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Homomorphisms between multidimensional
constant-shape substitutions

Christopher Cabezas

Abstract. We study a class of Zd -substitutive subshifts, including a large family of constant-length
substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of Zd . We
prove that any measurable factor map and even any homomorphism associated to a matrix com-
muting with the expansion matrix, induces a continuous one. We also get strong restrictions on the
normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually
generated by the shift action and the quotient of the normalizer group by the automorphisms is
restricted by the digit tile of the substitution.

1. Introduction

In this article, we study multidimensional constant-shape substitutions and homomor-
phisms between them, i.e., continuous maps � WX!Y (called isomorphisms for invertible
ones) such that for some matrix M 2 GL.d;Z/ and any n 2 Zd , � ı Sn D SMn ı �,
where .X; S;Zd / and .Y; S;Zd / are subshifts given by substitutions with a uniform sup-
port. Such a map gives an orbit equivalence with constant orbit cocycle via a linear map.
When the matrixM is the identity, surjective homomorphisms are called factor maps, and
conjugacies when it is invertible. We refer to the conjugacies as automorphisms when the
dynamical systems are the same. In the one-dimensional case, homomorphisms lead to the
notion of flip conjugacy of dynamical systems [5] and by this fact are also called reversing
symmetries (see [2,24]). The relation between homomorphisms and factor maps becomes
less clear in higher dimensions, since GL.d;Z/ is infinite for d � 2 (see for example [1]).

The study of factors and automorphisms of a dynamical system is a classical problem.
It mainly concerns their algebraic and dynamical properties in relation to the ones of the
system .X; S;Zd /. The automorphisms can be algebraically defined as elements of the
centralizer of the action group hSi, seen as a subgroup of all homeomorphisms Homeo.X/
from X to itself. With this algebraic point of view, isomorphisms can be seen as elements
of the normalizer group of hSi seen as a subgroup of Homeo.X/. The automorphism
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group is always nonempty, but in general, the existence of isomorphisms for a particular
matrix M 2 GL.d;Z/ is an open problem.

In this context, the rich family of symbolic systems exhibits rigidity properties of
factor maps and automorphisms already in the one-dimensional case. For instance, the
famous Curtis–Hedlund–Lyndon theorem [28], ensures that any factor map between sub-
shifts is a sliding block code, showing that the automorphism group is countable. Among
the simplest nontrivial zero-entropy symbolic systems, are the substitutive ones introduced
by W. H. Gottschalk in [25] (see [37] for a good bibliography on this subject). They also
present rigidity properties. B. Host and F. Parreau in [29] gave a complete description of
factor maps between subshifts arising from certain constant-length substitutions, proving
that any measurable factor map induces a continuous one, and the automorphism group
is virtually generated by the shift action. Moreover, any finite group can be realized as a
quotient group Aut.X; S;Z/=hSi for these subshifts as proved by M. Lemańczyk and M.
K. Mentzen in [33]. Later, I. Fagnot [19] proved that the problem of whether there exists
a factor map between two constant-length substitution subshifts is decidable, using the
first-order logic framework of Presburger arithmetic. Some years later, F. Durand in [15]
showed that linearly recurrent subshifts (in particular substitutive subshifts) have finitely
many symbolic factors, up to conjugacy. Using the self-induced properties of substitutive
subshifts, V. Salo and I. Törmä provide in [40] a renormalization process of the fac-
tor maps to extend the description obtained in [29]. In [13] the authors proved that the
automorphism group of a minimal subshift with non-superlinear complexity is virtually
generated by the shift action, using the concept of asymptotic pairs. Next, C. Müllner and
R. Yassawi [35] demonstrated that any topological factor of a constant-length substitutive
shift is conjugate to a constant-length substitution via a letter-to-letter map. More recently,
F. Durand and J. Leroy [17] showed the decidability of the existence problem of a factor
map between two minimal substitutive subshifts.

In the multidimensional setting, substitutive systems are originally motivated by phys-
ical reasons with the discovery of the aperiodic structure of quasicrystals modelized by
the Penrose tiling [36], where the symmetries play a fundamental role. Substitutions also
occur in different topics such as combinatorics, diophantine approximations and theoret-
ical computer science, with the minimal Robinson subshift of finite type being one of
the most fundamental examples [23]. Characterizations of the isomorphisms of the chair
tiling, together with the full shift and Ledrappier’s shift, were given in [3]. The chair tiling,
the table tiling and the minimal Robinson tiling belong to the class of constant-shape
substitutions, which is a multidimensional analogue of the so-called constant-length sub-
stitutions. As a difference with the one-dimensional case, these substitutions may not be
linearly recurrent (Example 3.1). In [7, 8], the case of bijective block substitutions was
studied.

In this article, we pursue the study of isomorphisms to homomorphisms, and more
general multidimensional substitutions (nondiagonal expansion matrix, nonrectangular
support, and a weaker version of bijectivity. See [22] for recent results on their spectral
properties). We also obtain rigidity properties about homomorphisms. First, we prove that
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any aperiodic symbolic factor of a constant-shape substitution is conjugate to a constant-
shape substitution via a letter-to-letter map (Theorem 3.26), extending the mentioned
one-dimensional result from [35]. Then, we show that any measurable factor map and
any homomorphism associated with a matrix commuting with some power of the expan-
sion matrix of the substitution induces a continuous one, and we give an explicit bound on
the radius of its block maps (Theorem 4.1 and Theorem 4.13). These are analogue results
of B. Host and F. Parreau from [29]. These imply that certain constant-shape substitutions
are coalescent (Proposition 4.8), and the automorphism group is virtually generated by
the shift action (Proposition 4.9). Finally, we give algebraic and geometrical properties of
the normalizer group for polytope substitutions, i.e., in the case where the convex hull of
the digit tile generated by the expansion matrix and the support of the substitution is a
polytope. To do this, we relate the nondeterministic directions of substitutive subshifts to
the supporting hyperplanes to the convex hull of the digit tile (Theorem 5.2). We deduce
that any homomorphism of the substitutive subshift is invertible, and the normalizer group
is virtually generated by the shift action (Theorem 5.17). Moreover, the linear represen-
tation group, defined as the set of matrices associated with a homomorphism, is finite and
we give explicit bounds for the norm of these matrices (Proposition 5.15). Together with
the former bound on the radii of the block maps, these restrictions enable an algorithmic
description of the normalizer group whenever the expansion matrix is proportional to the
identity. These recover results and answer some questions in [8].

This article is organized as follows. The basic definitions and background are intro-
duced in Section 2. In Section 3, we prove Theorem 3.26 characterizing the aperiodic
symbolic factors of substitutive subshifts. For this we study a recognizability property of
these symbolic factors (Proposition 3.7) and we determine their maximal equicontinuous
factor (Proposition 3.19). We also give a polynomial bound on the repetitivity function
for substitutive subshifts (Lemma 3.2). Section 4 is devoted to the proofs of the mea-
surable rigidity properties of homomorphisms: Theorem 4.1 and Theorem 4.13. Then,
we deduce the coalescence (Proposition 4.8) and that the automorphism group of sub-
stitutive subshifts is virtually Zd (Proposition 4.9). Finally, in Section 5 we describe the
nondeterministic directions of substitutive subshifts through the digit tile for bijective on
the extremities substitutions (Theorem 5.2). Moreover, these directions are computable in
terms of the combinatorics of the substitution (Corollary 5.13). This enables us to provide
algebraic restrictions and to bound elements of the linear representation group (Proposi-
tion 5.15). The last theorem (Theorem 5.17) summarizes all the results of this last study.

2. General setting and notions

2.1. Basic definitions and notation

2.1.1. Notation. Throughout this article we will denote by n D .n1; : : : ; nd / the ele-
ments of Zd and by x D .x1; : : : ; xd / the elements of Rd . If F � Zd is a finite set, it
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will be denoted by F b Zd and we use the notation kF k D maxn2F knk, where k � k is
the standard Euclidean norm of Rd . The standard cartesian product in Rd will be denoted
by h�; �i. If L 2M.d;R/ is a matrix, we denote kLk D maxx2Rn¹0º kL.x/k=kxk as the
matrix norm of L. We denote GL.d;Z/ as the set of d � d matricesM with integer coef-
ficients such that jdet.M/j D 1. The matricesM 2GL.d;Z/ represent the automorphisms
of Zd .

We will call a sequence of finite sets .An/n>0 � Zd a Følner sequence1 if for all
n 2 Zd we have that

lim
n!1

jAn�.nC An/j

jAnj
D 0:

For any r > 0 and F b Zd we denote F ır as the set of all elements f 2 F such that
f C .B.0; r/ \ Zd / � F , i.e.,

F ır D ¹f 2 F Wf C .B.0; r/ \ Zd / � F º:

Note that the Følner assumption implies that for any r > 0

lim
n!1

jF ırn j

jFnj
D 1:

2.1.2. Convex geometry. A set C � Rd is said to be convex if for all x; y 2 C the set
Œx;y� D ¹z 2 Rd W z D tx C .1 � t /y; t 2 Œ0; 1�º is included in C . Recall that the image
of a convex set under an affine map is also a convex set, and the intersection of an arbitrary
family of convex sets is also a convex set. This leads to the notion of convex hull of a set.

If A � Rd we define the convex hull of A, denoted by conv.A/, as the intersection of
all convex sets containing A.

A set S � Rd is an affine set if for any x; y 2 S the line ¹tx C .1 � t /yW t 2 Rº is
contained in S . For any set A � Rd we define the affine hull of A, denoted by Aff.A/, as
the intersection of all affine sets containing A.

A fundamental characterization of convex sets is provided by Carathéodory’s theorem.

Theorem 2.1 (Carathéodory’s theorem). For any A � Rd , any element of conv.A/ can
be represented as a convex combination of no more than .d C 1/ elements of A.

We now recall some basic topological concepts associated with convex sets. A point
x 2 A is said to be relative-interior for A, if A contains the intersection of a ball centered
at x with Aff.A/, i.e., 9r > 0, B.x; r/\Aff.A/� A. The set of all relative-interior points
of A is called the relative interior of A and is denoted by ri.A/. We can also define the
relative boundary @ri.A/ as the set difference of the closure and the relative interior, i.e.,
@ri.A/ D cl.A/ n ri.A/.

1In the literature, especially group theory, it is common to also ask that the union of the sequence of
sets .Fn/n>0 is equal to Zd for a sequence to be Følner, but we will not use it in this article.
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An important notion for convex sets are the supporting hyperplanes. Let C � Rd

be a closed convex set and x 2 C be a point in the relative boundary of C . An affine
hyperplane @HŒa W c� D ¹y 2 Rd W ha;yi D cº, for some a 2Rd n ¹0º and c 2R is called
a supporting hyperplane to C at x if x 2 @HŒa W c� and

inf
y2C
ha;yi < ha;xi D c D sup

y2C

ha;yi:

We now recall some basic notions about cones and polyhedral sets. A nonempty set
C � Rd is said to be a cone if for every x 2 C , the set C contains the positive ray
RCx D ¹txW t > 0º spanned by x. A translation of a cone by a nonzero vector is called
an affine convex cone. A cone C �Rd is said to be finitely generated if it can be written as

C D

² pX
iD1

tui Wui 2 Rd ; ti � 0; i D 1; : : : ; p

³
:

For a given nonempty set A � Rd , the smallest cone containing the set A is called the
positive hull (or conical hull) of A. This set is given by

cone.A/ D ¹txWx 2 A; t � 0º:

The positive hull is also said to be the cone generated by A.
Convex sets can be represented, but it requires the notion of faces. A point x in a

convex set C is called an extreme point, if it cannot be written as the convex combination
of two different points in C , i.e., if x is equal to tuC .1 � t /v for some 0 � t � 1, with
u;v 2 C , then uD v D x. We denote by Ext.C / the set of the extreme points of a convex
set C . A compact convex set is called a polytope if it has a finite number of extreme points.

Extreme points are special cases of faces of a convex set. A convex subset F � C is
called a face of C if for every x 2 F and every y; z 2 C such that x D ty C .1 � t /z,
with 0 < t < 1, we have that y;z 2F . The dimension of a face F of C is the dimension of
its affine hull. The 0-dimensional faces of C are exactly the extreme points of C , and the
bounded 1-dimensional faces are called segments or edges. An extreme ray of a convex
set C is the direction of an affine half-line, that is, a face of C . A useful result about
representation of closed convex sets in Rd is the following.

Theorem 2.2 (Krein–Milman theorem for unbounded convex sets). If a nonempty closed
convex set C � Rd has at least one extreme point, i.e., does not contain an affine line,
then C can be written as the sum of the convex hull of its extreme points and the cone
generated by its extreme rays.

A useful relation between faces and the convex hull of a set that we will use in this
article is the following. A proof can be found in [39, Section 18].

Theorem 2.3. Let C D conv.A/�Rd be the convex hull of a set A�Rd and let F � C

be a nonempty face of C . Then F D conv.A \ F /.
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Some useful notion for closed convex sets corresponds to their normal cones. Let F

be a nonempty face of a closed convex set C . The opposite normal cone2 yNF .C / of C at
F is defined as

yNF .C / D
®
v 2 Rd Wmin

t2C
hv; ti D hv;pi; 8p 2 F

¯
:

The opposite normal fan of C is the collection of all opposite normal cones of C ,

yN .C / D
®
yNF .C /WF is a proper face of C

¯
:

The following are simple statements on the normal fan:

• dim. yNF .C // D d � dim.F /.

• If F is a face of G , which is a face of C , then yNG .C / is a face of yNF .C /.

• The set
S

F face of C
yNF .C / is equal to Rd .

Figure 1 illustrates the opposite normal cones of a triangle.

Figure 1. Example of the opposite normal cones of a triangle and the stratification of the circle S1

given by them.

2.1.3. Fractal Geometry. Let C.Rd / be the collection of all nonempty compact subsets
of Rd . The Hausdorff metric h on C.Rd / is defined as

8A;B 2 C.Rd /; h.A;B/ D inf¹"WA � B" ^ B � A"º;

where A" D ¹t 2 Rd W kt � yk � "; for some y 2 Aº. With this metric .C.Rd /; h/ is a
complete metric space.

A map f W Rd ! Rd is said to be a contraction if there exists 0 < c < 1 such that
kf .x/ � f .y/k � ckx � yk for all x;y 2 Rd . Let ¹fiºNiD1 be a set of contraction maps

2The word opposite comes from the fact that the usual normal cone is related to the outward normal
vectors of convex sets and in this article we will use the inward normal vectors.
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on Rd and define the map

F W .C.Rd /; h/! .C.Rd /; h/;

A 7!

N[
iD1

fi .A/

This map is a contraction on .C.Rd /; h/. By the Banach fixed-point theorem (or partic-
ularly the IFS theorem), there exists a unique set T 2 C.Rd / (called digit tile) such that
T D

SN
iD1 fi .T /. A way to approximate this set is by iterations

T D lim
n!1

F n.T0/; (1)

where T0 is an arbitrary compact set of Rd and the limit is with respect to the Hausdorff
metric.

Since the convex hull of a compact set in Rd is compact, the map conv W C.Rd /!
C.Rd /, which gives for any set A 2 C.Rd / its convex hull, is well defined and is well
known to be continuous.

2.2. Topological dynamical systems

A topological dynamical system is a triple .X; T; G/, where .X; �/ is a compact metric
space, G is a group of self-homeomorphisms of the space X and T W X � G ! X is a
continuous map, satisfying T .x; e/D x, and T .T .x; g/; h/D T .x; gh/ for all x 2 X and
g; h 2 G. We denote T g the homeomorphism T .�; g/.

If .X; �/ is a compact metric space, we denote Homeo.X/ the group of self-homeo-
morphisms ofX . If T 2Homeo.X/, we use .X;T;Z/ to denote the topological dynamical
system .X;T; ¹T nWn2Zº/. Similarly, if T1; : : : ;Td are d commuting homeomorphisms on
X , we use .X; T;Zd / to denote the topological dynamical system .X; T; h¹T1; : : : ; Td ºi/.

For a point x 2X , we define its orbit as the set O.x;G/D ¹T g.x/Wg 2Gº. If A�X ,
we say that A is G-invariant if for all x 2 A, O.x;G/ is included in A.

If .X; T; G/ is a topological dynamical system, a subset K � X is called a minimal
set if K is closed, nonempty, G-invariant and has no proper closed nonempty invariant
subsets, i.e., if N � K is closed and G-invariant, then N D ; or N D K. In this case,
we say that .K; T jK ; G/ is a minimal system, where T jK W K � G ! K corresponds to
the restriction of T to K. It is easy to see that a system is minimal if and only if it is the
closure orbit of all of its points.

Definition 2.4. Let .X; T;Zd /, .Y; T;Zd / be two topological dynamical systems and
M 2 GL.d;Z/. A homomorphism associated with M is a continuous map � W X ! Y

such that for all n 2 Zd , we have that � ı T n D TMn ı �. If � is surjective, then � is an
epimorphism and if it is invertible, then � is an isomorphism.

Note that a homomorphism between two minimal systems is always an epimorphism.
In the following, we fix the different notations that we will use throughout this article:
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• We denote the set of all homomorphisms associated with M between .X; T;Zd / and
.Y; T;Zd / by HomM .X; Y; T;Zd /.

• The set of homomorphisms between two dynamical systems, is defined as the collec-
tion of all of homomorphisms, i.e.,

Hom.X; Y; T;Zd / D
[

M2GL.d;Z/

HomM .X; Y; T;Zd /:

• In the special case where M is the identity matrix, the homomorphisms are called
factor maps and we denote Fac.X; Y; T;Zd / the collection of all factor maps between
.X; T;Zd / and .Y; T;Zd /. If a factor map is invertible, then it is called a conjugacy.

• In the case .X; T;Zd / D .Y; T;Zd /, we simply denote these sets as NM .X; T;Zd /
and N.X; T;Zd /. The last set is called the normalizer semigroup of .X; T;Zd /. A
factor map is called an endomorphism, and a conjugacy is called an automorphism. We
denote the set of all endomorphisms and automorphisms of a topological dynamical
system as End.X; T;Zd / and Aut.X; T;Zd /, respectively.

• We define the linear representation semigroup EN.X; T;Zd / of .X; T;Zd / as the col-
lection of all matrices M 2 GL.d;Z/ with NM .X; T;Zd / ¤ ;.

• A topological dynamical system .X; T;Zd / is said to be coalescent if every endomor-
phism of .X; T;Zd / is an automorphism.

Note that the linear representation semigroup of a topological dynamical system is an
invariant under conjugation. Now, if � 2 NM1.X; T;Z

d / and  2 NM2.X; T;Z
d /, then

� is in NM1M2.X; T;Z
d /, so the sets NM .X; T;Zd / are not semigroups (except ifM is

the identity matrix). Now, even though the matrices M 2 GL.d;Z/ are invertible in Zd ,
the linear representation semigroup EN.X; T;Zd / is not necessarily a group, since the
existence of a homomorphism associated with a matrix M does not necessarily imply the
existence of a homomorphism associated with the matrix M�1.

The groups hT i and Aut.X; T;Zd / are normal subgroups of N �.X; T;Zd / (the group
of isomorphisms), and the centers of N �.X; T;Zd / and Aut.X; T;Zd / are the same. In
fact, we have the following short exact sequences

1! hT i ! Aut.X; T;Zd /! Aut.X; T;Zd /=hT i ! 1;

1! Aut.X; T;Zd /! N �.X; T;Zd /! EN �.X; T;Zd / ! 1:

If � W .X;T;Zd /! .Y;T;Zd / is a factor map between two minimal systems, and there
exists y 2 Y such that j��1.¹yº/j D 1, then this property is satisfied in a Gı dense subset
Y0 � Y . In this case, we say that � is almost 1-to-1. If for some c > 0, j��1.¹yº/j D c for
all y in aGı dense subset of Y , then we say that � is almost c-to-1. If j��1.¹yº/j � c <1
for all y 2 Y , we say that � is finite-to-1.

An important type of topological dynamical systems are the equicontinuous ones. A
topological dynamical system .X; T;Zd / is said to be equicontinuous if the set of maps



Homomorphisms between multidimensional constant-shape substitutions 1267

¹T nW n 2 Zd º forms an equicontinuous family of homeomorphisms. The equicontinu-
ous systems are, in some sense, the simplest dynamical systems, in fact, there exists a
complete characterization of them, and every topological dynamical system has at least
one equicontinuous factor: the system given by one point. In fact, for every topologi-
cal dynamical system there exists a maximal equicontinuous factor, i.e., a factor �eq W

.X; T;Zd / ! .Xeq; Teq;Zd / such that .Xeq; Teq;Zd / is an equicontinuous system and
for every equicontinuous factor � W .X; T;Zd /! .Y; T;Zd /, there exists a factor map
� W .Xeq; Teq;Zd /! .Y; Teq;Zd / such that � D � ı �eq.

2.3. Measure-preserving systems

A measure-preserving system is a 4-tuple .X; �; T; G/, where .X;F ; �/ is a probability
space and G is a countable group of measurable and measure-preserving transformations
acting onX (where the action is denoted by T ), i.e.,8A2F ,8g 2G,�.T g

�1
A/D�.A/.

We say that .X; �; T;G/ is ergodic if for all A 2 F we have that�
.8g 2 G/ �.T g

�1

.A/�A/ D 0
�
H) �.A/ D 0 _ �.A/ D 1:

We now recall the notions of measurable homomorphisms in the measure-theoretic
framework.

