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Estimation of biophysical vegetation variables is of interest for diverse

applications, such as monitoring of crop growth and health or yield prediction.

However, remote estimation of these variables remains challenging due to the

inherent complexity of plant architecture, biology and surrounding environment,

and the need for features engineering. Recent advancements in deep learning,

particularly convolutional neural networks (CNN), offer promising solutions to

address this challenge. Unfortunately, the limited availability of labeled data has

hindered the exploration of CNNs for regression tasks, especially in the frame of

crop phenotyping. In this study, the effectiveness of various CNN models in

predicting wheat dry matter, nitrogen uptake, and nitrogen concentration from

RGB and multispectral images taken from tillering to maturity was examined. To

overcome the scarcity of labeled data, a training pipeline was devised. This

pipeline involves transfer learning, pseudo-labeling of unlabeled data and

temporal relationship correction. The results demonstrated that CNN models

significantly benefit from the pseudolabeling method, while the machine

learning approach employing a PLSr did not show comparable performance.

Among the models evaluated, EfficientNetB4 achieved the highest accuracy for

predicting above-ground biomass, with an R² value of 0.92. In contrast, Resnet50

demonstrated superior performance in predicting LAI, nitrogen uptake, and

nitrogen concentration, with R² values of 0.82, 0.73, and 0.80, respectively.

Moreover, the study explored multi-output models to predict the distribution of

dry matter and nitrogen uptake between stem, inferior leaves, flag leaf, and ear.

The findings indicate that CNNs hold promise as accessible and promising tools

for phenotyping quantitative biophysical variables of crops. However, further

research is required to harness their full potential.
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1 Introduction

Biophysical vegetation variables are critical indicators of plant

growth and health, providing essential information for understanding

complex plant-environment interactions (Hawkesford and Riche, 2020;

Lemaire and Ciampitti, 2020). Among these variables, Leaf Area Index

(LAI), Aboveground Biomass (AGB), and Nitrogen Uptake (Nupt)

stand out as key parameters that aid in crop monitoring and yield

prediction. Additionally, they play a pivotal role in unraveling the

underlying physiological processes that govern the intricate

associations between final yield, genotype, and the surrounding

environment. As concerns about climate change and the human

food security continue to intensify, the accurate assessment of

vegetation variables becomes increasingly crucial (Hickey et al.,

2019). Timely and reliable information on crop growth and health

can help optimize agricultural practices, enhance resource utilization,

and help breeders and researchers improve crops.

Recent developments in phenotyping systems, utilizing multiple

remote sensing platforms such as satellites, drones, and ground

platforms equipped with various sensors (e.g., RGB, spectral data,

thermal, LiDAR, etc…), have led to an improvement in the high-

throughput and non-destructive screening of crops (Reynolds et al.,

2020; Araus et al., 2022; Sun et al., 2022). These technologies have

enabled the collection of large volumes of image data, facilitating

the rapid, non-invasive, and detailed acquisition of plant

phenotyping traits throughout the entire crop lifecycle (Verrelst

et al., 2019). Remote sensing, which has lower spatial resolution, can

capture the canopy in its entirety in a fast way. In contrast, proximal

sensing provides more precise measurements at the organ level and

might better handle the impact of unwanted factors (Deery et al.,

2014). Ground-based phenotyping systems equipped with multiple

sensors can acquire high-resolution data, facilitating improved

identification of plant organs, diseases, or yellow and green plant

parts (Carlier et al., 2022; Dandrifosse, 2022; Serouart et al., 2022;

Tanner et al., 2022; Xu and Li, 2022). The integration of big data

and machine/deep learning techniques further enhances the

potential for precision phenotyping, enabling more accurate and

efficient analyses of crop characteristics for enhanced agricultural

management and breeding practices (Verrelst et al., 2019).

The assessment of such biophysical variables using remote

sensing and proximal sensing methods requires a comprehensive

understanding of agronomy, image and data analysis, given the

inherent complexity of these traits and their susceptibility to various

influencing factors. Usual methods for estimating AGB and LAI rely

on crop architecture, vegetation indices, radiative transfer models,

or a combination of these models (Tilly et al., 2015; Brocks and

Bareth, 2018; Yue et al., 2019; Raj et al., 2021; Schiefer et al., 2021;

Wan et al., 2021). Such methods are also widely used for assessing

crop nitrogen status (Berger et al., 2020).

The algorithm pipeline commonly used in plant phenotyping

comprises several stages, which involve feature extraction through

image analysis methods, including color information collection,

thresholding, edge detection, or/and pattern recognition. While

these methods can be effective, their reliance on handcrafted

features and hyperparameter tuning often results in a lack of

robustness. This limitation becomes particularly evident when
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dealing with complex environmental conditions, such as the

presence of soil, weeds, and biotic and abiotic stresses, as well as

variations in plant characteristics like growth stage and canopy

architecture. Thus, many phenotyping studies focus solely on local

areas or specific agricultural practices, leading to limitations in the

broader applicability and generalization of proposed models (Chao

et al., 2019).

These challenges can lead to suboptimal performance and

reduced accuracy in plant phenotyping tasks (Kamilaris and

Prenafeta-Boldú, 2018; Nabwire et al., 2021). Yet, it becomes

paramount to design studies that effectively capture the diversity

present within crop populations and account for the variability of

growing conditions. By doing so, we could unlock valuable insights

into the intricate interactions shaping these biophysical variables,

fostering more robust and adaptable solutions for the future

(Hawkesford and Riche, 2020). To address these issues, researchers

have been exploring the potential of deep learning and artificial

intelligence techniques also in agricultural applications. These

approaches have shown promising results in overcoming the

limitations of traditional methods by automatically learning

relevant features and adaptively adjusting to diverse conditions.

