Probing the Quasar Broad Line Region with Microlensing

Damien Hutsemékers

in collaboration with

Lorraine Braibant, Dominique Sluse, Đorđe Savić

University of Liège, Belgium

Multi-Wavelength AGN Structure and Cosmological Applications, 9-13 October 2023, Nice, France

Gravitational microlensing

Gravitational microlensing

Many stars + galaxy tidal field => complex magnification pattern

Gravitational microlensing

Many stars + galaxy tidal field => complex magnification pattern

Microlensing provided important constraints on the continuum source size and structure

(e.g., Blackburne+2011, Jiménez-Vicente+2014)

Microlensing of the BLR

Microlensing of $H\alpha$: an example

Microlensing of $H\alpha$: an example

Microlensing of the BLR, identified by line profile distortions, is common in lensed quasars (Sluse+2012, Guerras+2013)

→ The BLR is modeled with the Monte-Carlo radiative transfer code STOKES (Goosmann+2007, 2014; Marin+2012)

Keplerian disk Polar wind Equatorial wind

→ The BLR is modeled with the Monte-Carlo radiative transfer code STOKES (Goosmann+2007, 2014; Marin+2012)

Keplerian disk Polar wind Equatorial wind

with various inclinations, sizes, emissivities

Monochromatic images of the BLR

➔ The monochromatic images of the BLR are convolved with microlensing magnification maps characteristic of the system

➔ Different map orientations are considered

➔ Microlensed emission line profiles are reconstructed at each position on the magnification maps

➔ The continuum source is simultaneously modeled and magnified by the same caustics

→ The thousands of simulated microlensed line profiles are characterized by the magnification profile $\mu(v)$ and/or quantities integrated over the line profile that can be compared with the observations

➔ Comparison with observations is done through a Bayesian scheme that provides the probabilities of the different models, and the size of the BLR

(Braibant+2017, Hutsemékers+2019, 2021, 2023)

Observed magnification profiles

Measuring $\mu(v)$ requires a reference spectrum not or weakly microlensed and the macro-amplification factor between the two images

Simulated $\mu(v)$ reproduce the observations

Example of results : J1004+4112

Map orientation :			≤ 30°			≥ 60°		
		KD	PW	EW	KD	PW	EW	
	22°	0	0	17	51	0	0	
	34°	0	0	27	31	0	0	
	44°	0	0	24	16	0	0	
	62°	0	2	29	2	0	0	
	All <i>i</i>	0	2	97	100	0	0	

=> The KD and EW models are the most likely, but the final selection may depend on the magnification map orientation w.r.t. the BLR axis

 $= R_{1/2}(CIV) = 2.8 \pm 1.9$ light days

R_{BLR} : microlensing vs reverberation mapping (preliminary)

R_{BLR} : microlensing vs reverberation mapping (preliminary)

R_{BLR} : microlensing vs reverberation mapping (preliminary)

Conclusions

The BLR size and kinematics can be determined with microlensing, complementing RM measurements, especially for high-redshift quasars

➔ Single epoch high S/N data can be used, but a clear line deformation, a reference spectrum, and the macro-magnification factors are required

→ Flattened BLR geometries are favored for all lines, but the distinction between KD and EW is often degenerate with the map orientation

Mixed (dis-)agreement between microlensing and RM BLR sizes. Systematically smaller ? Underestimated dispersion ? Bias ?

On-going and future work:

→Analysis of time series of line profile deformations (poster by D. Savic)

- → Join RM and microlensing analysis in some objects
- ➔ Increase the sample, especially at high redshift