Let .X;�;T;G/ and .Y;�;T;G/ be measure-preserving systems andM 2GL.d;Z/. A
measurable homomorphism associated withM is a measure-preserving map � W X 0 ! Y 0

where X 0, Y 0 are measurable subsets of X; Y respectively, with �.X 0/ D �.Y 0/ D 1 and
for any g 2G, T g.X 0/�X 0, T g.Y 0/� Y 0 such that for any n2Zd we have that � ıT nD

TMn ı � in X 0.
If there is a measurable factor map � between X and Y , then X is said to be an

extension of Y . If � is a bi-measurable bijection, we say that � is a measurable conjugacy
and in this case .X; �; T;G/ and .Y; �; T;G/ are metrically isomorphic.

For topological dynamical Zd -actions, we always have at least one invariant proba-
bility measure (in fact, at least one ergodic probability measure). We define M.X; T;Zd /
the set of all invariant probability measures. This set is convex and compact on the weak-*
topology. We say that .X; T;Zd / is uniquely ergodic if jM.X; T;Zd /j D 1, and strictly
ergodic if it is minimal and uniquely ergodic.

In the case of strictly ergodic topological dynamical systems .X;T;Zd /, .Y;T;Zd /we
denote mHom.X; Y; T;Zd /, m Fac.X; Y; T;Zd / the collection of all measurable homo-
morphisms and factor maps between .X; T;Zd / and .Y; T;Zd /, respectively.

2.4. Zd -odometer systems

LetZ0 � Z1 � � � � � Zn � ZnC1 � � � � be a nested sequence of finite-index subgroups of
Zd such that

T
n�0Zn D ¹0º, and let ˛n W Zd=ZnC1 ! Zd=Zn be the function induced

by the inclusion map. Following the notation in [10], we consider the inverse limit of these
groups

 �

Zd .Zn/ D lim
 n
.Zd=Zn; ˛n/;
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i.e.,
 �
Zd .Zn/ is the subset of the product

Q
n�0 Zd=Zn consisting of the elements  �g D

.gn/n�0 such that ˛n.gnC1/ D gn .mod Z/n for all n � 0. This set is a group equipped
with the addition defined coordinate-wise, i.e.,

 �g C
 �
h D .gn C hn/n�0:

Every group Zd=Zn is endowed with the discrete topology, so
Q
n�0.Z

d=Zn/ is a
compact metric space. The odometer

 �
Zd .Zn/ is a compact topological group whose topol-

ogy is spanned by the cylinder sets

Œa�n D
® �g 2  �Zd .Zn/Wgn D a

¯
;

with a 2 Zd=Zn, and n � 0. Now, consider the group homomorphism �.Zn/ W Z
d !Q

n�0 Zd=Zn defined for n 2 Zd by

�.Zn/.n/ D Œn .mod Zn/�n�0:

The image of Zd by �.Zn/ is dense in
 �
Zd .Zn/, so the Zd -action n. �g / D �.Zn/.n/C

 �g ,
with n 2 Zd , �g 2

 �
Zd .Zn/, is well defined and .

 �
Zd .Zn/;C.Zn/;Z

d / is a minimal equicon-
tinuous system as proved in [10]. We call .

 �
Zd .Zn/;C.Zn/;Z

d / an odometer system. Odo-
meter systems have been extensively studied before (see [9, 10, 14]). The next result
characterizes the factor odometer systems of a fixed odometer system.

Lemma 2.5 ([9, Lemma 1]). Let .
 �
Zd

.Z
j
n /
;C

.Z
j
n /
;Zd / be two odometer systems (j D

1; 2). There exists a factor map

� W
� �
Zd .Z1n/;C.Z1n/;Z

d
�
!
� �
Zd .Z2n/;C.Z2n/;Z

d
�

if and only if for every Z2n there exists some Z1m such that Z1m � Z
2
n.

2.5. Symbolic Dynamics

Let A be a finite alphabet and d � 1 be an integer. We define a topology on AZd by
endowing A with the discrete topology and considering in AZd the product topology,
which is generated by cylinders. Since A is finite, AZd is a metrizable compact space. In
this space, Zd acts by translations (or shifts), defined for every n 2 Zd as

Sn.x/k D xnCk; x 2 AZd ; k 2 Zd :

The Zd -action .AZd ; S;Zd / is called the fullshift.
Let P � Zd be a finite subset. A pattern is an element p 2 AP . We say that P is the

support of p, and we denote P D supp.p/. A pattern occurs in x 2 AZd , if there exists
n 2 Zd such that p D xjnCP (identifying nC P with P by translation). In this case we
denote it p v x and we call this n an occurrence in x of p.
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A subshift .X; S;Zd / is given by a closed subset X � AZd which is invariant by the
Zd -action. A subshift also can be defined by its language. For P b Zd we define

LP .X/ D
®
p 2 AP

W 9x 2 X; p v x
¯
:

We define the language of a subshift X by

L.X/ D
[
PbZd

LP .X/:

Let .X; S;Zd / be a subshift and x 2 X . We say that p 2 Zd is a period of x if for
all n 2 Zd , xnCp D xn. We say that the subshift .X; S;Zd / is aperiodic if there are no
nontrivial periods.

Let B be another finite alphabet and Y � BZd be a subshift. For P b Zd , we define a
P -block map as a map of the formˆ WLP .X/!B. This induces a factor map � WX! Y

given by
�.x/n D ˆ.xjnCP /:

The map � is called the sliding block code induced by ˆ and P is the support of the
map �. In most of the cases we may assume that the support of the sliding block codes is
a ball of the form B.0; r/, for r 2 N. We define the radius (and we denote it by r.�/) as
the infimum of r 2 N such that we can define a B.0; r/-block map which induces it. The
next theorem characterizes the factor maps between two subshifts.

Theorem 2.6 (Curtis–Hedlund–Lyndon). Let .X;S;Zd / and .Y;S;Zd / be two subshifts.
A map � W .X; S;Zd /! .Y; S;Zd / is a factor map if and only if there exists a B.0; r/-
block map ˆ W LB.0;r/.X/! L1.Y /, such that �.x/n D ˆ.xjnCB.0;r//, for all n 2 Zd

and x 2 X .

For homomorphisms we have a similar characterization, but we need to make a slight
variation of this theorem.

Theorem 2.7 (Curtis–Hedlund–Lyndon theorem for homomorphisms). Let .X; S;Zd /
and .Y; S;Zd / be two subshifts and M 2 GL.d;Z/. A map � W .X; S;Zd /! .Y; S;Zd /
is a homomorphism associated with M if and only if there exists a B.0; r/-block map
ˆ W LB.0;r/.X/ ! L1.Y /, such that �.x/n D ˆ.xjM�1nCB.0;r//, for all n 2 Zd and
x 2 X .

Proof. We will only prove the nontrivial implication. Let � W .X; S;Zd /! .Y; S;Zd / be
a homomorphism and let r > 0 be such that xjB.0;r/ D yjB.0;r/ implies �.x/0 D �.y/0.
Then the local map ˆ.xjB.0;r// D �.x/0 is well defined by the very definition of r .
Finally, note that �.x/h D Sh�.x/0 D �.S

M�1hx/0 D ˆ.xjM�1hCB.0;r//, which proves
the claim.

This means, for any homomorphism � we can define a radius (also denoted by r.�/),
as the infimum of r 2 N such that we can define a B.0; r/-block map which induces it. In
the case r.�/ D 0, we say that � is induced by a letter-to-letter map.
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2.6. Nondeterministic directions of a topological dynamical system

An interesting notion in the study of higher-dimensional dynamical systems is that of so-
called nonexpansive subspaces, introduced by M. Boyle and D. Lind in [6]. When the
phase space X is infinite such subspaces always exist [6, Theorem 3.7]. We will only
focus on hyperplanes in Rd , which leads to the notion of deterministic/nondeterministic
directions. Let Sd�1 be the unit .d � 1/-dimensional sphere. For v 2 Sd�1 define Hv D

¹x 2Rd W hx;vi< 0º to be the open half-space with outward unit normal v. We identify the
set Hd of all half-spaces in Rd with the sphere Sd�1 using the parametrization v$ Hv.

Definition 2.8. Let .X; S;Zd / be a subshift and v be a unit vector of Rd . Then v is
deterministic for .X; S;Zd / if for all x; y 2 X we have that

xjHv\Zd D yjHv\Zd H) x D y:

If v does not satisfy this condition, we say that v is nondeterministic for .X; S;Zd /.

For a subshift .X;S;Zd /we denote DD.X;S;Zd / and ND.X;S;Zd / the sets of deter-
ministic and nondeterministic directions for .X; S;Zd /, respectively. Using an analogous
argument of [6, Lemma 3.4] we conclude DD.X;S;Zd / is an open set and ND.X;S;Zd /
is a compact set.

In [26] was introduced the notion of direction of determinism for two-dimensional
subshifts and in [11] these objects were used to prove a weak version of Nivat’s conjecture.

The following result establishes a link between nondeterministic directions and the
linear representation group of a subshift.

Proposition 2.9. Let .X; S; Zd / be a subshift. Then, for all v 2 ND.X; S; Zd / and
M 2 EN.X; S;Zd /, the vector .M �/�1v=k.M �/�1vk is a nondeterministic direction for
.X; S;Zd /, where M � is the algebraic adjoint of M .

Proof. If v is in ND.X; S;Zd /, there exists x ¤ y 2 X with xjHv\Zd D yjHv\Zd . Set
M 2 EN.X; T;Zd / and � 2 NM .X; S;Zd /. Then we have that

�.x/j.MHv/Cn D �.y/j.MHv/Cn;

where n is a vector of radius r.�/. We note that Sn�.x/jMHv D S
n�.y/jMHv . We con-

clude that .M �/�1v=k.M �/�1vk 2 .X; S;Zd /.

2.7. Multidimensional constant-shape substitutions

2.7.1. Definitions and basic properties. Let L 2M.d;Z/ be an expansion matrix, i.e.,
kLk > 1 and kL�1k < 1, such that L.Zd / � Zd . Let F be a fundamental domain of
L.Zd / in Zd with 0 in F and A be a finite alphabet. A multidimensional constant-shape
substitution � is a map A ! AF . The set F is called the support of the substitution.
These are multidimensional analogues of the so-called one-dimensional constant-length
substitutions. Figure 2 shows an example of a constant-shape substitution with LD

�
2 0
0 2

�
and F D ¹

�
0
0

�
;
�
1
0

�
;
�
0
1

�
;
�
�1
�1

�
º.
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7! 7!

7! 7!

Figure 2. An example of a constant-shape substitution over a four-letter alphabet.

In the literature, constant-shape substitutions with a positive diagonal expansion ma-
trix L D diag.li /iD1;:::;d and support equal to the standard d -dimensional parallelepiped
F1 D

Qd
iD1J0; li � 1K are called block substitutions.

Examples of constant-shape substitutions can be generated via constant-length sub-
stitutions as follows: Let ¹�iºdiD1 be d aperiodic one-dimensional constant-length sub-
stitutions with alphabet Ai and length qi for 1 � i � d . We define the product sub-
stitution of ¹�iºdiD1 as the constant-shape substitution � with alphabet A D

Qd
iD1 Ai ,

expansion matrix equal to L� D diag.qi / and support F �1 D
Qd
iD1J0; qi � 1K, defined as

�.a1; : : : ; ad /j D .�1.a1/j1 ; : : : ; �d .ad /jd /.
Every element of Zd can be expressed in a unique way as pDL.j /Cf , with j 2Zd

and f 2 F , so we can consider the substitution � as a map from AZd to itself given by

�.x/L.j /Ck D �.x.j //k:

Given a substitution �, we will denote L� its expansion matrix and F �1 its support. For any
n> 0we define the n-th iteration of the substitution �n W A! AF

�
n with expansion matrix

Ln
�

and the supports of these substitutions satisfying the recurrence F �nC1DF
�
1 C L� .F

�
n /

for all n � 1. From now on, we may assume that the sequence of supports .F �n /n>0 is a
Følner sequence.

Figure 3 shows the first three iterations of the substitution given in Figure 2.
The language of a substitution is the set of all patterns that appear in �n.a/, for some

n > 0, a 2 A, i.e.,

L� D
®
pW p v �n.a/; for some n > 0; a 2 A

¯
:

Using the language we define the subshift X� associated with a substitution as the
set of all sequences x 2 AZd such that every pattern occurring in x is in L� . We denote
.X� ; S;Z

d / the substitutive subshift.
We will restrict our study to primitive substitutions. A substitution is called primitive

if there exists a positive integer n > 0, such that for every a; b 2A, b occurs in �n.a/. If �
is a primitive constant-shape substitution, the substitutive system .X� ; S;Z

d / is minimal
(the proof of [37, Proposition 5.2] for the one-dimensional case can be easily adapted to
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7! 7!

7!

Figure 3. An example of an application of the first three iterations of the substitution illustrated in
Figure 2.

our case), and the existence of �-periodic points is well known, i.e., there exists at least one
point x0 2 X� such that �p.x0/ D x0 for some p > 0. Under the primitivity assumption,
the subshift is preserved replacing the substitution by a power of it, i.e.,X�n is equal toX�
for all n > 0. Then, we may assume that the substitution possesses at least one fixed point,
i.e., there exists a point x 2 X� such that x D �.x/. It is well known that this subshift
is strictly ergodic (in [32] can be found a proof of the unique ergodicity for substitutive
tiling systems seen as substitutive Delone sets for Rd -actions that can be adapted for our
context thanks to the assumption that the sequence of supports .F �n /n>0 form a Følner
sequence). The unique ergodic measure is characterized in terms of the expansion matrix
of � and we denote this measure as �� . For a cylinder set Œp�n, where p is a pattern in L� ,
the quantity �� .Œp�/ represents the frequency of the pattern p in any sequence in X� . The
frequencies of patterns exist by unique ergodicity.

Since L� is an expansion matrix, L�1
�

defines a contraction map in Rd . For any
g 2 F

�
1 define the map fg.�/ D L

�1
�
.� C g/. As mentioned in Section 2.1.3, by the IFS

theorem, there exists a nonempty compact subset T� (or denoted T .L; F1/ when there is
no substitution defined) in Rd such that

L� .T� / D
[

g2F
�
1

T� C g:
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As in [44] we call this set the digit tile of the substitution. Using T0 D ¹0º in (1) we get
that

T� D lim
n!1

n�1X
iD0

L�i� .F
�
1 / D lim

n!1
L�n� .F �n /:

Figure 4 shows some approximations of some digit tiles.
The expansion matrices and fundamental domains of these examples are the following:

(a) L.a/ D
�
2 0
0 2

�
, F .a/1 D ¹

�
0
0

�
;
�
1
0

�
;
�
0
1

�
;
�
�1
�1

�
º.

(b) L.b/ D
�
3 0
0 3

�
, F .b/1 D ¹

�
0
0

�
;
�
1
1

�
;
�
2
2

�
;
�
�1
0

�
;
�
�2
0

�
;
�
�1
1

�
;
�
0
�1

�
;
�
0
�2

�
;
�
1
�1

�
º.

(c) L.c/ D
�
3 0
0 3

�
, F .c/1 D ¹

�
0
0

�
;
�
1
0

�
;
�
2
0

�
;
�
0
1

�
;
�
0
2

�
;
�
2
2

�
;
�
4
4

�
;
�
2
1

�
;
�
1
2

�
º.

(d) L.d/ D
�
1 �1
1 1

�
, F .d/1 D ¹

�
0
0

�
;
�
1
0

�
º.

As in the one-dimensional case, the following proposition shows that for any multidi-
mensional constant-shape substitution there exists a finite subsetK b Zd whose iterations
of the substitution fill the whole Zd . This set determines the �-periodic points of a primi-
tive constant-shape substitution.

Proposition 2.10. Let � be a multidimensional constant-shape substitution. Then, the set
K� D

S
m>0..id � L

m
�
/�1.F

�
m/ \ Zd / is finite and satisfies[
n�0

Ln� .K� /C F
�
n D Zd ;

using the notation F �0 D ¹0º.

Proof. Set n 2 Zd and consider the sequence .am/m�0 � Zd given by a0 D n and for
any m � 0, amC1 is defined as the unique element in Zd such that there exists an ele-
ment fm 2 F

�
1 with am D L� .amC1/C fm. Note that for any m > 0, n D Lm

�
.am/ CPm

iD1 L
m�1.fm/, and kamC1k � kL�1� k � kamk C kL

�1
�
k � kF

�
1 k. This implies that for

all m � 0,

kamk � kL
�1
� k

m
� ka0k C

kL�1
�
k � kF

�
1 k.1 � kL

�1
�
km/

1 � kL�1
�
k

;

(a) (b) (c) (d)

Figure 4. Approximation of some digit tiles: (a) Gasket, (b) Rocket, (c) Shooter, (d) Twin Dragon.
The names of these tiles come from [44].
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hence .am/m�0 is a bounded sequence in Zd . By the Pigeonhole principle there exist
m � 0 and n > 0 such that am D amCn, i.e., am D L

n
�
.am/C f , for some f 2 F

�
n . It

follows that the set K� D
S
m>0..id � L

m
�
/�1.F

�
m/ \ Zd / satisfies the desired property.

Now we prove that K� is finite. Note that for any m > 0,

k.id � Lm� /
�1.F �m/k D

m�1X
iD0

.id � Lm� /
�1Li� .F

�
1 /


� kF

�
1 k

m�1X
iD0

.id � Lm� /
�1Li�


� kF

�
1 kk.id � L

m
� /
�1.id � Lm� /.id � L� /

�1
k

� kF
�
1 kk.id � L� /

�1
k:

We conclude that K� is a finite set.

Remark 2.11. The following statements can be easily verified.

(1) In the one-dimensional case, a direct computation shows that for any constant-
length substitution �, the set K� is equal to J�1; 0K. Similarly, a direct computa-
tion shows that for any d -dimensional block substitution, the set K� is equal to
J�1; 0Kd .

(2) Since K� is a finite set, there exists j > 0 such that

K� D

j[
mD0

..id � Lm� /
�1.F �m/ \ Zd /;

thus, by the fact that the sets .id � Lm
�
/�1.F

�
m/ \ Zd are nested, up to considering

a power of �, we can assume that the setK� is of the form .id�L� /�1.F
�
1 /\Zd .

The argument used in the proof of Proposition 2.10 is inspired by the Euclidean
division algorithm. A similar idea can be used to find different sets satisfying specific
statements involving the supports .F �n /n>0 that will be needed for some proofs. From
now on, for any n 2 Zd we denote dn 2 Zd and fn 2 F

�
1 the unique elements such that

n D L� .dn/C fn. The following result will be useful in a series of results throughout
this article.

Proposition 2.12. Set A b Zd and let F b Zd be such that F �1 � F . Define B D
¹dnºn2FCA. Then, there exists a finite subset C of Zd satisfying the following conditions:

(1) B � C .

(2) C C F C A � L� .C /C F
�
1 .

(3) kCk � kBk C kL�1
�
k.kAk C kF k C kF

�
1 k/=.1 � kL

�1
�
k/.



Homomorphisms between multidimensional constant-shape substitutions 1275

Proof. We define two sequences of finite sets of Zd , .Bn/n�0, .Cn/n�0, with B0 D B ,
C0 D B C F C A, and for any n � 0, set BnC1 b Zd such that BnC1 D ¹dnºn2Cn , and
CnC1 b Zd such that CnC1 D BnC1 C F C A. Note that

kBnC1k � kL
�1
� k

�
kCnk C kF

�
1 k
�

� kL�1� k
�
kBnk C kAk C kF k C kF

�
1 k
�

� kL�1� kkBnk C kL
�1
� k

�
kAk C kF k C kF

�
1 k
�
:

Hence, for any n > 0 we have that

kBnk � kBkkL
�1
� k

n
C
1 � kL�1

�
kn

1 � kL�1
�
k

�
kL�1� k.kAk C kF k C kF

�
1 k/

�
:

Since kL�1
�
k is strictly smaller than 1,

kBnk � kBk C kL
�1
� k.kAk C kF k C kF

�
1 k/=.1 � kL

�1
� k/:

This implies there exists N 2 N such that
S
n�N Bn D

S
n�NC1 Bn. We conclude the

proof taking C D
SN
nD0 Bn.

Remark 2.13. The following particular cases will be useful in the rest of the article.

(1) Condition (2) implies that C C AC F �1 � L� .C /C F
�
1 and a direct induction

proves that for all n � 0, the following inclusion holds: Ln
�
.C C A/C F

�
n �

LnC1
�

.C /CF
�
nC1. So, for any setAb Zd andF DF �1 the setC is the minimal set

(in terms of cardinality) such that for all n� 0,Ln
�
.A/C F

�
n � L

nC1
�

.C /C F
�
nC1,

and the sets ¹Ln
�
.C /C F

�
n Wn � 0º are nested.

(2) Using F D F �1 C F
�
1 and AD ¹0º, we obtain a set C b Zd such that C C F �1 C

F
�
1 � L� .C / C F

�
1 . Since 0 2 F

�
1 , 0 is in C , which implies that F �1 C F

�
1 �

L� .C /C F
�
1 . Assume for some n > 0 that F �n C F

�
n � L

n
�
.C /C F

�
n . Then we

obtain that

F
�
nC1 C F

�
nC1 D F

�
n C L

n
� .F

�
1 /C F

�
n C L

n
� .F

�
1 /

� Ln� .C /C F
�
n C L

n
� .F

�
1 /C L

n
� .F

�
1 /

D Ln� .C C F
�
1 C F

�
1 /C F

�
n

� LnC1
�

.C /C Ln� .F
�
1 /C F

�
n

D LnC1
�

.C /C F
�
nC1;

so, by induction we have proven that for all n > 0, F �n C F
�
n � L

n
�
.C /C F

�
n .