By leveraging advanced machine learning algorithms, such as deep

neural networks and convolutional neural networks (CNNs), plant

phenotyping can benefit from improved accuracy and generalization

across varying scenarios (Singh et al., 2018; Kattenborn et al., 2021;

Arya et al., 2022). These methods excel in handling complex datasets

and can effectively capture intricate patterns and relationships in plant-

related data. Additionally, they reduce the need for manual feature

engineering and parameter tuning, leading to more efficient and

reliable analyses. For instance, when predicting wheat biomass

during early growth stages, CNNs demonstrated less susceptibility to

plant density variations compared to alternative methods (Ma et al.,

2019). Moreover, these innovative approaches enhance the ability to

accurately estimate traits and unlock the extraction of more advanced

parameters, such as crop growth rate, particularly when applied to

time-series data (Buxbaum et al., 2022). Furthermore, their remarkable

ability to solve highly complex patterns makes them ideal for multi-

output purposes, enabling the production of multi-trait outputs using a

single model (Pound et al., 2017; Nguyen et al., 2023).

The accessibility of ready-to-use libraries, datasets, and

emerging methodologies like transfer learning has enabled the

application of sophisticated algorithms to crop characterization.

The ever-growing availability of neural networks architectures and

hyperparameters can present a challenge when it comes to selecting

or designing the most suitable architecture. While some authors

have successfully created their own neural architectures that

perform comparably to well-known ones in terms of accuracy (Li

et al., 2021), it is still highly recommended to use established and

widely recognized architectures. Nonetheless, ensuring the accuracy

and robustness of these models is crucial, and their training and

validation with large ground-truth datasets remain essential. This

becomes particularly challenging when dealing with biophysical

variables, such as AGB, which require a significant amount of

human labor and destructive measurements to construct a dataset

(Jiang and Li, 2020). This could explain why regression CNN is not

yet widely adopted.
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To address the need for data, several methods have been

proposed to train robust models with a limited amount of labeled

data. One approach is to use pre-trained models with transfer

learning, which has been successful in estimating forage biomass

(Castro et al., 2020; de Oliveira et al., 2021). However, when dealing

with multispectral images, pre-trained models that are generally

trained on RGB images may not perform well. Another approach is

to use data augmentation to artificially increase the dataset size by

applying transformations to the images. Advanced data

augmentation methods, such as generative adversarial networks

(GANs), have been used to improve wheat yield estimation (Zhang

et al., 2022). Yet, phenotyping users often acquire large amounts of

unlabeled data that still can be used to train a part of a CNN. Semi-

supervised learning methods could be used to pre-trained the

convolutional parts of CNN from unlabeled datasets (Zbontar

et al., 2021). Additionally, one can predict labels for unlabeled

data and subsequently insert them into the training dataset if they

meet certain criteria; this technique is known as pseudo-labeling

(Lee, 2013).

The use of CNNs in various domains has shown promise, and

their potential in agriculture for regression purposes needs more

investigation. The current study investigate the use of CNN for

estimating biophysical variables such as AGB, LAI, nitrogen

concentration, and nitrogen uptake from proximal images of

wheat. While some studies have already shown some good

examples of the use of CNNs for biomass or LAI prediction (Ma

et al., 2019; Li et al., 2021; Sapkota et al., 2022; Schreiber et al., 2022;

Zheng et al., 2022), many questions remain unanswered. These

unanswered questions encompass identifying the optimal CNN

architectures for achieving superior performance in estimating

LAI, above-ground biomass, nitrogen uptake, and nitrogen

concentration for wheat organs utilizing RGB and multispectral

close-range images. Additionally, addressing the challenges related

to insufficient training data and devising an effective training

pipeline is imperative. Furthermore, there is a need to evaluate

the effectiveness of multi-output models in assessing dry matter and
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nitrogen uptake partitioning, as well as nitrogen concentration

partitioning in various wheat organs. Lastly, the best-performing

CNN methods will be compared to a traditional machine learning

approach, a Partial Least Squares regression (PLSr), using

feature engineering.
2 Materials and methods

2.1 Experimental design

Data were acquired on winter wheat trials during four years in

the Hesbaye area, Belgium (50 33’50” N and 4 42’00” E).

Experimental microplots measuring 1.95 m × 6 m were sown

with an inter-row spacing of 0.14 m, on homogeneous deep silt

loamy soil in a temperate climate. The microplots were fertilized

with 27% ammonium nitrate during the tillering, stem elongation

and flag leaf stage corresponding to the BBCH 28, 30 and 39 growth

stages, respectively. The trials were of two types: (i) trials testing

different fertilization fractioning, noted as F and detailed in Table S1

and in Table S2, (ii) trials composed of different fertilization

fractioning combined with different fungicide application

programs, noted as FP and detailed in Table S3. These

abbreviations, along with the year of experimentation, are used in

the trial names presented in Table 1.

2.1.1 Reference measurements
Manual measurements were conducted on major phenological

growth stages (Table 1), which mainly consisted of tillering, stem

elongation, flag leaf, flowering, grain development, and maturity

stages. The F trials involved five treatments, while the FP trials

involved seven treatments, with three and four replicates conducted,

respectively. Fresh AGB was sampled from the three central rows of

the microplot over a length of 0.50 m. In the laboratory, the samples

were manually separated into ear, stem, flag leaf (L1) and inferior

leaves (Linf) groups. Each part was subsequently dried to determine
TABLE 1 Field trial details.

Trial
name

Cultivar BBCH growth stages of
samples

No. image
acquisitions dates

Sensor Sowing
(grains/m2)

Sowing date (dd/
mm/yyyy)

19-F Safari 30, 32, 39, 65, 77, 89 11 RGB 250 23/10/2018

20-FP
LG
Vertikal

39, 65, 89 11
RGB +
MS

250 07/11/2019

20-F Mentor 32, 39, 65, 75, 89 15
RGB +
MS

250 05/11/2019

21-FP
LG
Vertikal

39, 65, 89 16
RGB +
MS

300 27/10/2020

21-F Mentor 30, 32, 39, 65, 75, 89 15
RGB +
MS

275 20/10/2020

22-F Mentor 30, 65, 89 13
RGB +
MS

300 28/10/2021

22-FP Bennington 30, 32, 39, 65, 75, 89 17
RGB +
MS 300 28/10/2021
In 2019, there was only one RGB camera, whereas the other years there were two RGB cameras and one multispectral (MS) camera.
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the associated dry matter (DM) expressed in t/ha. The nitrogen

concentration (%N) was then measured using the Dumas method,

and nitrogen uptake (Nupt) was calculated by multiplying the DM

by the corresponding %N, expressed in kgN/ha. Organs DM and

Nuptake values of organs were expressed as relative values,

representing the partitioning of DM and N uptake among each

organ. These relative values indicate the proportion of each organ in

relation to the total plant values. Additionally, the Nitrogen

Nutrition Index (NNI) was computed using the traditional

approach described in (Justes, 1994).

