudes of the Γ1 and Γ2 SAMs projection of the ferro-distortion as

reported in tab VIII B.

We have adopted the following fitting strategy: given the high and low symmetry phases,

with the help of AMPLIMODES we have extracted the distorted structures corresponding



31

to the symmetry-adapted modes (Γ1 and Γ2 IRs) at various amplitudes ranging from 0 to 2

(0 represents the paraelectric reference while 1 is referred to the SAM amplitude associated

with the ground state). First, we have restricted the interpolation process to small Q1 and

Q2 to make the contribution of Vhigh negligible. It may also be noted that if we consider

the low-energy part of the model only, taking ∂U/∂Q1 = 0 leads to a quartic expression in

term of the polar mode only, that is Ueff(Q2) =
α2

2
Q2

2 +
β′
2

4
Q4

2 with β′ ≡ β − 2a2/α1. The

sign of β′ is important since it is directly associated with the order of the phase transition.

Furthermore, with the knowledge of the Γ2 equilibrium amplitudes and energies of either

the soft mode only (∆Esoft = 13.0 meV and AΓ2;soft = 0.6177 Å) and of the full distortion

(∆Etot. = 89.0 meV and AΓ2;tot. = 1.4670 Å), we can extract αin.
2 ≡ −4|∆Esoft|//A2

Γ2;soft
=

136.3 meV/Å2 and βin.
2 ≡ 4|∆Esoft|//A4

Γ2;soft
= 357.2 meV/Å4, which can be used to initialise

the fitting process. Similarly, a can be initialised from the relations β′
2 = 4|∆Etot.|//A4

Γ2;tot.

and ain. = −
√
α1(β2 − β′

2), leaving in principle only α1 as a ”free parameter”. Once the

low-energy model (U(Q1, Q2) − Vhigh(Q1, Q2)) has been determined, we have extended the

interpolation to Vhigh to improve the modeling of the large-amplitude behavior.

We report now the values of the coefficients (f.u.): α1 = 6793.7 meV/Å2, β1 = 634.0 meV/Å3,

α2 = −135.0 meV/Å2, β2 = 391.7 meV/Å4, γ2 = −15.6 meV/Å6, a = −1077.6 meV/Å3,

b = −114.0 meV/Å4, c = 28.0 meV/Å6 and β′ = 154.9 meV/Å4. From the inspection of

the model parameters, we realise the following facts. First, spin-orbit coupling and lattice

optimization have a substantial impact. However, most of the PE-FE energy barrier is due

to internal ion relaxation, as can also be inspected from tab. VIII B. Secondly, the quartic

(positive) polar coefficient β2 is strongly renormalized by the interaction with the invariant

mode, even though it maintains its sign, meaning that the second-order character of the

phase transition observed in the experiments is correctly reproduced by our calculations.

Moreover, even if the Q6
2 polar coefficient appears harmful, it is counterbalanced by the

high-order favorable terms of the interaction, which ensure the stability of the ferroelectric

solution. We have tested 11 our model on AΓ1/AΓ2 ratios other than the PE-FE transition,

finding an adequate level of transferability.
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FIG. 11. Energy landscape of PGO as a function of the amplitude of the SAM Γ1 and Γ2. Symbols

are SOC-including DFT calculations while the lines correspond to the model of eq. 1, either with

(full) and without (dashed) Vhigh contribution. The value of m in the caption multiplies the

AΓ1/AΓ2 = 0.218 ratio associated with the linear distortion from the P 6̄ to the P3 ground states,

as extracted from AMPLIMODES.
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