The next result shows that for any aperiodic symbolic factor .Y;S;Zd / of .X� ; S;Zd /
we can change � for an appropriate substitution �0, having the same expansion matrix
and fundamental domain, such that .X� 0 ; S;Zd / and .X� ; S;Zd / are conjugate, and there
exists a factor map � W .X� 0 ; S;Zd /! .Y; S;Zd / induced by a letter-to-letter map.
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Lemma 2.14. Let � be an aperiodic primitive constant-shape substitution and � W

.X� ; S;Z
d / ! .Y; S;Zd / be an aperiodic symbolic factor of .X� ; S;Zd /. Then there

exists a substitution �0, having the same support and expansion matrix of �, such that
.X� 0 ;S;Z

d / and .X� ;S;Zd / are conjugate and a factor map � W.X� 0 ;S;Zd /! .Y;S;Zd /
induced by a letter-to-letter map.

Proof. Suppose that � W .X� ; S;Zd / ! .Y; S;Zd / is a factor map via a B.0; r/-block
map. Set A D B.0; r/, by Proposition 2.12 there exists a set C b Zd such that B.0; r/C
F
�
1 C C � L� .C /C F

�
1 . Set D D L� .C /C F

�
1 . We will define a substitution �.D/ con-

sidering the set LD.X� / as the alphabet, with the same expansion matrix and support
of � in the following way: If p 2 LD.X� /, then for any j 2 F

�
1 we set �.D/.p/j D

�.p/jjCD . It is straightforward to check that x 2 X� is a fixed point of the substitu-
tion � if and only if y 2 LD.X� /

Zd such that yn D xjnCD for all n 2 Zd is a fixed
point of the substitution �.D/. With this, we can define the following sliding block codes
 1 W .X� ; S;Z

d /! .X� .D/ ; S;Z
d / given by the D-block map ‰1.p/ D p and  2 W

.X� .D/ ; S;Z
d /! .X� ; S;Z

d / given by the letter-to-letter map ‰2.p/ D p0. These maps
commute with the shift action and define a conjugacy between X� and X� .D/ . We then
define a factor map �.D/ W .X� .D/ ; S;Z

d /! .Y; S;Zd / given by the letter-to-letter map
equal to  2�.

3. Recognizability property of aperiodic substitutions and dynamical
consequences

In this section, we will study the recognizability property of aperiodic constant-shape sub-
stitutions and some dynamical consequences. Every aperiodic substitution satisfies it. To
prove this result we first prove that there is a polynomial growth of the repetitivity func-
tion for substitutive subshifts (Lemma 3.2) that allows us to prove that aperiodic symbolic
factors of substitutive subshifts also satisfy a recognizability property (Proposition 3.7 and
Proposition 3.8). Then we will present here several consequences of the recognizability
property: there exist a finite number of orbits in X� which are invariant by the substitution
map (Proposition 3.9) and we determine the maximal equicontinuous factor of substi-
tutive subshifts and their aperiodic symbolic factors (Proposition 3.19). Thanks to these
last descriptions, we get that any aperiodic symbolic factor of a substitutive subshift is
conjugate to a substitutive subshift (Theorem 3.26).

3.1. The repetitivity function of a substitutive subshift

In order to prove that the recognizability property is satisfied, we study first the repeti-
tivity function of a substitutive subshift. Let � be an aperiodic primitive constant-shape
substitution and assume that x 2 X� is a fixed point of the substitution. The minimality
property implies that the substitutive subshift is repetitive, i.e., for every pattern p v x
there is a radius r > 0 such that for every n 2 Zd , the ball B.n; r/ contains an occurrence
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of p in x. The repetitivity function is the map MX� W RC ! RC defined for r > 0 as the
smallest radius such that every ball B.n;MX� .r// contains an occurrence in x of every
pattern with diam.supp.p// � r . We say that the substitution is linearly recurrent or lin-
early repetitive if the repetitivity function has a linear growth, i.e., there exists C > 0 such
that MX� .r/ � C � r . It is well known that aperiodic primitive one-dimensional substitu-
tions are linearly recurrent [15], but in the multidimensional case this is no longer true, as
we can see in Example 3.1.

Example 3.1 (A non-linearly repetitive constant-shape substitution). Consider the block
substitution �2, given by L�2 D

�
2 0
0 3

�
and F �21 D J0; 1K � J0; 2K defined by

�2 W a 7!

b c

c b

a b

; b 7!

a c

c b

b c

; c 7!

c b

a c

c b

:

For any p � 1, we consider the pattern wp D �
p
2 .a/jJ0;2p�1K�¹0º 2 LJ0;2p�1K�¹0º.X� /.

Observe that the pattern ab appears horizontally only in the inferior corner of �2.a/
between the three images of the substitution. So, a direct induction enables to prove that
if for some p � 1 the pattern wp occurs in �p2

�
˛ ˇ
 ı

�
, for ˛; ˇ; ; ı 2 ¹a; b; c; "º (where "

denotes the empty pattern), then one of the letters must be a. Moreover, wp only appears
in the lower left corner of the pattern �p2 .a/. These properties imply that there is only
one occurrence of wp in �p2 .wp/, which is in the lower left corner of �p2 .wp/ as seen in
Figure 5.

Then there is a ball of radius 3p=2 in the support of �p2 .wp/ with no occurrences of wp .
Since this is true for any p, this implies that this substitution is not linearly recurrent.

However, the repetitivity function has at most polynomial growth, with the exponent
depending only on the expansion matrix of the substitution.

�
p
2 .wp/

� � �

� � �

� � �

� � �

� � �

� � �
wp

3p

4p

�
p
2 .a/ �

p
2 .b/

Figure 5. Decomposition of �p2 .wp/.
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Lemma 3.2. Let � be an aperiodic primitive constant-shape substitution. Then, the repet-
itivity function MX� .r/ is O.r

� log.kL�k/= log.kL�1
�
k/
/.

Proof. Let x 2 X� be a fixed point of �. Using A D ¹0º and F D F �1 C F
�
1 in Propo-

sition 2.12, we get a finite set C1 � Zd such that for every n � 0, F �nC1 C F
�
nC1 �

LnC1
�

.C1/C F
�
nC1.

Claim 1. For any r > 0, we have that

Ln� .B.0; r// \ Zd � Ln� .B.0; r C kid � L
�1
� k � kF

�
1 k/ \ Zd /C F �n :

Proof of Claim 1. Set n 2 Ln
�
.B.0; r// \ Zd . Then, there exist m1 2 Zd and f 2 F

�
n

such that m D Ln
�
.m1/C f , which implies that km1 C L

�n
�
.f /k � r . We then get that

km1k � r C kL
�n
� .f /k � r C kid � L�1� k � kF

�
1 k:

Consider R1 > 0 as the maximum radius such that for any F �1 C .B.0; R1/ \ Zd / �

L� .C1/C F
�
1 . Set R2 D R1 C kid � L�1� k � kF

�
1 k. Note that, by the definition of C1 and

Claim 1, for every n > 0,

F �n C .L
n
� .B.0; R1// \ Zd / � Ln� .C1 C .B.0; R2/ \ Zd //C F �n :

Consider T DMX� .diam.C1 C .B.0; R2/ \ Zd /// and for any n > 0, let Tn > 0 be
such that every ball of radius Tn contains an occurrence of any pattern of the form �n.w/,
with w 2 LC1C.B.0;R2/\Zd /.X� /.

Claim 2. We have that Tn � kL�kn.T C 1=2/.

Proof of Claim 2. We recall that the lattice Ln
�
.Zd / is kL�kn=2-relatively dense, i.e., any

ball of radius kL�kn=2 contains an element of Ln
�
.Zd /. Set n 2 Zd . Consider m D

Ln
�
.p/ 2 Zd such that kn �mk � kL�k

n=2. Then, the ball B.p; T / \ Zd contains an
occurrence for any pattern w 2 LC1C.B.0;R2/\Zd /.X� /. Since x is a fixed point, the set
Ln
�
.B.m; T // \ Zd contains an occurrence of any pattern of the form �n.w/, with w 2

LC1C.B.0;R2/\Zd /.X� /. The fact that Ln
�
.B.m; T // � B.m; kL�k

nT / and the Cauchy–
Schwarz inequality let us conclude that the ball B.n; kL�kn.T C 1=2//\Zd contains an
occurrence of any pattern �n.w/, for w 2 LC1C.B.0;R2/\Zd /.X� /.

Let r > 0, p 2 L.X� / a pattern such that diam.supp.p// � r and n 2 Zd be an occur-
rence of p. Consider n � 0 such that R1=kL�1� k

n�1 � diam.supp.p// � R1=kL�1� k
n.

Then there exist n1 2 Zd and f 2 F
�
n such that n D Ln

�
.n1/C f . Set

w D xjn1CC1C.B.0;R2/\Zd /:

Noting that B.0; R1=kL�1� k/ � L
k
�
.B.0; R1//, by Claim 1 we have that p v �n.w/. By

Claim 2, any ball of radius kL�kn.T C 1=2/ contains an occurrence of �n.w/ in x, so it
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also contains an occurrence of p. Set t D � log.kL�k/= log.kL�1
�
k/. Hence

MX .r/

r t
�
kL�1

�
kt.n�1/kL�k

n.T C 1=2/

Rt1
D kL�k.T C 1=2/R

�t
1 DW C:

We finally conclude that MX� .r/ � Cr
t , with t D � log.kL�k/= log.kL�1

�
k/.

Remark 3.3. The following statements can be easily verified.

(1) In the case of a symmetric expansion matrix for the substitution, a bound for
MX� .R/ is given by its eigenvalues, that is, the repetitivity function MX� .R/ is
O.R.log.j�1j//=.log.j�d j///, where j�1j, j�d j are the maximum and minimum of the
absolute values of the eigenvalues of L� , respectively.

(2) In the case of a self-similar substitution (where the expansion matrix satisfies
kL� .t/kD �ktk, for some �> 0), the norm matrix satisfies kL�kD .kL�1� k/

�1D

�, so the repetitivity function has a sublinear growth. Hence self-similar substitu-
tions are linearly recurrent, as it was already proved in [41].

(3) The sufficiency of the previous case is not true, there exist constant-shape substi-
tutions that are not self-similar, but are linearly recurrent.

3.2. Recognizability of a constant-shape substitution and their aperiodic symbolic
factors

The substitution � seen as a map from X� to �.X� / is continuous. Moreover, when the
substitution is aperiodic and primitive, this map is actually a homeomorphism. This prop-
erty is satisfied, even in the case where the substitution � W A! AF

�
1 is not injective on

letters, i.e., when there exists a pair of letters a; b 2 A such that �.a/ D �.b/. This comes
from the notion of recognizability of a substitution.

Definition 3.4. Let � be a primitive substitution and x 2 X� be a fixed point. We say that
� is recognizable on x if there exists some constant R > 0 such that for all i ; j 2 Zd ,

xjB.L� .i /;R/\Zd D xjB.j ;R/\Zd H) .9k 2 Zd /..j D L� .k// ^ .xi D xk//:

This implies that for every x 2 X� there exist a unique x0 2 X� and a unique j 2 F
�
1

such that x D Sj �.x0/. With this, the set �.X� / is a clopen subset of X� and ¹Sj �.X� /W

j 2 F
�
1 º is a clopen partition of X� (in [37, Section 5.6] can be found a summary of

these statements for the one-dimensional case. The proofs can be found in [37, Proposi-
tion 5.17], [37, Proposition 5.20], and [20, Corollary 7.2.3] that can be easily adapted to
our case). These properties are also true for the iterations �n, for all n > 0. The recog-
nizability property was first proved for any aperiodic primitive substitution by B. Mossé
in [34] for the one-dimensional case, and in the multidimensional case, B. Solomyak
in [41] proved a recognizability property for aperiodic self-affine tilings with Rd -actions.
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In this section, we will prove it for aperiodic symbolic factors of substitutive subshifts
.X� ; S;Z

d / (Proposition 3.7). Like in Mossé’s original proofs, the proof of the recog-
nizability will go in two steps. This property will allows us to determine the maximal
equicontinuous factors of aperiodic symbolic factors of substitutive subshifts.

For the first step of the proof of the recognizability property we use the following
propositions. The first one, called repulsion property, is a direct consequence of the growth
of the repetitivity function. The proof is an adaptation of the proof of [41, Lemma 2.4].

Proposition 3.5 (Repulsion property). Let � be an aperiodic primitive constant-shape
substitution, x 2 X� and set t D � log.kL�k/= log.kL�1

�
k/. Then, there exists N > 0

such that, if a pattern p v x with B.s; r/ \ Zd � supp.p/, for some s 2 Zd and r > 0,
has two occurrences j1; j2 2 Zd in x such that r � N kj1 � j2k

t , then j1 is equal to j2

(see Figure 6).

p

p

j1
j2

B.s; Nr t1/

B.j1; r1/

Figure 6. Illustration of a forbidden situation given by the repulsion property (Proposition 3.5).

Proof. For any k 2 Zd , we consider the pattern wk D xjk[.kCj2�j1/. Note that

diam.supp.wk// D kj2 � j1k:

We are going to prove that the statement is true for N > 0 such that MX� .kj2 � j1k/ �

N kj2 � j1k
t � r . By Lemma 3.2 such N > 0 exists. Indeed, since r �MX� .kj2 � j1k/,

the support of the pattern p contains an occurrence in x of any pattern wk. Since j1 is
an occurrence of p in x, we get that for any k 2 Zd , there exists nk 2 Zd such that
xj1CnkCk D xk and xj1CnkC.j2�j1Ck/ D xj2�j1Ck, which implies that xj2CnkCk D

xj2�j1Ck. The fact that j2 is an occurrence of p in x let us conclude that for any k 2 Zd ,
xj2�j1Ck is equal to xk, i.e., j2 � j1 is a period of x. Since � is aperiodic, we conclude
that j1 D j2.

As mentioned in [16], a key argument of the proof of the recognizability property is
to prove the existence of an integer p > 0 such that for all a; b 2 A, if �n.a/ D �n.b/ for
some n > 0, then �p.a/ D �p.b/. This was proved in the one-dimensional case in [18].
We extend this result in our context.
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Proposition 3.6. Let � be a constant-shape substitution over an alphabet A. For any
patterns w1; w2 2 L.X� /, we have that

�jAj�1.w1/ ¤ �jAj�1.w2/ H) 8n � 0; �n.w1/ ¤ �n.w2/:

Proof. We proceed by induction on m D jAj. The statement is obviously true when
jAj D 1. Assume now that the statement is true for jBj � m � 1.

Suppose that w1 ¤ w2 (if w1 D w2 there is nothing to prove). Then � is not injective on
letters. Consider the equivalence relation a � b in A, such that a � b if �.a/ D �.b/ and
consider �� WA!A=� the canonical projection. We define a morphism � WA=�!AF

given by �.Œa�/ D �.a/. This morphism is well defined by the very definition of �. Note
that � D � ı ��. Then

.9n � 1/ �n.w1/ D �n.w2/ ” .���/
n��.w1/ D .���/n��.w2/;

where ��� W A=� ! .A=�/F is the substitution with alphabet A=� such that for any
f 2F

�
1 and Œa� 2A=�. Thus, ���.Œa�/f is equal to Œ�.a/f �. Note that .9n� 1/�n.w1/D

�n.w2/ if and only if .9n � 0/.���/n��.w1/ D .���/n��.w2/. Since the cardinality of
A=� is smaller than m � 1, by the inductive assumption we have that

.9n � 1/ �n.w1/ D �n.w2/ ” .���/
m�2��.w1/ D .���/m�2��.w2/

” ���
m�2.w1/ D ���m�2.w2/:

Now, ���m�2.w1/ D ���m�2.w2/ implies that ����m�2.w1/ D ����m�2.w2/, which is
equivalent to �m�1.w1/ D �m�1.w2/.

We then proceed to prove the first step of the recognizability property for aperiodic
symbolic factors of constant-shape substitutions. As proved in Lemma 2.14, we may
assume that an aperiodic symbolic factor of a substitutive subshift is induced by a letter-
to-letter map.

Proposition 3.7 (First step of the recognizability property of aperiodic symbolic factors
of substitutive subshifts). Let A; B be two finite alphabets, � be an aperiodic primitive
constant-shape substitution from the alphabet A and let T W A! B be a map such that
.�.X� /; S;Z

d / is an aperiodic subshift. Let x 2 X� be a fixed point of � and y D �.x/.
Then, there exists R > 0 such that if yjiCB.0;R/ D yjjCB.0;R/ and i 2 L� .Z

d /, then
j 2 L� .Z

d /.

Proof. By Proposition 2.12 there exists two finite sets C; D � Zd such that for every
n > 0, F �n C F

�
n � L

n
�
.C /C F

�
n and F �n � F

�
n � L

n
�
.D/C F

�
n . Set

r D N kL�1� k
jAj�1

kL�k
t.jAj�1/

kC C C CDkt C kid � L�1� k � kF
�
1 k;

where t D � log.kL�k/= log.kL�1
�
k/ and N is one given by Proposition 3.5. We prove

the statement by contradiction. Assume the contrary, then for every n > 0 there exist
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in 2 L� .Z
d /, jn … L� .Z

d / such that

yj
inCL

n
�
.DCB.0;r/\Zd /CF �n

D yj
jnCL

n
�
.DCB.0;r/\Zd /CF �n

:

For any n > 0, we consider an 2 Zd and fn 2 F
�
n such that Ln

�
.an/C fn D in. Note

that

Ln� .an/C L
n
� .B.0; r/ \ Zd /C F �n � in C L

n
� .D C B.0; r/ \ Zd /C F �n :

Let un 2 LB.0;r/\Zd .X� / be such that (see Figure 7)

yj
inCL

n
�
.B.0;r/\Zd /CF �n

D �.�n.un// D yjjnCLn� .B.0;r/\Zd /CF �n
:

Note that jn � fn is not necessarily in Ln
�
.Zd /, so we set bn 2 Zd and gn 2 F

�
n such

that Ln
�
.bn/C gn D jn � fn. Now, for any n > 0 and E � Zd we define the following

sets:

Gn;E D
®
n 2 Zd W .Ln� .n/C F

�
n / \ .jn � fn/C L

n
� .E/C F

�
n ¤ ;

¯
;

Hn;E D
®
n 2 Zd W .Ln� .n/C F

�
n / � .jn � fn/C L

n
� .E/C F

�
n

¯
:

Since xD �.x/, there exist a pattern vn 2 LG
n;B.0;r/\Zd

�bn.X� /, withLn
�
.bn/ being an

occurrence of �n.vn/ in x, such that jn C L
n
�
.B.0; r/ \ Zd / � Ln

�
.Gn;B.0;r/\Zd /C F

�
n .

In particular, �n.un/ v �n.vn/ (hence �.�n.un// v �.�n.vn//), as illustrated in Figure 8.

Claim 3. For any n > 0, bn 2 Hn;B.0;r/\Zd and .Gn;.B.0;r/\Zd / � bn/ is a bounded set.

Proof of Claim 3. Let hn 2 F
�
n . Note that bn 2 Hn;B.0;r/\Zd if and only if there exists

rn 2 B.0; r/ \ Zd and ln 2 F
�
n such that Ln

�
.bn/C hn D L

n
�
.bn/C gn C L

n
�
.rn/C ln,

i.e., hn D L
n
�
.rn/C gn C ln, which is true since r � kDk.

Now, set m 2 .Gn;B.0;r/\Zd � bn/, i.e., there exists hn 2 F
�
n , rn 2 B.0; r/\Zd and

ln 2 F
�
n such that Ln

�
.m/ C hn D Ln

�
.bn/ C gn C L

n
�
.rn/ C ln, i.e., m � bn D rn C

L�n
�
.gn C ln � hn/, which implies that km � bnk � r C kL

�n
�
.gn C ln � hn/k. Note

that kL�n
�
.gn C ln � hn/k � 3kid � L�1� kkF

�
1 k, which let us conclude that km� bnk �

r C 3kid � L�1
�
kkF

�
1 k.

�.�n.un//
� � �
� � �
� � �
� � �
� � �
� � �

�.�n.un//
� � �
� � �
� � �
� � �
� � �
� � �

in�

jn�jn � in

Figure 7. Illustration of the pattern �.�n.un// around the coordinates in (black) and jn (blue).
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�.�n.vn//

�.�n.un//

� � �

� � �

� � �

� � �

� � �

� � �

jn�

Figure 8. Illustration of the patterns �.�n.vn// and �.�n.un// around jn.

By the Pigeonhole principle, there are an infinite set J � N, a finite set G b Zd

such that G D .Gn;.B.0;r/\Zd / � bn/ and H D .Hn;.B.0;r/\Zd / � bn/ for all n 2 J and
patterns u 2 LB.0;r/\Zd .X� /, v 2 LG.X� / such that for all n 2 J , un D u and vn D v.
Consider w 2 LH .X� / such that xj

Ln
�
.bn/CL

n
�
.H/CF

�
n
D �n.w/. Note that Ln

�
.bn/ is an

occurrence of �n.w/ in x and set an D xj.jn�fnC.L
n
�
.B.0;r/CF

�
n \Zd ///n.Ln

�
.bn/CL

n
�
.H/CF

�
n /

as illustrated in Figure 9.
Set m > n � jAj 2 J . Applying �m�n to �n.u/, we obtain the patterns �m.an/ and

�m�n.�n.w// D �m.w/.

Claim 4. For any n > 0 and any E � Zd , we have that Gn;E � Hn;E C C C C CD.