To determine LAI, plants were sampled by taking one row

measuring 0.50 m in length. The leaves were separated from the

stems, weighed, spread on a white paper using a transparent

adhesive sheet, and scanned. An Otsu segmentation method was

employed to isolate the leaves from the white background (Otsu,

1979). The leaf surface area was calculated by summing the areas of

the scanned paper sheets multiplied by the proportion of pixels

segmented as leaf. Since this protocol was time-consuming, only

five microplots with contrasting fertilization were selected for

manual LAI measurements at each collection date. These LAI

values were correlated with the associated fresh masses by means

of a linear regression to predict the LAI of the other microplots.

Each correlation had a really high correlation above 0.9, thus

validate this method as a reference.

2.1.2 Image acquisitions
To capture nadir frames of wheat microplots, a phenotyping

platform was designed (Figure 1). In 2019, a single RGB camera was

utilized, while a sensor pod combining two types of cameras was

employed in 2020, 2021, and 2022. The sensor pod comprised of

two close-up RGB cameras dedicated to stereovision. These RGB

cameras were GO-5000C-USB cameras from JAI A/S in

Copenhagen, Denmark, and featured a 2560 × 2048 CMOS

sensor. Additionally, a multispectral camera, the Micro-MCA

from Tetracam Inc. in Gainesville, FL, USA, was used. It had six

1280 × 1024 pixel CMOS sensors, each of them equipped with

narrow filter centered respectively at 490, 550, 680, 720, 800, and

900 nm. To avoid shadows from the rest of the platform in the

images, both cameras were installed on a cantilever beam. The

height of the cameras was adjusted at each acquisition date to
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maintain a consistent distance between the cameras and the top of

the canopy. The height was about 1 m in 2019 and 1.6 m for the

other years. Two to four images were taken per microplots for

both cameras.

The RGB images were recorded using a color depth of 12-bit per

pixel in 2019, 2020 and 2021, which were then converted to 8-bit to

match the following algorithms. The multispectral grey scale images

were converted from 10 to 8-bit, in accordance with the constructor

recommendations. In 2019, the RGB camera auto-exposure

algorithm was used. Then, a custom exposure algorithm was

developed to limit the number of saturated pixels to less than 1%.

The multispectral auto-exposure algorithm was based on a master-

slaves principle. The 800 nm filter served as the master and its

exposure time was determined automatically using the

manufacturer algorithm. The exposure time of each slave filters

was then defined as a ratio of the master time. These ratios were

adjusted across the season to avoid saturated pixels.

The cropping seasons were thoroughly covered, with multiple

image acquisitions from tillering to maturity (Figure 2). Nevertheless,

some unforeseen events occurred, such as the COVID-19 pandemic

and a violent storm in 2021, which disrupted data acquisition.

The multispectral images underwent two pre-processing steps.

The first step involved image registration to correct for shifts between

the gray-scale images caused by the proximity to the canopy and the

physical lenses gap. The considered method proposed by Dandrifosse

et al. (2021) employs a b-spline approach to achieve pixel-wise

alignment. The second step involved correcting the multispectral

images for different light conditions during acquisition, using the

method described by Dandrifosse et al. (2022). A laboratory

calibration was performed to convert the digital numbers of the

images to Bi-directional Reflectance Factor (BRF), known as

reflectance, using an Incident Light Spectrometer, specifically an

AvaSpec-ULS2048 from Avantes, Apeldoorn, The Netherlands.
2.2 Partial Least Squares
regression approach

A conventional machine learning approach was tested to

confront the CNN models presented below. As machine learning
FIGURE 1

Experimental setup. A ground mobile platform (on the left) was equipped with a camera pod (on the right) comprising two high-resolution RGB
cameras, a multispectral camera, and an incident light spectrometer, all positioned at a height of 1.6m above the canopy.
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algorithms require relevant image features to be extracted,

additional processes were applied after performing the pre-

processing steps as described in the previous section. Firstly, a

stereovision process was used to extract plant height information

using the 95th percentile of the height map (Dandrifosse et al.,

2020). Secondly, the plant ratio was computed as the proportion of

plants in the scene, using a simple threshold method on the 800 nm

image as detailed in Dandrifosse et al. (2022). Finally, twelve

vegetation indices (see Table S7) were computed using the six BRFs.

A Partial Least Squares regression (PLSr) model was trained and

validated using these twenty features for DM, %N and Nupt of the

entire plant. It is worth noting that PLSr has previously exhibited

good performance in analogous studies (Freitas Moreira et al.,

2021). To fine-tune the model, a sequential backward feature

selection approach was employed similar to (Song et al., 2022).

This method involved generating all possible feature subsets of size

n - 1, where n represents the total number of features. Each subset

was rigorously assessed using a 5-fold cross-validation technique on

the training dataset. The feature to be removed at each step was

determined based on the subset’s performance, with the least

contributing feature being eliminated. This iterative process

continued until the maximum R² value was achieved. It is

important to mention that the training data did not encompass

the 2019 dataset, primarily due to the limited availability of only one

RGB camera during that period. Furthermore, the efficacy of the

pseudo-labeling strategy, as described in Section 2.3.3 was also

explored for PLSr. This training was performed using the PLSr

default parameters from the Scikit-Learn 1.3 Python library

(Pedregosa et al., 2011).
Frontiers in Plant Science 05
2.3 CNN training

2.3.1 Architecture
Three CNN architectures available in the python library

Tensorflow 2.4. and Keras 2.4 were tested in this study. They

were Resnet50 (He et al., 2015) and EfficientNetB0 and B4 (Tan

and Le, 2020). They represent the actual state-of-the-art CNN

models with different properties (i.e., architecture and number of

parameters) and purposes. Resnet 50 was already used for biomass

prediction by (Zheng et al., 2022) and EfficientNet is a cutting-edge

neural network architecture with a remarkable ability to seamlessly

scale from smaller to larger sizes while maintaining good efficiency.