Proof of Claim 4. First, we are going to prove that for any n > 0 and E b Zd , we have
thatGn;E �Hn;ECCCC CD. Set m2Gn;E . Then, there exists hn 2F

�
n , en 2E, ln 2F

�
n

such that
Ln� .m/C hn D L

n
� .bn/C gn C L

n
� .en/C ln:

Set dn 2D such that ln � hn C gn D L
n
�
.dn/. Hence mD bn C en C dn. We prove that

m � dn 2 Hn;ECCCC .

�.�n.v//

�.�n.u//�.�n.w//

� � �

� � �

� � �

� � �

� � �

�.an/

Ln
�
.bn/
� jn�

Figure 9. Illustration of the patterns �n.w/ and an in jn.
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Set on 2 F
�
n . Then

Ln� .m � dn/C on D L
n
� .m/C hn � L

n
� .dn/ � hn C on

D Ln� .bn/C gn C L
n
� .en/C ln � L

n
� .dn/ � hn C on

D Ln� .bn/C L
n
� .en/C on

Let qn 2 F
�
n and cn 2 C be such that gn C qn D L

n
�
.cn/. We get that

Ln� .m � dn/C on D L
n
� .bn/C gn C L

n
� .en C cn/C .on C qn/:

Since F �n C qn � L
n
�
.C /C F

�
n , we conclude that m 2 Hn;ECCCC CD.

To finish the proof, we note that a straightforward computation shows that for any
n > 0 andA;B b Zd , we have thatHn;ACB �Hn;ACB . We then, conclude thatGn;E �
Hn;E C C C C CD.

If �m�n.an/ and am are different, there are two occurrences of �m.w/. By Proposi-
tion 3.6, these patterns come from two patterns w1; w2 2 LH .X� / such that �jAj�1.w1/ D
�jAj�1.w2/ D �jAj�1.w/, occurring in �jAj�1.v/. The distance between these two occur-
rences is smaller than maxt2CCCCD kL

jAj�1

�
.t/k � kL�k

jAj�1kC C C CDk, and by
Claim 1 we have that LjAj�1

�
.B.0; r// � supp.�jAj�1.w//, so supp.�jAj�1.w// contains

a ball of radius 1=kL�1
�
kjAj�1r . By the repulsion property (Proposition 3.5), this is a con-

tradiction, so �m�n.an/ D am as illustrated in Figure 10.
To finish the proof, we note that since �n.u/ v �n.v/, there exists pm 2 L

n
�
.bm/ C

Ln
�
.G/C F

�
n such that xj

pmCL
n
�
.B.0;r/\Zd /CF �n

D �n.u/, which implies that

xj
Lm�n
�

.pm/CL
m
�
.B.0;r/\Zd /CF �m

D �m.u/:

Using the fact that �m�n.an/ D am, we get that

Lm�n� .pm/C L
m
� .B.0; r/ \ Zd /C F �m D jm � fm C L

m
� .B.0; r/ \ Zd /C F �m;

i.e., jm � fm D L
m�n
�

.pm/ 2 L
m
�
.Zd /. Since im 2 L� .Z

d /, we have fm 2 L� .Z
d / and

we conclude that jm 2 L� .Z
d /.

�.�m.v//

�.�m.u//�.�m.w//

� � �

� � �

� � �

� � �

� � �

�.�m�n.an// D �.am/

Lm�n
�

.jn/

�

�

Figure 10. Illustration of the patterns �m�n.an/ in Lm�n
�

.jn/.
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We now prove the second part of the recognizability property. Note that if the substi-
tution is injective on letters, the second step is a direct consequence of the first one.

Proposition 3.8 (Recognizability property of aperiodic symbolic factors of substitutive
subshifts). Let � be an aperiodic primitive substitution from the alphabet A and let T W

A!B be a map such that .�.X� /; S;Zd / is an aperiodic subshift. Let x 2 X� be a fixed
point of � and yD �.x/. ConsiderR>0 as the recognizability radius from Proposition 3.7
for �jAj and M D RC 2kF �1 k.kL�k

jAj � 1/=.kL�k/. Then, for any i ; j 2 Zd

yjB.L.i /;M/ D yjB.L.j /;M/ H) yi D yj :

Proof. Let k 2 Zd and f D
PjAj
iD1L

i
�
.fi / 2 F

�

jAj
be such that LjAj

�
.k/C f D L� .i /.

Hence, we have that

L
jAj�1

�
.k/C

jAjX
iD1

Li�1� .fi / D i :

By the definition of R > 0, we have the existence of m 2 Zd such that LjAj
�
.m/C f D

L� .j /, which implies that j D L
jAj�1

�
.m/C

PjAj
iD1L

i�1
�
.fi /. Note that, by the definition

of M > 0, we get that
yj
L
jAj

�
.k/CF

�
jAj

D yj
L
jAj

�
.m/CF

�
jAj

:

Hence �.�jAj.xk// D �.�
jAj/.xm/. By Proposition 3.6 for the substitution �� on B, we

get that �.�jAj�1.xk// D �.�
jAj�1/.xm/, which then implies that yi D yj .

3.3. Invariant orbits of substitutive subshifts

As mentioned in the previous subsection, we assume that aperiodic primitive constant-
shape substitutions admit at least one fixed point for the map � W X� ! X� . The orbits
of these fixed points lead to the notion of �-invariant orbits. An orbit O.x;Zd / is called
�-invariant if there exists j 2 Zd such that �.x/ D Sjx, i.e., the orbit is invariant under
the action of � in X� . Since for every n 2 Zd we have � ı Sn D SL�n ı �, the definition is
independent of the choice of the point in the Zd -orbit of x. The orbit of a fixed point of the
substitution map is an example of an invariant orbit. In the following, we will prove that
for aperiodic primitive constant-shape substitutions there exist finitely many �-invariant
orbits. This property will be used to prove other properties about some constant-shape
substitutions such as coalescence (Proposition 4.8) and that the automorphism group is
virtually generated by the shift action (Proposition 4.9).

Proposition 3.9. Let � be an aperiodic primitive constant-shape substitution. Then, there
exist finitely many �-invariant orbits in the substitutive subshift X� . The bound is explicit
and depends only on d , jAj, kL�1

�
k, kF �1 k and det.L� � id/.

Proof. Let x 2 X� be such that �.x/ D Sjxx, for some jx 2 Zd . For any m 2 Zd , we
have that

�.Smx/ D SL�m�.x/ D SL�mCjxx D S .L��id/mCjxSmx;
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thus jx � jSmx 2 .L� � id/Zd . LetH b Zd be a fundamental domain of .L� � id/.Zd /
in Zd with 0 2 H . We may assume that x 2 X� is in a �-invariant orbit with jx 2 H .
Let K� b Zd be from Proposition 2.10. Using �H as the set A and F D F �1 in Propo-
sition 2.12 we obtain a set C b Zd such that Ln

�
.�H C C/C F

�
n � L

nC1
�

.C /C F
�
nC1

for all n > 0. Define D b Zd as D D C C K� �H . Suppose that there are more than
jAjjDj � jH j �-invariant orbits. By the Pigeonhole principle there exist j 2 H and two
different points x ¤ y 2 X� such that xjD D yjD and �.x/ D Sjx, �.y/ D Sjy. Note
that

�.xjD/ D �.x/jL� .D/CF
�
1

D xj
jCL� .D/CF

�
1

:

Hence, the patterns xj
jCL� .D/CF

�
1

, yj
jCL� .D/CF

�
1

are the same. Inductively, we obtain
that for every n � 0

xj�Pn
kD0L

k
�

j
�
CLnC1

�
.D/CF

�
nC1

D yj�Pn
kD0L

k
�

j
�
CLnC1

�
.D/CF

�
nC1

:

Let E0 be equal to D and for all n > 0, define En D .
Pn�1
kD0L

k
�
j /C Ln

�
.D/C F

�
n .

We will prove that
S
n�0En D Zd . This implies that x D y, which is a contradiction.

To do this, we will prove that for every n � 0 the set Ln
�
.K� /C F

�
n is included in EnC1

and we conclude by Proposition 2.10. Note that Ln
�
.K� /C F

�
n � EnC1 if and only if

Ln
�
.K� � j /C .

Pn�1
kD0L

k
�
.F

�
1 � j // � LnC1

�
.D/C F

�
nC1.

Claim 5. For every n � 0 the set
Pn�1
kD0L

k
�
.F

�
1 � j / is included in Ln

�
.C /C F

�
n .

Proof of Claim 5. For n D 0, note that F �1 � j is included in L� .C / C F
�
1 by Propo-

sition 2.12. Assume that for some n � 0,
Pn
kD0L

k
�
.F

�
1 � j / � LnC1

�
.C /C F

�
nC1. We

have that

nC1X
kD0

Lk� .F
�
1 � j / D

� nX
kD0

Lk� .F
�
1 � j /

�
C LnC1

�
.F

�
1 � j /

� LnC1
�

.C /C F
�
nC1 C L

nC1
�

.F
�
1 � j /

� LnC1
�

.C C F
�
1 � j /C F

�
nC1

� LnC2
�

.C /C LnC1
�

.F
�
1 /C F

�
nC1 (by Proposition 2.12)

D LnC2
�

.C /C F
�
nC2:

We conclude that for every n � 0,
Pn
kD0L

k
�
.F

�
1 � j / � LnC1

�
.C /C F

�
nC1.

By Claim 5, the setLn
�
.K� � j /C .

Pn�1
kD0L

k
�
.F

�
1 � j // is included inLn

�
.K� � j /C

Ln
�
.C /C F

�
n and Ln

�
.K� C C � j / is a subset of LnC1

�
.D/C Ln

�
.F

�
1 /, by definition of

D. We have that

Ln� .K� � j /C Ln� .C /C F
�
n � L

nC1
�

.D/C Ln� .F
�
1 /C F

�
n D L

nC1
�

.D/C F
�
nC1

and we conclude the proof.
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Remark 3.10. Let � be an aperiodic primitive substitution with an expansion matrix L�
such that jdet.L� � idRd /j D 1. This implies that .L� � idRd /.Zd / D Zd . Let x 2 X�
be a point in a �-invariant orbit, i.e., there exists j 2 Zd such that �.x/ D Sjx, and set
m 2 Zd such that .L� � idRd /.m/ D �j . Then

�.Smx/ D SL�mCj �.x/ D SmC.L��id
Rd
/.m/Cjx D Smx:

Hence Smx is a fixed point of �. We conclude that the only �-invariant orbits in this case
are the ones given by the fixed points of the substitution.

In the following, we show an example of a �-invariant orbit that it is not the orbit of a
fixed point of the substitution map.

Example 3.11 (An example of a nonfixed point orbit, which is �-invariant). Consider the
one-dimensional substitution �2 of length 3 given by

�2 W 0 7! 032;

1 7! 123;

2 7! 013;

3 7! 102:

This is an aperiodic primitive constant-length substitution. The set of words of length 2 (or
with support K�2 D ¹�1; 0º) is ¹01; 02; 03; 10; 12; 13; 20; 21; 23; 30; 31; 32º. The words
20; 21; 30; 31 generate the 4 fixed points of the square of the substitution �22 , as illustrated
in Figure 11.

: : : 032123102:032102013 : : :

: : : 032123102:123013102 : : :

: : : 123032013:032102013 : : :

: : : 123032013:123013102 : : :

Figure 11. The four fixed points of �22 . The dot in the center represents the origin.

In [29] it was proved that the substitutive subshift .X�2 ; S;Z/ has an automorphism �

induced by a sliding block code of length 2, given by:

ˆ W 01 7! 2; 02 7! 0; 03 7! 2; 10 7! 3; 12 7! 3; 13 7! 1;

20 7! 3; 21 7! 1; 23 7! 1; 30 7! 0; 31 7! 2; 32 7! 0;

and also that S��2 is equal to �2�. This implies that

S4��22 D �
2
2�: (2)
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Let x 2 X�2 be a fixed point of �22 . We have that S4�.x/ D �22 .�.x//, so the orbit of
�.x/ is �22 -invariant. The orbit of �.x/ does not contain a fixed point of �22 . Indeed,
suppose that there exists j 2 Z such that �22 .S

j .�.x/// D Sj .�.x//. By (2), we have
that S9jC4�.x/ D Sj�.x/. The aperiodicity of .X�2 ; S;Z/ implies that 8j C 4 D 0,
which is a contradiction since j 2 Z. We conclude that in the orbit of �.x/ there is no
fixed point of �22 .

3.4. Substitutive subshifts as extensions of d-dimensional odometers

The recognizability property establishes a factor map from the substitutive subshift to a d -
dimensional odometer as follows: For every n> 0, let �n WX� !F

�
n be the map satisfying

x 2 S�n.x/�n.X� /. This map is well defined .mod Ln
�
.Zd // thanks to the recognizability

property. Using basic group theory arguments, �nC1.x/ D �n.x/ .modLn
�
.Zd //.

Consider the odometer system .
 �
Zd .Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d /. The map

� W .X� ; S;Z
d /!

� �
Zd .Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d
�

given by .�n.x//n>0 is a factor map between .X� ;S;Zd/ and .
 �
Zd.Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d/.
Moreover, it satisfies the following property.

Lemma 3.12. Let .X� ; S;Zd / be the substitutive subshift from an aperiodic primitive
constant-shape substitution �. Then, for any  �g D .gn/n>0 in

 �
Zd .Ln

�
.Zd //, two different

cases occur:

(K1) Assume that
S
n>0.�gn C F

�
n / D Zd . Then, there are at most jAj elements in

j��1.¹ �g º/j.

(K2) On the other hand, j��1.¹ �g º/j is not greater than jAjjK� j, where K� D K� C
C , with C C F �1 C F

�
1 � L� .C /C F

�
1 is obtained by Proposition 2.12 using

A D ¹0º and F D F �1 C F
�
1 , and K� is given by Proposition 2.10.

In particular, the factor map � W .X� ; S;Zd /!.
 �
Zd.Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d / is finite-to-1.

Proof. We separate the proof in these two cases.

(K1) Assume that j��1.¹ �g º/j > jAj. Let x0; : : : ; xjAj be in ��1.¹ �g º/. For all n > 0
and all j 2 ¹0; : : : ; jAjº, there exist ynj 2 X� such that xj D Sgn�n.ynj /. By
the Pigeonhole principle, there exist j1 ¤ j2 2 ¹0; : : : ; jAjº and an infinite
set E � N with ynj1 j0 D y

n
j2
j0 for n 2 E. This implies that for any n 2 E,

xj1 j�gnCF
�
n
D xj2 j�gnCF

�
n

. By definition of �g , the points xj1 ; xj2 are the same,
which is a contradiction.

(K2) Suppose that  �g does not satisfy (K1). Proceeding as in the previous case, we
assure the existence of two indices j1 ¤ j2 such that ynj1 jK� D y

n
j2
jK�

for any n
in an infinite subset E � N. This will imply that

xj1 j�gnCL
n
�
.K� /CFn

D xj2 j�gnCL
n
�
.K� /CF

�
n
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for any n 2E. Now, note that for any n 2N, gnC1 � gn 2 L
n.F

�
1 /, and a direct

induction prove, �gn C L
n.K� /C F

�
n is included in �gnC1 C L

nC1.K� / C

F
�
nC1. Since K� � K� , we conclude by Proposition 2.10 that xj1 D xj2 which

will be a contradiction.

Remark 3.13. Note that the set of points  �g 2
 �
Zd .Ln

�
.Zd // satisfying (K1) is a Gı -set.

Indeed, for any M > 0 define

UM D
® �g 2  �Zd .Ln

�
.Zd //W J�M;M Kd � �gn C F

�
n ; for some n > 0

¯
:

Note that UM is an open subset of
 �
Zd .Ln

�
.Zd // and the set

T
M>0 UM contains exactly the

points satisfying (K1).
Now, for any n in Zd and M > 0 the set UM is included in UMCjnj. Hence the set of

points on the odometer satisfying (K1) is invariant by the Zd -action.

In some particular cases, we can compute explicitly the fibers of the factor map. For
any f 2 F

�
1 we define pf the restriction of � in f , i.e., for a 2A, we have that pf .a/D

�.a/f . We say the substitution is bijective if for all f 2 F
�
1 the maps pf are bijective.

We have the following result about bijective substitutions

Proposition 3.14. Let � be an aperiodic bijective primitive constant-shape substitution
with alphabet A. Then, the factor map � W .X� ; S;Zd /! .

 �
Zd .Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d /

is almost jAj-to-1.

Proof. The map p0 is a permutation of A, so we consider a power of p0 such that pn
0

is
equal to the identity. Since � is primitive, we replace it by �n and with this we may assume
that � possesses at least jAj fixed points (one given by each letter of the alphabet). Now, let
 �g 2

 �
Zd .Ln

�
.Zd // satisfy (K1). For any a 2 A, consider a fixed point of �, denoted as xa,

with xa.0/ D a and define x
 �
g
a D limnm!1 S

gnmxa for some convergent subsequence.
Since the sets ¹Sgn Œ�n.a/�ºa2A are disjoint, for any a ¤ b 2A, x

 �
g
a is different from x

 �
g

b
.

Finally, noticing that �.x
 �
g
a / D

 �g , we have that ��1.¹ �g º/ � jAj. By Lemma 3.12 we
conclude that ��1.¹ �g º/ D jAj. Since the set of points satisfying (K1) form a Gı set, we
conclude that the factor map � W .X� ; S;Zd /! .

 �
Zd .Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d / is almost
jAj-to-1.

In general, this d -dimensional odometer is not the maximal equicontinuous factor of
aperiodic constant-shape substitutions.

3.5. The maximal equicontinuous factor of substitutive subshifts

For completeness, we will describe the maximal equicontinuous factor of substitutive
subshifts (see [21] for the case with diagonal expansion matrices and [12] for the one-
dimensional case). The results are well known in the literature but nowhere written.
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A subgroup L � Zd is called a lattice if it is isomorphic to Zd , i.e., it has finite index.
For a lattice L of Zd , we define the dual lattice of L, as the subgroup

L� D
®
x 2 Rd W hx;ni 2 Z; 8n 2 L

¯
:

We have that .Zd /� D Zd , and for any R 2M.d;Z/ the set R.Zd / is a lattice of Zd

with dual lattice equal to .R�/�1.Zd /, where R� stands for the algebraic adjoint of R.
Let L1;L2 be two lattices of Zd . We denote by L1 _ L2 the smallest lattice that contains
L1 and L2, i.e., if a lattice L contains L1 and L2, then it must contain L1 _ L2.

Fix x 2 X� . We define the set of return times as

R.X� / D
®
j 2 Zd W 9k 2 Zd ; xkCj D xk

¯
:

By minimality ofX� this set is well defined independently of x 2X� and it is syndetic, i.e.,
there exists a finite subset A b Zd such that R.X� /C A D Zd . We define L.R.X� // as
the smallest lattice containing R.X� /. The height lattice H .X� / of a substitutive subshift
� is the smallest lattice containing L.R.X� // such that H .X� /\L� .Z

d / � L� .H .X� //.
Notice that the last property is equivalent to H .X� / \ L

n
�
.Zd / � Ln

�
.H .X� //, for any

n > 0. The height lattice is trivial whenever H .X� / D Zd .

Example 3.15 (An example of a height lattice). Consider the product substitution �3
of the one-dimensional substitutions �4 W 0 7! 010, 1 7! 201, 2 7! 102 (with height 2)
and �5 W a 7! abcd , b 7! bcde, c 7! cdef , d 7! defa, e 7! efab, f 7! fabc (with
height 3). The substitution �3 has an alphabet of cardinality 18 with L�3 D

�
3 0
0 4

�
and

F
�3
1 D J0; 2K� J0; 3K. A direct computation shows that the height lattice H ..X�3 ; S;Z

2//

is equal to 2Z � 3Z.

In the following, we will give a description for the height lattice, adapting the proof for
the one-dimensional case [12,37]. For k2Zd , we define Rk.X� /D ¹j 2Zd WxjCkD xkº.
Let L.Rk.X� // be the smallest lattice containing Rk.X� / and Hk.X� / be the smallest
lattice containing L.Rk.X� // such that Hk.X� / \ L� .Z

d / � L� .Hk.X� //.

Lemma 3.16. Let � be an aperiodic primitive constant-shape substitution. Then, for any
k1;k2 2 Zd the sets Hk1.X� /, Hk2.X� / are the same. In particular, for any k 2 Zd ,
Hk.X� / is equal to H .X� /.

Proof. Let x 2X� be a fixed point of the substitution, k1;k2 2Zd andN be large enough
such that xk2 v �

N .xk1/. Set m such that xk2 D �
N .xk1/m. Since x D �N .x/ for any

j 2 Rk1.X� /, the set LN
�
.k1 C j / C m is included in Rk2.X� /. Hence LN

�
.j / is in

L.Rk2.X� // and therefore in Hk2.X� /. By definition of Hk2.X� / and invertibility ofLN
�

,
we conclude that j 2 Hk2.X� /. Since it is the smallest lattice satisfying the property,
Hk1.X� / is a subgroup of Hk2.X� /, and by reciprocity of the arguments these sets are the
same. We conclude the second equality by observing that H .X� / D

P
k2Zd Hk.X� /.
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As in the one-dimensional case, to study the maximal equicontinuous factor of a
substitutive subshift, we study their eigenvalues. A vector x 2 Rd is said to be an eigen-
value for the topological dynamical system .X� ; S;Z

d / (the measure-preserving system
.X� ;�;S;Z

d /) if there exists a continuous function f WX�!C (f 2L2.X� ;�� /, respec-
tively) such that for every n 2 Zd , f ı Sn D e2�ihx;nif in X� (f ı Sn D e2�ihx;nif in
X� , �� -a.e. in X� , respectively). In [42] the following result was proved, generalizing the
characterization of eigenvalues for the one-dimensional case [12].

Theorem 3.17 ([42]). Let � be an aperiodic primitive constant-shape substitution which
has a fixed point in X� . Then the following are equivalent for x 2 Rd :

(1) The vector x is a continuous eigenvalue for the topological dynamical system
.X� ; S;R

d /.

(2) The vector x is a measurable eigenvalue for the measure-preserving system
.X� ; �� ; S;R

d /.

(3) The vector x satisfies the following condition:

lim
n!1

e
2�ihLn

�
j ;xi
D 1; 8j 2 R.X� /:

(4) The vector x satisfies the following condition:

lim
n!1

e
2�ihLn

�
j ;xi
D 1; 8j 2 H .X� /:

Remark 3.18. The same results are satisfied for Zd -topological actions adapting the
arguments given in [42]. Note that condition (4) in Theorem 3.17 is not proved in [42]
but it can be easily checked noticing the set of points satisfying h.L�

�
/Nx; j i 2 Z is a

lattice.

This implies that the set of continuous (and measurable) eigenvalues of .X� ; S;Zd /
corresponds to the set

S
n�0.L

�
�
/�n.H�.X� //, where H�.X� / is the dual lattice of

H .X� /. In particular, the set of eigenvalues E.X� ; S;Zd / of .X� ; S; Zd / is a subset
of Qd . A direct consequence of Theorem 3.17 is a description of the maximal equicontin-
uous factor of .X� ; S;Zd /.

Proposition 3.19. Let � be an aperiodic primitive constant-shape substitution. The max-
imal equicontinuous factor of the substitutive subshift of .X� ; S; Zd / is the odometer
system� �

Zd .Ln
�
.H.X� ///;CLn� .H.X� //;Z

d
�
D
�

lim
 n
.Zd=Ln� .H .X� //; ˛n/;C.Ln

�
.H.X� ///;Z

d
�
:

For completeness, we provide another description for the maximal equicontinuous
factor in a general setting. Let .X; T;Zd / be a topological dynamical system, where X
is a Cantor set, and � � Zd a finite-index subgroup. We say that .X; T;Zd / admits a
�-minimal partition if there exists a closed partition �

S
g2Zd =� Xg D X such that for all
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g 2Zd=� the set of return times RT .Xg/D ¹n 2Zd WT �n.Xg/\Xg ¤;º is equal to �
and the topological dynamical system .Xg ; �/ is a minimal system. Note that, since it is a
finite partition, the sets Xg are clopen. The minimality of the induced actions implies that
there is at most one �-minimal partition, up to a permutation of the sets ¹Xgºg2Zd =� .

A �-minimal partition is associated with an equicontinuous factor of .X; T;Zd / in
the following way: We enumerate Xg such that for all g 2 Zd=� and n 2 Zd we have
that T nXg D XgCn mod � . Then, the map � W .X; T;Zd /! .Zd=�;C� ;Zd /, such that
�.x/ D g if and only if x 2 Xg , is a factor map onto .Zd=�;C� ;Zd /, where Zd acts
by quotient translations onto Zd=� . The following proposition shows the connection
between �-minimal partitions and eigenvalues of a topological dynamical system.

Proposition 3.20. Let .X;T;Zd / be a minimal topological dynamical system and � �Zd

be a finite-index subgroup. The system .X; T;Zd / admits a �-minimal partition, if and
only if �� � E.X; T;Zd /.

Proof. Let L 2M.d;Z/ be such that � D L.Zd /. We recall that L.Œ0; 1/d / \ Zd is a
fundamental domain of L.Zd / in Zd .

Let ¹Xgºg2L.Œ0;1/d /\Zd be a �-minimal partition satisfying Xg D T g.X0/ for all
g 2 L.Œ0; 1/d / \ Zd . Let x be in .L�/�1.Zd /. Define f as the map

f D
X

g2L.Œ0;1/d /\Zd

e2�ihx;gi1Xg :

Since the sets ¹Xgºg2L.Œ0;1/d /\Zd are clopen, the map f is continuous. Let x 2 X0, m 2

Zd and m1 2 Zd , m2 2 L.Œ0; 1/
d /\Zd be such that mD L.m1/Cm2. Note that Tmx

is in Xm2 and since x is in .L�/�1.Zd /, we have that

e2�ihx;mi D e2�ihx;R.m1/Cm2i D e2�i.hx;R.m1/iChx;m2i/ D e2�ihx;m2i: (3)

We found a continuous map such that f .Tmx/ D e2�ihx;mif .x/ for all x 2 X and
m 2 Zd . We conclude that x 2 E.X; T;Zd /.

On the other hand, let y be inX . For j 2 ¹1; : : : ;dºwe denote xj D .L
�/�1.ej /. Since

���E.X;T;Zd / there exists a map fj WX!C such that fj .Tmy/D e2�ihxj ;mifj .y/ for
all m 2Zd . Since the eigenspaces are one-dimensional we choose fj such that fj .y/D 1.
By (3), the values of e2�ihxj ;mi only depend on m 2 L.Œ0; 1/d / \ Zd . Now, for any
j 2 ¹1; : : : ; dº and m 2 L.Œ0; 1/d / \ Zd we denote Xjm D f �1j .¹e2�ihxj ;miº/. By min-
imality, for each j 2 ¹1; : : : ; dº, the set X is equal to �

S
m2L.Œ0;1/d /\Zd X

j
m. We define

Xm D
T
j2¹1;:::;dºX

j
m. We will prove that ¹Xmºm2L.Œ0;1/d /\Zd is a �-minimal partition.

Indeed, note thatXm is �-invariant. Now, assume that there exist n1;n2 2L.Œ0;1/
d /\

Zd such that n1¤ n2 andXn1 \Xn2 ¤ ;. Using the Zd -action onX , this is equivalent to
the existence of m 2 R.Œ0; 1/d /\Zd with m¤ 0 and Xm \X0 ¤ ;. This means that for
all j 2 ¹1; : : : ; dº, e2�ihxj ;mi is equal to 1, i.e., hxj ;mi 2 Z. Since �� D h¹x1; : : : ;xd ºi,
we have that m 2 .��/� D � which is a contradiction, so all of these sets are disjoint.
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By minimality, we have that X D �
S

m2R.Œ0;1/d /\Zd O.Tmy; �/. Since O.Tmy; �/

is included in Xm, we conclude that ¹Xmºm2R.Œ0;1/d /\Zd is a clopen partition of X and
O.Tmy; �/ D Xm, so the action of � on Xm is minimal. A direct computation shows
that the set of return times of each Xm is � . Hence ¹Xmºm2R.Œ0;1/d /\Zd is a �-minimal
partition.

Remark 3.21. The following statements can be easily verified.

(1) In the case of an aperiodic primitive constant-shape substitution �, the recog-
nizability property implies that for all n > 0, the sets ¹Sj �n.X� /ºj2F �n

form a
Ln
�
.Zd /-minimal partition.

(2) By Theorem 3.17 and Proposition 3.20 for any aperiodic primitive constant-shape
substitution there exists a H .X� /-minimal partition.

3.6. Aperiodic symbolic factors of substitutive subshifts are conjugate to
substitutive subshifts

In the following, we will extend the results of C. Müllner and R. Yassawi in [35], by
proving that aperiodic symbolic factors of a substitutive subshift .X� ;S;Zd / are conjugate
to substitutive subshifts where the substitutions have the same expansion matrix and same
support as �. First we have the following consequence of Proposition 3.7.

Remark 3.22. It is straightforward to check that Proposition 3.7 implies that if x;x0 2X�
are such that �.x/ D �.x0/, then �.x/ is equal to �.x0/, where

� W .X� ; S;Z
d /!

� �
Zd .Ln

�
.Zd //;C.Ln

�
.Zd //;Z

d
�

is the factor map.

To prove the result we will introduce some notions as in [35].
Let � be an aperiodic primitive constant-shape substitution. We consider a labeled

directed graph G� with vertex set E D A2 and we put an edge .a; b/ to .c; d/ with label
f 2 F

�
1 if �.a/f D c, �.b/f D d . Note that the diagonal�A D ¹.a;a/Wa 2Aº is a stable

set, i.e., E.�A/ D �A. Let P D .a0; b0/.a1; b1/.a2; b2/ be a path, by definition, there
is an edge from .a0; b0/ to .a1; b1/ with some label f0 and an edge .a1; b1/ to .a2; b2/
with some label f1, i.e., �.a0/f0 D a1, �.b0/f0 D b1, and �.a1/f1 D a2, �.b1/f1 D b2.
Then, we have that �2.a0/L�f0Cf1 D a2, �2.b0/L�f0Cf1 D b2. This means that the paths
indicate the simultaneous positions of the letters in the iterates of the substitution.

The following definitions were introduced in [35].

Definition 3.23. Let � be an aperiodic primitive constant-shape substitution.

(1) We say that a pair .a; b/ 2 A2 n �A is a periodic-pair if there is a cycle in G�
which starts and ends in .a;b/. We define n.a;b/Dmin¹jP jWP is a cycle in .a;b/º
and we denote

n.�/ D lcm¹n.a; b/W .a; b/ is a periodic pairº;
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we call the substitution pair-aperiodic if n.�/ D 1.

(2) We call a pair .a; b/ 2 A n �A an asymptotically disjoint pair if for any k > 0,
there exists a path P D .a0; b0/ � � � .ak ; bk/ inG� of length k with .a0; b0/D .a;b/
and .ak ; bk/ … �A.

Remark 3.24. The following statements can be easily verified:

(1) As for the case of �-periodic points for the substitution, we can replace the substi-
tution � for an appropriate power, i.e., �n.�/, so we may assume that the substitution
is pair-aperiodic.

(2) If the substitution � is bijective, every .a; b/ 2 A2 n�A is an asymptotically dis-
joint pair.

(3) Assume that � is pair-aperiodic. If .a; b/ 2 A2 is not an asymptotically disjoint
pair, let k be the minimum length of a path from .a; b/ such that any path of
length k has an end in �A. Since the shortest path has no cycle, we have that
k � jAj2. Indeed, if k > jAj2, there exists a cycle as a subpath in P , i.e., one of
the vertex .c; d/ is a periodic-pair. Since � is pair-aperiodic, there exists f 2 F

�
1

such that �.c/f D c ¤ d D �.d/f . So we can create a path of length arbitrarily
large from .a; b/ that does not reach �A, which is a contradiction. This implies
that �jAj

2
.a/ D �jAj

2
.b/.

Definition 3.25. Let A;B be two finite alphabets, � be an aperiodic primitive constant-
shape substitution with alphabet A and � W A! B. We say that a; b 2 A with a ¤ b are
indistinguishable (by .�; �/) if for all n � 0 we have that �.�n.a// D �.�n.b//.

With these definitions we are ready to prove the next result which is a multidimen-
sional analogue of [35, Theorem 22].

Theorem 3.26. Let .Y; S; Zd / be an aperiodic symbolic factor (with alphabet B) of
a substitutive subshift .X� ; S;Zd /, with � being an aperiodic primitive constant-shape
substitution with alphabet A. Then there exists an aperiodic primitive constant-shape
substitution �0 with alphabet C having the same expansion matrix and support of a power
of � and a conjugacy � 0 W .X� 0 ; S;Zd /! .Y; S;Zd / via a letter-to-letter map.

Proof. By means of Lemma 2.14 and Remark 3.24 we can assume that the factor map
� W .X� ; S;Z

d /! .Y; S;Zd / is induced via a letter-to-letter map and � is a pair-aperiodic
substitution.

We define an equivalence relation a � b in A, such that a � b if a;b are indistinguish-
able. We define a substitution �0 on A=� as �0.Œa�/f D Œ�.a/f �, for f 2 F

�
1 . Note that

the map T 0 W A=� ! B, given by T 0.Œa�/ D �.a/ is well defined. This map satisfies the
following property:

Every pair in A=� is distinguishable. (4)

It is straightforward to check that primitivity of � implies primitivity of �0.
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We will prove that every periodic pair in A=� by �0 is the quotient of a periodic
pair in A by �. Assume now that .Œa�; Œb�/ is a periodic pair, i.e., there exists a cycle
P1D .Œa0�; Œb0�/ � � � .Œak �; Œbk �/ inG� 0 with .Œa0�; Œb0�/D .Œak �; Œbk �/D .Œa�; Œb�/. Let P2D
.c0; d0/ � � � .ck ; dk/ be a path inG� with Œci �D Œai � and Œdi �D Œbi � for 0� i � k having the
same label of edges as P1. Now, repeating this process we get a path P3 in G� of length
.max¹jŒa�j; jŒb�jº C 1/k from .c; d/ repeating the labels of the path P1 with a period k.
By the Pigeonhole principle, there exist two subpaths P4 D .e0; f0/ � � � .el1k ; fl1k/, P5 D
.g0; h0/ � � � .gl1k; hl2k/ of P3, having the same labels of the edges of P1 repeating them
with period k, such that e0 D el1k , h0 D hl2k and Œe0� D Œa0�, Œh0� D Œb0�. Now con-
sider the cycle in G� , .u0; v0/ � � � .ul1l2k2 ; vl1l2k2/ where ul1kj � � � ul1k.jC1/ D e0 � � � el1k
and vl2km � � � vl2k.mC1/ D h0 � � � hl2k for all 0 � j < l2k, 0 � m < l1k. Since � is pair-
aperiodic, there exists f 2 F

�
1 such that �.e0/f D e0, �.h0/f D h0. We then conclude

that �0.Œa�/f D Œa�, �0.Œb�/f D Œb�, i.e., �0 is pair-aperiodic.
On the other hand, for all n > 0, we have that �.�n.a// D � 0.�0n.Œa�//, hence Y has

the same language as � 0.X� 0/, so they are equal, since subshifts are uniquely determined
by their language.

Finally, we prove that � 0 W .X� 0 ; S;Zd /! .Y; S;Zd / is a conjugacy. Let x; x0 2 X� 0 ,
with � 0.x/D� 0.x0/. By the recognizability property ofX� 0 we can write xDSf1�2jAj

2
.y/,

x0 D Sf2�2jAj
2
.y0/. By Remark 3.22 we have that f1 D f2.

If there exists n 2 Zd such that .yn; y
0
n/ 2 A2 is an asymptotically disjoint pair, we

can find a periodic pair .Œa�; Œb�/ and a path P D .Œa0�; Œb0�/ � � � .Œak �; Œbk �/ in G� 0 with
.Œa0�; Œb0�/D .yn;y

0
n/ and .Œak �; Œbk �/D .Œa�; Œb�/, with k� jAj2. Since �0 is pair-aperiodic,

we have that there exists f 2 F
�

2jAj2
such that .�0/2jAj

2
.yn/f D Œa�, .�0/2jAj

2
.y0n/f D Œb�.

Note that

� 0.�02jAj
2

.yn// D �
02jAj2.� 0.yn// D �

02jAj2.� 0.yn// D �
0.�02jAj

2

.y0n//;

so � 0.a/ is equal to � 0.b/. This implies that .Œa�; Œb�/ are indistinguishable, which contra-
dicts (4).

If .yn; y
0
n/ is not an asymptotically disjoint pair for any n 2 Zd , by Remark 3.24 we

have that �2jAj
2
.yn/ D �

2jAj2.y0n/, i.e., x D x0. We conclude � 0 is bijective and then a
conjugacy.

4. Measurable morphisms between constant-shape substitutions

In this section, we study different types of homomorphisms between substitutive subshifts.
First, we extend a result of B. Host and F. Parreau from [29] to the multidimensional
case (Theorem 4.1), which establishes that any measurable factor between two substitu-
tive subshifts given by aperiodic constant-shape substitutions, under some combinatorial
property, induces a continuous one. Then, we deduce some consequences: Every substitu-
tive subshift given by an aperiodic constant-shape substitution satisfying the combinatorial
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property is coalescent (Proposition 4.8), the quotient group Aut.X� ; S;Zd /=hSi is finite,
generalizing the results in [8] and we give some conditions where the automorphism group
of a substitutive subshift is isomorphic to a direct product of Zd with a finite group (Corol-
lary 4.10). Finally, we extend Theorem 4.1 to homomorphisms associated with matrices
commuting with a power of the expansion matrix of the substitution (Theorem 4.13). This
leads to the same rigidity properties about these homomorphisms (Proposition 4.17) and
for some restricted normalizer group. Notice that in Section 5 we will give sufficient con-
ditions to ensure that the former result is a complete characterization of the normalizer
group.

4.1. Measurable factors imply continuous ones for substitutive subshifts

Let � be a constant-shape substitution. Recall that the substitutive subshift .X� ; S;Zd / is
uniquely ergodic and we denote �� the unique ergodic measure. For any n > 0, the image
measure of �� by �n is equal to jF �n j � �� j�n.X� /, and as in the one-dimensional case [37],
the unique ergodic measure satisfies

8U 2 FX� ; �� .U / D
1

jF
�
n j

Z
X�

ˇ̌®
f 2 F �n WS

f �n.x/ 2 U
¯ˇ̌
d�� .x/;

where FX� corresponds to the Borel sets of X� .
As in [29] we use the notion of reducibility of a constant-shape substitution. For any

pair of distinct letters a ¤ b 2 A and n > 0 we consider the sequence

dn.�
n.a/; �n.b// D

j¹f 2 F
�
n W �

n.a/f ¤ �
n.b/f ºj

jF
�
n j

:

This sequence is decreasing for all of the pairs a; b 2 A. We say that the constant-shape
substitution is reduced if minn2N;a¤b2A dn.�

n.a/; �n.b// > 0. For instance, every bijec-
tive constant-shape substitution is reduced. The following theorem is a multidimensional
analogue of [29, Theorem 1.3].

Theorem 4.1. Let .X�1 ;S;Z
d /, .X�2 ;S;Z

d / be two substitutive subshifts from two aperi-
odic primitive constant-shape substitutions �1, �2 from finite alphabets A and B, with the
same expansion matrix L and same support F1. If �2 is reduced, then for every measur-
able factor � W .X�1 ; ��1 ; S;Z

d /! .X�2 ; ��2 ; S;Z
d /, there exists j 2Zd such that Sj�

is equal ��1 -a.e. to a continuous factor map  W .X�1 ; S;Z
d /! .X�2 ; S;Z

d /, satisfying
the following two properties:

(1) The factor map  is a sliding block code of radius

kF
�
1 k.1C kL

�1
� k.2C 1=.1 � kL

�1
� k///:

(2) There exist an integer n > 0 and p 2 F
�
n such that, Sp �n1 D �

n
2 .
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Remark 4.2. The following statements can be easily verified.

(1) If L� is a diagonal matrix, then kL�1
�
k � 1=2, so the radius of  is bounded by

3kF
�
1 k.

(2) As the set of sliding block codes of radius kF �1 k.1CkL
�1
�
k.2C 1=.1�kL�1

�
k///

between X�1 and X�2 is finite, we may consider an appropriate iteration of �1 and
�2 such that any factor  satisfying (2) in Theorem 4.1 satisfies Sp �1 D �2 .

(3) As also mentioned in [29], we may assume that p … .Ln
�
� id/.Zd /, because it is

equivalent to find a factor map commuting with the substitution map, i.e.,  �n D
�n , with p 2 F

�
1 .

If a substitution is not reduced, we consider an equivalence relation calling two let-
ters a; b equivalent when dn.�n.a/; �n.b//! 0. If two letters a; b 2 A are equivalent,
then .�.a//f � .�.b//f for all f 2 F

�
1 . We define a substitution Q� on A=� given by

. Q�.Œa�//f D Œ�.a/f � for f 2 F
�
1 . We have a natural letter-to-letter factor map z� W

.X� ; S;Z
d /! .XQ� ; S;Z

d /, and it is called the reduced substitution of �.
In the one-dimensional case, if .X� ; �� ; S;Z/ does not have purely discrete spectrum,

it can be proved, using the results in [12], that .XQ� ; S;Z/ is aperiodic. An ergodic system
.X; �; T;Z/ has purely discrete spectrum if the vector space spanned by eigenfunctions
of the Koopman operator UT .f / D f ı T 2 L2.X; �/ is dense in L2.X; �/. It is well
known that any ergodic system with purely discrete spectrum is conjugate to an ergodic
rotation on a compact abelian group [27].

In the multidimensional case this is not true in general, as we can see in Example 4.3.

Example 4.3 (An aperiodic constant-shape substitution, with a periodic reduced substitu-
tion). Consider the substitution �6 with L�6 D

�
2 0
0 2

�
and F �61 D J0; 1K2, given by

�6 W 0 7!
1 3

0 2
; 1 7!

0 2

0 2
; 2 7!

3 1

2 0
; 3 7!

2 0

2 0
:

This substitution corresponds to the product substitution between the Thue–Morse
substitution (�7 W 0 7! 01, 1 7! 10) and the doubling sequence substitution (�8 W a 7! ab,
b 7! aa). Note that a � b, since for all n > 0, �n8 .a/ and �n8 .b/ differ only in their last
letters. Figure 12 is a pattern of �6.

The system .X�7 �
 �
Z .2nZ/; S �C.2nZ/;Z

2/ is a topological factor of .X�6 ; S;Z
2/,

hence the substitutive subshift .X�6 ; S;Z
2/ does not have purely discrete spectrum. The

reduced substitution of �6 is defined with the same expansion matrix and support, given
by

z�6 W a 7!
a b

a b
; b 7!

b a

b a
;

where every element in ¹0º � Z is a nontrivial period of z�6.

However, as proved in [29] for the one-dimensional case, if the reduced substitution
system is aperiodic, then .XQ� ; �� ; S;Z

d / is metrically isomorphic to .X� ; �Q� ; S;Z
d /.
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1331311331131331

0220200220020220

0220200220020220

0220200220020220

1331311331131331

0220200220020220

Figure 12. A pattern of the substitution �6.