The CNN architectures were customized to perform two tasks: (i) a

single-output model to estimate LAI, DM, %N and Nupt of the whole

plant respectively; and (ii) a multi-output model to estimate DM, %N, or

Nupt of each wheat organ, also referred as partitioning model in the rest

of this paper. Multi-output, also known as multi-task model have already

been successfully used in phenotyping by (Nguyen et al., 2023) to predict

a set of traits using a single model. Whereas a multivariate model deals

with multiple dependent variables and aims to model their relationships,

a multi-output model is a machine learning model designed to predict

multiple output variables simultaneously. A linear activation function

was considered for the last neuron of each single-output model.

Regarding the multi-output models, four output neurons were

considered, one for each organ. A linear activation function was used

for the estimation of %N whereas the softmax activation function were

used for the relative values of DM and Nupt, i.e., the proportion, in order

to keep the values between 0 and 1. All models were initialized with

weights from the ImageNet dataset (Deng et al., 2009).
FIGURE 2

Overview of the data acquisitions during the cropping seasons. Green diamonds represent the image acquisitions, and the blue crosses the
agronomic samples.
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The CNN architectures were originally designed for three-

channel images, but the multispectral images used in this study

had six channels. To accommodate this, a 2D convolutional layer

with three filters and a kernel size of (1,1) was added at the

beginning of each model when using multispectral images. It

allowed to provide a three channels input required for the

selected CNN models with pre-trained weights.

2.3.2 Dataset configuration
The study used a dataset consisting of 1809 RGB images and

1391 multispectral images with their corresponding reference

measurements. These numbers correspond to the multiplication of

dates, samples, replicates, and images per microplots. Each image was

associated with a specific combination of agronomic variables. From

this dataset, two treatments from F trials (Tables S1, S2), and one

treatment from FP trials (Table S3) were selected for the validation

dataset that included 424 RGB images and 341 multispectral images.

In addition to the images acquired on the same days as the

manual sampling, each trial was monitored continuously

throughout the season, as illustrated in Figure 2. All those

acquisitions yielded a dataset comprising 16 812 RGB images and

14 491 multispectral images. To prepare the data for the CNN

models, some pre-processing steps were taken.

The first pre-processing step involved determining the image

size, which is a trade-off between retaining as much information as

possible and limiting the computing time and resources required.

Additionally, when using pre-trained models, it is recommended to

set the input image size to match the size used during initial

training. Therefore, all images were resized to 224 x 224 for the

ResNet50 and EfficientNetB0 models, and to 380 x 380 for the

EfficientNetB4 model. It is worth noting that the images were

previously cropped into a square to avoid distortion.

In addition to image resizing, the pixel scaling was also adjusted

for each model. For the RGB images, pixel scaling was adapted

according to the Keras documentation and the requirements of each

model. For the multispectral images, Bi-directional Reflectance

Factor (BRF) values were first normalized between 0 and 1. Next,

the data was standardized based on the mean and standard

deviation of the training dataset as advice by Tensorflow. To

further enhance the dataset, data augmentation techniques,

namely random flip up/down and right/left, were applied. These

techniques increase the diversity of the dataset, which can improve

the generalization performance of the models.

2.3.3 Training pipeline
In the field of phenotyping, researchers often encounter a

substantial amount of unlabeled data. However, these data hold

untapped potential for enhancing the performance of machine

learning models. In this study, a pseudo-labeling method was

employed to leverage the unlabeled data effectively. Pseudo-labeling

involves predicting the labels of unlabeled data using a model that

demonstrates acceptable performance. These predicted labels, known

as pseudo-labels, can then be incorporated into the training dataset,

subject to a predefined confidence threshold. For classification tasks,

this confidence threshold is based on class probabilities. Nevertheless,

regression tasks utilize a linear activation function, leading to the
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absence of probabilities. To overcome this challenge, this research

proposes a novel approach. The predicted biophysical variables from

each microplot were plotted against time to generate a crop growth

curve. This curve characterizes the growth pattern of the crop over

time and can be harnessed to rectify the predicted values.

Based on this idea, a well-defined pipeline was constructed (see

Figure 3). The pipeline entailed utilizing CNN models pre-trained on

ImageNet through transfer learning. The initial training phase involved

training the CNNmodels for 40 epochs with a learning rate of 1×10−3.

During this process, only the last layer, specifically the linear dense

layer, was trained, while keeping the remaining layers frozen.

Following this, a fine-tuning stage was conducted for 10 epochs,

with a reduced learning rate of 1×10−5. During fine-tuning, the last

convolutional layer block was unfrozen and retrained, leading to the

creation of Model 1.

Next, Model 1 was utilized to generate predicted labels (Ypred)

for the complete training dataset. These predicted labels were then

plotted against the Photo-Vernalo-Thermic Units (°C-days)

(Duchene et al., 2021). A cubic B-Spline for LAI and a cubic

polynomial function for the other variables was fitted with a high

smoothing condition. These curves are traditionally used in

biophysical variables modeling (van Eeuwijk et al., 2019). Basic

correction conditions were also implemented to help that fitting,

such as setting organ values to 0 when they were not present at

specific times. The outcome of this process yielded a fitted curve

from which “corrected” pseudo-labels (Ypseu) could be extracted.

Last, pre-trained CNNs from ImageNet were trained on the

corrected pseudo-labels (Ypseu) for 30 epochs, using a learning rate

of 1×10−5. This resulted in the development of Model 2, which was

thus trained on a much larger dataset compared to Model 1.