Proposition 4.4. Let � be an aperiodic primitive constant-shape substitution. If the re-
duced substitution Q� is aperiodic, then the natural factor map between .X� ; �� ; S;Zd /
and .XQ� ; �Q� ; S;Z

d / is a metric isomorphism.

Proof. Let � W .X� ; S;Zd /! .
 �
Zd .Ln

�
/;C.Ln

�
/;Z

d / as defined in Section 3.4. By Propo-
sition 3.7, for every n > 0, �n.x/ is equal to �n.z�.x//. In particular, if x; y 2 X� satisfies
z�.x/ D z�.y/, then �.x/; �.y/ are equal.

Set U D ¹x 2 X� W 9y 2 X� ; z�.x/ D z�.y/; x0 ¤ y0º. It is enough to prove that U is
a null-set.

Let n > 0, f 2 F
�
n and x 2 X� be such that Sf �n.x/ 2 U . Then, there exists y 2 X�

with z�.y/ D z�.Sf �n.x// and y0 ¤ �n.x0/f . Then �n.y/ D �n.Sf �n.x// and is equal
to f . Moreover, there exists z 2 X� with y D Sf �n.z/, so z�.x/ is equal to z�.z/. This
implies that .�nz0/j ; .�

nx0/j are equivalent for all j 2 F
�
n . Note that .�nz0/f D y0, so

it is different from .�nx0/f . We define the set

Gn D
[
a;b2A

®
f 2 F �n W Œ.�

na/f � D Œ.�
nb/f �; .�

na/f ¤ .�
nb/f

¯
:

We deduce from the previous paragraph that

�� .U / D
1

jF
�
n j

Z ˇ̌®
f 2 F �n WS

f �n.x/ 2 U
¯ˇ̌
d�.x/

�
jGnj

jF
�
n j

:

For any a; b 2 A we denote

Da;b
n D

®
.c; d/ 2 A2

W 9f 2 F �n ; .�
na/f D c; .�

nb/f D d; Œc� ¤ Œd �
¯

and

Ea;bn D
®
.c; d/ 2 A2

W 9f 2 F �n ; .�
na/f D c; .�

nb/f D d; Œc� D Œd �
¯
:
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Set " > 0 and let j > 0 be large enough such that for any a; b 2 A

dj .�
j .a/; �j .b// � lim

k!1
dk.�

k.a/; �k.b//C ":

Fix a; b 2 A. Note that

dnCj .�
nCj .a/; �nCj .b//

D
1

jF
�
nCj j

X
.c;d/2D

a;b
n

jF
�
j jdj .�

j .c/; �j .d//C
X

.c;d/2E
a;b
n

jF
�
j jdj .�

j .c/; �j .d//

D
1

jF
�
n j

� X
.c;d/2D

a;b
n

dj .�
j .c/; �j .d//C

X
.c;d/2E

a;b
n

dj .�
j .c/; �j .d//

�
�

1

jF
�
n j

� X
.c;d/2D

a;b
n

�
lim
k!1

dk.�
k.c/; �k.d//C "

�
C

X
.c;d/2E

a;b
n

"

�

�
".jD

a;b
n j C jE

a;b
n j/

jF
�
n j

C
1

jF
�
n j

X
.c;d/2D

a;b
n

lim
k!1

dk.�
k.c/; �k.d//:

Since this is true for every " > 0 and limk!1 dk.�
k.c/; �k.d// � 1, we have that

dnCj .�
nCj .a/; �nCj .b// � jD

a;b
n j=jF

�
n j and this is true for every j large enough, so

lim
k!1

dk.�
k.a/; �k.b// �

jD
a;b
n j

jF
�
n j

;

hence

�� .U / �
X
a;b2A

�
dn.�

n.a/; �n.b// � lim
k!1

dk.�
k.a/; �k.b//

�
:

When n!1, the right expression goes to zero, and we conclude that �� .U / D 0.

Now, to prove Theorem 4.1, we assume that �2 is an aperiodic primitive reduced
constant-shape substitution. We denote by � D minn2N;a¤b2B dn.�

n
2 .a/; �

n
2 .b// and R

the radius from the recognizability property of �2. Let � be in m Fac.X�1 ; X�2 ; S;Z
d /.

The map �n.x/��n.�x/ .modLn.Zd // is invariant under the Zd -action, so it is constant
��1 -a.e.. We denote this constant by pn.�/ in F �1n . The set Spn.�/��n1 .X�1/ is included in
�n2 .X�2/ up to a ��2 -null set. Recall that the recognizability property implies that �n1 is a
homeomorphism from X�1 to �n1 .X�1/, so for ��1 -almost all x 2 X�1 there exists a unique
point y 2 X�2 such that Spn.�/��n1 .x/ D �

n
2 .y/, which we denote �n.x/. So, for every

� 2 mFac.X�1 ; X�2 ; S;Z
d / we consider a sequence .pn.�//n�0 and a sequence of maps

.�n/n 2 mFac.X�1 ; X�2 ; S;Z
d / such that

pn.�/ 2 F
�1
n ; Spn.�/��n1 .x/ D �

n
2 .�n.x//:
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It is straightforward to check that the sequence .pn.�//n>0 satisfies the recurrence

pnC1.�/ D pn.�/C L
n
�1

p1.�n/ .mod LnC1
�1

.Zd //:

We also have the recurrence .�n/1 D �nC1.
Now, for �; � 2mFac.X�1 ;X�2 ; S;Z

d /, we denote d.�; �/D ��1.¹x 2X�1 W .�x/0 ¤
.�x/0º/. We also denote, for any r > 0, the quantity C.r/ D jB.0; r/ \ Zd j.

Lemma 4.5. If d.�; �/ is smaller than �=C.R/, then �; � are equal ��1 -a.e. in X�1 .

Proof. For all n � 0, we denote Un D ¹x 2 X�1 W .�nx/0 ¤ .�nx/0º. We will prove by
induction on n � 0 that pn.�/ D pn.�/ and ��1.Un/ < 1=C.R/. By hypothesis, this is
true for nD 0. Now, suppose that pn.�/D pn.�/ and ��1.Un/ < 1=C.R/ for some n� 0.
We note that the map �1.�nx/ � �1.�nx/ is equal to .p1.�n/ � p1.�n// .mod Ln

�1
.Zd //

for ��1 -a.e x in X�1 . By the recognizability property, this map vanishes on the set ¹x 2
X�1 W .�nx/jB.0;R/ D .�nx/jB.0;R/º, which has a positive measure by hypothesis. We con-
clude that pnC1.�/ D pnC1.�/.

Now, let x be in UnC1. Then, there exist at least �jF �1nC1j indices f 2 F
�1
nC1 such that

.�nC12 �nC1.x//f ¤ .�
nC1
2 �nC1.x//f , i.e.,

.SpnC1.�/��nC11 .x//f ¤ .S
pnC1.�/��nC11 .x//f ;

so we have that

�jF
�1
nC1j��1.UnC1/ �

Z
j¹g 2 F

�1
nC1 C pnC1.�/WS

g�nC11 x 2 U0ºjd��1.x/

D jF
�1
nC1j��1.U0/:

Hence, ��1.UnC1/ is less than 1=C.R/.
Now, we will prove that � D � for ��1 -a.e. x 2 X�1 . Let r > 0 be an integer. Since

.F
�1
n /n>0 is Følner, we choose n > 0 large enough such that j.F �1n /ır j=j¹F

�1
n ºj � 1=2. Set

p D pn.�/. If x 2 U c0 , then .Sp��n1x/jF �1n
D .Sp��n1x/jF �1n

, so we have that

.SpCf ��n1x/B.0;r/\Zd D .S
pCf ��n1x/B.0;r/\Zd

for f 2 .F
�1
n /
ır . This implies that

��1
�
¹x 2 X W .�x/jB.0;r/ D .�x/B.0;r/º

�
�
j.F

�1
n /
ır j

jF
�1
n j

��1.U
c
n /

�
1

2

�
1 �

1

C.R/

�
> 0:

Finally, the set ¹x 2 X W�.x/ D �.x/º is the decreasing intersection of these sets, so it
has a positive measure. By ergodicity, �; � are equal ��1 -a.e. in X�1 .
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Lemma 4.6. Let � be in m Fac.X�1 ; X�2 ; S; Z
d /. Then there exists a sequence . n/

of sliding block codes of radius kF �11 k.1C kL
�1
�1
k.2C 1=.1 � kL�1

�1
k/// such that

d.�n;  n/! 0.

Proof. Set " > 0. By Lusin’s theorem, there exist an integer ` > 0 and a continuous map
f W X�1 ! B such that f .x/ only depends on xjB.0;`/, and the measure of the set V D
¹x 2 X�1 W .�x/0 ¤ f .x/º is less than "�=6. Since .F �1n /n>0 is Følner, we choose n > 0
large enough such that

j.F
�1
n /
ı`j

jF
�1
n j

> 1 �
�

3
:

Set pD pn.�/. For every x 2X�1 , we denote J.x/ D ¹f 2 .F �1n /ı`WSfCp�n1x … V º

and W D ¹x 2 X�1 W jJ.x/j > .1 � �=2/jF
�1
n jº. Note that

"�

6
> ��1.V /

�
1

jF
�1
n j

Z
W c

.j.F �1n /
ı`
j � jJ.x/j/d�.x/

� .1 � ��1.W //
�

6
:

So we have that ��1.W / > 1 � ".
Using Proposition 2.12 with F D F �1 C F

�
1 and A D ¹0º, we find a set C b Zd such

that 0 2 C , kCk � kF �1 k.1C kL
�1
�
k.2C 1=.1 � kL�1

�
k/// and by Remark 2.13 we have

that F �n C F
�
n � L

n
�
.C /C F

�
n . If x;y 2W with xjC D yjC , then for every f 2 .F

�1
n /
ı`,

we have that .SfCp�n1x/jB.0;`/\Zd D .S
fCp�n1y/jB.0;`/\Zd , and so f .SfCp�n1x/ D

f .SfCp�n1y/. Moreover, we note that for f in J.x/ \ J.y/ that,

.�n2�nx/f D .S
p��n1x/f D f .S

fCp��n1x/ D f .S
fCp��n1y/ D .�

n
2�ny/f :

Since x; y 2 W , there are strictly more than .1 � �/jF �1n j elements in J.x/ \ J.y/, so
.�nx/0 is equal to .�ny/0 by definition of �. Hence, for every x in W , .�nx/0 only
depends on xjC .

Finally, to prove Theorem 4.1 we use similar arguments to those given in [29] that we
describe for completeness.

Proof of Theorem 4.1. For fixed alphabets A and B, there exist a finite number of sliding
block codes of radius kF �1 k.1C kL

�1
�
k.2C 1=.1 � kL�1

�
k///. By Lemma 4.6 there exist

two different integers m; k � 0 such that d.�m; �mCk/ < �=C.R/, so by Lemma 4.5 we
have that �m D �mCk , ��1 -a.e..

Let n � m be a multiple of k. Note that

.�n/k D �nCk D .�mCk/n�m D .�m/n�m D �n;



C. Cabezas 1302

��1 -a.e.. This implies that for all r 2N, �n is equal to .�n/rk ,��1 -a.e. and then �n is equal
to a sliding block code of radius kF �1 k.1C kL

�1
�
k.2C 1=.1 � kL�1

�
k///, ��1 -a.e. inX�1 .

Since �n is equal to �2n, ��1 -a.e., we denote  D �n and p D pn. /. By definition of p

we have that Sp �n1 D �
n
2 .

Set j D pn.�/ � p, then

Sj��n1 D S
pn.�/�p��n1 D S

�p�n2 D  �
n
1 ; ��1 -a.e.;

this implies that Sj� and  coincides in �n1 .X�1/, ��1 -a.e., and by ergodicity in the whole
set X�1 , ��1 -a.e..

In [15] it was proved that linearly recurrent subshifts (in particular substitutive sub-
shifts) have a finite number of topological Cantor factors, up to conjugacy. In our context,
Theorem 3.26 together with Theorem 4.1 implies that a substitutive subshift has finitely
many reduced substitutive factors, up to conjugacy. However, the reduced hypothesis does
not cover all the aperiodic symbolic factors a substitutive subshifts may have, and this
property is not invariant by conjugation, leaving the following question.

Question 4.7. Does all aperiodic substitutive subshifts have finitely many aperiodic sym-
bolic factors, up to conjugacy?

4.2. Applications of rigidity results on factors

As applications of Theorem 4.1, we get some results on the coalescence and the auto-
morphism group of substitutive subshifts. Since the set of sliding block codes kF �1 k.1C
kL�1

�
k.2 C 1=.1 � kL�1

�
k/// is finite, we will assume here (up to considering a power

of �) that if a factor map  2 End.X� ; S;Zd / satisfies property (2) in Theorem 4.1, then
it does so for n D 1, i.e., there exists p 2 F

�
1 such that Sp � D � .

4.2.1. Coalescence of substitutive subshifts. In [15] it was proved that one-dimensional
linearly recurrent subshifts (in particular substitutive subshifts) are coalescent, i.e., any
endomorphism is an automorphism. Here we use Theorem 4.1 to obtain that substitutive
subshifts are also coalescent, for aperiodic primitive reduced constant-shape substitutions.

Proposition 4.8. Let � be an aperiodic primitive reduced constant-shape substitution.
Then the substitutive subshift .X� ; S;Zd / is coalescent.

Proof. Set � 2 End.X� ; S;Zd /. Theorem 4.1 ensures that there exists j 2 Zd such that
Sj� is equal to a sliding block code  of a fixed radius satisfying Sp � D � , for
some p 2 F

�
1 . Let x 2 X� be in a �-invariant orbit, i.e., there exists j 2 Zd such that

�.x/ D Sjx. Note that

Sp �.x/ D SpCj x D � .x/;

so, if the orbit of x is in a �-invariant orbit, then  .x/ is also in a �-invariant orbit. By
Proposition 3.9, there exist finitely many �-invariant orbits, hence for n large enough, we
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can find x 2 X� with x and  n.x/ being in the same orbit, i.e., there exists m 2 Zd such
that Sm n.x/ D x. The minimality of .X� ; S;Zd / allows to conclude that  n D S�m.
Hence  is invertible, which implies that � is invertible.

4.2.2. The automorphism group of substitutive subshifts. Because the set of sliding
block codes of radius kF �1 k.1C kL

�1
�
k.2C 1=.1 � kL�1

�
k/// between X� to itself is

finite, we get the following result as a direct corollary of Theorem 4.1.

Proposition 4.9. Let .X� ; S;Zd / be a substitutive subshift from an aperiodic primitive
reduced constant-shape substitution �. Then, the quotient group Aut.X� ; S;Zd /=hSi is
finite. A bound for jAut.X� ; S;Zd /=hSij is given by an explicit formula depending only
on d , jAj, kL�1

�
k, kF �1 k.

In the special case, where any automorphism of .X� ; S;Zd / satisfies property (2)
of Theorem 4.1 with p D 0, i.e., commutes with the substitution map (like in bijective
substitutions as we will prove in Section 5), we have a more rigid result.

Corollary 4.10. Let � be an aperiodic primitive reduced substitution. If any automor-
phism  2 Aut.X� ; S; Zd / satisfying property (2) in Theorem 4.1 commutes with the
substitution map, i.e.,  � D � , then the automorphism group is isomorphic to a direct
product of Zd (generated by the shift action) with a finite group.

Proof. Note that an automorphism � commutes with the substitution map if and only if �
is equal to �n, for all n > 0.

Now, by Lemma 4.6, that property (2) implies property (1) of Theorem 4.1. There-
fore, the group of automorphisms commuting with the substitution map is finite. To con-
clude we just need to observe that the pair .j� ;  �/ in Theorem 4.1 associated with any
automorphism � is unique. Indeed, set � 2 Aut.X� ; S;Zd / and j1; j2 2 Zd ,  1;  2 2
Aut.X� ; S;Zd / commuting with the substitution map such that Sji� D  i , for i 2 ¹1; 2º.
Then Sj2�j1 1 is equal to  2. Hence, for any n > 0

Sj2�j1 1�
n
D �n.Sj2�j1 1/

D S
Ln
�
.j2�j1/�n 1;

which implies that .id � Ln
�
/.j2 � j1/ D 0, so j2 D j1 and then  1 D  2.

4.3. Rigidity properties for homomorphisms between substitutive subshifts and
applications

This subsection is devoted to homomorphisms between substitutive subshifts. We recall
that for M 2 GL.d;Z/, a map � W .X; T;Zd / ! .Y; T;Zd / between two topological
dynamical systems is said to be a homomorphism associated with M if for all m 2 Zd

we have that � ı Sm D SMm ı �. We can also define measurable homomorphisms in the
measure-theoretic setting. First, we establish a necessary condition for the matrices M
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withmHomM .X�1 ;X�2 ; S;Z
d / being nonempty whenever �1, �2 are two aperiodic prim-

itive constant-shape substitutions with the same expansion matrix and support. Then we
prove an analogue of Theorem 4.1 (Theorem 4.13) establishing that measurable homo-
morphisms induce continuous ones when the matrix M commutes with some power of
the expansion matrix. Finally, we give an explicit bound on the norm of these matrices
for the quotient group of a restricted normalizer semigroup with respect to the shift action
(Proposition 4.17).

Lemma 4.11. Let �1; �2 be two aperiodic primitive constant-shape substitutions hav-
ing the same expansion matrix L and same support F . If M 2 GL.d;Z/ is such that
mHomM .X�1 ; X�2 ; S;Z

d / ¤ ;, then for all n > 0 there exists m.n/ > 0 such that

MLm.n/.H .X�1// � L
n.H .X�2// (Normalizer condition):

Proof. Let � be inmHomM .X�1 ;X�2 ;S;Z
d /, and x 2E.X�2 ;��2 ;S;Z

d /. We will prove
thatM �x 2E.X�1 ;��1 ;S;Z

d /. Indeed, let f 2L2.X�2 ;��2/ be such that for all m 2Zd ,
f ı Sm D e2�ihx;mi � f , ��2 -a.e. in X�2 . Then, we have that

.f ı �/ ı Sm
D .f ı SMm/ ı � D e2�ihx;Mmi

� f ı �

D e2�ihM
�x;mi

� f ı �; ��1 -a.e. in X�1 :

By Theorem 3.17 and Proposition 3.20 the system .Zd=M�1Ln.H .X�2//;C;Z
d /, for

any n > 0, is a finite factor of the odometer system .
 �
Zd .Ln.H.X�1 ///

;C.Ln.H.X�1 ///
;Zd /,

which implies that the odometer system .
 �
Zd .M�1Ln.H.X�2 ///

;C.M�1Ln.H.X�1 ///
;Zd / is a

factor of .
 �
Zd .Ln.H.X�1 ///

;C.Ln.H.X�1 ///
;Zd /. By Lemma 2.5, we conclude that for any

n > 0, there exists m.n/ > 0 such that Lm.n/.H .X�1// �M
�1Ln.H .X�2//:

A consequence of Proposition 4.8 is that if a homomorphism is associated with a
matrix with finite order, then it is an isomorphism.

Lemma 4.12. Let � be an aperiodic primitive reduced constant-shape substitution. If
M 2GL.d;Z/ has finite order, then any homomorphism � 2NM .X� ;S;Zd / is invertible.

Proof. Since M has finite order, there exists n > 0 such that M n D idRd . This implies
that �n 2 End.X� ; S;Zd /. By Proposition 4.8, �n is invertible, so � is also invertible.

Now, we will prove an analogue of Theorem 4.1 for homomorphisms associated with
matrices commuting with a power of the expansion matrix L. As mentioned before, a
priori this does not cover all the homomorphisms between substitutive subshifts.

Theorem 4.13. Let .X�1 ; S;Z
d /, .X�2 ; S;Z

d / be two substitutive subshifts from two ape-
riodic primitive constant-shape substitutions �1, �2 from finite alphabets A and B, with
the same support F1 and expansion matrix L. Let M 2 GL.d;Z/ be a matrix commuting
with a power of L, i.e., there exists n > 0 such that MLn D LnM . If �2 is reduced, then
for every measurable homomorphism �, associated withM , there exists j 2 Zd such that
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Sj� is equal ��1 -a.e. to a continuous homomorphism  , associated with M , satisfying
the following two properties:

(1) The homomorphism  is given by a block map of radius

kF
�
1 kkL

�1
�1
k.1C kMk/.2 � kL�1� k/=.1 � kL

�1
� k/:

(2) There exist an integer n > 0 and q 2 F
�
n such that Sq �n1 D �

n
2 .

Remark 4.14. Let  2 HomM .X�1 ;X�2 ; S;Z
d / satisfying property (2) of Theorem 4.13.

For any m in Zd , we have that Sq .�n1 .S
mx// D �n2 . .S

mx//, and

Sq .�n1 .S
mx// D S

qCMLn
�1

m
 .�n1 .x//; �n2 . .S

mx// D S
Ln
�1
Mm

�n2 . .x//;

it follows that MLn
�1

m D Ln
�1
Mm, i.e., M and Ln

�1
commute. Hence this hypothesis is

optimal to obtain property (2). Note that if L is an integer multiple of the identity, then
any matrix M 2 GL.d;Z/ commutes with L.

The proof of Theorem 4.13 follows the same strategy as the one of Theorem 4.1,
except for some small modifications. Since the substitution �1 is primitive, we can replace
it by some power �n1 , so we may assume thatM commutes with the expansion matrix of �1.
We replace the term pn.�/ by the map �n.x/ �M�1�n.�x/ .modLn

�
.Zd //, with �n.x/

and M�1�n.�x/ being the representative classes in F �n . The commutation assumption
implies that, for any n > 0 the map M defines a bijection in Zd=Ln.Zd /, also denoted
by M , i.e., n D m .mod Ln.Zd //, if and only if Mn D Mm .mod Ln.Zd //. With this,
the map pn.�/ is invariant under the shift action. Since .X�1 ; ��1 ; S; Z

d / is ergodic,
the map pn.�/ 2 F

�
n is a constant map ��1 -a.e. in X�1 and the set SMpn.�/��n1 .X�1/ is

included, up to a ��2 -null set, in �n2 .X�2/. We can define the map �n for ��1 -a.e. in X�1
as the unique point y 2 X�2 such that SMpn.�/��n1 .x/ D �

n
2 .y/, where Mpn.�/ is the

representative element in F �n . It is straightforward to check that �n ı Sn D SMn ı �n for
all n 2 Zd , so �n is inmHomM .X�1 ; X�2 ; S;Z

d /. The sequences pn.�/ and .�n/ satisfy
the same recurrences given in Section 4.1,

pnC1.�/ D pn.�/C L
n
�p1.�n/; .�n/1 D �nC1:

As in Theorem 4.1 we need the following adaptations of Lemma 4.5 and Lemma 4.6
for homomorphisms. The proof are the same, so we omit them.

Lemma 4.15. If �;  2 mNM .X�1 ; X�2 ; S;Z
d / are such that d.�;  / is smaller than

�=C.R/, then �; are equal ��1 -a.e in X�1 .

Lemma 4.16. Let � 2 mNM .X�1 ; X�2 ; S; Z
d /. Then there exists a sequence . n/ of

homomorphisms associated with M of radius kF �1 kkL
�1
�1
k.1C kMk/.2 � kL�1

�
k/=.1 �

kL�1
�
k/ such that d.�n;  n/! 0.

To finish the proof of Theorem 4.13, we proceed exactly as in the proof of Theorem 4.1
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Proof of Theorem 4.13. For fixed alphabets A and B, there exists a finite number of homo-
morphisms associated withM of radius kF �1 kkL

�1
�1
k.1CkMk/.2�kL�1

�
k/=.1�kL�1

�
k/.

By Lemma 4.16 there exist two different integers m; k � 0 such that d.�m; �mCk/ <
�=C.R/, so by Lemma 4.15 we have that �m D �mCk , ��1 -a.e..

Let n�m be a multiple of k. We have .�n/k D �nCk D .�mCk/n�mD .�m/n�mD �n,
��1 -a.e.. This implies for all r 2N, �n is equal to .�n/rk , ��1 -a.e., and then �n is equal to
a homomorphism associated withM of radius kF �1 kkL

�1
�1
k.1C kMk/.2� kL�1

�
k/=.1�

kL�1
�
k/, ��1 -a.e. in X�1 . Since �n is equal to �2n ��1 -a.e., we denote  D �n and p D

pn. /. By definition of p, we have SMp �n1 D �
n
2 .

Set j DM.pn.�/ � p/, then

Sj��n1 D S
M.pn.�/�p/��n1 D S

�Mp�n2 D  �
n
1 ; ��1 � a.e;

this implies that Sj� and  coincides in �n1 .X�1/ ��1 -a.e.. Further, the ergodicity of
.X�1 ; ��1 ; S;Z

d / lets us conclude that � and  are equal ��1 -a.e..

In the case �1 D �2, we can consider a restricted normalizer group: the group of
isomorphisms associated with matrices commuting with some power of the expansion
matrix L�1 ,

NC.X�1 ; S;Z
d / D

[
M2GL.d;Z/;

MLn
�1
DLn

�1
M; for some n

.NM .X; T;Z
d / \ Homeo.X//:

This set is a group under composition and hSi, Aut.X�1 ; S;Z
d / are normal subgroups of

NC.X�1 ; S;Z
d /. We obtain a similar result on this restricted normalizer group as for the

automorphism group (Proposition 4.9).

Proposition 4.17. Let .X� ; S;Zd / be a subshift from a reduced aperiodic primitive con-
stant-shape substitution � from a finite alphabet. If the set of matricesM 2 EN.X� ; S;Zd /
commuting with a power of the expansion matrix L� is finite, then the quotient group
NC.X� ; S;Z

d /=hSi is finite. A bound for jNC.X� ; S;Zd /=hSij is given by an explicit
formula depending only on d , jAj, kL�1

�
k, kF �1 k, and supNM .X� ;S;Zd /¤; kMk.

Proof. Let  2 NC.X� ; S;Zd /, satisfying property (2) of Theorem 4.13. Following the
proof of Proposition 4.8,  acts as a permutation of the �-invariant orbits. Since the set of
matrices M 2 EN.X� ; S;Zd / commuting with a power of L� is finite, there exists n > 0
such that  n is an automorphism of X� . By Proposition 4.9 we have that  n has finite
order, which implies that  has finite order. The bound for jNC.X� ; S;Zd /=hSij is given
by Theorem 4.13.

Remark 4.18. Note that, if L� is a diagonal matrix and all of its entries are different, the
set of matrices M 2 GL.d;Z/ commuting with a power of L� is finite.



Homomorphisms between multidimensional constant-shape substitutions 1307

5. Precisions on bijective constant-shape substitutions

Bijective substitutions are of great interest because of their mixed dynamic spectrum.
They are never almost 1-to-1 extensions of their maximal equicontinuous factor. Bijec-
tive substitutions were studied before in [21] for block substitutions, where it was proved
that the substitutive subshift is measurable-theoretic isomorphic to a skew product of one-
dimensional odometers. Also, [8] studied the normalizer group of bijective block substitu-
tions. We extend the study by describing the normalizer group for general constant-shape
substitutions. To do this, we relate the linear representation group with different types of
supports of the substitution and nondiagonal expansion matrices.

We start with a characterization of the automorphism group of substitutive subshifts
from aperiodic bijective primitive constant-shape substitutions. Then we describe the non-
deterministic directions of a substitutive subshift, by the supporting hyperplanes to
conv.F �n / (Theorem 5.2). We further emphasize when the convex hull of the digit tile
conv.T� / is a polytope, because this implies strong geometrical restrictions on the support-
ing hyperplanes. Conversely, we provide a checkable combinatorial condition to ensure
a vector to be nondeterministic (Corollary 5.13). Finally, we deduce dynamical conse-
quences for .X� ; S;Zd / on the normalizer group. For instance, the normalizer group is
virtually generated by the shift action (Theorem 5.17) and we provide restrictions on the
linear representation group (Proposition 5.15). It follows that all the results of the previous
sections may apply in this case.

5.1. The automorphism group of substitutive subshifts from bijective
constant-shape substitutions

Since bijective substitutions are reduced, Proposition 4.9 implies that the automorphism
group of the substitutive subshift .X� ; S;Zd / is virtually Zd . In fact, we have a more rigid
result in the bijective case as shown in the following proposition.

Proposition 5.1. Let �1; �2 be two aperiodic bijective primitive constant-shape substitu-
tions with the same expansion matrix L and support F1. Then, any factor map  W X�1 !
X�2 satisfying property (2) in Theorem 4.1 is induced by a letter-to-letter map. In par-
ticular, the automorphism group Aut.X� ; S;Zd / of a substitutive subshift given by an
aperiodic bijective primitive constant-shape substitution is isomorphic to the direct prod-
uct of Zd , generated by the shift action, with a finite group given by a permutation of the
letters in the alphabet A.

Proof. Let  2 Fac.X�1 ; X�2 ; S;Z
d / satisfying property (2) in Theorem 4.1, i.e., there

exists p 2 F1 such that Sp �1 D �2 . Suppose that p ¤ 0. Let n > 0 be large enough
such that the set F ıCn D ¹f 2 FnWf C C � Fnº is nonempty, where C is the set defined
in Lemma 4.6. Then, for any x 2 X�1 , the coordinate x0 determines the pattern �n1 .x/jFn .
Hence the pattern .Spn �n1 /jpnC.Fn/ıC is also completely determined by the letter in x0,
where pn D

Pn�1
iD0 L

i .p/. Set m 2 Zd such that .pn C .Fn/ıC / \ .Ln.m/C Fn/ ¤ ;.
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Since Spn �n1 is equal to �n2 and �2 is bijective, the coordinate x0 determines  .x/m.
This implies that S�m is a factor map induced by a letter-to-letter map. Set � D S�m ,
we get that

SpnCm�Ln.m/��n1 D �
n
2�;

and, by bijectivity, the coordinate x0 determines two coordinates of  , unless for any
n2N large enough pnCm is inLn

�
.Zd /, i.e., for any n large enough, there exists rn 2Zd

such that pn Cm D Ln.rn/. Note that p C rn D L.rnC1/, which implies that

krnC1k � kL
�1
k.krnk C kpk/;

so .rn/n>0 is a bounded sequence. Hence, there exist n > 0 and N > 1 such that rnCN D

rn, which implies that pN�1 2 .L
N � id/.Zd /. This is not possible by Remark 4.2.

If pn Cm … Ln
�
.Zd /, then x0 determines two coordinates n1, n2 of  .x/, so deter-

mines the coordinates 0 and n2 � n1 of  1.x/ D S�n1 .x/. Hence  1 is also induced
via a letter-to-letter map. Note that, the map ‰1 W A! B inducing  1 is bijective. If not,
there are two fixed points x; y with ‰1.x0/ D ‰2.y0/ and x0 ¤ y0 generate two points
with the same image, which is a contradiction. It follows that x0 determines xn2�n1 , and
then xk.n2�n1/ for all k 2 Z, so x has a nontrivial period, which is a contradiction. Finally,
we conclude by Corollary 4.10.

5.2. Nondeterministic directions of substitutive subshifts from extremally
permutative constant-shape substitutions

In this section, we give a characterization of the nondeterministic directions (defined in
Section 2.6) of a substitutive subshift .X� ; S;Zd /, in the case where � is extremally per-
mutative. A starting remark is that, for each n > 0, the set of directions Sd�1 is stratified
by the opposite normal fan N .conv.F �n // (see Section 2.1.2). Our description of the non-
deterministic directions is given in terms of union of these fans.

Following the notion of left and right permutative morphisms (see [4]), we say that
a constant-shape substitution � is extremally permutative if the restriction pf of � in
f is bijective for all f 2 Ext.conv.F �1 //. Since Ext.conv.A C B// � Ext.conv.A// C
Ext.conv.B//, a substitution is extremally permutative if and only if for any n > 0 and
f 2 Ext.conv.F �n // the restriction pf of �n in f is bijective. Since .F �n /n>0 is a Følner
sequence, there exists n > 0 such that conv.F �n / is a nondegenerate polytope, so up to con-
sidering a power of �, we may assume that conv.F �1 / is a nondegenerate polytope. Using
the recognizability property of substitutions and some basic results in convex geometry,
we prove the following result.

Theorem 5.2. Let � be an aperiodic extremally permutative primitive constant-shape sub-
stitution. Then the set of nondeterministic directions ND.X� ; S;Zd / of its substitutive
subshift .X� ; S;Zd / is the intersection of Sd�1 with a nonempty union of limits of nested
sequences of opposite normal cones of the form yNGn.conv.F �n //, where Gn is a face of
conv.F �n /, for some integer n > 0.
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This theorem gives topological constraints on the set of nondeterministic directions.
Actually, we will see that the convex hull of any digit tile is a polytope when L� D �idRd ,
i.e., it has a finite number of extreme points (Theorem 5.6). In this case, by Theorem 5.2,
the set of nondeterministic directions ND.X� ; S;Zd / is a finite union of closed inter-
vals (eventually degenerated). More explicitly, in the two-dimensional case, we obtain the
following corollary, showing in particular that it cannot be a Cantor set.

Corollary 5.3. In the two-dimensional case, under the hypothesis of Theorem 5.2, either
the set ND.X� ; S;Z2/ has nonempty interior, or it has at most 2 accumulation points.

Proof. Assume that the set of nondeterministic directions ND.X� ; S;Z2/ has empty inte-
rior. By Theorem 5.2, the elements of ND.X� ; S;Z2/ are limits of normal vectors to edges
of conv.F �n / for some n > 0. In [43] it was proved that such vectors are normalized vec-
tors of the form .L�

�
/�kuk , with uk 2 S1 being a normal vector to an edge of conv.F �1 /

for some k > 0. Hence, their accumulation points are accumulation points of orbits of the
projective action L�

�
on the circle S1. A standard analysis of this action (you can check

[31, Theorem 3]) provides that the cardinality of the accumulation points is at most 2,
when a power of one of the L� -eigenvalues is a real number. Otherwise, the projective
orbits of L�

�
are dense in the circle. Since ND.X� ; S;Z2/ is closed, it is the whole circle,

which is a contradiction.

Proof of Theorem 5.2. Let v be a nondeterministic direction for .X� ; S;Zd /, and x1 ¤
x2 2 X� such that x1jHv D x2jHv . Consider the setD D ¹n 2 Zd Wx1.n/¤ x2.n/º. Since
D � Rd nHv, its convex hull is also contained in Rd nHv. We have two possibilities:

(1) The convex hull conv.D/ has at least one extreme point. By Theorem 2.3 all the
extreme points of conv.D/ belong to D. Now, if v 2 Zd is an extremal ray of
conv.D/, then for any extremal point n 2 D, the map dist.nC tv; Hv/ must be
increasing (if not, there exists t� >0with nC t�v 2Hv, which is a contradiction).
Hence, the distance map to H restricted to conv.D/ is minimized in the extreme
points of conv.D/. Since the extreme points of conv.D/ are in D, we can use the
shift action in x1, x2 and assume that x1.0/ ¤ x2.0/.

(2) If conv.D/ does not have extreme points, then it contains a line. In this case, the
hyperplane @Hv must be parallel to this line. Using similar arguments, we can
assume that x1.0/ ¤ x2.0/.

So we can assume that 0 is in a face F0 of smallest dimension of conv.D/ and then
v 2 yNF0.conv.D//. In fact, any element in yNF0.conv.D// \ Sd�1 is a nondeterministic
direction for .X� ; S;Zd /.

Now, for any k > 0 consider R.k/ > 0 as the recognizability radius for �k given by
Proposition 3.7 and R D 4R.k/. Since x1 and x2 coincide in an arbitrarily large ball, they
have the same image under the maximal equicontinuous factor, hence �n.x1/D �n.x2/ 2
F
�
n for any n > 0. By Lemma 3.12, there exist n > 0 and two words w.n/1 ;w.n/2 2LK�

.X� /

such that xi jB.0;R/\Zd v �
n.w.n/i /, for i 2 ¹1; 2º. By the Pigeonhole principle, there exist
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an infinite set E � N, two patterns w1; w2 2 LK�
.X� / and k1;k2 2 K� such that for all

n 2 E, xi jB.0;R/\Zd D �
n.wi /jLn

�
.ki /C�n.x1/CB.0;R/\Zd , i 2 ¹1; 2º. The recognizability

property implies the origin is in the boundary of conv.F �
k
� �k.x1//. Letting k to infinity,

for all n > 0, the origin is in the boundary of conv.F �n � �n.x1//. If Gn is the face of
smallest dimension containing �n.x1/ in conv.F �n /, then yNF0.conv.D// is included in
yNGn.conv.F �n //, for all n > 0.

We will show now the converse. We separate the proof in two cases.
Suppose first that conv.D/ is closed. Let F1 be a face of conv.D/ containing 0 of

codimension 1. By Theorem 2.3 we have that F1 D conv.F1 \ D/. Fix t 2 F1 \ D

different from 0. Since F �n is a fundamental domain of Ln
�
.Zd /, there are hn 2 F

�
n and

zn.t/ 2 Zd such that t D hn.t/ � �n.x1/C L
n
�
.zn.t// and t, being in the boundary of

conv.D/, lies in the boundary of conv.F �n � �n.x1/C Ln� .zn.t///. Since this last set is
a translated one of conv.F �n � �n.x1// and they are both subsets of conv.D/, a basic
geometrical argument ensures that for any n > 0, hn.t/ and �n.x1/ are in the same face
of conv.F �n /. The same arguments imply that hn.t1/, hn.t2/ are in the same face for any
t1; t2 2 F1 \D. Furthermore, hn.t/ and �n.x1/ are different for any n 2E large enough.
Indeed, assume the converse, taking R > ktk, we have that x1jt D �n.wi /Ln

�
.k3/C�n.x1/,

for some k3 2 K� for infinitely many n 2 E. Since

ktk D kLn� .k1 � k3/k; for infinitely many n 2 E;

we have that necessarily k1 D k3, which is a contradiction.
Consider the face Hn of conv.F �n / of smallest dimension generated by ¹hn.t/ºt2F1\D .

Notice that yNF1.conv.D//�
T
n>0
yNHn.conv.F �n //. We will prove that yNF1.conv.D//DT

n>0
yNHn.conv.F �n //. By construction of x1, x2, the set ¹zn.t/ºt2F1\D is bounded

(for all n large enough it belong to K� �K� ), so there exists t 2 F1 and " > 0 small
enough such that for all t 0 2 B.t; "/\ F1 we have that zn.t

0/ D zn.t/ for all n 2 E large
enough. Hence Hn is a face of codimension 1. An argument of dimensions ensures that
yNF1.conv.D// D

T
n2E
yNHn.conv.Fn/� /.

Suppose now that conv.D/ is not closed. Let F1 be a face of conv.D/ of codimen-
sion 1 containing 0 and w 2 yNF1.conv.D//. We will find a sequence of faces Hn of
conv.F �n / such that yNF1.conv.D// D

T
n>0
yNHn.conv.F �n //. By definition we have that

8t 2 F1; hw; ti D inf
n2D
hw;ni D 0: (5)

Now, set t 2 F1 and consider a sequence .tm/m>0 � conv.D/ converging to t. By
Carathéodory’s theorem for any m > 0, we can write tm D

Pd
iD0 t

m
i f m

i , with ti � 0,Pd
iD0 t

m
i D 1 and f m

i 2 D. Then (5) implies that for all i , tmi hw; f
m
i i ����!m!1

0. The

only difficulty to get the result, concerns the indices i such that lim infm!1 tmi > 0. For
such i , we have that hw;f m

i i ����!m!1
0. Using the recognizability property, for all n 2 E

we write
f m
i D h.m; i; n/ � �n.x1/C L

n
� .z.m; i; n//;
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with h.m; i; n/ 2 F
�
n and z.m; i; n/ 2 Zd . Since hw; h.m; i; n/ � �n.x1/i � 0 and

hw; Ln
�
.z.m; i; n//i � 0, we have that for all n > 0

hw;h.m; i; n/ � �n.x1/i ����!
m!1

0 ^ hw; Ln� .z.m; i; n//i ����!m!1
0:

Since F �n is finite, we conclude that for all n 2 E, there exists m.n/ such that for all
m � m.n/,

hw;h.m; i; n/i D hw; �n.x1/i D 0: (6)

The same argument as the former one when conv.D/ is closed, gives that h.m; i; n/¤

�n.x1/ and if i ¤ j , h.m; i; n/ ¤ h.m; j; n/ for all n large enough.
Now, for any n > 0, we define Hn as the face of conv.F �n / of smallest dimension con-

taining �n.x1/ and ¹h.m; i; n/W t 2 F1; 0 � i � d;m � m.n/ with lim infm!1 tmi > 0º.
In particular, (6) shows that yNF1.conv.D// �

T
n>0
yNHn.conv.F �n //. We claim\

n>0

yNHn.conv.F �n // D yNF1.conv.D//:

First, note that taking subsequences if its necessary, for all n 2 E we get the following
limits

lim
m!1

dX
iD1

tmi h.m; i; n/ D hn.t/ ^ lim
m!1

dX
iD1

tmi z.m; i; n/ D zn.t/:

Hence, for all n 2 E, hn.t/ is in Hn. Also, zn.t/ is in conv.K� �K� / for all n 2 E
large enough. A geometric argument shows that there exist t 2 F1 and " > 0 small enough
such that for all t 0 2 F1 \ B.t; "/, zn.t

0/ D zn.t/. So Hn is a face of codimension 1 for
all n 2 E large enough. We then conclude that

T
n2E

ONHn.conv.F �n // D yNF1.conv.D//.
Consequently, the extremal rays of yNF0.conv.D// are equal to sets of the formT

n>0
yNHn.conv.F �n //, with Hn being faces, eventually, of codimension 1 of conv.F �n /

containing �n.x1/.

Then, to determine the nondeterministic directions for .X� ; S;Zd /, we need to study
the supporting hyperplanes to conv.F �n /. To do this, we focus on the convex hull of the
digit tile of the substitution. In general, this convex hull is not a polytope, i.e., it can have
infinitely many extreme points, even if the expansion matrix is diagonal, as we see in
Example 5.4.

Example 5.4 (A digit tile, with a nonpolytope convex hull). Consider L D
�
2 0
0 3

�
and

F1 D ¹.0; 0/; .0; 1/; .0; 2/; .1; 0/; .1; 2/; .1;�2/º (see Figure 13).
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x

y

Figure 13. The fundamental domain and an approximation of the digit tile of Example 5.4.

A direct computation shows that, for any n > 0, the set of extreme points of conv.Fn/
is the set ¹.0; 0/; .0; 3n � 1/; .2n � 1; 3n � 1/º [ ¹.2n � 2k ; 3k � 3n/W 0 � k � n � 1º,
which implies that

Ext.conv.T .L; F1/// D ¹.0; 0/; .0; 1/; .1; 1/; .1;�1/º [ ¹.1 � 2�k ;�1C 3�k/W k � 0º:

5.3. The polytope case

Here, we focus in the case when the convex hull of the digit tile is a polytope. We present
some known results about this set that we will use in the rest of this article.