The Mean Square Error (MSE) loss function and Adam optimizer

were used in all models. However, in the case of multi-output model for

%N, theMSE calculation was limited to true labels above 0. This means

that if an organ was not yet visible (e.g., the ear during tillering growth

stage), the loss function did not take it into account, which prevented it

from interfering with the loss function. Additionally, a weight was

applied to the loss calculation when working with relative multi-output

models. Specifically, the flag leaf pool weights were multiplied by

twenty to ensure consistency with the order of magnitude of the other

organ pools. This helped to balance the contributions of different organ

pools and prevent one pool from dominating the loss calculation. All

models were trained on an NVidia Tesla V100 GPUs.

To evaluate the performance of all models, two metrics were

used: the determination coefficient (R²) and the root mean square

error (RMSE).
3 Results

3.1 Variations of winter wheat
biophysical variables

The descriptive statistics reveal significant variations in the four

biophysical variables across the different growth stages: biomass

ranging from 0.51 to 27.89 T/ha, LAI from 0.69 to 8.66, nitrogen

concentration from 0.61 to 4.76%, and nitrogen uptake from 13.49
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to 338.59 kg N/ha (Table 2). This wide variability in the datasets was

attributed to diverse factors, including variations in growing stages,

repeated measurements over multiple years, and heterogeneous

treatments, particularly variations in nitrogen inputs. The

analysis, specifically employing ANOVA, indicates that most of

these biophysical variables exhibit significant differences among

treatments (Table S4). Both the training and validation datasets

exhibit similar statistics, which validates the appropriateness of the

dataset splitting method. Furthermore, correlations between these

variables were examined, and the results show that biomass

demonstrated a Pearson correlation of -0.27, -0.71, and 0.87 with

LAI, nitrogen concentration, and nitrogen uptake, respectively. The

correlation between nitrogen concentration and nitrogen uptake

was found to be -0.44.
3.2 Plant biophysical variable modeling

This study evaluated various models for predicting plant

biophysical variables. The EfficientNetB4 model trained on
Frontiers in Plant Science 07
pseudo-labels demonstrated the highest performance for DM,

achieving an R² of 0.92 and a low RMSE of 1.50 on the validation

dataset (Table 3). In contrast, the PLSr model had an R² of 0.77 and

a higher RMSE of 2.58, indicating weaker predictive ability.

Regarding LAI, the ResNet50 model trained on pseudo-labels

yielded the best R² of 0.82 (Table 4). For nitrogen concentration

prediction using multispectral images, the ResNet50 model

achieved an R² of 0.80 (Table 5) and an R² of 0.73 for Nitrogen

uptake (Table 6).

The other CNN models investigated in this study exhibited

robust and comparable performance levels when subjected to the

pseudo-labeling pipeline during training. The utilization of pseudo-

labels played a pivotal role in mitigating disparities between the

outcomes observed on the validation and training datasets. It is

worth noting that the PLSr model did not yield any discernible

advantages from the pseudo-labeling technique, consistently falling

short of the CNNmodels in terms of performance. One noteworthy

observation is that this pseudo-labeling method appeared to

exacerbate the disparities between the performance of the training

and validation sets. Furthermore, the results of the backward feature
FIGURE 3

Proposed training pipeline. (1) is the training with transfer learning, and (2) is the training with pseudo-labels. Ytrue corresponds to the reference
measurements. Ypred are predicted labels. A curve is fitted to provide the Ypseu which represent the corrected pseudo-labels. n and m correspond
to the number of reference measurements and the total number of images respectively.
TABLE 2 Descriptive statistics of dry matter (T/ha), LAI, N concentration (%) and N uptake (kg N/ha).

Dataset Statistic Dry matter (T/ha) LAI N concentration (%) N uptake (kg N/ha)

Training

mean
std
min
max

10.44
6.15
0.51
23.07

3.40
1.65
0.72
8.66

1.81
0.85
0.61
4.76

152.31
77.37
13.49
338.59

Validation

mean
std
min
max

10.32
6.00
0.51
27.89

3.28
1.45
0.69
7.35

1.76
0.80
0.87
4.09

145.21
66.86
16.26
307.14
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selection analysis, as depicted in Figures S1 to S4, indicated that the

augmentation of the dataset via this approach led to an increased

requirement for features to achieve optimal performance levels.

Throughout the growing season, the models successfully

assessed the variables, as evidenced by Figures 4 and 5. However,

there were some outliers that significantly deviated from the ideal

1:1 relationship between predicted and true values. Additionally, a

saturation effect was observed, where the models struggled to

accurately predict the maximum values of each variable, leading

to a lack of detail in certain growing seasons. These observations

provide valuable insights for further refining the modeling

approach and improving predictive accuracy.
3.3 Organs biophysical variable modeling

The utilization of multi-output models yielded diverse

outcomes regarding the proportion of dry matter and nitrogen

uptake, as indicated in Table S5. Table 7 displays the performance of

the multiplication of both the single output models and the multi-

output models for dry matter and nitrogen uptake, and solely the

multi-output model for nitrogen concentration.

Among the models evaluated, EfficientNetB0 demonstrated

superior performance for predicting nitrogen uptake, achieving

commendable R² values of 0.7, 0.59, 0.69, and 0.86 for stem,
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inferior leaves, flag leaf, and ear, respectively. ResNet50 exhibited

R² values of 0.87, 0.62, 0.38, and 0.94 for dry matter, and 0.50, 0.76,

0.69, and -1.07 for nitrogen concentration, indicating its

effectiveness in certain cases.

Analyzing individual organs, the ear and stems exhibited higher

prediction accuracy by the models, while the flag leaf showed

comparatively poorer prediction, depending on the specific model

employed. Concerning the %N models, the stem and inferior leaf

pools were accurately predicted, but the prediction performance for

the ear was notably inadequate.

Interestingly, while the pseudo-labeling method led to reduced

performance for the multi-output models (Table S5), its combination

with the single output models, which significantly benefit from

pseudo-labels, did not have a substantial impact on the prediction

of DM and %N for each organ. This suggests that the pseudo-labeling

approach is effective in enhancing the single output models but may

require further optimization for multi-output models.