Definition 5.5. We say that a substitution � is a polytope substitution if it is extremally
permutative, and the convex hull of the digit tile T� D T .L� ; F

�
1 / is a polytope.

From now on, we only consider polytope substitutions. This geometrical hypothesis
implies several algebraic restrictions on the expansion matrix L� (Proposition 5.10) and
some dynamical consequences for the substitutive subshift .X� ; S;Zd / (Theorem 5.17).

We recall here some results characterizing the polytope case in terms of the extreme
points of conv.F �n / [30], and the inward unit normal vectors of the .d � 1/-dimensional
faces of conv.T� / [43].

Theorem 5.6. Let T be the digit tile for an expansion matrix L 2 Md .R/ and a funda-
mental domain F1 � Rd . The following statements are equivalent:

(1) The convex hull of the digit tile T .L; F1/ is a polytope.

(2) The inward unit normal vectors of the .d � 1/-dimensional faces of conv.F1/ are
eigenvectors of .L�/k for some k [43, Theorem 4.2].

(3) The cardinality of Ext.conv.Fn// and Ext.conv.FnC1// are the same for some
n > 0. In such a case, for any m > n, jExt.conv.Fm//j D jExt.conv.Fn//j, and
then jExt.conv.T .L; F1///j D jExt.conv.Fn//j [30, Theorem 2.2].

Remark 5.7. In the case L D �idRd , with � > 1, a direct computation shows that the
statements (2) and (3) of Theorem 5.6 are satisfied without taking any power of L.
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A big family for the polytope case is when a power of the expansion matrix L is an
integer multiple of the identity, because for any fundamental domain F of L.Zd /, the
convex hull of the digit tile generated by L and F is a polytope. In particular, all the
convex hulls of the digit tiles of the examples in Figure 4 are polytopes. Nevertheless, it
is not the only case where Theorem 5.6 can be applied.

Example 5.8. (1) (Example of a non-self-similar matrix with a polytope digit tile)
ConsiderLD

�
2 0
�1 3

�
and F1D ¹.0;0/; .1;2/; .�2;�1/; .�2;�3/; .1;0/; .�1;�1/º

(see Figure 14).
We have that L� D

�
2 �1
0 3

�
with eigenvectors equal to ¹.�1; 1/; .1; 0/º. A direct

computation shows that the set of extreme points of conv.Fn/ is equal to®
.2n � 1; 2n � .3n C 1/=2/; .2n � 1; .2nC1 C 3n � 3/=2/;

.�2.2n � 1/; .3n C 3 � 2nC2/=2/; .�2.2n � 1/; .5 � 3n � 2nC2/=2/
¯
;

so the set of extreme points of conv.T .L; F1// is

¹.1; 1=2/; .1; 3=2/; .�2;�3=2/; .�2;�5=2/º:

x

y

Figure 14. The fundamental domain and an approximation of the digit tile of a non-self-similar
matrix.

(2) As an example where the statement (3) in Theorem 5.6 to be applied is not nec-
essarily satisfied in n D 1, consider L D

�
�2 0
0 �2

�
and F1 D ¹.0; 0/; .1; 0/; .0; 1/;

.�1;�1/º. We have that

F2 D ¹.�1;�3/; .0;�2/; .1;�2/; .�3;�1/; .�1;�1/; .0;�1/; .�2; 0/; .�1; 0/;

.0; 0/; .1; 0/; .�2; 1/; .0; 1/; .1; 1/; .2; 2/; .3; 2/; .2; 3/º;

so conv.F2/ has 3 extreme points, while conv.F1/ has 6 extreme points as shown
in Figure 15.
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x

y

F1

x

y

F2

x

y

F3

Figure 15. The sets F1, F2 and F3. Note that conv.F2/ and conv.F3/ have 6 extreme points.

In [30], the following result was proved about the extreme points of conv.T .L; F1//
as well as the extreme points of conv.Fm/ for any m > n, where n is such that

jExt.conv.Fn//j D jExt.conv.FnC1//j:

Proposition 5.9 ([30, Theorem 4.8]). If jExt.conv.Fn//j D jExt.conv.FnC1//j, then all
the extreme points of conv.T .L;F1// are of the form

P
j>0L

�.nC1/j .
Pn
iD0L

i .fi //, withPn
iD0L

i .fi / being an extreme point of conv.FnC1/.

This implies that conv.T .L; F1// is equal to .Lm � id/�1 conv.Fm/ for all m > n.
Now, assume that we are under the condition jExt.conv.F1//j D jExt.conv.T .L; F1///j
and for all n> 0, conv.T .L;F1//D .Ln � id/�1 conv.Fn/. Let u be an inward unit normal
vector of a .d � 1/-dimensional face of conv.T .L;F1//. For each n > 0, ..Ln � id/�/�1u
is an inward normal vector of a .d � 1/-dimensional face of Fn. By Theorem 5.6 (1), there
exists k > 0 such that ..L� id/�/�1u is an eigenvector of .L�/k . Hence by commutation,
u is an eigenvector of .L�/k . Since conv.T .L;F1// is a polytope, we can take n > 0 large
enough such that any of the inward unit normal vectors of conv.F1/ is an eigenvector of
the same power .L�/n. Hence, by the same arguments, up to considering a power of L,
we may assume that all of the inward unit normal vectors of the .d � 1/-dimensional
faces of conv.F1/ are eigenvectors of L�. This is equivalent to the hyperplane @HŒu� D
¹t 2 Rd W ht; ui D 0º (the vector space of an affine hull of a face of conv.F1/) generated
by u, being preserved by L, i.e., L@HŒu� D @HŒu�. This implies that the normal fan
N .conv.Fn// is the same for all n > 0, and it is equal to the one of conv.T .L; F1//.

Since for some n > 0, conv.Fn/ is nondegenerate (by the Følner condition), it has d
linearly independent inward normal vectors (that have integer coordinates with no com-
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mon divisor), which are eigenvectors of L�. The polytope condition implies then the
following algebraic restrictions on the expansion matrix L. The proof is left to the reader.

Proposition 5.10. If jExt.conv.F �1 //j D jExt.conv.T .L; F1///j, then the eigenvalues of
L are integer numbers.

Moreover, if u1;u2;u3 are linearly dependent inward unit normal vectors of .d � 1/-
dimensional faces of conv.T .L; F1//, then L restricted to the vector space generated by
these vectors acts as an integer multiple of the identity.

In particular, in the two-dimensional case, if the digit tile has 3 or at least 5 edges, then
it follows that the expansion matrix is an integer multiple of the identity.

Finally, up to taking an appropriate power of a substitution, we may assume the fol-
lowing hypotheses.

(PC 1) The expansion matrix L is diagonalizable, with positive integer eigenvalues.

(PC 2) The convex set conv.F1/ is nondegenerate and

jExt.conv.F1//j D jExt.conv.T .L; F1///j:

(PC 3) Any inward unit normal vector of a .d � 1/-dimensional face of conv.F1/ is
an eigenvector of L�.

(PC 4) The setK given by Proposition 2.10 is equal to .id � L/�1.F1/ \ Zd , i.e., for
any k 2 K, there exists f 2 F1 such that k D L.k/C f .

5.4. Dynamical properties of substitutive subshifts from polytope substitutions

As we saw in the previous subsection, under the hypotheses (PC 1), (PC 2), (PC 3) and
(PC 4), the normal fan is the same for the convex hull of the supports of �n, for any
n > 0, and for the convex hull of the digit tile, so we have the following interpretation of
Theorem 5.2 in the polytope case.

Corollary 5.11 (Nondeterministic directions in the polytope case). Let � be an aperiodic
primitive polytope substitution. The set of nondeterministic directions ND.X� ; S;Zd / is
the intersection of Sd�1 with a nonempty union of opposite normal cones of the form
yNG .conv.T� //, where G is a face of conv.T� /.

Hence, in the two-dimensional case, the former corollary implies strong restrictions
on the set of nondeterministic directions. For instance, the number of its connected com-
ponents is bounded by the number of edges of conv.T� /.

Now, as shown in the proof of Theorem 5.2, to establish which opposite normal vec-
tors of conv.F �1 / appears as nondeterministic directions for .X� ; S;Zd /, we study the
convex sets conv.Ln

�
.k/C F

�
n / generated by the points k in K� , which depend on the

combinatorics of the substitution. We say that a subset W � K� is a set of differences if
there exist two patterns w1; w2 2 LK� .X� / such that w1.k/ is equal to w2.k/ if and only if
k is in K� nW .
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The next lemma gives a sufficient condition to ensure that a vector v is a nondetermin-
istic direction for .X� ; S;Zd /, seen as the converse of Theorem 5.2 in the polytope case.
As in Lemma 3.12, we consider a set C b Zd such that for all n > 0, C C F �n C F

�
n �

Ln
�
.C /C F

�
n and K� D K� C C .

Lemma 5.12. LetW �K� be a set of differences, k2W , n > 0, a point f 2@ conv.Ln
�
.k/

C F
�
n / and v 2 Sd�1 be such that f C @Hv supports conv.Ln

�
.k/C F

�
n / at f . Suppose

that f satisfies the following conditions:

(H1) f CK� � L
n
�
.K� /C F

�
n ,

(H2) f C .K� \Hv/ � L
n
�
.K� nW /C F

�
n .

Then v is nondeterministic for .X� ; S;Zd /.

Proof. Let w1; w2 be two patterns such that w1.k0/ D w2.k0/ if and only if k0 2 K� nW .
Note that condition (H1) is equivalent to for all m > 0, Lm

�
.f / C Lm

�
.K� / C F

�
m �

LnCm
�

.K� /C F
�
nCm. Since K� D K� C C , Remark 2.13 (2) implies that for all m > 0,

Lm� .f /C F
�
m C .L

m
� .K� /C F

�
m/ � L

nCm
�

.K� /C F
�
nCm: (7)

If f is an extreme point of conv.Ln
�
.k/C F

�
n /, there exists g 2 Ext.conv.F �1 // such

that f D Ln
�
.k/C

Pn�1
iD0 L

i
�
.g/. If f is in the relative interior of a k-dimensional face of

conv.Ln
�
.k/C F

�
n /, (1� k � d � 1), we consider g 2 Ext.conv.F �1 // such that Ln

�
.k/CPn�1

iD0 L
i
�
.g/ and f are in the same k-dimensional face of conv.Ln

�
.k/C F

�
n / as shown

in Figure 16.
Now, condition (H2) is equivalent to for all m > 0,

Lm� .f C .K� \Hv//C Fm � L
nCm
�

.K� nW /C F
�
nCm:

We will prove that for all m > 0

Lm� .f /C

m�1X
iD0

Li� .g/C ..L
m
� .K� /C F

�
m/ \Hv/ � L

m
� .f /C .K� \Hv/C F

�
m: (8)

Hv

f

Ln
�
.k/C

Pn�1
iD0 L

i
�
.g/

conv.Ln
�
.k/C F

�
n /

Figure 16. The hyperplane @Hv supports conv.Ln
�
.k/C F

�
n / at f and Ln

�
.k/C

Pn�1
iD0 L

i
�
.g/.
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We have that
hv;gi D min

i2F
�
1

hv; i i: (9)

Fix n 2 Lm
�
.f /C

Pm�1
iD0 L

i
�
.g/C ..Lm

�
.K� /C F

�
m/ \Hv/. There exist k1 2 K� , j 2

F
�
m and h 2 Hv such that

n D Lm� .f /C

m�1X
iD0

Li� .g/C L
m
� .k1/C j D Lm� .f /C

m�1X
iD0

Li� .g/C h:

On the other hand, by definition of K� , there exist c 2 K� and l 2 F
�
m such that

m�1X
iD0

Li� .g/C L
m
� .k1/C j D Lm� .c/C l :

To prove (8), it is enough to show that c 2 Hv. Indeed, writing l D
Pm�1
iD0 L

i
�
.l .i//,

with l .i/ 2 F
�
1 for 0 � i � m � 1, we have that c D L�m

�
.
Pm�1
iD0 L

i
�
.g � l .i//C h/. So,

we get that

hv; ci D

�
v; L�m�

�m�1X
iD0

Li� .g � l .i//C h

��
D

1

�m

�m�1X
iD0

˝
v; Li� .g � l .i//

˛�
C

1

�m
hv;hi

D
1

�m

�m�1X
iD0

�i
˝
v;g � l .i/

˛�
C

1

�m
hv;hi:

Since h 2 Hv, we have hv;hi � 0, and by (9) we have that hv;g � l .i/i � 0, for all
1 � i � m � 1. Since � > 0, we conclude that hv; ci � 0, which implies that c 2 Hv.

By (7) and Proposition 2.10, the iterations of the substitution on the patterns w1,
w2 leads to two points x1 ¤ x2 2 X� such that, xi is in Œ�n.w1/��Ln

�
.f /�

Pn�1
iD0 L

i
�
.g/

, for

i 2 ¹1; 2º. Finally, (8) implies that x1jHv D x2jHv . The fact that f is in the set of differ-
ences of w1 and w2 ensures that x1.0/ ¤ x2.0/, so x1 ¤ x2. We then conclude that v is
nondeterministic for .X� ; S;Zd /.

As described in Theorem 5.2, depending on to which faces of conv.Ln
�
.k/C F

�
n / the

point f satisfying condition (H1) belongs, we may have more nondeterministic directions,
obtaining the following corollary.

Corollary 5.13. Let W � K� be a set of differences, k 2 W , n > 0, and a point f 2

@ conv.Ln
�
.k/C F

�
n / \ @ conv.Ln

�
.W /C F

�
n / satisfying condition (H1) of Lemma 5.12.

Then any v in yNF .conv.Ln
�
.W /C F

�
n // \ Sd�1 (with F being the face of smallest di-

mension where f belongs to conv.Ln
�
.W /C F

�
n /) is nondeterministic for .X� ; S;Zd /.
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In addition to this result, the proof of Theorem 5.2 provides that, for some n > 0,
the opposite normal cone yNF .conv.Ln

�
.W /C F

�
n // is equal to an opposite normal cone

yNG .conv.F �n //, where G is a face of conv.F �n /.

Example 5.14 (Different behaviors for the nondeterministic directions). In the following
we present two examples with different behaviors given by Lemma 5.12.

(1) Consider the 2D-Thue–Morse substitution with L�TM D
�
2 0
0 2

�
, F �TM1 D J0; 1K2,

given by

�TM W 0 7!
1 0

0 1
; 1 7!

0 1

1 0
:

The following is a pattern of �TM :

0110100110010110

1001011001101001

0110100110010110

1001011001101001

1001011001101001

0110100110010110:

In this case, the set K�TM is equal to J�1; 0K2. We have that

LK�TM
.XTM / D

²
0 1

1 0
;
1 0

0 1
;
1 0

1 0
;
0 1

0 1
;
0 0

1 1
;
1 1

0 0
;
0 0

0 0
;
1 1

1 1

³
:

The sets of differences for the 2D-Thue–Morse substitution are ¹¹.0;�1/; .0; 0/º;
¹.�1; 0/; .0; 0/º; ¹.�1; 0/; .0; �1/º; ¹.�1; �1/; .0; 0/º; ¹.�1; �1/; .�1; 0/ºº. By
Lemma 5.12 it can be proved that

�
1
0

�
,
�
�1
0

�
,
�
0
1

�
,
�
0
1

�
are the only nondeterministic

directions for .X�TM ; S;Z
2/.

(2) Consider the substitution of the table tiling [38], with L�t D
�
2 0
0 2

�
, F �t1 D J0; 1K2,

given by �t

0 7!
3 0

1 0
; 1 7!

1 1

0 2
; 2 7!

2 3

2 1
; 3 7!

0 2

3 3
:

The following is a pattern of �t :

3023302302021111

1021102133330202

0230230211110230

3310213302023310

1130231130231130

0210210210210210:

The set K�t is equal to J�1; 0K2 and the sets of differences is equal to 2K�t n
¹;; K�t ; ¹.�1;�1/; .0; 0/º; ¹.0;�1/; .�1; 0/ºº. By Lemma 5.12, it can be proved
that the set of nondeterministic directions for .X� ; S;Z2/ is the whole circle S1.
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Now, we proceed to determine the normalizer semigroupN.X� ; S;Zd / of substitutive
subshifts given by polytope substitutions. Set M 2 EN.X� ; S;Zd /. By Proposition 2.9, if
v is a nondeterministic direction for .X� ; S;Zd /, then M �v=kM �vk is also a nondeter-
ministic direction for .X� ; S;Zd /. Moreover, Theorem 5.2 ensures that the matrixM acts
on the opposite normal cones of conv.T� /, that appeared as nondeterministic directions
for .X� ; S;Zd /. In particular, the matrix M � permutes the hyperplanes defined by the
.d � 1/-dimensional faces of conv.T� / whose unit opposite normal cones are nondeter-
ministic directions for .X� ; S;Zd /. If there are d linearly independent nondeterministic
directions for .X� ; S; Zd /, we get the following result about the linear representation
semigroup.

Proposition 5.15. Let � be an aperiodic primitive polytope substitution. If the set of non-
deterministic directions for .X� ; S;Zd / contains d linearly independent vectors, then the
following hold:

(1) Any homomorphism � 2 N.X� ; S;Z
d / is invertible.

(2) The linear representation semigroup EN.X� ; S;Zd / is a finite group, and it is iso-
morphic to a subgroup of GL.d;Z=3Z/.

(3) The norm of any matrix M in the linear representation group EN.X� ; S;Zd / is
bounded by an explicit formula only depending on the convex hull of the digit
tile T� .

Proof. By assumption and Corollary 5.11 there are d linearly independent inward unit
normal vectors to the .d � 1/-dimensional faces of conv.T� / that are nondeterministic
directions for .X� ; S;Zd /. Let n � d be the number of unit normal vectors to the .d � 1/-
dimensional faces of conv.T� / that are nondeterministic directions. Any matrix M in the
linear representation group of .X� ; S; Zd / permutes the hyperplanes defined by these
.d � 1/-dimensional faces of conv.T� /. By condition (PC 3), the normal lines (generated
by the inward vectors) of these hyperplanes are invariant by a power of the expansion
matrix L�

�
. Hence M � permutes n eigenspaces ¹Qv1; : : : ;Qvnº of some power of L�

�
.

Moreover, we can assume that these vectors have integer coordinates not having common
divisors except ˙1. Note that each vector is unique up to a sign and does not depend
on M . Since M is in GL.d;Z/, M � is also in GL.d;Z/. This implies that M � sends
vectors with integer coordinates with no common divisor to vectors with the same prop-
erty. Therefore, for all 1 � i � n, .M �/2nŠvi D ˙vi . Since the set ¹v1; : : : ; vnº contains
d linearly independent vectors, we get that .M �/2nŠ is the identity matrix, which implies
that M has finite order. By Lemma 4.12 any homomorphism of .X� ; S;Zd / is invertible.
We recall that a subgroup of GL.d;Z/ is finite if and only if any element in the subgroup
has finite order. We then conclude that the linear representation group EN.X� ; S;Zd / is
finite, and by Minkowski’s theorem, we have that EN.X� ; S;Zd / � GL.d;Z=3Z/.
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Finally, note that kMk � kP k � kQMk � kP�1k, where kP k; kP�1k and

sup
M2 EN.X� ;S;Zd /

kQMk <1

only depend on the convex hull of the digit tile T� .

Remark 5.16. In particular, it follows from the proof that if n D d , each matrix QM is
a permutation matrix, so EN.X� ; S;Zd / is conjugate to a subgroup of the hyperoctaedral
group Wd . These recover results in [8] for block substitutions. By the realization result
[8, Theorem 35] these results obtained are optimal.

The following theorem summarizes all the properties satisfied for aperiodic primitive
reduced polytope substitutions.

Theorem 5.17. Let � be an aperiodic reduced primitive polytope substitution. Then,

(1) the system .X�;S;Zd/ is coalescent, and also any homomorphism inN.X�;S;Zd/
is invertible.

If there are d linearly independent vectors that are nondeterministic directions for
.X� ; S;Z

d /, we have that

(2) the normalizer is virtually generated by the shift action;

(3) the linear representation group EN.X� ; S;Zd / acts as a permutation group on
the set ¹NG .conv.T� //WNG .conv.T� //� ND.X� ; S;Zd /;G a face of conv.T� /º.
In particular, if ND.X� ; S; Zd / D Sd�1, then the linear representation group
EN.X� ; S;Z

d / is isomorphic to a subgroup of the automorphism group of the nor-
mal fan of conv.T� /.

Proof. Statement (1) is true by Proposition 4.8 and Lemma 4.12.
Now, by the third isomorphism theorem we have that

N.X� ;S;Z
d /=Aut.X� ;S;Zd / Š

�
N.X� ;S;Z

d /=hSi
�
=.Aut.X� ;S;Zd /=hSi/:

Then, Proposition 5.15 gives that the quotient groupN.X� ;S;Zd /=Aut.X� ;S;Zd /D
EN.X� ; S;Z

d / is finite and Proposition 4.9 implies that Aut.X� ; S;Zd /=hSi is also finite.
We conclude that N.X� ; S;Zd /=hSi is a finite group.

Finally, statement (3) is true by Proposition 5.15.

The hypothesis of having d linearly independent vectors as nondeterministic direc-
tions for .X� ; S;Zd / is decidable by an algorithm, studying all the sets of differences
and then applying Lemma 5.12. Until now we did not find an aperiodic d -dimensional
reduced primitive polytope substitution with less than d linearly independent nondeter-
ministic directions leaving the following question.

Question 5.18. Does there exist an aperiodic primitive reduced polytope substitution �
with less than d linearly independent nondeterministic directions for .X� ; S;Zd /?
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