The Figure 6 presents the predicted partitioning of wheat dry

matter and nitrogen uptake over the growing season for a single

microplot. It offers a nice alternative to provide valuable insight

about the partitioning of the matter within the plant. Moreover,

both RGB and multispectral models successfully detected the

emergence of new organs, such as the flag leaf and ear. Notably,

the dry matter model showed an earlier appearance of ears

compared to the nitrogen uptake model in this specific example.
TABLE 3 Model performances for DM of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.76 0.91 2.11 0.83

EfficientNetB0 Ypseu 0.91 0.95 1.66 0.91

EfficientNetB4 Ytrue 1.38 0.93 1.89 0.86

EfficientNetB4 Ypseu 1.09 0.96 1.50 0.92

Resnet50 Ytrue 0.78 0.98 1.87 0.89

Resnet50 Ypseu 1.05 0.97 1.64 0.90

PLSr Ytrue 2.49 0.80 2.55 0.78

PLSr Ypseu 1.32 0.92 2.58 0.77
TABLE 4 Model performances for LAI.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.06 0.69 1.18 0.57

EfficientNetB0 Ypseu 0.72 0.86 0.80 0.80

EfficientNetB4 Ytrue 0.68 0.86 0.78 0.80

EfficientNetB4 Ypseu 0.67 0.87 0.78 0.81

Resnet50 Ytrue 0.27 0.98 0.79 0.79

Resnet50 Ypseu 0.66 0.98 0.78 0.82

PLSr Ytrue 0.77 0.75 0.83 0.75

PLSr Ypseu 0.28 0.95 0.91 0.69
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TABLE 6 Model performances for Nupt of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 42.42 0.65 37.97 0.66

EfficientNetB0 Ypseu 28.84 0.84 34.38 0.72

EfficientNetB4 Ytrue 37.46 0.70 43.39 0.47

EfficientNetB4 Ypseu 25.33 0.87 34.05 0.69

ResNet50 Ytrue 14.24 0.96 37.27 0.68

ResNet50 Ypseu 26.69 0.86 33.89 0.73

PLSr Ytrue 39.72 0.65 39.89 0.70

PLSr Ypseu 17.78 0.88 42.81 0.66
F
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TABLE 5 Model performances for %N of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 0.37 0.74 0.36 0.72

EfficientNetB0 Ypseu 0.24 0.90 0.30 0.79

EfficientNetB4 Ytrue 0.33 0.75 0.32 0.55

EfficientNetB4 Ypseu 0.23 0.89 0.31 0.73

ResNet50 Ytrue 0.14 0.97 0.32 0.78

ResNet50 Ypseu 0.24 0.90 0.30 0.80

PLSr Ytrue 0.49 0.59 0.43 0.54

PLSr Ypseu 0.20 0.88 0.44 0.51
FIGURE 4

Comparison between observed and predicted values of DM of the whole plant and LAI for both training and validation datasets, using the
EfficientNetB4 model for DM and the ResNet50 model for LAI. The dots are color-coded according to the stages in the season, with darker dots
indicating later stages. The dark line represents the 1:1 line.
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4 Discussion

4.1 Convolutional neural networks as an
effective approach for predicting
biophysical variables

This study presents a comprehensive investigation into the

potential of recent CNNs in accurately predicting biophysical

vegetation variables, such as dry matter, leaf area index, and

nitrogen uptake and concentration. The research demonstrate

that our CNN-based approach stands as one of the most
Frontiers in Plant Science 10
advanced methods for this task, even though direct performance

comparisons with prior studies are hindered by the limited

availability of benchmark datasets.

In this study, CNN models outperformed a PLSr approach,

consistent with previous research findings (Ma et al., 2019; Castro

et al., 2020). Thus, CNN stands out as a potent tool in this context

due to its ability to autonomously extract features, eliminating the

need for manual feature extraction. It demonstrates remarkable

adaptability in handling the evolving features of crops throughout

the growing season, including changes in physiology and color. This

adaptability negates the necessity for fine-tuning models to specific
FIGURE 5

Comparison between observed and predicted values of %N and Nupt of the whole plant for both training and validation datasets, using the
ResNet50 model. The dots are color-coded according to the stages in the season, with darker dots indicating later stages. The dark line represents
the 1:1 line.
TABLE 7 R² of the different multi-outputs models to predict nitrogen uptake, dry matter and nitrogen concentration of each organ.

Model Data Dataset Nuptake DM %N

Stem Linf L1 Ear Stem Linf L1 Ear Stem Linf L1 Ear

EfficienNetB0
Ypseu
Ytrue

train
train

0.84
0.72

0.78
0.67

0.77
0.7

0.92
0.91

0.91
0.90

0.49
0.49

0.08
0.17

0.97
0.96

0.71
0.60

0.86
0.75

-0.08
0.60

-2.18
-1.09

EfficienNetB4
Ypseu
Ytrue

train
train

0.54
0.6

0.02
0.48

0.65
-0.47

0.75
0.7

0.90
0.92

0.53
0.65

-0.11
0.57

0.96
0.97

0.67
0.38

0.75
0.56

-0.10
0.10

-1.95
-2.46

ResNet50
Ypseu
Ytrue

train
train

0.8
0.84

0.75
0.78

0.76
0.8

0.93
0.96

0.88
0.93

0.51
0.76

0.15
0.67

0.94
0.98

0.73
0.86

0.87
0.93

-0.05
0.95

-2.10
0.52

EfficienNetB0
Ypseu
Ytrue

val
val

0.7
0.63

0.59
0.47

0.69
0.54

0.86
0.86

0.83
0.82

0.28
0.34

-0.09
-0.16

0.95
0.93

0.54
0.47

0.84
0.69

-0.43
0.58

-2.64
-1.72

EfficienNetB4
Ypseu
Ytrue

val
val

0.51
0.41

-0.2
0.3

0.52
-1.66

0.66
0.65

0.83
0.84

0.38
0.55

-0.15
0.14

0.94
0.94

0.59
0.10

0.73
0.55

-0.46
0.13

-2.11
-3.91

ResNet50
Ypseu
Ytrue

val
val

0.64
0.67

0.52
0.56

0.64
0.66

0.85
0.86

0.87
0.87

0.57
0.62

0.22
0.38

0.94
0.94

0.48
0.50

0.84
0.76

-0.45
0.69

-3.17
-1.07
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growth stages or cultivars, as highlighted by previous machine

learning research (Yue et al., 2019). These studies commonly

adopt a strategy of employing one model for each growth stage,

alongside a single overarching model that typically yields less

satisfactory results (Wang et al., 2022a). Nevertheless, it would

remain intriguing to explore the performance of the presented CNN

models on new cultivars, which may exhibit distinct characteristics.

Moreover, the results pertaining to nitrogen concentration are

particularly intriguing. One might expect that CNNs would prioritize

features related to plant architecture, which would be more closely

associated with nitrogen uptake. However, the observed medium

correlation (-0.44) between nitrogen concentration and uptake tends

to limit this assumption, suggesting that the CNNs might have also

identified some kind of vegetation indices contributing to the

predictions. Despite these remarkable outcomes, interpreting the

specific features extracted by CNNs remains challenging. To

enhance our understanding of the underlying mechanisms and

improve model interpretability, ongoing research is dedicated to

developing techniques for explaining CNN predictions. One such

approach, Grad-CAM (Selvaraju et al., 2020), shows promise in

providing insights into the regions of the image that significantly

influence the model’s decisions.

Among the CNN architectures explored, ResNet50 exhibited

high performance, consistent with similar studies (Castro et al.,

2020). Notably, EfficientNet also yielded promising results,

especially for DM prediction of the entire plant. However, it is

worth considering that the advantage of EfficientNetB4 might be

attributed to its capacity to capture finer details in larger images.

Interestingly, recent research has shown that performance gains

may saturate beyond a certain image size (Li et al., 2021). This

behavior could be dependent on the architecture, as EfficientNet is

explicitly designed for scalable optimization on specific datasets

(Tan and Le, 2020).
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In contrast, the machine learning approach utilizing PLSr and

feature fusion from the multi-sensor system consistently delivered

inferior performance when compared to CNN models.

Nevertheless, it is important to underscore that this method still

achieved commendable results, boasting an R² value exceeding 0.6,

which aligns with the findings reported in Yue et al. (2019).

An intriguing aspect arising from the backward feature selection

analysis was the observed increase in the number of selected

features between Ytrue and Ypseu, signifying the heightened

demand for features in constructing models with a larger dataset

(See Supplementary Material). Additionally, both sets of features

exhibited substantial similarities, affirming their efficacy in

modeling agronomical parameters. Among these features, plant

height emerged as the most frequently utilized, followed by plant

ratio andMCARI index. Furthermore, it is noteworthy that DM and

Nuptake shared three out of four features, a logical outcome given

that Nuptake was derived from DM. Other features selected for

nitrogen-related analysis included well-established indices such as

MCARI, mNDB, and GR.

However, it is essential to exercise caution when drawing

overarching conclusions solely based on this method. Notably, the

selection of these features can be intricate, as they may exhibit

seasonal variations, as documented in (Yue et al., 2019; Wang et al.,

2022a, b). It is conceivable that more advanced methods may yield

superior results, as suggested in (Wang et al., 2021).
4.2 The significance of the amount of
ground truth data in deep learning for
regression of biophysical variables

Deep learning techniques, especially in regression tasks

involving biophysical variables, encounter a substantial challenge
FIGURE 6

Predicted partitioning of dry matter and nitrogen uptake throughout the season for a microplot from the 22-F trial. This results from the use of the
multi-output ResNet50 (Table S5) multiplied by the single output ResNet50 (Table 3).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1204791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Carlier et al. 10.3389/fpls.2023.1204791
due to the scarcity of sufficient training datasets. The limited

availability of labeled data necessitates the development of

innovative approaches to overcome this issue. A training pipeline

was devised in this study, which capitalizes on the abundance of

unlabeled data commonly found in highthroughput phenotyping

installations. This method represents a practical approach to

leverage unlabeled data, leading to optimized performance of

CNN models in phenotyping applications.

The pseudo-labeling method emerged as an effective strategy to

mitigate overfitting of the model. As a result, the performance gap

between the training and validation datasets was reduced, signifying

enhanced generalization. To perform such data correction, a

polynomial cubic curve was chosen for its simplicity in

representing biophysical curves and ease of fitting. Finer curves

more related to plant growth pattern, such as P-splines or logistic

curves, could have been used, but the fitting process may prove

difficult (van Eeuwijk et al., 2019). These finer curves often require

more frequent measurements (one to two per week) for accurate

fitting (Roth et al., 2020), a frequency that our data did not meet. To

address potential bias, correcting conditions were introduced,

particularly essential for organ models. For example, when an

organ was absent at a specific time (t), the corresponding pseudo-

label was set to 0, a correction that, while seemingly straightforward,

significantly contributed to the accuracy of representations. The

effectiveness of traditional machine learning might also be a good

option to generate pseudo-labels in the case of fewer ground

truth data.

During the research, we also examined more advanced data

augmentation techniques, such as 90° rotation and color space

transformations without success. It is crucial to exercise caution

when employing such methods, as their indiscriminate application

may adversely affect model performance, as observed in certain

models in (Castro et al., 2020). Conversely, (Ma et al., 2019)

reported clear performance improvements with these methods.

The discrepancy in results may be attributed to the risk of the

model becoming overly reliant on specific features, such as wheat

lines in the case of image rotation. Hence, prudent consideration of

data augmentation is warranted based on the specific characteristics

of the dataset and model.
4.3 Limitations and perspectives

An effective approach for evaluating model performance is to

combine their predictions into a single other variable. In this study,

we used DM and %N of the plant, predicted from their respective

models, to calculate the Nitrogen Nutrition Index (NNI). The R²

values for the training and validation datasets were 0.71 and 0.33,

respectively, suggesting the potential utility of this method for

measuring NNI as well. Although the dataset contains a

substantial amount of heterogeneous ground truth data, the

performance of the models may raise questions due to its limited

size in terms of crop architecture and color, which only includes a

few genotypes. The observed patterns in predicted values in

Figures 5 and 4 appeared scattered, resembling a cloud rather
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than forming a clear line, and some outliers were evident,

indicating room for improvement in the models. Overfitting was

also observed, particularly with ResNet50, which frequently

achieved R² values above 0.95 for the training dataset. To address

this, a prudent approach would be to initially use small architectures

and acquire more data. Despite the need for improvements

concerning trait saturation and accuracy within specific growth

stages Figure 4, the models’ potential is significant. They can be

employed to compute advanced traits, such as growth rate and spot

ideotypes using temporal curves, as demonstrated in a recent study

(Roth et al., 2022).

By leveraging diverse and large-scale datasets, CNNs can yield

more robust and precise models, reducing the need for heavily

relying on study-specific feature engineering. Therefore, the

phenotyping community should prioritize the development of

extensive and well-annotated datasets for essential phenotyping

challenges, such as the Global Wheat Head Detection (GWHD)

dataset (David et al., 2021). Additionally, exploring alternative

solutions, such as self-supervised learning (Zbontar et al., 2021)

or generating synthetic data using Functional-Structural Plant

Models (FSPM) (Gao et al., 2023), can further enhance model

training and performance.

Research on the allocation of major plant elements, such as

sink/source regulation processes and their relationship with grain

nitrogen content, heavily relies on dry matter and nitrogen uptake

partitioning (Martre et al., 2003; Gaju et al., 2014). The multi-

output models proposed in this study have shown promising results

(Table 7), with good performance in most cases. However, certain

organs exhibited poor performance, such as %N of the ear, which

may be attributed to the lack of visible traits that could account for

it, like a greener ear. The subpar performance of DM and Nupt for

flag leaf could be mainly attributed to the multi-output proportion

model’s poor performance for this organ (Table S5), despite

assigning it a higher weight in the loss function. Additional

images specifically featuring flag leaves might be needed to

improve its representation, as the ear rapidly develops behind them.

This multi-output model exemplifies the potential of such

approaches for plant phenotyping. While this study employed a

simple approach by sharing a common loss function, the benefits of

multi-output learning can be substantial. For instance, a single

model assessing both dry matter and leaf area index can

significantly reduce computational costs and processing time,

while maintaining high accuracy for both tasks. In fact, when

tasks share complementary information, they can act as

regularizers for each other, enhancing prediction performance

(Standley et al., 2020). However, combining complex associations

between tasks, such as classification and regression tasks, requires

careful consideration of model architecture, loss function, and

training strategy to achieve optimal performance. Ongoing

research in this area is actively being pursued (Vafaeikia et al.,

2020; Vandenhende et al., 2020).

The ability of the models to autonomously discover the

appearance of new organs, such as ears and flag leaves, is

particularly intriguing and opens exciting new research avenues

too. This suggests the feasibility of developing growth stage
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estimation models per RGB image in a similar manner. Such models

could be further utilized for various purposes, such as optimizing

crop models (Yang et al., 2021).
5 Conclusions

In this study, a robust training pipeline that leverages unlabeled

data through the innovative combination of pseudo-labeling and

temporal relationship correction were developed and implemented.

The results demonstrate the significant advantages of employing

CNN models over a PLSr approach, as they achieve superior

performance without the need for labor-intensive feature

engineering. Notably, EfficientNetB4 was better in predicting

above-ground biomass, while ResNet50 exhibited superior

performances in predicting LAI, nitrogen uptake, and nitrogen

concentration. Additionally, our exploration of multi-output

models provided valuable insights into the distribution of dry

matter and nitrogen uptake among different plant organs,

enriching our understanding of plant biophysical characteristics.

While CNN models show great promise, it is evident that

further investigation is required to fully unlock their potential.

This research effectively demonstrates the capabilities of CNNs in

predicting biophysical vegetation variables and offers valuable

insights into addressing limitations and future perspectives in

plant phenotyping. Moving forward, data sharing within the

phenotyping community will be critical to optimize model

performance. Access to large and diverse datasets, such as the

Global Wheat Head Detection dataset, is indispensable for

advancing phenotyping research and enhancing the performances

of CNN models. By fostering data sharing and continued research

efforts, CNNs can continue to revolutionize plant phenotyping

and make profound contributions to agricultural and

environmental sciences.
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SUPPLEMENTARY FIGURE 1

Backward feature selection with PLSr for DM Estimation: On the left, selected
features for estimating DM from Ytrue include Plant Ratio, 95th Percentile of

Height, MCARI, and BRF 490. On the right, the selected features for

estimating DM from Ypseu comprise Plant Ratio, 95th Percentile of Height,
MCARI, and BRF 550.

SUPPLEMENTARY FIGURE 2

Backward feature selection with PLSr for LAI Estimation: On the left, selected
features fo estimating LAI from Ytrue include SR, GNDVI, MCARI, CIgree, BRF

900 and BRF 720. On the right, the selected features for estimating LAI from

Ypseu comprise NDRE, SR, GNDVI, CIgreen, CIrede and BRF 550.
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SUPPLEMENTARY FIGURE 3

Backward feature selection with PLSr for Nuptake Estimation: On the left,
selected features for estimating Nuptake from Ytrue include Plant Ratio, 95th

percentile of height and MCARI. On the right, the selected features for

estimating Nuptake from Ypseu comprise Plant Ratio, 95th percentile of
height, GR, MCARI, mNDB and BRF 550.

SUPPLEMENTARY FIGURE 4

Backward feature selection with PLSr for Nrate Estimation: On the left,
selected features for estimating Nrate from Ytrue include 95th percentile of

height and MCARI. On the right, the selected features for estimating Nrate

from Ypseu comprise 95th percentile of height, GR and mNDB.
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